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Abstract

Air pollution is associated with mortality and morbidity worldwide. Hot and cold
temperature is also related to increased deaths and possibly hospital visits and admissions
in many settings. Climate change is anticipated to pose increasing risks of deaths and
illnesses associated with air pollution and temperature variations, particularly in developing
world. To date, research studies about health effects of air pollution and temperature have
been conducted in developed countries with cool climate more than in developing countries
with subtropical or tropical climate. Furthermore, studies to identify susceptible
populations are still limited. This study aims to investigate heath effects of air pollution and
temperature and to identify people who are more susceptible to air pollution and

temperature in a developing, tropical country, Thailand.

A regression analysis of retrospective time series data was employed to assess the short-
term effects of air pollution and temperature on daily out-patient visits and hospital
admissions in Chiang Mai, Thailand, from October 2002 to September 2006. Generalised
negative binomial regression was used to model the relationships between the exposure and
health outcomes, controlling for seasonal patterns and other possible potential confounders.
Lag effects up to 4 days for air pollution, and up to 13 days for temperature were
considered. Effect modification by age, sex, occupation, season, and previous out-patient

visits before admissions were also examined.

There were positive, but not significant, effects of air pollution for some pollutants
(particularly for SO,), with notably larger effect sizes compared to previous studies in
Western countries. There was evidence of hot temperature effects (though wide confidence
intervals), with an increase in diabetic visits of 26.3% (95% CI, 7.1% to 49.0%), and in
circulatory visits of 19.2% (95% Cl, 7.0% to 32.8%) for each 1°C increase in temperature
above 29°C. There was a rise of both the visits (3.7% increase, 95% CI, 1.5% to 5.9%) and
admissions (5.8% increase, 95% Cl, 2.3% to 9.3%) due to intestinal infectious disease for
each 1°C increase across the whole temperature range. Despite no statistically significant

differences between subgroups, air pollution effects were stronger in the elderly, females



and manual workers, whereas temperature effects were stronger in the elderly, male and

unemployed people.

This study suggests that while there was little evidence of air pollution effects, there was
significant evidence of high temperature effects on daily morbidity in Chiang Mai. The
elderly seemed to be more vulnerable to the daily changes of both air pollution and

temperature.
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Chapter 1 Introduction
Chapter 1: Introduction

1.1. Background

1.1.1 Air pollution, temperature, and health

A large body of epidemiological evidence has suggested that exposure to air pollution, even
at moderate concentrations, is associated with increased morbidity and mortality in many
cities worldwide . Numerous observational studies about temperature effects have also
shown increased morbidity and mortality in relation to temperature changes “'*. However,
health effects of air pollution and temperature are not equally spread (4.15) " Children, the
elderly, and people with pre-existing illnesses, such as heart and lung diseases, are more
vulnerable to air pollution exposure than general population *2". An increase in daily
deaths and hospitalizations due to temperature exposure is also pronounced among older
people @) It has been found that the risk of hospital admissions and premature deaths
related to either air pollution or temperature are more likely to be enhanced by individual
health conditions, such as respiratory diseases, cardiovascular diseases, and diabetes (26-38)

To date, studies to indentify the characteristics of those vulnerable to the effects of air
pollution and temperature are still limited and need further investigations in order to gain a
better understanding of their special susceptibility characteristics, which are crucial for

developing targeted public health interventions.

It is important to note that most research studies about air pollution and temperature effects
have been carried out in developed countries and in cool, temperate regions. The likely
adverse health effects in developing countries with subtropical or tropical climates may
however be different from those settings. The characteristics determining the vulnerability
of a population may also be different. This could include several factors, such as genetic
factors, lifestyles, health behaviours, socioeconomic status (SES), and environments.
Therefore, assessment of regional specific vulnerabilities to temperature and air pollution

variations is very important.

Chiang Mai is the second biggest city in Thailand, a tropical country in Southeast Asia.
Chiang Mai is a growing city with an increasing population, intensifying traffic density,
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and an increased consumption of natural resources to serve the growing economic
development and urbanization. Since few investigations have been undertaken in low-
income settings, the investigations of adverse health effects associated with current levels
of air pollution and temperature in Chiang Mai, as well as identifications of its vulnerable
population are needed for determining, developing and implementing appropriate public

health mitigation measures and interventions.

1.1.2 Chiang Mai profile

Geographical location

Chiang Mai is located about 750 kilometres north of Bangkok, the capital city of Thailand,
with 16 north of latitude, 99 east of longitude, and with 1,027 feet above sea levels ®9 The
northern part of Chiang Mai connects to Myanmar, while other parts connect to other

provinces of Thailand.

Weather

The weather in Chiang Mai is moderate throughout the year, with the average temperature
of 25.4 °C (min = 20.1 °C and max = 31.8 °C), relative humidity of 72%, and annual rainfall
of 1,000-1,200 mm ©®. There are three seasons in Chiang Mai: cool season (November-

February), warm season (March-May), and rainy season (June-October).

Population

The total area of Chiang Mai is 20,107.057 sq km, with a total population of about 1.6
million (about 80/sq km, information obtained in 2006). Among all districts of Chiang Mai,
Maung district is the most crowded, with the population density of about 1,947.2/sq km
(total area = 152.4 sq km and total population = 296,753 people, December 2005) 69,

Approximately 80% of the total area is mountainous. The mountains in Chiang Mai are
more than 500 feet above sea levels and are located in the northern and western parts of the
province. Most of this area consists of forests and rivers, and is unsuitable for agriculture.
Thus, there are significant numbers of Chiang Mai population living on the highland, which
account for 19.5% of the total, including hill tribes (14.3%), minority ethnic groups such as
Chinese and Mianmese minority (2.2%), and local Thais (3.0%).
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Agricultural activities are the most common occupation in Chiang Mai. Approximately
60% of working people in Chiang Mai work in the agricultural sectors, followed by 13.6%
in industry, 10.2% in business and trading. Regarding industrial activities, there is no
major industry that may cause a substantial air pollution problem in the city. However,
there are total of 2,192 various small factories in the province. The three most prevalent
industries include agricultural factories (43.8%), 207 transportation factories (9.4%), and
200 food factories (9.1%).

Chiang Mai pollution and health

Air pollution in Chiang Mai has been of great concern in recent years due to its rapid
economic growth, development and urbanization to serve an increasing population and also
an influx of international tourists. Levels of air pollutants, especially PM;y, have
occasionally exceeded the National Ambient Air Quality Standard levels “**". In addition
to the already polluted air from the vehicle exhausts during traffic jams, burning of fallen
leaves and agricultural residues in adjacent areas and open burning for cooking (such as
food street vendors) have caused polluted air in a wider area “?. Moreover, Chiang Mai is
located in a valley surrounded by mountains and also influenced by the low pressure

weather from China, which make it difficult for air pollutants to disperse “?.

In 1994, the statistics also showed the high number of about 500,000 hospitalized patients
suffering from respiratory diseases “>. In 1995, the prevalence of allergic diseases and
asthma among children in Chiang Mai was observed, with 8.8% of total Chiang Mai
children reported to suffer from asthmatic problems “¥. Furthermore, the annual health
report has indicated that respiratory disease is the first leading cause of out-patient visits
among the general population in Chiang Mai ©®. However, there is a lack of investigations
as whether these respiratory health problems are influenced by the current levels of air

pollution and/or temperature in the city.

1.1.3 Global climate change and public health risks

It is estimated that global climate change may pose increasing health risks and regional
vulnerability associated with air pollution and temperature variations in the future 5. 46)
Climate change may influence weather, distribution of airborne allergens, anthropogenic

emissions of pollution, and dispersion and concentrations of air pollutants, which may all in
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turn lead to fluctuations of either temperature or air pollution “®. Temperature and air
pollution variations may directly affect people’s health by increasing deaths and illnesses

due to inability to adapt and tolerate to the changes “”

. Hence, greater attention should be
paid to determining specific vulnerabilities in low-income countries because these settings
are more likely to be highly affected by the climate variability due to less capacity to assess
vulnerabilities and to develop and implement cost-effective mitigation and adaptation

strategies “*®).

1.1.4 Summary

Levels of air pollution and temperature can vary from country to country, corresponding
with variation in geographical locations, climatic conditions, and human activities. Health
effects of air pollution and temperature found in different regions can also vary. To date,
most studies that illustrate the vulnerability to air pollution and temperature are conducted
in developed regions like America and Europe with cooler temperate climates more than in
developing regions with subtropical or tropical climates. Among those studies, either air
pollution or temperature studies, more consistent findings have been found for mortality
than those for morbidity. In this context, the investigation of the effects of air pollution and
temperature on morbidity and the identification of susceptible populations in a tropical

climate and less developed country is warranted.

1.2 Research topic

Short-term effects of air pollution and temperature on daily morbidity in Chiang Mai,
Thailand

1.3 Research questions

1. How do daily changes in air pollution and temperature affect daily out-patient visits
and hospital admissions in a tropical climate country, such as Thailand?

2. Do people with many counts of out-patient visits have a greater risk of hospital
admissions associated with air pollution and temperature exposure?

3. What factors modify a person’s risk of getting illness associated with air pollution

and temperature exposure?
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1.4 Hypotheses

1. Daily increase in air pollution levels increases daily out-patient visits and hospital

admissions.

2. Daily increases in either heat or cold temperatures can affect daily out-patient visits

and hospital admissions.

3. People with many counts of previous out-patient visits are at increased risk of a

hospital admission associated with air pollution and temperature exposure.

4. The effects of air pollution and temperature on daily out-patient visits and hospital

admissions may be modified by factors, such as age, sex, occupation, and season.

1.5 Aim and objectives

The aim of the study was to describe and quantify the short-term effects of air pollution and

temperature on the health of people in Chiang Mai, Thailand and to identify people who

were more susceptible to air pollution and temperature.

The specific objectives of the study were:

1.

