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Background. Vitamin D deficiency is associated with impaired immune responses and increased susceptibility
to a number of intracellular pathogens in individuals infected with human immunodeficiency virus (HIV). It is not
known whether such an association exists with Cryptococcus neoformans.

Methods. Levels of 25-hydroxyvitamin D (25[OH]D) were measured in 150 patients with cryptococcal menin-
gitis (CM) and 150 HIV-infected controls in Cape Town, South Africa, and associations between vitamin D defi-
ciency and CM were examined. The 25-hydroxyvitamin D levels and cryptococcal notifications were analyzed for
evidence of reciprocal seasonality. Associations between 25(OH)D levels and disease severity, immune responses,
and microbiological clearance were investigated in the patients with CM.

Results. Vitamin D deficiency (plasma 25[OH]D≤50 nmol/L) was present in 74% of patients. Vitamin D deficiency
was not associated with CM (adjusted odds ratio, 0.93 [95% confidence interval, .6–1.6]; P = .796). Levels of 25(OH)D
showed marked seasonality, but no reciprocal seasonality was seen in CM notifications. No significant associations were
found between 25(OH)D levels and fungal burden or levels of tumor necrosis factor α, interferon γ, interleukin 6, soluble
CD14, or neopterin in cerebrospinal fluid. Rates of fungal clearance did not vary according to vitamin D status.

Conclusions. Vitamin D deficiency does not predispose to the development of CM, or lead to impaired immune
responses or microbiological clearance in HIV-infected patients with CM.
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Cryptococcal meningitis (CM) is a leading cause
of death in human immunodeficiency virus (HIV)–

infected individuals in low-resource settings [1]. The
causative organism, Cryptococcus neoformans, is a fac-
ultative intracellular pathogen that has developed nu-
merous strategies allowing it to survive and replicate
inside macrophages [2, 3]. Environmental exposure to
Cryptococcus is universal [4]. In the context of impaired
adaptive immune responses, the ability of Cryptococcus
to evade macrophage killing leads to dissemination, dis-
ease, and ultimately death [5]. Although the primary
immune defect leading to development of cryptococcal
meningitis is impairment of CD4+ T-cell (CD4) re-
sponses, usually secondary to HIV infection [6], the
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effectiveness of macrophage recognition, processing, and killing
of Cryptococcus is likely to play an important role in the evolu-
tion of infection [2, 3, 7].

Vitamin D is required for effective macrophage responses to a
number of intracellular pathogens including Mycobacterium
tuberculosis complex (MTB), where it plays a critical role in mac-
rophage activation following Toll-like receptor (TLR) signaling,
tumor necrosis factor alpha (TNF-α) release, interferon gamma
(IFN-γ)–mediated cathelicidin function, phagolysosome matura-
tion and autophagy, and intracellular killing of mycobacteria [8–
13]. Macrophages from HIV-infected patients have particularly
impaired antituberculous activity in the absence of adequate vi-
tamin D levels [8,14],consistent with themarkedly increased sus-
ceptibility to tuberculosis during HIV infection [15].

Similar to tuberculosis, CM is caused by an inhaled pathogen
that evades effective intracellular killing by alveolar macrophag-
es, often establishes a latent infection in the lung, and dissem-
inates and causes disease when effective T-cell–mediated
immune responses are depleted in HIV infection [5]. Data
show that HIV-infected patients who have had pulmonary tu-
berculosis are at increased risk of developing CM [16], raising
the possibility of a shared immune defect over and above
CD4+ T-cell depletion. We hypothesized that vitamin D defi-
ciency may impair immune responses to Cryptococcus, leading
to similar increases in susceptibility to disease and impairments
of microbiological clearance to those seen in MTB infection.

To test this hypothesis, we performed a study in Cape Town,
South Africa, consisting of 3 parts: (1) 25-hydroxyvitamin D
(25[OH]D) levels were measured in patients presenting with
CM and control patients with comparable CD4 counts drawn
from the same population who did not have CM to determine
whether vitamin D deficiency was associated with the develop-
ment of CM; (2) 25(OH)D levels in the study population were
analyzed for evidence of seasonality corresponding to sunshine
hours, and Western Cape CM notifications from the South Af-
rican National Institute for Communicable Diseases (NICD)
covering the study period were analyzed for evidence of recip-
rocal seasonality; and (3) associations between 25(OH)D levels
and disease severity, immune responses, and microbiological
clearance rates were examined in patients with CM.

