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This paper has proposed a new thermal wave image sequence compression algorithmby combining double exponential decay fitting
model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed
method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance
under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and
reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.

1. Introduction

In recent years, infrared thermal wave nondestructive testing
technology as an emerging means of nondestructive testing
has drawn wide research interest. It has been applied in
aerospace, power generation, material, medicine, construc-
tion, and other nondestructive testing fields. However, the
large amount of information of the thermographic sequence
generated during the detection has seriously restricted the
image processing and storage. To compress and reconstruct
the thermographic sequence efficiently and accurately is
the basis of postprocessing and recognition of the thermal
graphs, which is also the key to quickly and accurately detect
the defects [1–5].

Researchers have proposed a number of processingmeth-
ods to reduce noise and enhance the contrast ratio of defects.
The renowned ones are differentiation method, polynomial
fittingmethod [1, 2], regularizationmethod, PCAmethod [3],
correlation coefficient method [4], pulsed phase method [5],
and so forth. All these methods employ certain fitting model
and compression algorithm of thermographic sequences.

Polynomial fitting is one of the traditional and typical
fitting models. Shepard et al. did a lot of studies on

polynomial fitting and proposed a unique thermographic
sequence reconstruction (TSR) method [6]. His proposed
method firstly took the logarithm of the original data; then
it used polynomial fitting model to fit the processed data
and the model parameters to achieve image compression.
It achieved good results in practical applications. However,
since polynomial fittingmodel uses the least squares method,
it may fall into local minima rather than the global one in the
solution searching process [7, 8]. And for handling nonlinear
data fitting problems, the least squares method could only
approximate it into a linear problem by taking the logarithm
of both ends which resulted in migration of the optimal
solution [9].

Zhang et al., through their in-depth research of the
thermal wave transmission mechanism, proposed the non-
linear 𝐿-𝑀 fitting method based on the thermal theoretical
model. This method aimed to overcome the shortcoming of
polynomial fitting and it achieved good results [10]. In order
to resolve problems presented in polynomial fitting model,
Zhang et al. proposed a thermographic sequences fitting
algorithm based on genetic algorithm (GA) which is more
competent in searching for global optimal solution and gives
more accurate processing results [11]. But bothmethods need
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a large amount of computation and long processing time; this
makes them unable to meet the actual engineering needs.

In practice, it is found that the nonlinear fitting method
based on theoretical model has the problem of being inac-
curate since the temperature change of thermal image fol-
lows double exponential decay model. When using double
exponential model for fitting, we usually use Gauss-Newton
method, conjugate gradient method, or damped least squares
method.However, thesemethods highly depend on the selec-
tion of initial conditions.They have difficulty in searching for
global optimal solution.The convergence is slow, ormay even
diverge. To solve these problems, some scholars proposed
some improved methods. Chen et al. proposed a homotopy
alternating iterative method which effectively reduced the
level of dependence of initial condition and made large-
scale convergence possible. But the dependence on initial
conditions still require attention [12].

Differential evolution (DE) was proposed by Storn and
Price in 1995, mainly for the optimization problems of real
number [13–15].The algorithm is a self-adaptive community-
based global optimization algorithm and it belongs to the
evolutionary algorithm family. It has characteristics such as
simple structure, easy implementation, fast convergence, and
strong robustness.

To take the advantages of double exponential decaymodel
and differential evolution algorithm, this paper combined
them into a new set of thermal image data fitting and com-
pression algorithm. This algorithm not only can overcome
the problems of polynomial fitting to improve the accuracy
of fitting but also can improve computational efficiency and
robustness.

The rest of that content of this paper is organized as
follows. Section 1 is the introduction of DE and double decay
model; the new algorithm is described in Section 2; Section 3
introduces the experiment and analysis of experimental
results; the last section is the summary.

2. Principle of Algorithm

2.1. Principle of DE Algorithm. Differential evolution as a
kind of evolutionary algorithm has similar process with other
evolutionary algorithms. DE needs population initialization,
individual fitness evaluation, group evolution, and so forth
[13]. Starting from a randomly generated initial population,
new individuals are produced by summing the vector differ-
ence between any two individuals in the population to the
third individual. Then the new individual is compared to the
corresponding individual in the contemporary population.
If the fitness of the new individual is better than that of the
corresponding individual, it will be replaced with the new
one in the next generation. Otherwise, the old individual
will be preserved. Through continuing iterative evolutions,
retaining superior individuals are retained and inferior ones
are weeded out. DE algorithm guides the searching to
approach the optimal solution.The evolutionary process is as
follows [13–16].