To assess the association between air pollution (SO,, NO,, CO, O;, PM,,, and
PM,s) and daily out-patient visits and hospital admissions, and the association
between temperature and out-patient visits and hospital admissions.
To quantify the effects of air pollution and temperature on daily counts of out-
patient visits and hospital admissions, with all causes of the visits and admissions
and with specific disease groups, including respiratory, circulatory, diabetic, and
intestinal infectious diseases, in the selected health centres and hospitals in
Chiang Mai.
To determine whether people who had many counts of out-patient visits at the
selected health centres and hospitals were at increased risk of a hospital
admission for all causes, and for specific disease groups, including respiratory,
circulatory, diabetic, and intestinal infectious diseases.
To determine whether factors, such as age, sex, occupation, and season had
modified the effects of air pollution and temperature on daily out-patient visits
and hospital admissions in the selected health centres and hospitals in Chiang
Mai.
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1.6 Conceptual framework

Effect modifiers:
-Demographic characteristics
(age, sex, and occupation)

Potential for
climate change

to affect -Season
1
i
!
|
A ] Health outcomes:
E{&posure.. l Increased morbidity
;\lr pollution & $ (e.g. respiratory,
em;.)erzature circulatory diseases,
variations and others)

Possible confounders
-Seasonal patterns
-Time trends
-Day of the week
and holidays
-Other weather variables
(RH and Rain)
-Influenza epidemics

Figure 1. 1 Conceptual framework in assessing morbidity in relation to air pollution
and temperature exposure.

1.7 Significance of the study

It was expected that the findings of the study would raise awareness of the general
population, government, and private sectors regarding the effects of current levels of air
pollution and temperature on the health of people in Chiang Mai, Thailand. This may lead
to implications for public health to implement appropriate mitigation measures to reduce air
pollution in the city and to prevent adverse health effects, especially among the vulnerable
population. Since there was an establishment of a linkage between the history of hospital
admissions and subsequent deaths, but not between daily counts of out-patient visits and
subsequent hospital admissions, the study was unique due to identifying the susceptible
population by linking the frequency of out-patient visits with subsequent hospital
admissions. This study could increase understanding of the susceptibility to air pollution
and temperature in less developed countries with tropical climates, could add more
epidemiological evidence of time series studies in Asia, and could also be a sound basis for

further research conducted within this area.
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1.8 Structure of the thesis

In addition to this introduction chapter, there are 8 remaining chapters as follows:

Chapter 2 reviews previous literatures on air pollution and temperature effects on health,

mainly focusing on time series studies.

Chapter 3 outlines the methods of developing the models to be used for quantifying the

short-term effects of air pollution and temperature.

Chapter 4 discusses the characteristics and quality of the health data, and air pollution and

meteorological data used in the study.

Chapter 5 presents the descriptive analysis results of the data used in this study, both

exposure and health outcomes data.

Chapter 6, 7, and 8 describes the regression analysis results from the three series: out-
patient visits series, hospital admissions series, and linkage series (linkage between out-
patient visits and hospital admissions). The results of sensitivity analyses of each series are

also presented.

Chapter 9 provides the discussion about the main findings of the study with respect to
previous literatures as well as specific issues of concern, such as analytical issues, multiple
testing, harvesting, and confounding. The strengths and limitations of the study are
discussed. The conclusion of the key findings, implications for public health in regard to
the short-term effects of air pollution and temperature, and recommendations for future

research are also included.
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Chapter 2: Literature review

This chapter presents a review of literature regarding health effects of air pollution and
temperature. Due to a huge number of research studies on air pollution and health, this
document is mainly focused on time series studies of air pollution in different countries,
particularly in Asia. However, some relevant case-crossover studies of either air pollution
or temperature, which have been shown to give similar results to time series studies, are
also included. The specific health conditions and other related factors that are more likely

to enhance the susceptibility to air pollution and temperature are described.
2.1 Air pollution and Health

2.1.1 Time series studies of air pollution and health

Time series regression is a method used for evaluating short-term effects of time-varying
exposures “*. A time series study generally aims to understand how explanatory variables
influence health outcomes over time, and usually employs regression analysis for the
investigation ®?. The time series method has been widely used to detect the short-term
effects of air pollution on daily mortality and morbidity in many cities worldwide. The key
advantage of the time series method is that the study population serves as its own control,
and this, therefore, eliminates the influence of other underlying risk factors (such as
smoking) that may vary among subjects, but do not vary from day to day “9). However,
there are some limitations of using this method, including the likelihood of measurement
error due to using single or central monitoring sites to represent exposure for large mobile
population, and the need for sophisticated statistical methods to adequately control for
possible potential confounders such as long-term time trends, seasonal patterns, weather
variables, and unusual events (e.g. influenza epidemics) G Moreover, the time series
method does not provide the information about long-term exposure to air pollution. Despite
the limitations, time series studies have increased understanding about the influence of
daily changes in ambient air pollution on health in various aspects, such as an increased
daily mortality, exacerbation of asthma, and increased hospital visits and admissions ©2),
Epidemiological evidence showing the effects of air pollution on daily mortality and
morbidity are presented in this section. The morbidity effects are specific to out-patient

visits and hospital admissions only.
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2.1.2 Criteria air pollutants

A brief description of five criteria air pollutants, which are commonly used for time series
studies, is provided here in order to give general information about the unique
characteristics of each pollutant. The five criteria air pollutants include sulphur dioxide
(SO,), nitrogen dioxide (NO;), carbon monoxide (CO), ozone (Os), and particulate matter
(PM).

Sulphur dioxide (S0

SO, is an irritant gas, mainly released into the atmosphere through industrial combustion of
coal and oil. In a humid environment, SO; can be oxidized to sulphuric acid, and partially
neutralised sulphate salts G3) Thus, humidity and photochemical processes can accelerate
the formation of acid aerosols in the atmosphere. Health effects of exposure to SO, may
range from mild effects, such as irritation of the eyes, nose, and throat, to severe effects,
such as bronchial spasm and deaths due to respiratory insufficiency and concomitant effects

on the central nervous system %,

Nitrogen dioxide (NO2)

NO; is a secondary air pollutant, formed by the reactions of oxides of nitrogen and
atmospheric oxidants such as O3 in the presence of sunlight ©3 Oxides of nitrogen are
generally emitted to the atmosphere by the combustion of fossil fuels from stationary
sources, such as heating and power generation, and motor vehicles ®*. Exposure to NO; has
been shown to increase airway reactivity to stimuli such as inhaled allergens, and enhance
bacterial infection and colonization by reducing the ciliary beat frequency of bronchial

9 The health effects of NO, exposure may range from cough and

(59)

epithelial cells

haemoptysis to lung oedema

Carbon monoxide (CO)

CO is generated by the incomplete combustion of fossil fuels. Ambient concentrations of
CO are highly related to traffic congestion, domestic combustion devices (such as heating
and cooking), and smoking ©*. The effects of CO on health are due to the binding of CO to
haemoglobin, which produces carboxyhaemoglobin, resulting in a reduction of

haemoglobin capacity to transport or release oxygen 63, Thus, when exposed to CO,
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human body organ is likely to become hypoxia, leading to fainting, increased respiratory

and pulse rate, intermittent convulsions, coma, and death ¢,

Ozone (O3)

O; is a photo-oxidant, formed by a complex series of reactions of nitrogen oxides and
hydrocarbons in the presence of sunlight in the troposphere ©®. O; is a highly reactive
pollutant. Therefore, exposure to O3 may lead to inflammation of the nasal mucosa and of
bronchoalveolar lining, leading to an increase in airway hyper reactivity and a decrease in

lung function ©).

Particulate Matter (PM)

Particulate matter is a complex mixture of solid particles and liquid droplet suspended in
the air. It can originate either from natural sources, such as windblown dust, bushfires,
volcanoes, and the oceans, or from anthropogenic activities, such as industrial processes,
motor vehicle exhaust, domestic fuel burning, and industrial and domestic incineration 67
Mechanical processes, including grinding, breaking, or dust resuspension generate coarse
particles (larger than 2.5um in aerodynamic diameter), whereas combustion processes
generally create fine particles (those smaller than 2.5pum in aerodynamic diameter, PM, s)
©®_Thus, particles suspended in the air comprise a variety of sizes and mass composition.
They may consist of various substances, including inorganic and organic carbon (such as
polycyclic aromatic hydrocarbon), fine soil dust, acidic nitrates and sulphates, heavy metals
(such as lead), asbestos, and other fibres ®¥. PM, refers to particulate matter less than
10pm in aerodynamic diameter, sometimes called thoracic particles, while PM, s or fine
particles can be called respirable particles ©". The small particles are of great concern

because they can deposit in the deeper parts of the respiratory system and cause various

adverse health effects.

It is noteworthy that there are several substances mixtures in the air. Generally, most air
pollutants are highly correlated, which make it difficult for air pollution studies to separate
the effects of one pollutant from one another pollutant 9 Thus, the issue of collinearity is

one common problem in epidemiological studies of air pollution 60
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2.1.3 Air pollution effects on mortality

Exposure to air pollution, even at moderate levels, is associated with increased mortality in
many cities ¢" ¢, Although the expression of the risk of dying due to air pollution
exposure can vary from study to study, time series studies conducted in different locations

have shown consistent findings of the association between air pollution and mortality.