METHODS

Participants and Procedures
Participants were recruited at GF Jooste Hospital, Cape Town,
South Africa, between July 2005 and May 2010. One hundred
fifty participants were HIV-infected adults (aged ≥21 years)
with a first episode of CM (cases), diagnosed by cerebrospinal
fluid (CSF) India ink or cryptococcal antigen testing (titers
≥1:1024; Meridian Cryptococcal Latex Agglutination System,
Meridian Bioscience, Cincinnati, Ohio), who were enrolled

sequentially in 2 clinical trials examining different amphoteri-
cin B–based induction regimens [17, 18]. The studies were ap-
proved by the Research Ethics Committee of the University of
Cape Town, and patients gave informed consent for blood and
CSF samples to be used for research purposes. The component
trials had the same inclusion and exclusion criteria, and have
been described elsewhere [17, 18]. On study enrollment, history
and clinical examination findings were recorded. Blood samples
taken prior to antifungal therapy were used for plasma vitamin
D quantification. Lumbar punctures (LPs) with quantitative
CSF cultures were performed on days 1, 3, 7, and 14. Cryptococ-
cal clearance (early fungicidal activity [EFA]) was calculated as
the rate of decrease in log colony-forming units (CFU) per mil-
liliter of CSF per day derived from the slope of the linear regres-
sion of log CFU per milliliter against time for each patient [19].
The CSF cell count and protein and glucose levels were deter-
mined. CSF interferon gamma (IFN-γ), tumor necrosis factor
alpha (TNF-α), and interleukin 6 (IL-6) concentrations were
measured in all patients using the Luminex multianalyte plat-
form (Luminex) and Bio-Rad cytokine kits (Bio-Rad) [20].
CSF soluble CD14 (sCD14) and neopterin concentrations
were measured for a subset of 90 sequential patients using
Bio-Rad kits and manual enzyme-linked immunosorbent
assay (ELItest Neopterin, BRAHMS Aktiengesellschaft, Hen-
nigsdorf, Germany), respectively. Baseline CD4 cell counts
were recorded for all patients. Patients were followed for 1
year and mortality outcomes recorded.

Recruited concurrently were 150 hospital-based control pa-
tients, who were HIV-infected adults (aged ≥21 years) with a
nadir CD4 count ≤100 cells/µL and no current evidence of or
prior history of cryptococcal disease, attending the hospital for
management of either newly diagnosed HIV infection or an op-
portunistic infection other than CM. These patients were drawn
from the same population as the cases during the same “risk pe-
riod,” and would have been included as a case in the study had
they developed CM. Basic demographic data, medical history,
and current CD4 count were recorded, and a blood sample was
taken for plasma vitamin D quantification. Among cases and
controls, all patients currently taking antituberculosis medication
with a clinical diagnosis of tuberculosis (both sputum acid-fast
bacillus smear positive and smear negative) were defined as hav-
ing active tuberculosis. Written informed consent was obtained
from each control participant, and the study was approved by
the Research Ethics Committee of the University of Cape Town.

Vitamin D Levels
Plasma 25(OH)D concentrations were measured in stored base-
line blood samples at St George’s University of London using
Immunodiagnostics Systems’ 25(OH)D kit (REF IS2700) on
the iSYS multidiscipline autoanalyzer. Vitamin D status was
defined according to standard criteria as normal (>75 nmol/L),
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insufficient (≤75 nmol/L), deficient (≤50 nmol/L), or severely
deficient (≤25 nmol/L) [13, 21].

Cryptococcal Meningitis Notifications
All incident laboratory-confirmed cases of cryptococcal disease
from the Western Cape were reported to the NICD during the
study period with date of specimen collection; surveillance au-
dits were conducted to ensure complete reporting. A case of in-
cident cryptococcosis was defined as the first episode of
laboratory-confirmed disease in a patient (encapsulated yeasts
observed by microscopic examination of an India ink–stained
fluid, or a positive cryptococcal antigen test or culture of
Cryptococcus species from any body site) diagnosed at a clinical
laboratory in the Western Cape Province.

Statistical Analysis
Data were analyzed using Stata version 12.0 (StataCorp, College
Station, Texas), R version 3.0.2 (R foundation for Statistical Com-
puting), and GraphPad Prism version 6 (Graphpad Software Inc,
San Diego, California). Variables were compared across groups
using unpaired t tests, 1-way analysis of variance, Kruskal-Wallis,
χ2, or Fisher exact tests as appropriate. The 25(OH)D results were

log transformed, geometric means and 95% confidence intervals
(CIs) presented, and log-transformed results used in regression
analyses. For the case-control analysis, crude and adjusted odds
ratios (ORs) exploring the association between vitamin D defi-
ciency and CM, and potential confounders in this relationship,
were obtained using logistic regression analysis. Evidence for sea-
sonality in 25(OH) D levels and cryptococcal case notifications
was examined using Poisson regression models, which modeled
monthly data using a general trend plus a sinusoidal wave for sea-
sonal effect (cosinor regression modeling [22]). Assessment of
seasonality was made by comparing the Akaike information cri-
terion of models including or jointly omitting the sine and cosine
terms using a likelihood ratio test. Among the CM cases, associ-
ations between 25(OH)D levels and disease severity at presenta-
tion, baseline CSF immune responses, rate of clearance of
infection, and mortality were examined using linear and Cox re-
gression modeling. Statistical significance was defined as P≤ .05.