(1) Determine control parameters of the DE algorithm
and the fitness function. The control parameters

include population size (NP), scaling factor (𝐹), and
crossover probability (CR).

(2) Randomly generate initial population.
(3) Evaluate the initial population, that is, to calculate

the fitness value of each individual in the initial
population.

(4) Judge whether either the condition of termination or
the maximum evolutionary generation number has
been reached. If yes, stop the evolution and output the
best individual as the optimal solution; if not, con-
tinue.

(5) Conduct mutation and crossover operation to obtain
an intermediate population.

(6) Select individuals among the original population
and the intermediate population to obtain a new
population.

(7) Increment the evolution generation count 𝑔 = 𝑔 + 1,
then go to step (4).

The detailed operation is interpreted as follows.

(1) Generate the Initial Population. Initial population can
be expressed as {𝑥

𝑖
(0) | 𝑥

min
𝑗,𝑖

≤ 𝑥
𝑗,𝑖
(0) ≤ 𝑥

max
𝑗,𝑖
; 𝑖 =

1, 2, . . . ,NP; 𝑗 = 1, 2, . . . , 𝐷}.
Each individual is generated using the following formula:

𝑥
𝑗,𝑖 (0) = 𝑥

min
𝑗,𝑖
+ rand (0, 1) ⋅ (𝑥max

𝑗,𝑖
− 𝑥

min
𝑗,𝑖
) . (1)

In formula (1), NP represents the number of individuals
in the population and 𝑥

𝑗,𝑖
(0) represents the 𝑗th dimension

component of the 𝑖th individual in the initial population;
rand(0, 1) represents the random function, and the value is
within the range [0, 1].

(2)MutationOperation. Individualmutation inDE algorithm
is achieved through selected differential mutation strategy.
The basic differential mutation strategy is to randomly select
two distinct individuals in the population; then summing
the weighted vector difference of the two individuals to the
current individual, the formula is expressed as

DE/rand/1 : . . . V
𝑖
(𝑔 + 1)=𝑥

𝑟1
(𝑔)+𝐹 ⋅ [𝑥

𝑟2
(𝑔) − 𝑥

𝑟3
(𝑔)] .

(2)

In formula (2), 𝑖 ̸= 𝑟1 ̸= 𝑟2 ̸= 𝑟3, 𝐹 is the scale factor, and
𝑥
𝑖
(𝑔) represents the 𝑖th individual of the 𝑔th generation

population.
Besides the basic mutation strategy, DE researchers also

designed other mutation strategies [11, 12].

(3) Crossover Operation.Crossover operation is conducted on
the intermediate individual 𝑥

𝑖
(𝑔+1) obtained frommutation:

𝑢
𝑗,𝑖
(𝑔 + 1)={

𝑢
𝑗,𝑖
(𝑔 + 1) if (rand (0, 1)≤ CR or 𝑗=𝑗rand) ,

𝑥
𝑗,𝑖
(𝑔) otherwise.

(3)

In formula (3), CR is crossover probability, and 𝑗rand is
a random integer within the interval [1, 𝐷]. This crossover
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strategy can ensure that individual 𝑢
𝑗,𝑖
(𝑔 + 1) contains the

content of individual 𝑢
𝑗,𝑖
(𝑔).

(4) Selection Operation. Child individuals are generated after
mutation and crossover operation; then the child individual is
compared with the corresponding parent individual in a one-
to-one select way. Superior individual is selected according
to the fitness value into the next generation population. The
selection operator can be expressed as follows:

𝑥
𝑖
(𝑔 + 1) = {

𝑢
𝑖
(𝑔 + 1) if 𝑓 (𝑢

𝑖
(𝑔 + 1)) ≤ 𝑓 (𝑥

𝑖
(𝑔)) ,

𝑥
𝑖
(𝑔) otherwise,

(4)

where 𝑓(𝑥
𝑖
(𝑔)) is the fitness value of individual 𝑥

𝑖
(𝑔).

2.2.Thermal ImageDouble Exponential DecayModel. Double
exponential decay model can effectively describe physical
processes such as the smooth lightning full waveform,
the induced polarization potential of polarization potential
logging, and high-altitude nuclear electromagnetic pulse
waveform. It also has been well applied in other areas [17–21].

Typical pulsed thermographic NDE signal sequences
are composed of 𝑁 consecutive frames of two-dimensional
thermal images, whose sampling rate is 1/Δ𝑡 (Δ𝑡 is the time
interval between two thermal images). If each frame has
𝐿 × 𝑀 elements (or pixels), the entire sequence is an 𝐿 ×
𝑀 × 𝑁 three-dimensional array of thermal response value.
The corresponding temperature value (or thermal radiation
intensity value) of each thermal image pixel {(𝑖, 𝑗) | 𝑖 =
1, 2, . . . , 𝐿; 𝑗 = 1, 2, . . . ,𝑀} can be seen as the function of
temperaturewith time after flash excitation.This function can
be described with a double exponential decay model.