For example, the APHEA (Air pollution and Health: a European approach) studies
undertaken in 29 European cities indicated that each 10ug/m® increase in PMo
concentrations was associated with an increase in all cause mortality of 0.6% (95% CIl, 0.4,
0.8) 2. Similarly, the National Mortality, Morbidity and Air pollution Studies (NMMAPS)
conducted in the 20 largest metropolitan areas in the USA suggested that each 10pg/m’
increase in PM;o concentrations was associated with an increase in all cause mortality of
0.5% (95% CI, 0.1,0.9) ®®. All cause mortality in London (1992-1994) was also found to
be associated with various pollutants (NO,, SO,, PM)o, CO, and black smoke), but the
strongest association was found between PM,y and respiratory mortality (4.0% increase in

deaths of all ages for a 10th-90" percentile increment) ©9,

Air pollution is associated with not only an increase in all-cause mortality, but also an
increase in respiratory and cardiovascular mortality, particularly in the elderly 72,
Moreover, it has been speculated that the risk of dying in relation to air pollution is more

likely to occur in general population, not only persons who are very ill or are about to die
(73,74)

2.1.4 Air Pollution effects on morbidity

Daily out-patient visits to different care settings and hospital admissions have been used as
health outcomes to evaluate short-term effects of air pollution on morbidity. Similar to
mortality, a daily change in air pollutant levels are related to increased daily hospital visits
and admissions. The changes in air pollution have been found associated with all causes of
the visits and admissions, and with several health conditions, including respiratory illnesses
(such as upper respiratory infections (URI), lower respiratory infections (LRI), chronic
(5. 16, 23, 75-

obstructive pulmonary disease (COPD) and asthma), and cardiovascular diseases

%) The risk of the visits and admissions appears to be pronounced in children and the
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elderly 2375 80.81.83) Tp¢ study results of some previous time series studies on morbidity
effects of air pollution reviewed for this document can be seen in Appendix 2A. Similar to
mortality studies, literature showed the increased risk of illnesses could occur among
general population, not just only those who are very ill and would enter the hospital within

a few days or weeks, anyway 73

2.1.5 Time series studies of air pollution in Asia

In Asia, the pattern of mortality and morbidity in low-income countries is currently in a
transition, that is, life expectancy in those countries is increasing and health risk factors
tend to be related to lifestyles, urbanization, and environmental deterioration. Generally, the
diffuse, small-scale burning (such as burning garbage and biomass) is the main contribution
to air pollution in many Asian countries. It has been found that total suspended particle
(TSP) is the major outdoor air pollutant, followed by PM,o, SO2, and NO,, respectively ®*.
Like other regions, time series studies in Asian regions have also demonstrated an

association between ambient air pollution and increased risks of deaths and illnesses.

According to the Public Health and Air Pollution in Asia (PAPA) project of the Health
Effect Institute (HEI), a meta-analysis of 28 time series studies (of the total 45 studies) in
Asia showed that all criteria pollutants were associated with daily mortality and morbidity,
but the estimated risks varied, depending on study areas and their selected study pollutants
(see table in Appendix 2B) @ Levels of SO,, TSP, and PM; were highly related with
mortality and morbidity in this region. The health effects of O3 and NO; were found in
some areas in Hong Kong and Korea ®* ** 8399 while the health effects of CO were found
predominantly in industrial areas in Korea ®>. The more recent publications of the PAPA
project and of other Asian studies (Shanghai and Bangkok) also confirmed the adverse

effects of PMjo, O3, SOz, and NO, on both mortality and morbidity in this region ®4*%,

Most literature has indicated that current levels of pollutants, even at levels well below
recommended standards (WHO or national standards), are significantly associated with
increased mortality and morbidity “7>®"%9_In addition, the most vulnerable groups appear
to be children, the elderly (> 65year), and people with pre-existing diseases, such as
cardiovascular diseases (congestive heart failure, ischemic heart disease, and stroke),

chronic obstructive pulmonary disease (COPD), and asthma (87, 88, 91, 93, 97. 99-100) There is
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only one study mentioning sex, indicating that risk of stroke mortality associated with

particulate pollution is higher in the elderly female population ®*.

In summary, air pollution is associated with an increase in daily deaths and illnesses all
around the world. Children, the elderly, and people with pre-existing health problems are
particularly vulnerable compared to general population. Among all five criteria pollutants
(80,, NO,, CO, 03, and PM,p), which are commonly used for time series studies of air
pollution, particulate matter (PM) has demonstrated more consistent adverse health effects

than other pollutants 7% 103119,

2.2 Temperature and Health

There is a growing concern over temperature effects on health. Exposure to extreme hot
and cold weather can affect people’s health directly, such as hyperthermia or heat stress as
a result of exposure to very hot temperatures and hypothermia and ischemic stroke due to
exposure to very cold temperatures, leading to a rise in deaths and hospitalizations ®''7-120)
Besides direct effects from extreme weather events, a bigger burden from indirect effects of
exposure to small changes of temperature over time has been shown. The increasing heat
and cold temperatures have been found to be associated with increased risks of deaths and

illnesses (e.g. due to CVDs and respiratory diseases) in many places (810, 118, 121)

2.2.1 Temperature effects on mortality

An attempt to detect mortality risks associated with variations of heat and cold temperature
has been done in many countries. It has been suggested that comfort temperatures
(temperatures that people are able to adapt or live with) could vary across different
geographical locations (122 For example, the comfort temperatures in Valencia, Spain,
were about 15°C in colder months and 24°C in hotter months !>, Thus, an increase in heat
(from 24°C ) during hot periods and a decrease in temperatures (from 15°C) during cold

(123)

periods could result in a rise of mortality in the city *“”. In a subtropical country, Taiwan,

the comfort temperature ranged from 26°C to 29°C, and therefore, the mortality from

coronary heart disease was detectable when temperature dropped below this range (124

As a consequence of consistent observations that an increase in either hot or cold

temperature can result in increased mortality, the relationship between temperature and

33



Chapter 2 Literature review

mortality can be visualised as a U-, V-, or J-shaped relationship 6. 13, 122, 125, 126)

In
addition, due to increasing evidence of high temperature effects on deaths in many settings,
it has been pointed out that heat-related mortality can be a major public health problem, not

only in cool climate regions but also in temperate and warm climate regions 12

Several studies have suggested that the risk of dying due to temperature effects is more

likely to be higher in the elderly & 25 12 126127

. Furthermore, respiratory and
cardiovascular diseases have constituted the major causes of deaths associated with
temperature changes 6.8.123) With respect to sex difference, some studies illustrated that

females had a higher risk of dying associated with temperature changes **"'%

, While some
studies found that males were prone to die from heat-related deaths (131,132 However, a
recent review of mortality effects of high temperature suggested a higher risk among

females %7,

Literature has also suggested that there might be interactions between air pollutants and
temperature on mortality effects of high temperature. However, to date, this issue remains
unclear as some studies found a significant confounding or effect modification by air
pollutants (particularly by O; and PM,o) on the association between temperature and

mortality, whereas some studies did not (127,

2.2.2 Temperature effects on morbidity

By comparison to mortality, there are fewer research studies on the association between
temperature and morbidity. Moreover, the risk of illnesses or hospitalizations in relation to
temperature changes derived from morbidity studies appears to be less consistent compared

to that obtained from mortality studies.

Hot temperature

Increased morbidity can be found following exposure to extremely hot temperatures. For
example, a study in Australia suggested that the majority of hospital presentations during a
ten day heat wave were older people (60 years or over), those who lived in institutional care
or live alone, and those with pre-existing health problems such as cognitive impairment,

(118)

alcoholism and diabetes . Excess hospital admissions during a 1995 heat wave in

Chicago were found to be mainly due to the direct effects of high temperatures, such as
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dehydration, heat exhaustion, and heat stroke, and mostly in person aged 65 or older !'?.

The admissions significantly increased in patients with underlying health conditions,
including cardiovascular disease, diabetes, renal disease, and nervous system disorders (19,
An observational study during a 2003 heat wave in France also demonstrated that infected
critically ill patients were more likely to suffer from hyperthermia than non-infected

critically ill patients 3%,

In addition to extreme temperature, a small increase in temperature may affect daily
morbidity. For example, a study in London demonstrated that a 10.5% increase in hospital
admissions due to respiratory disease among the elderly (over 75 years) was associated

with each 1°C increase in daily mean temperature above 23°C !9

Hot temperature has also been found to be associated with hospital admissions for heart
diseases. A study in 12 US cities illustrated that an association between hot temperature and
hospital admissions for heart diseases *"). This was corresponding to a study in Denver,
Colorado, which found the link between high temperature and an increase in hospital
admissions for myocardial infarction and congestive heart failure Y, Another study in New
York City also suggested an increase in hospitalizations in association with high
temperatures, ranged from 28.9°C - 29.4°C *¥_ While a study in the US demonstrated the
relationship between high temperature and heart disease admissions, studies in London,
Madrid, California, and 12 European cities did not find the relationships between them (o,
135130 The lower effects of high temperature on hospital admissions than on mortality in

those places suggest that many people may die before receiving medical treatment or

admission to hospital 139,

Cold temperature

Daily variations of low temperature can also increase the risk of getting illness. For
example, the excess winter morbidity among older people living in cold homes (those with
insufficient energy to keep warm) in London was observed (¥, Another study in London
found that a 10.5% (95% CI 7.6, 13.4) rise in all respiratory GP consultations among
people age 65 or over was associated with each 1°C decrease in mean temperature below
50C 23)
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A study in Athens also showed that, with each 1°C decrease in mean temperature (linear),
there was a 5% increase in hospital admissions due to acute coronary diseases, which was
stronger in females and the elderly . A study in Chicago illustrated the magnitude of CO
effects on hospital admissions for congestive heart failure (CHF) increased with decreasing
temperature, suggesting that the CO effects was temperature dependent ®. The relative
risks of hospital admissions for CHF associated with the 75th percentile of exposure to CO
were 1.02 (95% CI 0.95, 1.10) for high temperature range, 1.09 (95% CI 1.04, 1.14) for

medium temperature range, and 1.15 (95% CI 1.09, 1.12) for low temperature range.

In brief, small changes of temperature can induce morbidity, not only extreme
temperatures. The elderly and ill people are particularly vulnerable to temperature effects in
comparison to others. In addition, the manifestation of adverse health effects may be due to

the interactions between temperature and air pollutants, not temperature alone.

2.2.3 Health effects of temperature in Asia

Few investigations of association between temperature and health have been made in Asia.
Nevertheless, evidence shows that temperature changes may also affect mortality and
morbidity in Asia, but the magnitude of the risk may differ from that in other regions in

accordance with variability of climates and population characteristics.

Mortality studies

In China, Kan et al reported that the lowest mortality risk occurred at a temperature of
26.7°C (optimum value) in Shanghai (140) "1t was found that the total mortality increased by
0.73% for each 1°C increase in temperature above this optimum value, but decreased by

1.21% for each 1°C increase in temperature below this value.