RESULTS

Demographic and clinical characteristics of patients are summa-
rized in Table 1. Patients with CM had a median CD4 count of

Table 1. Patient Characteristics and 25-Hydroxyvitamin D Levels

Characteristic CM Cases (n = 150) Controls (n = 150) Adjusted ORa P Value

Age, y 32 (28–38) 32 (27–37) .337

Male sex, % (No.) 41% (62) 17% (26) <.001
CD4 count, cells/µL 32 (13–58) 40 (19–79) .13

Active tuberculosis, % (No.) 35% (53) 42% (63) .236

On ART, % (No.) 0% (0) 30% (45) <.001
Duration of ART, d . . . 55 (21–99) . . .

Vitamin D, nmol/Lb 38 (35–41) 36 (33–39) .367

Vitamin D ≤75 nmol/L, % (No.) 93% (139) 95% (142) .338
Vitamin D ≤50 nmol/L, % (No.) 75% (112) 72% (108) .669

Vitamin D ≤25 nmol/L, % (No.) 18% (27) 26% (38) .116

Fungal burden, log1 0 CFU/mL 5.3 (4.3–5.8) . . . . . .
Altered mental status, % (No.) 13% (19) . . . . . .

EFA, log10 CFU/mL/d −0.52 (−0.39 to −0.69) . . . . . .

Mortalityc, % (No.) 28% (41) . . . . . .
Vitamin D >50 nmol/L, % (No.) 25% (38) 28% (41) 1 (base) .796

Vitamin D ≤50 nmol/L, % (No.) 75% (112) 72% (108) 0.93 (95% CI, .54–1.61)

Data presented are median (interquartile range) or percentage (No.). Significance testing was performed using Kruskal-Wallis, χ2, or Student t test as appropriate.

Abbreviations: ART, antiretroviral therapy; CFU, colony-forming units; CI, confidence interval; CM, cryptococcal meningitis; EFA, early fungicidal activity; OR, odds
ratio; vitamin D, 25-hydroxyvitamin D.
a Variables that were associated with both case status and vitamin D deficiency with a P value ≤0.1 were considered to be potential confounders in the relationship
between vitamin D deficiency and development of CM. The only variable meeting these criteria was season, which was adjusted for in the analysis reported here.
Levels of 25-hydroxyvitamin D varied by season, with the highest levels in the first quarter of the year (mean, 48 nmol/L [95% CI, 43–52 nmol/L]), lower levels in the
second quarter (mean, 33 nmol/L [95% CI, 29–38 nmol/L]), the lowest levels in the third quarter of the year (mean, 32 nmol/L [95% CI, 28–35 nmol/L]), and
increasing levels in the fourth quarter (mean, 38 nmol/L [95% CI, 34–42 nmol/L]), analysis of variance P = .005. Further adjustment for sex, CD4 count, and ART
status did not alter the findings (adjusted OR, 0.82 [95% CI, .44–1.51]; P = .523).
b Log-normal distribution; geometric mean and 95% CIs are presented.
c Mortality at 10 weeks.
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32 cells/µL, and severe disease at presentation, with high CSF
fungal burdens (median, 5.3 [interquartile range, 4.3–5.8 log10
CFU/mL]) and a high proportion of altered mental status
(13%). All CM patients were antiretroviral therapy (ART)
naive. The control patients were similar to cases in terms of
age and CD4 count, although a larger proportion was female,
and 30% were already taking ART. Sixty-three (42%) control pa-
tients had a current diagnosis of tuberculosis, compared with 53
(35%) of the CM cases (P = .24). Thirty-four (23%) controls had
advanced HIV infection alone, and the remaining 53 (35%) were
being investigated or treated for opportunistic infections or com-
plications of HIV infection (including 13 with gastroenteritis, 10
with pneumonia or bacterial sepsis, 6 with anemia, and 24 with
other conditions including Pneumocystis pneumonia, Kaposi
sarcoma, and candidiasis). All patients were black Africans.

Vitamin D Deficiency Is Common, and Clear Seasonal Variations
Are Observed
The mean 25(OH)D concentration of the total study population
(cases and controls combined) was 38 nmol/L (Figure 1). Only

18 (6%) had adequate 25(OH)D levels (>75 nmol/L). Two hun-
dred twenty (74%) had vitamin D deficiency (≤50 nmol/L), and
65 (22%) were severely vitamin D deficient (≤25 nmol/L). Lev-
els of 25(OH)D varied by season, with the highest levels in the
first quarter of the year (mean, 48 nmol/L [95% CI, 43–52
nmol/L]), corresponding to the southern hemisphere summer
and highest number of sunshine hours, and the lowest levels
in the third quarter of the year (mean, 32 nmol/L [95% CI,
28–35 nmol/L]), corresponding to the winter months and low-
est number of sunshine hours. Cosinor regression modeling
confirmed the presence of significant seasonality in vitamin D
levels (P < .001). The 25(OH)D levels did not differ by sex and
were not associated with age, CD4 count, or ART status.