Given that the time is 𝑥
𝑖
and the corresponding tempera-

ture value of a pixel is 𝑦
𝑖
, the coefficients of the mathematical

model 𝑦 = 𝑎𝑒−𝑏𝑥 + 𝑐𝑒−𝑑𝑥 are 𝑎, 𝑏, 𝑐, and 𝑑. Then the
fitting problem of the function can be transformed into the
following unconstrained nonlinear optimization problem as
follows:

min
𝑛

∑

𝑖=1

(𝑎𝑒
−𝑏𝑥𝑖 + 𝑐𝑒

−𝑑𝑥𝑖 − 𝑦
𝑖
)
2

. (5)

In some practical applications, 𝑎, 𝑏, 𝑐, and 𝑑 are requested
to be nonnegative. This problem can be transformed into a
constrained nonlinear optimization problem as follows:

min
𝑛

∑

𝑖=1

(𝑎𝑒
−𝑏𝑥𝑖 + 𝑐𝑒

−𝑑𝑥𝑖 − 𝑦
𝑖
)
2

(𝑎, 𝑏, 𝑐, 𝑑 ≥ 0) . (6)

3. Thermal Image Fitting
Compression Algorithm

In practice, it is found that using double exponential decay
model to fit the data of infrared thermal wave images
can achieve better fitting effects as it can suppress noise.
Meanwhile, since there are only four fitting coefficients, fewer
than six coefficients of TSR method, the fitting coefficients
can be used to replace a specific pixel’s time sequence whose

Determine control
parameters and
fitness function

Initialize population, compute
fitness of initial population

Convergence condition?

Do crossover and
mutation operations

Calculate individual
fitness of population

No

Yes

Quit and output result

Compressing thermal
image sequence

Reconstruct thermal
image sequenceSelection operation

Figure 1: Compressing flowchart of thermal image sequence.

length is𝑁 (generally 200 to 2000). This gives a compression
ratio of about 50 to 500. Obviously, this can greatly reduce the
thermal image storage space.

When combined with the DE algorithmwhich eliminates
the dependence on initial value, not only global convergence
is achieved but also fitting speed has been greatly improved.
Therefore, this paper proposes a new infrared thermal image
compression method based on double exponential decay
model andDE algorithm.The flow chart of proposedmethod
is shown in Figure 1, and the detailed implementation process
is as follows.

(1) Determine the DE control parameters, namely, pop-
ulation size NP, crossover probability CR, the scaling
factor 𝐹, and set the maximum iteration number Gm,
and convergence decision condition.

(2) Based on double exponential decay model, a fitness
function = ∑𝑛

𝑖=1
(𝑎𝑒
−𝑏𝑥𝑖 + 𝑐𝑒

−𝑑𝑥𝑖 − 𝑦
𝑖
)
2

is built. The
data set {(𝑥

𝑖
, 𝑦
𝑖
) | 𝑖 = 1, . . . , 𝑁} is the corresponding

thermal graphic sequence of a specific pixel.
(3) Randomly generate initial population, and set the

dimension of each individual in the population to be
four according to the fitness function.

(4) Calculate the initial population fitness value of each
individual.

(5) Determine whether either convergence condition is
met or themaximum evolution generation is reached.
If yes, terminate the evolution and go to step (9); if
not, continue to next step.

(6) Execute mutation and crossover operations to obtain
an intermediate population by randomly selecting
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corresponding number of individuals from the pre-
vious generation population (the first generation is
the initial population) based on the selectedmutation
strategy.

(7) Calculate fitness value of each individual in the ini-
tial population and the intermediate population and
compare them one by one; then select the individual
with smaller fitness value in each group of individuals
to form a new generation population.

(8) Increment the generation count 𝑔 = 𝑔 + 1, go to step
(5).

(9) Select the individual with the minimum fitness value
when evolution converges or reaches the maximum
evolution generation number. The values of double
exponential model parameter, 𝑎, 𝑏, 𝑐, and 𝑑, are the
only data to be compressed and stored for the pixel.

(10) Repeat step (1) to (9) for all pixels of the thermal
image.