In Taiwan, Pan et al found that the temperature range for the minimum mortality risks due
to coronary artery disease (26-29°C) and cerebral infarction (27-29°C) was higher than that
observed in colder climate countries ('**. Each 1°C decrease in temperature from 27-29°C

was associated with a 3% increase in the risk of cerebral infarction in the elderly.
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The increased cardiovascular mortality, such as heart disease and ischemic stroke, were

(142)

also found in Israel "*V, Japan , and Korea '*>. The increased deaths appeared to be

higher in winter and highly associated with cold temperature.

Morbidity studies

In Japan, Ye et al indicated that daily maximum temperatures were associated with hospital
emergency transport for pneumonia, but not for other diseases !*), They also found that
increased daily maximum temperatures were associated with decreased hospital emergency

transport for hypertension.

In Taiwan, an increase in acute coronary syndrome of about 30-40% was observed when

the average daily temperature was below 26.2 °C %),

2.3 Susceptible populations

Individual susceptibility is one important factor affecting relationships between air
pollution and health and between temperature and health. Each individual has different
ways and different degrees in responding to environmental exposure. Therefore, individual
susceptibility can vary greatly among a population, which can be influenced by individual
variability and diversity, such as levels, dose, and duration of exposure, physiology,

biological mechanisms, and behaviour (1)

. Furthermore, the increased susceptibility is
likely to be enhanced by frail health status. An establishment of a link between history of
hospitalizations and mortality has suggested that a risk of dying associated with air
pollution and temperature is higher among persons who were hospitalized before deaths
with chronic health conditions, such as congestive heart failure, myocardial infarction, and
diabetes ' %" 28 However, there is a lack of identifying characteristics of frail populations
by linking the history of out-patient visits with subsequent hospital admissions to see
whether the risk of admissions associated with the exposure is modified by history of

previous visits before the admissions.

2.3.1 Health conditions and enhancement of vulnerability

Pre-existing health problems, including respiratory disease, circulatory disease, diabetes,
and intestinal infectious disease, are more likely to increase the risks of deaths and

hospitalizations in association with air pollution and temperature.
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Respiratory disease

Air pollution effects are more likely to manifest in persons with respiratory disease such as
asthma and chronic obstructive pulmonary diseases (COPD). Experimental human studies
showed that exposure to ozone (O;) could limit ability of people with COPD to perform
deep inspiration through reflex mechanisms, resulting in a significant decrease in vital
capacity of the lung !*?), The significant effects (both single and combined) of exposure to
relatively low concentrations of air pollution have been shown in asthmatic patients,
including the reduction of force expiratory volume (FEV) after exposure to Os, the
enhancement of airway reactivity to allergen and airway inflammation when exposed to
NO,, and the increase in bronchoconstriction due to SO, exposure ““?. The pulmonary
infections may occur due to the single and combined effects of O3 and NO, on alveolar
macrophage by reducing its ability to react against infectious agents *”. Air pollution may
increase the vulnerability of lung defence mechanisms by causing the changes of
immunological response such as suppressing and increasing antibody production of

immune system (4%,

The vulnerability to temperature appears to increase in persons with COPD. This may be
because these people usually have cardiovascular problems, and therefore, their blood
components are particularly vulnerable to temperature changes 19 Respiratory infections
during cold weather in persons with COPD can occur easily because their lungs are
typically colonized by bacteria (. Furthermore, an increase in red cell counts, platelet,

blood viscosity, and bronchospasm can also be enhanced by cold weather °%.

Circulatory disease

It has been suggested that acute episodes of cardiovascular diseases (such as myocardial
infarction and cardiac arrhythmia) are probably due to the impairments of lung functions,
inflammation of alveolar, increased coagulability of the blood, alterations of the nervous
system control of the heart, and decrease of heart rate variability following the exposure to
air pollutants (51-153) "In addition, persons with myocardial damage or cardiac disease are
more likely to develop congestive heart failure (CHF) due to an enhancement of acute

. .. . . . 154
pulmonary diseases, such as bronchitis and pneumonia, after exposure to air pollution (a4,
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In order to adapt to hot temperature, cardiac output in human bodies is generally increasing
to increase blood circulation “?", This process can be limited by dehydration, which
reduces blood volume in the body. Increased cholesterol and blood viscosity has also been
found on exposure to high temperatures %, Thus, people with impairment of cardiac
functions are probably less able to adapt to increasing temperature compared to healthy
persons, resulting in increased deaths and hospitalizations during heat waves. Furthermore,
some medications used in chronic disease of the heart and lungs may interfere with heat
loss mechanisms and reduce adaptive responses during hot temperature *> ', In addition,
people with pre-existing hypertension or hypercholesterolemia are more likely to develop
ischemic stroke on exposure to cold temperature **¥, Cold temperature may facilitate the
development of ischemic heart disease by causing hemoconcentration, which can lead to
thrombosis >, Moreover, angina pectoris and myocardial infarction can be facilitated by

physical activity during cold weather (2.

Diabetes

Recent studies suggested that people with diabetes were at greater risk of death and illness
associated with air pollution ¢* #* 32 *) For example, a study in Brazil showed that an
increase in cardiovascular emergency room visits in association with SO, levels was higher
in diabetic patients than non-diabetic patients (>, It has been pointed out that the increased
risk among diabetic patients appears to be related to cardiovascular risk factors associated
with PM pollution, including increased plasma fibrinogen levels and other makers of
systemic inflammation, increased C reactive protein levels, and reduced heart rate
variability ®* . In addition, exposure to particles was also found to be associated with
impairment in vascular reactivity and endothelial function in diabetes, which was also
related to cardiac functions ®?. An increased risk of deaths on hot days among people with
diabetes was found to be higher than other people !* '*®. This may be because of the
interaction between increased demands on the circulatory system under extreme thermal
stress and impairment of endothelial function and autonomic control in people with

diabetes.
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Intestinal infectious disease

There is evidence suggesting that climate variability may lead to an increase in frequency
and severity of some particular infectious diseases, such as intestinal infectious diseases.
For example, an increase in hot temperature may not only increase the frequency of
occurrences of infectious diarrhoea, but may also increase the severity of the illness. Since
exposure to hot temperature can cause dehydration through heat loss mechanisms !!”, the
body of persons with infectious diarrhoea may not be able to balance fluid intakes and
outputs easily during high temperatures. This could result in an increased severity of their
dehydration and electrolyte imbalance. In addition, an increase in temperature may promote
the growth of bacteria and transmission of intestinal infectious diseases, such as bacteria
enteric infections, diarrhoeal diseases, and food poisoning, leading to a rise of numbers of
visits or admissions to hospitals **'°?. For instance, the number of food poisoning cases
in European countries was found to increase in association with a 1°C increase in average
temperature above indentified threshold value !*”. The hospital visits and admissions for
diarrhoea in children also increased by 8.0% and 5.6% per 1°C increase in mean

temperature over lag 0-4 weeks, in Peru and Bangladesh, respectively ** '*?,

Other diseases relating to air pollution and temperature exposure

Apart from the diseases mentioned above, there are some other diseases that may also be
related to air pollution and temperature exposure, such as cancer, suicide, and traffic
accidents. Evidence has suggested that the incidence of cancer, such as lung cancer, is
associated with outdoor air pollution emitted from industrial sources, power plants, and
motor vehicles ¢*'5%). It has been speculated that carcinogenic effects of air pollution may
be derived from an exposure to combustion emissions, including particles, semivolatile,
and gaseous pollutants, which usually contain chemical compounds, such as polycyclic
aromatic hydrocarbons (PAH) and nitrated PAH (1) "1t has also been suggested that the
particularly vulnerable people may not be only those with cardiorespiratory health
problems, but also those with failing health causing difficulty in regulating their
physiologic set points, such as cancer Frak et @l citedn 70) "£or example, it was found that an
increase in daily deaths from cancer of 3.9% (95% CI, 1.0 to 6.91) among people age 65
years or over in Quebec was associated with an increase in the changes of mean

concentrations of O3 of 21.3% pg/m® 7%,
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Accidental events, such as traffic accidents, have also been suggested to increase in
association with increasing temperature. For example, during hot days in Tokyo, the
occurrence of motor vehicle collisions was significantly associated with the high
temperatures asn, Similarly, road traffic accidents in Riyadh were also found to be related
to the high temperatures in summer "*®, Hot temperature may lead to increased stress,
decreased performance in intellectual tasks (which require physical efforts and motor
skills), and increased heart rate that exacerbates existing pathological conditions of heart

and lung diseases of drivers, resulting in road traffic accidents ‘%

In addition, an increased risk of suicide in England and Wales was also found to be
associated with hot weather '®”. For each 1°C increase in mean temperature, there was an
increase in suicide and violent suicide by 3.8% and 5.0%, respectively *. The hot
temperature may lead to excessive alcohol drinking, and aggressive and violent behaviour

among individuals, which might result in an increase in suicidal acts.

2.3.2 Effect modifiers

Besides the pre-existing health problems, some characteristics of population such as age,

sex and occupation may also increase vulnerability to air pollution and temperature.

Age

Numerous research studies have indicated that the elderly are particularly vulnerable to air
pollution and temperature. This may be due to the deterioration of their physical bodies
with increasing age. The functional impairment of important physical organs (such as heart,
lungs, and kidneys) may make it difficult for the body of people in older age to adapt or
recover after exposure to high concentrations of pollutants or temperature changes
compared to the young. Research evidence has also suggested that older people may have a
higher risk of suffering from air pollution effects due to a decline of antioxidant defences
(70 With regard to temperature effects, an experimental study demonstrated that older
people (>60 years) were less able to maintain core temperature under a given cold
temperature compared to younger people because of a reduction in thermal sensitivity of
the skin (such as vasoconstrictive response to cold) and in subjective thermal perception

during cooling "7V, In addition, the cognitive impairment and reduced mobility may limit
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their abilities to perform behavioural defences or may delay their access to health care

services after exposure ' 1'%

Sex
The role of sex in association between health and air pollution or between health and
temperature are not consistent. Some studies showed an increased risk of the exposure in

females & 1% 172173 (24, 174)

, while some studies showed a higher risk of exposure in males
Nevertheless, by comparison, it appears that females are more vulnerable than males as
indicated by the majority of published literature 27, First of all, the increased susceptibility
may be related to differences in the growth and development of physical organs and the
maturity of immune system. Due to smaller sizes of the lung and air way calibre, but higher
levels of bronchial and airway reactivity, females are more likely to be vulnerable to air

(18)

pollution than males ". A smaller proportion of the heart relative to body size

(approximately two-thirds) as well as higher pulse rates in females in comparison to males

may also increase their vulnerability to pollution and temperature %,

It has also been postulated that fluctuations of hormones during menstrual, pregnancy, and
menopause periods may be responsible for female susceptibility to air pollution (such as
exacerbation of asthma) ®. Finally, the differences in lifestyle and behaviour between
females and males, in terms of domestic exposure, daily activities, and occupation may
influence their susceptibility differently. This could result in different exposure hazards as
well as different does, levels, and duration of exposure. It should be noted that much of the

evidence indicating sex differences has been found in older populations (' 2% 8. 129, 130, 172,

173 176 The differences may be attributed to confounding by age, as the increased
vulnerability among elderly female populations may be due to age related declines in

physiological functions.