No Seasonal Trends Are Evident in Cryptococcal Meningitis
Notification Rates in the Western Cape Region
To examine associations between vitamin D status and the risk
of developing CM, the Western Cape region CM notification
rates for the 7-year period 2005–2011 were analyzed for season-
al trends. Despite the seasonal variation in 25(OH)D levels seen

Figure 1. Plasma 25-hydroxyvitamin D (25[OH]D) levels by cryptococcal meningitis status, tuberculosis status, and season. A, Plasma 25(OH)D levels of
the whole study population (cases and controls combined), with dashed lines at 75 nmol/L (vitamin D insufficiency), 50 nmol/L (vitamin D deficiency), and
25 nmol/L (severe vitamin D deficiency). B and C, Plasma 25(OH)D levels according to cryptococcal meningitis case status (B) and tuberculosis status (C),
with lines at the geometric mean and error bars showing 95% confidence intervals. Levels of 25(OH)D were significantly lower in individuals with tuber-
culosis than in those without tuberculosis (*34 nmol/L vs 39 nmol/L; P = .029). D, Average number of sunshine hours per month in Cape Town (source:
National Oceanic and Atmospheric Administration, available at: www.noaa.gov). E, Levels of 25(OH)D by month (averaged over the 5-year study period) with
cosinor regression line. F, Monthly cryptococcal notification rates (averaged over the period 2005–2011) with best-fit regression line. Abbreviations: CM,
cryptococcal meningitis; TB, tuberculosis.
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in this patient population, cosinor regression modeling did not
demonstrate any seasonal trend in CM notification rates
(P > .7), with an average of 39 cases per month during the pe-
riod and very little monthly variation (Figure 1).

Vitamin D Deficiency Is Not Associated With Cryptococcal
Meningitis, but Is Associated With Active Tuberculosis
Levels of 25(OH)D levels did not differ between CM cases and
control patients (mean, 38 nmol/L vs 36 nmol/L; P = .367;
Table 1). Vitamin D deficiency was not associated with CM
(OR, 1.12 [95% CI, .7–1.9]; P = .669), and this remained the
case in a multivariable logistic regression model adjusted for
season (adjusted OR [aOR], 0.93 [95% CI, .6–1.6]; P = .796).
A sensitivity analysis restricted to ART-naive patients yielded
the same findings (aOR, 0.82 [95% CI, .44–1.51]; P = .523), as
did the equivalent analysis looking at severe vitamin D defi-
ciency (aOR, 0.62 [95% CI, .32–1.31]; P = .223). Conversely,
25(OH)D levels were lower in patients with active tuberculosis
compared with those without (34 nmol/L vs 39 nmol/L;
P = .029), and this difference remained significant after adjust-
ing for CM case status and CD4 count (P = .04). In both CM
cases and controls, vitamin D deficiency was associated with in-
creased odds of active tuberculosis, with some evidence for an
increasing trend with worsening deficiency (OR, 1.47 [95% CI,
.5–4.7] for vitamin D insufficiency; OR, 1.51 [95% CI, .5–4.5]
for vitamin D deficiency; and OR, 2.52 [95% CI, .8–7.9] for
severe vitamin D deficiency, all compared to a baseline of
normal vitamin D status; P for trend = .069).

Vitamin D Status Is Not Associated With Disease Severity, Host
Immune Response, or Microbiological Clearance in Patients With
HIV-Associated Cryptococcal Meningitis
Among the 150 CM cases studied, there were no associations
between 25(OH)D level and either fungal burden at disease

presentation, the host immune response at the site of infection,
or the rate of clearance of infection (Figure 2 and Table 2).
Mean fungal burden was very similar in those with and without
vitamin D deficiency (5.1 log10 CFU/mL vs 5.0 log10 CFU/mL;
P = .687), as were CSF lymphocyte counts (15 × 106/L vs
19 × 106/L; P = .897), CSF TNF-α levels (0.84 log10 pg/mL vs
0.81 log10 pg/mL; P = .697), CSF IL-6 levels (2.44 log10 pg/mL
vs 2.28 log10 pg/mL; P = .540), and CSF IFN-γ levels (1.62
log10 pg/mL vs 1.61 log10 pg/mL; P = .988). Regression model-
ing confirmed the absence of significant associations between
25(OH)D levels and fungal burden, CSF lymphocytes, CSF
TNF-α levels, CSF IL-6 levels, and CSF IFN-γ levels (Table 2).
Given evidence that in the context of tuberculosis infection the
activation of macrophages by IFN-γ is vitamin D dependent
[11], we examined the ratio of IFN-γ to the macrophage activa-
tion markers sCD14 and neopterin. The IFN-γ:sCD14 ratios
(0.26 vs 0.25; P = .788) and IFN-γ:neopterin ratios (0.82 vs
0.83; P = .914) were similar in patients with and without vita-
min D deficiency, providing no evidence for differential macro-
phage activation in CM patients according to vitamin D status.

In keeping with the absence of any observed impact of vita-
min D status on the immune response to cryptococcal disease,
rates of clearance of Cryptococcus from the CSF were not asso-
ciated with 25(OH)D levels (β coefficient −0.015 [95% CI,
−.09–.06]; P = .701). The mean rate of clearance was −0.56 in
those with vitamin D deficiency vs −0.56 in those without
(P = .847). Mortality at 10 weeks was 30% (n = 33) in patients
with vitamin D deficiency vs 22% (n = 8) in those without
(P = .367). After adjustment for CD4 count and the other key
predictors of mortality, baseline fungal burden and abnormal
mental status [23], the hazard of death was 1.35 (95% CI, .7–
2.6; P = .375) in vitamin D–deficient patients compared with
those non–vitamin D–deficient patients.