(11) Retrieve and fill parameters 𝑎, 𝑏, 𝑐 and 𝑑 into fitting
model 𝑓(𝑥

𝑖
) = 𝑎𝑒

−𝑏𝑥𝑖 + 𝑐𝑒
−𝑑𝑥𝑖 to reconstruct time

sequence 𝑓(𝑥
𝑖
) with the known time value of 𝑥

𝑖
.

4. Experimental Results and Analysis

In nondestructive testing, in order to assess the performance
of the testing method and system in a more accurate and
visible way, generally an embedded defective test specimen
will be used to test the effectiveness of the inspectionmethod.
In this study,we used an active infrared thermalwave imaging
device to test a specimen made of steel.

The thermal Imager is VarioCAM hr research 680 ther-
mal imager from InfraTec company. Its spatial resolution is
640∗480, themaximum frame rate is 60Hz, infrared spectral
response range is 7.5∼14 um, and imaging rate is 50Hz. We
used pulse heating single side positioning detection method:
the heat source is two high-power flash lamps, the heating
power range is 0∼4.8 KJ, the distance between the inspection
position and the test specimen is about 500mm, and the
heating pulse lasting duration is about 2ms.

Test specimen’s length is 280mm, width is 200mm, and
thickness is 6mm. There are eight flat bottom holes at the
back of the specimen to simulate debonding defect; the four
holes on top have the same depth of 1mm and diameters of
20mm, 16mm, 10mm, and 5mm, respectively; the four holes
below are with the same diameter of 20mm and depths of
2mm, 3mm, 4mm, and 5mm, respectively. The dimension
and location of the holes are shown in Figure 2 and a single
frame thermal image of the specimen is shown in Figure 3.

4.1. Fitting Compression of Single Point’s Short Thermal
Graphic Sequence. We selected a representative point (at the
center of a defective area) and used its thermal graphic
sequence for this experiment. Three methods, namely, theo-
retical models, 18-order polynomial, and double exponential
decay model, were used to fit the same set of data. Results by
using three methods are compared. Quantitative analysis of
the results of threemethods is performed through comparing
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Figure 2: Defect distribution and depth.

Figure 3: Single frame thermal image of steel shell specimen.

their fitting effect evaluation parameter values. The fitting
results of three methods were shown in Figures 4–6.

Note that Figures 4, 5, and 6 are the fitting results of theo-
retical model, 18-order polynomial, and double exponential
decay model, respectively. The two curves on top of each
figure are the data sequence curve and corresponding fitting
curve, respectively. The curve below is the fitting error curve.
And Figures 7, 8, and 9 have the same layout.

Fitting effect evaluation parameters of three methods are
shown in Table 1.

According to Figures 4–6 and Table 1, for the same set
of experimental data, among three fitting methods, accuracy
of double exponential model based on differential evolution
algorithm is significantly higher than that of the other two
methods, about 63 times in max error, and this model uses
only four parameters, which demonstrates a superior com-
pression ratio of data.

4.2. Fitting Compression of Single-Point’s Long Thermal
Graphic Sequence. For long image sequence, double expo-
nential model is also able to achieve a high fitting accuracy,
which cannot be achieved by polynomial fitting method or
theoretical models. We used the same test specimen and
inspection equipment to capture 250 and 500 frames of
thermal images, respectively, then took the thermal graphic
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Figure 4: Result of fitting data 1 by using theoretical model.
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Figure 5: Fitting results using 18-order polynomial.
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Figure 6: Fitting results using double exponential model.

Table 1: Fitting effect of theoretical model, 18-order polynomial, and double exponential model.

Evaluation parameters Theoretical model 18-order polynomial Double exponential model
SSE 24.64 22.01 0.35
𝑅-square 0.9852 0.9868 0.9999
Adjusted 𝑅-square 0.9849 0.9839 0.9997
RMSE 0.504 0.5213 0.0588
SSE: the sum of squares due to error; 𝑅-square: coefficient of determination; adjusted 𝑅-square: degree-of-freedom adjusted coefficient of determination;
RMSE: root means squared error.
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Figure 7: Results of fitting 250-frame thermal image data by using proposed algorithm.
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Figure 8: Results of fitting 500-frame thermal image data by using proposed algorithm.

sequence of a specific point. We used our proposed method
to fit two sets of data. The selected DE algorithm mutation
strategy isDE/best/1 : V

𝑖
= 𝑥best+𝐹⋅(𝑥𝑟2−𝑥𝑟3), the population

size NP is 40, the crossover probability CR is 0.9, the scaling
factor𝐹 is 0.5, and themaximumnumber of iterations is 1000.
The fitting result is shown in Figures 7 and 8.

Fitting effect evaluation parameters of the two sets of
experimental data are shown in Table 2.