Occupation

Occupation may also influence individual susceptibility to air pollution and temperature
because people who work in different places may be exposed to air pollution and
temperature differently. The mixtures and concentrations of air pollutants may vary from

workplaces to workplaces. For example, a study in Thailand showed that there was a
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decline in lung functions among traffic police who work at roadside in Bangkok, which was
associated with higher levels of exposure to particles from motor vehicle exhausts 7",
Another study in Bangkok also demonstrated that street vendors, who sell clothes or foods,
were highly exposed to genotoxic air pollutants such as particle-associated polycyclic

aromatic hydrocarbons (PAHs) and benzene (®

. Similarly, workers will experience
thermal stress (heat and cold stress) to different degrees in relation to different working
environments. For example, people who worked outdoors during winter periods were found
to suffer from cold stress, whereas people who worked in a glass factory experienced
intensive heat exposure '’”. Therefore, occupation (or employment status) has also been
used as a proxy of socioeconomic status (SES) in some studies for examining the

interaction between SES and environmental exposure-related health outcomes '3%'8%),

Season

In general, levels of air pollution and temperature vary throughout the year, from season to
season. This is due to the fact that several factors in the atmosphere, such as pressure, wind,
and sunshine, can influence the emission, formation, and dispersion of pollutant mixtures in
the air. The interactions between various mixtures of pollution components and
meteorological variables may occur differently in different seasons, which could also
influence exposure levels of individuals differently (189 For example, ozone (O3) is known
to be a secondary pollutant, formed by a series of reactions between nitrogen oxides and
hydrocarbons in the presence of sunlight ®®. Therefore, a higher level of ozone in summer
would be expected, and people would then be more likely to be affected by O3 in summer
than in other seasons. Furthermore, it may be possible that patterns of outdoor activity of
individuals may vary from season to season, resulting in differences in both duration of
exposure and exposure levels !*. For example, people tend to go out for outdoor activities
summer or warm season, which may lead them to be more exposed to outdoor air pollution
and hot temperature than other seasons. The use of air conditioning or opening windows for
cooling may be more prevalent during hot period, while the use of heating or closing

windows to keep warm may be more prevalent during cold period.
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2.4 Lag effects of air pollution and temperature

In general, the effects of air pollution are acute, which usually occur at current day of
exposure (lag 0) or at 3-5 days after exposure. For example, the effects of particulate air
pollution on daily mortality in Seoul, Korea, were found to occur on the same day of
exposure *9. Another study in Atlanta, U.S.A., showed that the effects of particulate air

pollution on respiratory visits in ambulatory care setting occurred at lag 3-5 days 7°.

For temperature effects, it has been suggested that hot temperature effects are immediate,
with occurrence at short lag (e.g. from lag 0 up to 5-7 days), while cold temperature effects
are prolonged and may appear after lag 3 days to at least 2 weeks or 1-2 months & 1% 187
') For example, a study in the Netherlands found that the lag effects of hot temperature
occurred at current day of exposure, whereas the lag effects of cold temperature occurred at
lag 0-5 days . Another study in Sofia and London demonstrated that there were short lag
effects of hot temperature at around 3 days, while there were longer lag effects of cold

temperature at 2 weeks (%%,

Although evidence from previous studies has suggested short lag effects for air pollution
and for hot temperature, and longer lag effects for cold temperature, it is important to note
that the lag effects could vary depending on geographical locations and on characteristics of
study populations. The geographical locations may influence intensity of air pollution and
temperature, resulting in different exposure levels and duration. The population
characteristics may also mean the variability in susceptibility to air pollution and
temperature exposure, which could make the magnitude and lag structures of the effects
vary from study to study. In addition, since there are several factors affecting hospital
visits/ admissions (e.g. necessity to make appointments in advance, availability of transport,
and availability of hospital beds), the morbidity outcomes may induce lag effect structures

that differ from those observed in the mortality studies.

2.5 Conclusion

Research evidence has suggested an increase in daily mortality and morbidity is associated
with daily changes of air pollution and temperature. The young, the elderly and persons

with pre-existing health problems are particularly vulnerable. However, there are few
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investigations in developing countries with tropical climates. Furthermore, more consistent
findings of association between air pollution and health, and between temperature and
health have been found for mortality than those for morbidity. With regard to future
impacts of climate variability that are more likely to affect low-income settings than high-
income settings, there is a need for more research studies in developing countries with
different types of climate to assess regional specific vulnerabilities and to identify the

populations susceptible to air pollution and temperature variations.
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Chapter 3: Methods

The methods used for conducting this study are presented in this chapter. The study design
and period, area of the study, and the study population are described. Sources of health data
as well as air pollution and meteorological data are explained. The analytical methods

employed for the study are also detailed.

3.1 Study design and period

This study was a regression analysis of retrospective time series data to assess the effects of
air pollution and temperature on daily out-patient visits and hospital admissions among

people in Chiang Mai province, Thailand, from October 2002 to September 2006.

3.2 Study area

This study was undertaken in Muang district of Chiang Mai, the inner area of the city.

There were three main reasons to select Muang district for the study.

First of all, it is an urban area with growing infrastructure development, and higher
population density and traffic congestion than other districts. Thus, it is more likely to be
affected by air pollution and temperature changes. It has also been suggested that heat
effects are usually higher in urban areas than rural areas (‘urban heat island effect’, which
occurs due to abundance of heat-retaining surfaces, such as concrete and black asphalt) 47,
In addition, evidence has showed that respiratory illness has become an important health
problem in Chiang Mai. For example, in 1994, health statistics showed that there was the
high number of 500,000 hospitalized patients due to respiratory diseases “3 In 1995, it was
observed that 8.8% of the total children in Chiang Mai was suffering from asthmatic
problems “*. Moreover, the annual health report has also indicated that respiratory disease
is the first leading cause of out-patient visits among the Chiang Mai population @9

Therefore, it is interesting to know whether this health problem is exacerbated by short-

term changes of air pollution and/or temperature in the city.

The second reason for undertaking the study in the Muang district was due to the feasibility

in obtaining health data as well as air pollution and meteorological data at the same period
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of time. The two air monitoring stations are located within the area of Muang district,
which is among the few cities in Thailand that has more than one fixed air monitoring
station. The use of two fixed sampling sites could help reduce bias in regard to
misclassification of exposure that commonly occurs in epidemiological studies when using
only one fixed sampling site to estimate exposure of large population '*”. Because one
station is located in the inner city and another one is located in the outskirts (about 10
kilometres away), it was expected that the average exposure levels from the two stations
located in different geographical locations would be the reasonable average exposure levels
for the study population since personal exposure could not be known. The use of data from
two stations could also help reduce a problem of missing data because when data from one
station were missing, data from another station were used for calculating the replacements

(detailed later in section 3.4.2).

The final reason of choosing Muang district for the study was to avoid the likely influences
of differences between people living in urban area and people living in the highland (e.g.
tribal people living in remote area on the mountains) on study results, in relation to
socioeconomic status and lifestyle such as levels of education, nutritional status, and indoor

cooking activities (which is common among tribal people in the highland).

3.3 Study population

Study population were all people who had visited and/or had been hospitalized at the
selected health centres and hospitals in Muang district in Chiang Mai, from October 2002
to September 2006. During the study period, the district comprised a population of 296,753
people (December 2005), with 16% of 0-14 year, 73% of 15-59 year, and 11% of > 60

year) ®%.

3.4 Data collection

3.4.1 Health data

Health outcome data of this study were daily morbidity data , which were the routine daily
health records of two different data sets: out-patient visits (all ambulatory care settings,
including primary care) and hospital admissions, of selected health centres and hospitals

within Chiang Mai public health systems. The daily out-patient visit data were obtained
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from the Chiang Mai Provincial Health Office, and the daily hospital admission data were
obtained from the National Security Health Office. Therefore, only health centres and
hospitals that provided a monthly report of daily out-patient visits for the provincial health
office and of hospital admissions for the National Health Security Office were included in
the study. These consisted of 10 sub-district health centres and 11 hospitals (6 private
hospitals and 5 government hospitals). The time period of health data collection covered a
four-year period from October 2002 to September 2006. However, over this study period,
there were different numbers of health centres and hospitals contributing to the health data
in each month. Health information on individual visits and admissions selected for the
study comprised hospital number, date of visits, date of birth, age, sex, occupation (out-
patient visits only), a unique individual identification number (ID), and diagnosis based on
diagnostic codes of the International Classification of Disease, the 10th version (ICD-10) of
the WHO V),

3.4.2 Air pollution and meteorological data

Data on daily levels of selected criteria air pollutants, including SO,, NO,, CO, O3, PM,,,
and PM,s, were obtained from the two air monitoring stations: Chiang Mai City Hall
station (35T) and Yuparaj College station (36T), in Muang district, Chiang Mai. The
Yuparaj College station (36T) is located in the Muang district central, and is a roadside
station. The Chiang Mai City Hall station (35T) is located about 10 kilometres away from
the central district, which is an urban area station (description of the two types of air
monitoring station is presented in chapter 4, section 4.3.1). The two stations are operated by
the Pollution Control Department (PCD), Bangkok, which is the centre for controlling the

real-time air monitoring stations all around the country.