Figure 2. Fungal burden, cerebrospinal fluid (CSF) immune responses, and rate of clearance of infection in cryptococcal meningitis patients with and
without vitamin D deficiency. The baseline CSF fungal burden (QCC), rate of clearance of infection (EFA), baseline CSF lymphocyte count, CSF TNF-α
concentration, and CSF IFN-γ concentration are shown according to whether patients were vitamin D deficient ( plasma 25-hydroxyvitamin D
≤50 nmol/L). Lines indicate the mean in the vitamin D–deficient patients and in those without vitamin D deficiency. No significant differences were present
between the vitamin D–deficient and –sufficient groups in any of the variables shown. Abbreviations: CFU, colony-forming units; CSF, cerebrospinal fluid;
EFA, early fungicidal activity; IFN, interferon; QCC, quantitative cryptococcal culture; TNF, tumor necrosis factor.
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DISCUSSION

Vitamin D deficiency was prevalent in this population of HIV-
infected black African patients in Cape Town, consistent with
previous findings in HIV-infected and uninfected populations
in this setting, and, in keeping with previous reports, showed
a marked seasonal variation closely related to sunshine exposure
[14]. Also consistent with recent studies from Cape Town [14]
was the observed association of vitamin D deficiency with active
tuberculosis. We did not find any evidence for an association
between vitamin D status and either susceptibility to CM or
the immune response to CM and microbiological clearance in
patients who had developed CM. Levels of 25(OH)D levels did
not differ between the cohort of patients with CM and the con-
trol patients with comparable CD4 counts but no history of
cryptococcal disease. This remained the case in sensitivity anal-
ysis adjusting for ART status, the only important factor differ-
ing between the CM cases and controls. Further evidence for an
absence of association between vitamin D status and suscepti-
bility to CM was the lack of seasonal trend in CM notifications,
despite the clear seasonal variation in 25(OH)D levels in this
population [14]. Consistent with these observations were our
findings that vitamin D deficiency was not associated with fun-
gal burden at CM presentation, did not influence the CSF im-
mune response, and had no bearing on the rate at which
infection was cleared from the CSF. As in prior studies [14],
mean 25(OH)D levels in the studied population were low. Nev-
ertheless, variation within a range of relatively low levels was
associated with important differences in susceptibility to

tuberculosis in this and other studies [14], arguing against the
possibility that the lack of association seen with cryptococcal
disease was due to low population vitamin D status.

Very few prior studies have examined vitamin D in the con-
text of other fungal infections, and the reported results do not
show a consistent association with vitamin D status, which may
be related to the diverse host defense mechanisms involved
[24, 25]. Our findings suggest that immune control and clear-
ance of Cryptococcus is not via vitamin D–dependent pathways.
Given the immunomodulatory effects of vitamin D on both
innate and adaptive immunity [8–13, 26], plus reports demon-
strating impaired immune responses and increased susceptibil-
ity to HIV and HIV-associated opportunistic infections such as
tuberculosis, respiratory tract infections, and candidiasis [8, 9,
14, 26–28], the lack of any observed association with CM is per-
haps surprising. The bulk of the data concerning the role of
vitamin D in immunity to infectious diseases come from studies
of tuberculosis. Convincing evidence shows that vitamin D de-
ficiency is a risk factor for the development of tuberculosis
[14, 27, 28], and data from controlled trials suggest that vitamin
D replacement may improve outcomes in patients with tubercu-
losis [29].Macrophages from vitamin D–deficient HIV-infected
patients demonstrate impaired intracellular signalling and
TNF-α expression in response to TLR2/4 signaling by MTB
[8], and these responses are restored by vitamin D supplemen-
tation in vitro. Activation of MTB-infected macrophages by T-
cell–derived IFN-γ is dependent on vitamin D [11], and can be
restored in macrophages from vitamin D–deficient patients by
vitamin D supplementation. Importantly, for restriction of

Table 2. Associations Between Vitamin D Status and Fungal Burden, Immune Responses, and Rate of Clearance of Infection in Patients
With Cryptococcal Meningitis

Variable Vitamin D>50 nmol/L Vitamin D≤50 nmol/L P Value β Coefficienta P Value

Baseline fungal burden, log10 CFU/mL 5.0 (4.6–5.3) 5.1 (4.8–5.3) .687 0.07 (−.32 to .47) .702

CSF lymphocytes, ×106/Lb 19 (1–67) 15 (1–88) .896 −39 (−93 to 14) .148
CSF TNF-α, log10 pg/mL 0.81 (.70–.92) 0.84 (.76–0.92) .697 −0.09 (−.21 to .03) .148