Figures 7 and 8 and Table 2 show that the new fitting
method can maintain a high fitting precision level when
fitting long thermal graphic sequences. The error is relatively
small. The fitting speed is very fast, and the fitting curves are
relatively stable without fluctuating phenomenon, while the-
oretical model fitting and polynomial fitting can not achieve
this effect [10, 11]. Therefore, the fitting compression method
proposed in this paper is an efficient method for processing
infrared thermal image data.

4.3. Fitting Compression of Double Exponential Model with
Constant Term. During the experiment, we also found that
a double exponential decay model with a constant term ℎ,
which is a correction parameter, can further improve the
fitting accuracy with remarkably reduced fitting error. The

Table 2: Fitting effect evaluation parameters of thermal image data
with 250 and 500 frames.

Evaluation parameters 250 frames 500 frames
SSE 3.86 35.27
𝑅-square 0.9989 0.9907
Adjusted 𝑅-square 0.9978 0.9815
RMSE 0.1279 0.2656

model equation is rewritten as 𝑦 = 𝑎𝑒−𝑏𝑥 +𝑐𝑒−𝑑𝑥 +ℎ. Figure 9
shows the results of fitting aforementioned 500-frame ther-
mal graphic sequence by using the double exponential model
with correction term. Table 3 shows the fitting effect evalua-
tion parameters by using the two double exponential models
with or without constant term.

The fitting effect evaluation parameter values of the two
models are shown in Table 3.

By comparing the fitting effect evaluation parameter
values in Figures 8 and 9 and Table 3, it can be seen that
the fitting accuracy has been significantly improved when
a constant term as a correction parameter is added to
double exponential model to fit the infrared thermal graphic
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Figure 9: Result of fitting 500-frame thermal image data by using the improved model.

(a) The original 31st frame thermal images (b) The original 65th frame thermal images

(c) The reconstructed 31st frame thermal images (d) The reconstructed 65th frame thermal images

Figure 10: Original thermal images and reconstructed thermal images.

Table 3: Effect of evaluation parameter values of 500-frame thermal
image data fitted by model with or without constant term.

Evaluation
parameters

Initial model (w/o
constant term)

Improved model (w
constant term)

SSE 35.27 0.89
𝑅-square 0.9907 0.9998
Adjusted 𝑅-square 0.9815 0.9995
RMSE 0.2656 0.0422

sequence. However, one more fitting compressing parameter
is added to the model.

4.4. Compression and Reconstruction of the Whole Single
Frame Thermal Image. Figure 10 shows the comparison of
the original thermal images to the reconstructed thermal
images processed by our proposedmethod. Figures 10(a) and
10(b) are the original 31st and 65th frame thermal images,
respectively. Figures 10(c) and 10(d) are the reconstructed
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31st and 65th frame thermal images, respectively. Two pairs
of corresponding frame images are almost exactly the same
without any difference that can be identified intuitively.Their
square error is almost 0.Thus, it can be seen that this method
can meet the practical engineering needs completely.

Note that, fromTables 1 to 3, it can be seen that the overall
error of this new fitting method is very small. And from
Figures 4 to 9, the main fitting errors appear in the first few
frames. In addition, the thermal imager used in experiments
has good noise resistance and digitalization of thermal image
capturing, so there is almost no error between the original
thermal images and the reconstructed ones specific to the 31st
and 65th frames in Figure 10.

In summary, the fitting compression method based
on differential evolution algorithm and double exponential
decay model is an optimum infrared thermal wave image
processing method with high accuracy and precision, high
compression ratio, high processing speed. It has a high
commercial value and prospective engineering application.

5. Conclusions

We have fully discussed the image fitting compressing algo-
rithm of pulsed thermal wave image sequence based on the
combination of DE algorithm and double exponential decay
model. And we also compared the fitting and compressing
effect of this method to that of the traditional method with
real experimental data, studied the fitting and compressing
performance using short and long time sequence, investi-
gated an improved model, and validated the effect of the
method by compressing and reconstructing the whole single
frame thermal image.

The results show that there are significant advantages of
this new fitting and compressing method over polynomial
fitting method and the TSR method. The fitting speed is fast
because it contains fewer compressing parameters. Its data
compression ratio is high, especially in fitting long thermal
graphic sequence. Compared with the traditional optimiza-
tion algorithms, this method is not affected by initial value,
and it has good global convergence with a remarkably
improved convergence rate. It can also achieve high fitting
accuracy. All these serve the needs of demanding engineering
applicationswell; thus, it will be an ideal fitting and compress-
ing method for infrared thermal image sequence.
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