The real-time monitoring equipments can provide readings of air pollutant levels at any
time interval such as at every 30 minute or at every one hour, depending on settings. The
PCD is responsible for calculating the daily mean levels of the pollutants and provides this
information to the public via the PCD’s website. Daily mean levels of all pollutants (only
PM, 5 data are not shown via the website) are calculated from 10am to 9am of a day. The
data presented on the website are the daily mean of a pollutant measured every one hour,
the first reading begins at 10am (starting the measurement from 9am) every day and ends at
9am on the following day, which is the day of reporting. The data of most pollutants were
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the report of a one-hour average for 24 hours, with exceptions for CO (8-hr average) and
PM,o (24-hr average). Daily mean levels of temperature, relative humidity, and rainfall

were also obtained from these two stations during the same period.

In this study, the meteorological data from the district central station were used for the
analysis because levels of meteorological variables were not greatly different between the
two stations, and also the data from the district central station had less missing values

compared to the outskirt station.

For air pollution, levels of air pollutants from these two air monitoring stations were
calculated as representative of the city’s mean daily levels for the analysis. If there was a
missing value of one station, the mean daily value from another station on the same day
was used to estimate the missing value on that particular day. By adopting the APHEA (Air
Pollution and Health: a European Approach) protocol, the mean value from the remaining
station was multiplied by a factor equal to a ratio of the three-month mean for the missing
station over the corresponding mean from this remaining station on that day "2, If there
were missing values from both stations on the same day, the mean values of both stations
on the previous day and the day after were used for the estimation by adopting the same
approach. However, if there was a gap (e.g. 2 days upward) of missing data from the two
stations at the same period of time, the estimation could not be made and, therefore, those

particular days with missing data were left as they were.

3.5 Analytical methods

The purpose of time series analysis was to explore whether there was a short-term
association between exposure and outcome. Regression analyses of daily counts of the
visits and admissions were employed. In general, for count data, a Poisson distribution is
assumed and a Poisson regression model, allowing for overdispersion, is commonly used
for time series studies °®. However, when the overdispersed Poisson (OP) regression
model is not sufficient to accommodate the high overdispersion of the data, negative
binomial (NB) distribution can be assumed and NB regression can be applied for the
analysis % Since the health data in this study were heavily overdispersed, the NB were

used for the analysis.
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For the NB model, the probability distribution is given by the expression:

i LOo+ah( au Y 1 Y.
PrlY =12 ya™) (l+a,u(x)] ><(1+a,u(x)Ja ¥ =0LK,

Where x is the vector of explanatory variables and a is the dispersion parameter, which
represents the degree of extra-Poisson variation. When overdispersion is not present, a= 0
and the NB will be equal to a Poisson distribution. The variance of the NB model is:

var(Y|x) = @[u(x) + a u(x)’]. The model holds negative binomial distribution when ¢ = |

and the model is overdispersed when ¢ > 1 or underdispersed when ¢ <1 %%,

Generalized linear models(GLMs) were applied for the modelling ‘°®. The NB model is in

the following form:
Log[E(V)]= Bo+ pXi+ ...+ BXo

Where E(Y) is the expected daily counts of out-patient visits or hospital admissions, JX;...
X, are explanatory variable (predictors) of Y, and $,..., are the regression coefficients for

the predictors.

3.5.1 Adjustment for potential confounders

Seasonality

In general, there is a systemic variation in air pollution, weather, and health outcomes over
time. The seasonal patterns of each variable may induce correlations among them, even
though they may not be causal relation. The changes in out-patient visits and hospital
admissions over time may not be due to the changes in levels of air pollution and
temperature. The changes of the visits and admissions may be due to the changes of
something else such as the changes of hospital systems or people’s lifestyles in relation to

season change.

With respect to the problem of having different numbers of hospitals contributing to the

health data in each month, when building the models, a monthly indicator representing
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months of the visits/ admissions over the study period from 1 to 48 (4-year data) was used

for seasonal control.

Long-term trends

In this study, long-terms trends can be defined as long-term changes in the mean daily
hospital visits and admissions (outcomes) over a certain period of time. It is also possible
that there are long-term trends of air pollution and temperature (exposure) over a certain
period of time. The long-term changes of exposure and of outcomes over a certain period of
time may make it look like they have had a causal relationship even though they do not.

Thus, long-term trends must be addressed in time series studies.

To account for long-term trends, the smooth function of time was used to capture long-
terms trends in the data. The splines created by ‘frencurv’ command were used in this
study. The ‘frencurv’ is an extension of b-splines, which generates a set of reference splines
to be used in the design matrix of a regression model, with the property that the parameters
fitted will be values of the spline at a list of reference points. The core model was
developed with the starting of using one degree of freedom (df) for the smooth of time at

the first place.

Day of week

Day of week can affect daily hospital visits and admissions. There are usually higher counts
of visits and admissions on Monday than any other weekdays, while there are usually less
counts of visits and admissions on the weekend ¥, To account for day of week effects,

day of week indicator was incorporated in the models.

Holidays

Similar to day of week, holidays may also have effects on hospital visits and admissions.
Besides including indicator variables of public holidays during the study period into the
models, indicator variables of the two long-holiday periods in Thailand: international new
year period (30 Dec-2 Jan) and Thai new year period (13-16 Apr), were also included into
the models. This was because the plots of residuals showed relatively high positive and

negative residuals during these two periods. In general, daily hospital visits and admissions,
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particularly due to accidents (e.g. car accidents or head injuries because of drinking and
driving, and high traffic congestion) are usually high during these periods. Thus, the
increased visits/ admissions during these periods may confound the relationships between

air pollution and the visits/ admissions, and between temperature and the visits/ admissions.

Influenza or respiratory epidemics

There is no information on influenza or respiratory epidemics in Thailand. It has been
suggested that this variable may confound the findings in time-series study because they
may co-vary with the environmental exposures or may be more prevalent during cold
weather period '*®. Therefore, the period comprising daily counts of the visits/ admissions
due to respiratory diseases above the 99th centile of the total respiratory visits/ admissions

was used as an indicator for influenza or respiratory epidemics in this study.

Meteorological variables

Three meteorological variables: temperature, relative humidity, and rain, were included in
the models by using natural cubic splines (3df over the range of the values of these three
variables). When air pollution was the exposure of interest, temperature was considered as
a potential confounder to be controlled for, whereas, when temperature was the exposure of
interest, air pollution was controlled for. When either air pollution or temperature was the
exposure of interest, humidity and rain were also incorporated into the model as possible
potential confounders. Functional forms of meteorological, specific to temperature, in terms

of smoothing and linear (or threshold models), are described below.

Smoothing

Graphical assessment was used for visualising general relationships between temperature
and the visits/ admissions, by using natural cubic splines (NCSs) to identify the general
relationships between them. The NCSs were used to avoid too much flexibility at the edges
as these splines would become straight at the edges if there were not too many values of the
temperature. The NCSs fit cubic polynomials to temperature-the visits/ admissions
relationships in each interval. The polynomials of each interval are joined smoothly by

knots, the boundaries of the intervals. Therefore, the number of knots determines the degree
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of smoothing of the data. In this study, two knots (3df) were chosen for allow for flexibility

of the relationships between the exposure and the outcomes.

Linear or threshold models

It was expected that the general relationships between temperature and the visits/

admissions would be shown in three-possible figures below !°7:
4 A 2a. A 2b. A
(1) Linear (2) Threshold models (3) Double threshold models

Figure 3. 1 Conceptual models of temperature-hospital visits/ admissions.

Simple linear models were considered when a log-linear association through the whole
range of temperature as shown in Figure 3.1-1. For simplicity, a threshold temperature
used for quantifying temperature effects in the present study was chosen visually (integer
value only) from the plots of their general relationships. A likelihood ratio test between the
model fitted with linear terms of temperature and the model fitted with non-linear terms of
temperature was also performed to ascertain the non-linearity of the relationships. If the
temperature threshold was not apparent from a graphical assessment and the test showed
that there was no evidence of non-linearity, a linear term of temperature was used for

quantifying temperature effects.

When a plot of the smoothed relationships between temperature and the visits/ admissions
was shown as Figure 3.1-2, a threshold model was assumed, which could be two possible
directions. Figure 3.1-2a shows a log-linear increase in the risk of the visit/admissions
above the temperature threshold and no increase (or decrease) in the risk of the
visit/admissions below the temperature threshold. Figure 3.1-2b illustrates a log-linear
increase in the risk of the visit/admissions below the temperature threshold and no increase

(or decrease) in the risk of the visit/admissions above the temperature threshold.
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If a smoothed plot of the relationships suggested U or V shape as shown in Figure 3.1-3,
the double thresholds model was assumed. There would be two temperature thresholds: low
and high temperature thresholds for quantifying temperature effects. This meant that there
was a log-linear increase in the risk of the visits and admissions below a ‘low temperature’

threshold, and above a ‘high temperature’ threshold.

3.5.2 Lag structure (delayed effects)

The effects of air pollution and temperature may be immediate and/or may occur several
days after exposure (delayed effects occurring with some lags). This can be called a
distributed lag structure, which means that air pollution or temperature could affect
morbidity on many days. Thus, the effects of air pollution or temperature on morbidity (at
any day) would be the sum of the effects on those days. However, the magnitude of the
effects of today’s air pollution (or temperature) and of yesterday’s air pollution (or

temperature) could be different.

In the present study, distributed lag models were employed to investigate the effects of air
pollution and temperature on daily hospital visits and admissions. The overall effects of a
unit increase in air pollution (or in temperature) on a single day are its impact on that day
plus its impact on subsequent days. For air pollution, lag effects at 0-1 day and at 0-4 days
were chosen for the analysis because of two reasons: first, literature reviews suggested that

. . : : . . 125,192,
air pollution effects were more likely to be immediate or relatively short-term (3. 125,192, 198,

'99), and second, to make the study results comparable to the PAPA protocol (Appendix
3A). For temperature, lag effects at 0-1 day (short lag) and 0-13 days (long lag) were
selected for the analysis since previous literature suggested that heat effects were acute
(about 0-1 day after exposure), while cold effects were more delayed up to 2 weeks or even
a month "* '*". In addition, the plots of constrained lags of temperature effects on the
health outcomes in the study illustrated that the effects were less likely to increase after 13

days.