CSF IFN-γ, log10 pg/mL 1.61 (1.41–1.81) 1.62 (1.49–1.74) .988 −0.09 (−.30 to .11) .374

CSF IL-6, log10 pg/mL 2.28 (1.84–2.72) 2.43 (2.19–2.69) .540 −0.26 (−.68 to .17) .231
CSF sCD14, log10 pg/mL 6.02 (5.91–6.11) 6.02 (5.97–6.09) .834 0.03 (−.07 to .12) .596

CSF neopterin, log10 pg/mL 1.85 (1.75–1.95) 1.90 (1.82–1.95) .522 −0.05 (−.16 to .06) .366

CSF IFN-γ:sCD14 ratio 0.25 (.21–.29) 0.26 (.23–.28) .788 −0.02 (−.05 to .02) .309
CSF IFN-γ:neopterin ratio 0.82 (.68–.97) 0.82 (.74–.90) .914 −0.04 (−.17 to .08) .497

Early fungicidal activity, log10 CFU/mL/d −0.56 (−0.46 to −0.66) −0.56 (−.51 to −0.60) .847 −0.02 (−.09 to .06) .701

Data are presented as means and 95% confidence intervals for the vitamin D–deficient and vitamin D–nondeficient groups.

Abbreviations: CFU, colony-forming units; CSF, cerebrospinal fluid; IFN, interferon; IL, interleukin; sCD14, soluble CD14; TNF, tumor necrosis factor; vitamin D, 25-
hydroxyvitamin D.
a The β coefficients are from linear regression analyses where the clinical and immunological parameters were considered individually as dependent variables, and
25-hydroxyvitamin D levels (log transformed) were considered as the explanatory variable. The coefficients shown thus represent the average increase in the
dependent variable for each single unit increase (log10 nmol/L) in 25-hydroxyvitamin D concentration.
b Heavily positively skewed; median values with interquartile ranges are shown.
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MTB growth in macrophages, vitamin D promotes phagolyso-
some fusion and maturation [9, 11], the generation of reactive
oxygen and nitrogen species [30, 31], production of antimicro-
bial cathelicidins [9, 11, 32], and induction of autophagy [9, 11].
These mechanisms overcome the immune evasion mechanisms
employed by MTB of blocking phagosome maturation, and
inhibiting phagosome-lysosome fusion [32–34]. In contrast to
MTB, Cryptococcus does not need to prevent phagosome mat-
uration or phagosome-lysosome fusion for intracellular surviv-
al, and is able to thrive in the acidic phagolysosome, protected
by a thick polysaccharide capsule and virulence factors such as
the ability to produce melanin using laccase, which protects
against the oxidative burst [2, 3]. It is thus probable that vitamin
D–dependent promotion of phagolysosome fusion and matura-
tion has little effect on anticryptococcal immunity. Similarly,
the promotion of cathelicidin production and autophagy,
neither of which have a proven role in the innate response to
cryptococcal infection [2], is unlikely to have significant anti-
cryptococcal activity.

Activation of Cryptococcus-infected macrophages by T-cell–
derived IFN-γ is likely to be critical for effective control of cryp-
tococcal infection [35–37]. IFN-γ levels in the CSF are strongly
associated with fungal burden and the rate of fungal clearance in
patients with HIV-associated CM [20, 23], and exogenous IFN-γ
has been shown to significantly increase the rate of clearance of
cryptococci from the CSF [18].Although we can only infer indi-
rectly from our results, we found no evidence to suggest that
IFN-γ–induced macrophage activation was vitamin D depen-
dent, unlike in IFN-γ–induced activation of MTB-infected mac-
rophages [11]. Levels of the macrophage activation markers
sCD14 and neopterin, and the IFN-γ:sCD14 and IFN-γ:neopter-
in ratios did not differ according to vitamin D status.

Interestingly, there are limited data to suggest that the protec-
tive effects of vitamin D in the host response to MTB are due to
anti-inflammatory properties, with inhibition of Th1-type im-
mune responses [38, 39], faster resolution of inflammation
[10], and limitation of the tissue damage associated with active
MTB infection [26, 40]. Again in contrast to tuberculosis, tissue
damage resulting from excessive inflammation is not a promi-
nent feature of HIV-associated CM [41]. Rather, a lack of Th1-
type inflammatory responses and high organism burdens are
associated with poor outcomes in HIV-associated CM [18, 23,
37, 42], underlining the differing immune responses required
for effective control of the opportunistic intracellular pathogens
MTB and Cryptococcus.

In summary, we found no evidence that vitamin D deficiency
predisposes to the development of CM, or leads to impaired im-
mune responses or microbiological clearance in HIV-infected
patients with CM. These data suggest that, in contrast to tuber-
culosis, vitamin D–dependent pathways are not of key impor-
tance in the host immune response to cryptococcal infection.

Notes

Acknowledgments. The authors thank G. Ntombomzi Williams and
Nomqondiso Sidibana for assistance with patient recruitment and for pro-
viding clinical care to the patients in Cape Town. We acknowledge the sup-
port of the clinical and administrative staff of the Department of Health
(Provincial Government of the Western Cape), and the GERMS-SA surveil-
lance network for reporting cases of cryptococcal disease to the NICD.
Financial support. This work was supported by the Wellcome Trust

(training fellowship to J. N. J., WT081794 and G.M., WT098316) and the
British Infection Society (fellowship to T. B.).
Potential conflicts of interest. N. P. G. has received grants from Pfizer

South Africa and personal fees from Pfizer South Africa, MSD South Africa,
and Fujifilm Pharmaceuticals. J. R. P. has received research grants and ad-
visory board/consulting fees from Merck, Pfizer, Astellas, F2G, Viamet, and
Scynexis. All other authors report no potential conflicts.
All authors have submitted the ICMJE Form for Disclosure of Potential

Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References

1. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG,
Chiller TM. Estimation of the current global burden of cryptococcal
meningitis among persons living with HIV/AIDS. AIDS 2009;
23:525–30.

2. Coelho C, Bocca A, Casadevall A. The intracellular life of Cryptococcus
neoformans. Annu Rev Pathol 2014; 9:219–38.

3. Johnston SA, May RC. Cryptococcus interactions with macrophages:
evasion and manipulation of the phagosome by a fungal pathogen.
Cell Microbiol 2013; 15:403–11.

4. Goldman DL, Khine H, Abadi J, et al. Serologic evidence for Cryptococ-
cus neoformans infection in early childhood. Pediatrics 2001; 107:E66.

5. Jarvis JN, Harrison TS. HIV-associated cryptococcal meningitis. AIDS
2007; 21:2119–29.

6. Jarvis JN, Dromer F, Harrison TS, Lortholary O. Managing cryptococ-
cosis in the immunocompromised host. Curr Opin Infect Dis 2008;
21:596–603.

7. Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dy-
namically adapts to changes in cytokine microenvironments in Crypto-
coccus neoformans infection. MBio 2013; 4:e00264-13.

8. Anandaiah A, Sinha S, Bole M, et al. Vitamin D rescues impaired My-
cobacterium tuberculosis–mediated tumor necrosis factor release in
macrophages of HIV-seropositive individuals through an enhanced
Toll-like receptor signaling pathway in vitro. Infect Immun 2013;
81:2–10.

9. Campbell GR, Spector SA. Vitamin D inhibits human immunodefi-
ciency virus type 1 andMycobacterium tuberculosis infection in macro-
phages through the induction of autophagy. PLoS Pathog 2012; 8:
e1002689.

10. Coussens AK, Wilkinson RJ, Hanifa Y, et al. Vitamin D accelerates res-
olution of inflammatory responses during tuberculosis treatment. Proc
Natl Acad Sci U S A 2012; 109:15449–54.

11. Fabri M, Stenger S, Shin DM, et al. Vitamin D is required for IFN-
gamma-mediated antimicrobial activity of human macrophages. Sci
Transl Med 2011; 3:104ra2.

12. Realegeno S, Modlin RL. Shedding light on the vitamin D-tuberculosis-
HIV connection. Proc Natl Acad Sci U S A 2011; 108:18861–2.

13. Hewison M. Vitamin D and immune function: an overview. Proc Nutr
Soc 2012; 71:50–61.

14. Martineau AR, Nhamoyebonde S, Oni T, et al. Reciprocal seasonal var-
iation in vitamin D status and tuberculosis notifications in Cape Town,
South Africa. Proc Natl Acad Sci U S A 2011; 108:19013–7.

15. Lawn SD, Wood R. Incidence of tuberculosis during highly active anti-
retroviral therapy in high-income and low-income countries. Clin Infect
Dis 2005; 41:1783–6.

Cryptococcal Meningitis and Vitamin D • CID 2014:59 (15 August) • 499

Downloaded from https://academic.oup.com/cid/article-abstract/59/4/493/2895609
by London School of Hygiene & Tropical Medicine user
on 23 February 2018



16. Jarvis JN, Harrison TS, Corbett EL, Wood R, Lawn SD. Is HIV-associated
tuberculosis a risk factor for the development of cryptococcal disease?
AIDS 2009; 24:612–4.

17. Bicanic T, Wood R, Meintjes G, et al. High-dose amphotericin B with
flucytosine for the treatment of cryptococcal meningitis in HIV-infected
patients: a randomized trial. Clin Infect Dis 2008; 47:123–30.

18. Jarvis JN, Meintjes G, Rebe K, et al. Adjunctive interferon-gamma im-
munotherapy for the treatment of HIV-associated cryptococcal menin-
gitis: a randomized controlled trial. AIDS 2012; 26:1105–13.

19. Brouwer AE, Rajanuwong A, Chierakul W, et al. Combination antifun-
gal therapies for HIV-associated cryptococcal meningitis: a randomised
trial. Lancet 2004; 363:1764–7.

20. Siddiqui AA, Brouwer AE, Wuthiekanun V, et al. IFN-gamma at the site
of infection determines rate of clearance of infection in cryptococcal
meningitis. J Immunol 2005; 174:1746–50.

21. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357:266–81.
22. Barnett AG, Dobson AJ. Analysing seasonal health data (statistics for

biology and health). Berlin Heidelberg: Springer, 2010.
23. Jarvis JN, Bicanic T, Loyse A, et al. Determinants of mortality in a com-

bined cohort of 501 patients with HIV-associated cryptococcal menin-
gitis: implications for improving outcomes. Clin Infect Dis 2014;
58:736–45.

24. Thompson GR III, Bays D, Taylor SL, Cohen SH, Pappagianis D. Asso-
ciation between serum 25-hydroxyvitamin D level and type of cocci-
dioidal infection. Med Mycol 2013; 51:319–23.

25. Kreindler JL, Steele C, Nguyen N, et al. Vitamin D3 attenuates Th2
responses to Aspergillus fumigatusmounted by CD4+ T cells from cystic
fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin
Invest 2010; 120:3242–54.

26. Conesa-Botella A, Meintjes G, Coussens AK, et al. Corticosteroid
therapy, vitamin D status, and inflammatory cytokine profile in the
HIV-tuberculosis immune reconstitution inflammatory syndrome.
Clin Infect Dis 2012; 55:1004–11.

27. Sudfeld CR, Giovannucci EL, Isanaka S, et al. Vitamin D status and in-
cidence of pulmonary tuberculosis, opportunistic infections, and wast-
ing among HIV-infected Tanzanian adults initiating antiretroviral
therapy. J Infect Dis 2013; 207:378–85.

28. Mastala Y, Nyangulu P, Banda RV, Mhemedi B, White SA, Allain TJ.
Vitamin D deficiency in medical patients at a central hospital in Malawi:
a comparison with TB patients from a previous study. PLoS One 2013;
8:e59017.

29. Martineau AR, Timms PM, Bothamley GH, et al. High-dose vitamin D
(3) during intensive-phase antimicrobial treatment of pulmonary tuber-
culosis: a double-blind randomised controlled trial. Lancet 2011;
377:242–50.

30. Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D.
1,25-dihydroxyvitamin D3 induces nitric oxide synthase and suppresses
growth ofMycobacterium tuberculosis in a human macrophage-like cell
line. Infect Immun 1998; 66:5314–21.

31. Sly LM, Lopez M, Nauseef WM, Reiner NE. 1alpha,25-dihydroxyvita-
min D3-induced monocyte antimycobacterial activity is regulated by
phosphatidylinositol 3-kinase and mediated by the NADPH-dependent
phagocyte oxidase. J Biol Chem 2001; 276:35482–93.

32. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-
mediated human antimicrobial activity againstMycobacterium tubercu-
losis is dependent on the induction of cathelicidin. J Immunol 2007;
179:2060–3.

33. Gutierrez MG,Master SS, Singh SB, Taylor GA, ColomboMI, Deretic V.
Autophagy is a defense mechanism inhibiting BCG andMycobacterium
tuberculosis survival in infected macrophages. Cell 2004; 119:753–66.

34. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces
autophagy to eliminate intracellular mycobacteria. Science 2006;
313:1438–41.

35. Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley
FL. Protective immunity against pulmonary cryptococcosis is associated
with STAT1-mediated classical macrophage activation. J Immunol
2012; 189:4060–8.

36. Wozniak KL, Hardison S, Olszewski M, Wormley FL. Induction of pro-
tective immunity against cryptococcosis. Mycopathologia 2012;
173:387–94.

37. Jarvis JN, Casazza JP, Stone HH, et al. The phenotype of the Cryptococ-
cus-specific CD4+memory T-cell response is associated with disease se-
verity and outcome in HIV-associated cryptococcal meningitis. J Infect
Dis 2013; 207:1817–28.

38. Khoo AL, Chai LY, Koenen HJ, et al. Vitamin D(3) down-regulates
proinflammatory cytokine response to Mycobacterium tuberculosis
through pattern recognition receptors while inducing protective cathe-
licidin production. Cytokine 2011; 55:294–300.

39. Selvaraj P, Harishankar M, Singh B, Banurekha VV, Jawahar MS. Effect
of vitamin D3 on chemokine expression in pulmonary tuberculosis. Cy-
tokine 2012; 60:212–9.

40. Martineau AR. Vitamin D: an adjunct to antiretroviral therapy? J Infect
Dis 2013; 207:373–5.

41. Loyse A, Wainwright H, Jarvis JN, et al. Histopathology of the arach-
noid granulations and brain in HIV-associated cryptococcal meningitis:
correlation with cerebrospinal fluid pressure. AIDS 2009; 24:405–10.

42. Bicanic T, Muzoora C, Brouwer AE, et al. Independent association
between rate of clearance of infection and clinical outcome of HIV-
associated cryptococcal meningitis: analysis of a combined cohort of
262 patients. Clin Infect Dis 2009; 49:702–9.

500 • CID 2014:59 (15 August) • Jarvis et al

Downloaded from https://academic.oup.com/cid/article-abstract/59/4/493/2895609
by London School of Hygiene & Tropical Medicine user
on 23 February 2018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