3.5.3 Effect modification

Because different groups of people may be exposed to different levels of air pollution and
temperature, and some people may be more vulnerable than others, identification of the

vulnerable population in different disease groups was made. Daily counts of the visits/
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admissions were divided into six main groups, including all-cause visits/ admissions,
respiratory diseases (J00-J99), circulatory diseases (100-199), diabetes (E10-E14), intestinal
infectious diseases (A00-A99), and ‘other’ visits/ admissions (the rest of the counts). The
primary diagnosis based on the International Classification of Disease, 10th version (ICD-
10) of the WHO was used for this purpose. Then, the effects of air pollution and

temperature in different disease groups were assessed in separate series.

There were three effect modifiers: age, sex, and occupation, considered in this study. The
data was divided into three age groups, including 0-14 years (children), 15-64 years (adult),
and >65 years (the elderly). The data was also stratified by sex (male and female). In
addition, there were three occupational groups for the analysis, including unemployed and
economically inactive people, non-manual workers, and manual workers (details of
occupational grouping can be seen in Appendix 3C). All occupational groups were
restricted for working age (15-64 year) only, excluding children and the elderly. To
investigate the possible modifications, the series were developed separately for each group
and then the test for interaction was undertaken to see whether there was evidence of effect
modification by each subgroup. In addition, the effect modification by season (winter,
summer, and rainy seasons) was also examined. The analysis for each season was done

separately. The test for interaction between seasons was also done.

3.5.4 Autocorrelation

Daily counts of hospital visits and admissions are likely to be correlated and are not
independent. That is, today’s visits or admissions are likely to be correlated with
yesterday’s visits and admissions. To account for autocorrelations in the models, the partial
autocorrelation function (PACF) was plotted to visualise the serial correlation of the time
series at lag 1 day, 2 days...etc, with the value of each lag corrected for the previous lags.
In general, the autocorrelation in time series is usually removed after adequate adjustment
for seasonality and other potential confounding factors. However, the remaining
autocorrelations can be adjusted for by including autoregressive terms at any order that

shows strong autocorrelations into the models.

In this study, the PACF plots of the out-patient visits series showed that there were

apparently strong positive autocorrelations at lag 1 day and every seven lag days (1, 7, 14,
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21, and 28 lags), even though and indicator of day of the week was already included in the
models, which suggested the remaining of day of the week effects in the models. Therefore,
autoregressive terms at order 1, 7, 14, 21, and 28 were created and incorporated into the

models.

3.5.5 Overdispersion

As previously mentioned, overdispersion is the phenomenon that the variance of the
residual distribution is greater than the mean of the distribution of the visits/ admissions,
which may be due to several reasons (e.g. the influence of some unmeasured factors on the
heath outcome variables). If the overdispersion is not addressed, it can lead to the
underestimation of coefficient standard errors. Thus, after applying overdispersed Poisson
(OP) or negative binomial (NB) models, a presence of remaining overdispersion was

checked by looking at the model overdispersion parameters ( @), which was expected to be

closeto 1.

3.5.6 Diagnostic plots

Time series plots

The health outcome data were plotted against time to help identify cyclical or other
seasonal patterns that needed to be addressed in the analysis 290 The time plots were also
useful for checking if there were any unusual events that could have occurred. After
regressing a potential confounder, plots of the predicted values over time were also
undertaken to see whether the fitted model provide an adequate description of the data in

relation to the specific confounder.

Residual plots

Plots of residuals (residual = observation - fitted value) versus time were used to examine
whether the patterns seen in the original data series had been effectively removed. When a
smooth curve was also fitted in the model, the residual plots could help identify if long
wavelength patterns remained in the data. If the seasonal patterns appeared in both the
original data series and in the residual plots, this would have suggested an insufficient
fitting in the model. In contrast, if the patterns presented in the residual plots, but did not

show in the original data series, this would have suggested overfitting in the model *°".
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Partial autocorrelation function (PACF)

As described earlier, the PACF plots were employed to check whether there were any
remaining serial autocorrelation in the series. To account for the autocorrelations,
autoregressive terms at order that showed relatively strong positive autocorrelations were
included in the models. The autoregressive terms were created by extracting the residuals at
any significant order (strong positive autocorrelations) and then lagging them for the
number of days seen from PACF plots (at lag 1, 7, 14, 21, and 28 days for out-patient
series, and at lag 1 day for hospital admission series). The PACF plots were checked each
time when including a new variable into the model, and were checked again after including

all variables into the models.

3.5.7 Model building process

After data cleaning and corrections, Pearson pairwise correlations were applied to examine
the correlations among air pollutants and meteorological variables. The model building
process began with plotting count numbers of the visits and admissions against time in
order to see the general patterns of the outcomes over time. Then, the baseline or ‘core’
model was developed by inclusions of the terms of potential confounders into the model.
Plots of residuals and of predicted values over time were used at each time adding variables

to the core model to check the adequacy of the modelling.

When seasonality, long-term trends, meteorological variables, and pollution (when
temperature was the main exposure) were adequately adjusted for, PACF of residuals were
explored to assess the presence of any remaining autocorrelation of the data. If
autocorrelation was present, autoregressive terms at significant order were established and
added into the model. The contribution of the air pollution variables and of the temperature
variable to the prediction of daily morbidity (out-patient visits and hospital admissions) was
examined after an establishment of the core model was completed. The effects of air
pollution and temperature were estimated by including variables of air pollutants and
temperature into the core model. Regression coefficients and 95% confidence intervals for
each exposure of interest on different health outcomes were then obtained. The relative risk
(RR) for one degree Celsius increase (°C) in temperature, and for a 10-unit increase in air
pollution levels for all pollutants (except CO, one-unit increase) were used for presenting

the results.
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The RR was determined by the natural exponential of the regression coefficients from the

models as follows:

Temperature: RR = exp(regression coefficients)

Air pollution: RR = exp(regression coefficients x 10)

Where exp is the natural exponential.

For air pollution, in the first instance, the risk estimates of each pollutant were analysed
separately to determine the effects of a single pollutant. Based on the results of a single
pollutant model, two-pollutant models were also developed by inclusion of two pollutants
(those that mostly provided positive effects on the health outcomes) into the models. Since
pollutants in the air are highly correlated, to determine the effects of multi-pollutants may
not be very useful. The inclusions of three or more pollutants in the same model may make
it difficult for interpretations. Thus, only single pollutant and two-pollutant models were

developed in the present study.

All statistical procedures were undertaken using the STATA statistical software for

professional, the 10th version.

3.5.8 Linkage between hospital admission data and out-patient visit data

Linking the two data sets

To examine whether people who have many out-patient visits (OPD visits) are more
susceptible to a subsequent hospital admission in association with air pollution and
temperature exposure, a new data set was established by linking hospital admission data
with out-patient visit data. This linkage data was then used for investigating whether there
was an effect modification of air pollution and temperature by the history of out-patient

visits prior to the hospital admissions.

First of all, individual daily records in the hospital admission data were linked to all of their
records in the out-patient visit data by using individual identification (ID) numbers. That is,
the ID number of a hospitalized patient in the hospital admission data was matched with the
ID number of an out-patient visit in the out-patient visit data. The ID number is chosen for
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linking the two data sets because all Thai people have their own unique 13-digit ID
numbers. If the ID number of a hospitalized patient and of an out-patient visit was identical,
a patient’s date of birth was then used to recheck for validation to ensure that the records in

the two data sets belonged to the same person.

Then, the numbers of out-patient visits prior to admission were counted. Only the visits that
occurred within the 6-month period prior to the admission were included in the count. A 6-
month period of OPD visits prior to the hospital admission was chosen under because it
was believed that using a shorter period, there might be too few counts of out-patient visits
for each individual and the visits might be highly correlated or they might be due to the
same exposure. On the other hand, using a longer period, the out-patient visits might be due
to other reasons, not due to the short-term effects of the exposure. The sensitivity test was
also carried out to investigate the impact of different time periods chosen for obtaining the

linkage data.

With this process, data from the first 6 months (October 2002 to March 2003) of the
hospital admission data could not be used for linking and therefore, were discarded. Thus,
in this study, there were three main time series: two unlinked ID series (out-patient visits
and hospital admissions series described previously), and one linked ID series (presented in

section) as illustrated in the following figure.
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Figure 3. 2 Process for data analysis in this study.
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Inclusion and exclusion criteria of hospital admission cases in the linkage data
1. Hospital admissions that had only one out-patient visit occurring on the same date of
their admission were kept as a baseline group of the admissions with no history of the visits

prior to their admissions.

As mentioned earlier, since Thai patients need to visit the out-patient department (OPD) for
preliminary investigations before admissions, there is a record of an out-patient visit on the
same date as a hospital admission for each patient. Thus, in the linkage data, the out-patient

visit recorded on the same date of the admission was not counted as a history of the visit
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prior to that admission. But this admission was still retained for the analysis as a baseline

group of hospital admissions with ‘no history’ of previous visits.

2. Only hospital admissions of a patient where ID numbers were matched with the ID

numbers in the out-patient visit data were kept.

It is important to note that not all hospital admissions could be linked with the out-patient
visits, which might be due to the general problem of missing data or errors in inputting
individual information (e.g. the 13-digit ID number). Thus, it was decided to include only
matched ID, hospital admission cases in the linkage data by assuming that all matched ID

cases had their actual numbers of previous visits in the out-patient data set.

However, due to the problem of missing data or errors in routine health records, it could not
be certain that these hospitalized people truly had only one out-patient visit recorded on the
same date of their admissions (i.e. these patients in the ‘no visit’ group for the linkage
series) or they actually had several visits, but their out-patient visit records were just
missing or errors. To address this problem, another data set that included all unmatched
hospital admission cases was created for sensitivity tests by assuming that those unmatched
cases also had ‘one out-patient visit’ only (results presented in chapter 8, section 8.3.2, p.
196).

3. Only hospital admissions where the dates of birth were the same in both OPD visit data

set and hospital admission data set were kept.

Because one hospital admission could be matched with several out-patient visits prior to
that admission, date of birth was also used to double check that a hospital admission was
the same person shown in the out-patient data set. If the ID number of both data sets was
matched, and all dates of birth in both data sets were also the same, all records of this
person were kept in the linkage data for further analysis. However, if some of their dates of
birth were not the same, all records of that patient were excluded from the linkage data
because it could not be known for sure which date of birth (the one in the OPD data set or

the one in the hospital admission data set) was the correct one for this person.
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4. Only the first admission of each person was kept, if his/her re-admission was due to the

same diagnosis within 6-month period.

If a patient had more than one hospital admission with the same diagnosis within the 6-
month period, only his/her first admission was included in the linked 1D series because
hospital admissions occurring within 6 months might be due to the same condition. But, if
the same person had been re-admitted within the 6-month period due to different diagnoses,

those re-admissions were still kept for the linked ID series.

5. Hospital admissions greater than 6 months apart were considered as a new episode.

If the same patients had hospital admissions greater than 6 months apart, all of his/her

admissions (even though the same diagnoses) were included in the series.

Please note that a 6-month period was used in two different situations. First, it was used to
obtain the linkage data or as a certain time period for counting the numbers of previous
visits before admissions of a patient. Second, it was used for including or excluding the
daily counts of hospital admissions of each individual in the linkage data with regard to the

diagnoses of the hospital admissions.
In order to make it clearer about the use of individual hospital admission records for the

linkage series, an example of daily records of a patient presented in the linkage data is

given below.
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Figure 3. 3 Example of a patient in the linkage data by causes of his/her admissions.
Cause of

l‘— 6 months =%< 6 months —-FI
admissions

Respiratory ! 6

Circulatory

Diabetic

Intestinal
infectious

Other

Note: 1. Linkage data was a subset of hospital admissions data — the hospital admissions with no history or
with at least one visit or more prior to their admissions.
2. Each admission generally had its own number of previous visits before the admission (not shown).
But there might be an overlap of the previous visits for each admission e.g. the same visit could be

counted for 1st admission and also for the 2nd admission.

Patient number 1: I:]

- Patient number 1 is an example of a patient, who had 6 hospital admissions in the linkage
data. The number in each block represents a sequel of his admissions from the 1st to the 6th
admissions.

- Since the first admission and re-admissions with different diagnoses within a 6-month
period were kept, the 1st, 2nd, and 3rd admissions of this person were kept in the linkage
data, but the 4th and the 5th were excluded. However, the 6th admission was retained as the
first new episode of respiratory admissions for this person because the interval between the

Ist and the 6th admissions was greater than 6 months.

Patient number 2:

- Patient number 2 is an example of a patient, who had 3 hospital admissions in the linkage
data. Each admission of this patient was greater than 6 months apart. Therefore, all of his
admissions were included in the series, even though the 1st and 2nd admissions were due to

the same diagnosis.
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In summary, the linkage data was the hospital admissions, which could be linked with out-
patient visits by using ID numbers. The data comprised two main groups:

1. Hospital admissions with no history of out-patient visits within a 6-month period prior to
their admissions.

2. Hospital admissions with one or more out-patient visits within a 6-month period prior to

their admissions.

After data cleaning and corrections, the linkage data was collapsed into a time series format

and a regression model of this linked ID series was developed.

Analytical methods of the linkage ID series

The analytical methods applied for the linkage ID series were generally the same as those
used for out-patient visits and hospital admissions series. However, the aim of the linkage
series was to explore whether there was a modification of air pollution effects, and of
temperature effects by the history of previous out-patient visits, which might have an

impact on subsequent hospital admissions of each individual.

To investigate whether the patterns of air pollution and temperature effects would have
changed in relation to the frequency of the out-patient visits prior to the hospital
admissions, the numbers of previous visits before admissions were counted and divided
into 4 groups: 0 visit (no history), 1 visit, 2-5 visits, and >5 visits. The grouping was done

for analysis purposes to have reasonable numbers for each visit-category group.

Then, the effects of air pollution and temperature on each health outcome were examined
for all visit-category groups. In order to see whether there were any patterns of air pollution
and temperature effects across these 4 groups, the estimated effects (RRs and confidence

intervals) of air pollution and temperature for each group were plotted.

In addition, tests for trends of air pollution and temperature effects across the 4 groups were
also done. The distribution of the count numbers of previous visits before admissions in
each group was explored. The median of the count numbers of the visits was used as a

weight score for testing for the trends of air pollution and temperature effects across the

64



Chapter 3 Mecthods

visit-category groups: 0 for ‘0 visit’ group , 1 for ‘1 visit’ group, 3 for ‘2-5 visits’ group,

and 8 for “>5 visits’ group.

Variables and related factors in the analysis of the study are detailed below.

Outcome variables:

Health outcomes of interest are based on diagnostic codes in accordance with the

International Classification of Disease, 10th version (ICD-10). The six main groups of

health outcomes include:

All causes of visits/ admissions

Respiratory diseases (J00-J99)

Circulatory diseases (100-199)

Diabetes (E10-E14)

Intestinal infectious diseases (A00-A99)

Other visits/ admissions (the rest of daily counts in the data, apart from above

disease groups)

Explanatory variables:

1.

Air pollutants: SO,, NO,, CO, O3, PMjo, and PM; 5

2. Temperature

Possible confounding factors:

Time trends

Seasonal patterns

Other weather variables: relative humidity and rainfall
Day of weeks and holidays

Influenza epidemics

Possible modifiers

Age groups (0-14, 15-64, 65+)

sex (male /female)
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e Occupation (unemployed & economically inactive people, non-manual workers,
manual workers)
e Season (winter, summer, rainy)

e Previous history of out-patient visits (0, 1, 2-5, >5)

3.6 Sensitivity analyses

The section described two main sensitivity analyses when building the core model for the
study, which were done for the first series (out-patient visits series) only. Other sensitivity
tests specific to the hospital admissions and the linkage series were explained in their result
chapters. With regard to model building, the main issues of concern were: model

distributional assumption and model seasonality.

3.6.1 Model distributional assumption

Conventionally, time series studies of air pollution and temperature effects usually employ
Poisson regression, allowing for overdispersion. This is due to the assumption that count
data mostly follow Poisson distribution (!*®. Failure to allow for overdispersion can lead to
underestimation of the variance of the coefficients and exaggerated significant levels. In the
present study, however, due to heavily extra variation of the data, negative binomial
regression was then chosen for analyses instead. In order to see how much impacts on the
coefficient estimates in regard to using different types of regression analysis, comparison of
the estimates obtained by using negative binomial regression and those obtained by using

Poisson regression was made.

Modelling air pollution
For both negative binomial regression (NB) and overdispersed Poisson (OP), the models

were the following form:

log[E(Y)] = a + i.dow + i.movisit (1-48) + holidays + time splines (sdate) + splines of
unusual peak visits (sodd) + interny + thainy + influ + autoregressive terms (1, 7, 14 21, 28)
+ temperature splines + humidity splines + rain splines + a pollutant (lag 0-1 day or lag 0-4

days).

Where i.dow = indicator variables of day of the week,
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i.movisit = indicator variables of month of the visits (1-48),

holidays = indicator variable of public holidays,

sdate = time variables using splines of date (frencurvnk, 1df/year),
sodd = splines of a three-month unusual peak visits from April 2005

to June 2005 (frencurvnk, 1df/year),
interny = indicator variable of international new year period

(30 Dec-2 Jan),
thainy = indicator variable of Thai new year period (13-16 Apr),
influ = indicator variable of possible influenza epidemic using the

period that respiratory visits were above 99th percentile.

In addition, the autoregressive terms at order 1, 7, 14, 21 and 28, were incorporated to
account for the remaining autocorrelations. The natural cubic splines (3df) of temperature,
humidity, rain were also included into the model. To determine air pollution effects,

pollutant variables at average lag 0-1 day or lag 0-4 days were added into the model.

The probability function of a Poisson model is:

e'll y

Pr(¥ =y)=£_.y=012,K,

»

Where u is the mean and the degree of dispersion can be estimated by the overdispersion

parameter:

¢=Z(y—i;iyi / (n-p),

Where u is the mean, n is the number of observations, and p is the number of parameter in

the model. When ¢ = 1, the assumptions of the Poisson have been met — variance is equal

to the mean. The model is overdispersed when ¢ > 1. Thus, the variance of the OP model

isvar(Y)= g p.
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Modelling temperature
The regression analysis form used to model temperature was based on the same structure as
that used for modelling air pollution. The only difference is that temperature variables from

lag 0 to 13 were incorporated into the model, instead of air pollutant variables.

3.6.2 Model seasonality

Adequacy of controlling for seasonal and long-term trends in time series studies is of great
concern. The inclusion of a smooth function of time, such as natural splines and penalized
splines, in regression model is commonly used to adjust for seasonality and long-term
trends. However, degrees of smoothing or numbers of degree of freedom (df) used for
splines of time may influence estimates of exposure effects in time series analysis.
Oversmoothing in the series may lead to confounding bias, whereas undersmoothing in the
series may result in attenuation of a true effect ©°%. Since there are no absolute degrees of
smoothing, evaluating various numbers of df used in time series studies to ensure adequacy
of adjustment for seasonality has been recommended @*¥. In the present study, time splines
used for modelling referred to the b-splines of date and the 1 df per year was chosen for
developing the core model at the beginning for both air pollution and temperature models.
To assess the sensitivity of the results in regard to the degrees of smoothing, varying
degrees of freedom of the b-splines of date from 1 df to 10 df per year was examined. Then,
the number of df of time was adjusted as suggested by the sensitivity test results. According
to the sensitivity test results, in this study, 1df was used for modelling air pollution, while 6

df was used for modelling temperature.
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Chapter 4: Data Quality

This chapter describes characteristics of health, air pollution, and meteorological data in
Thailand. It begins with broad description of Thai health care systems, followed by specific
characteristics of health data used in this study, both out-patient visits and hospital

admissions. Information about air pollution and meteorological data is also included.

4.1 Thai Health care system

This section describes the general characteristics of Thai health care system in relation to
the two main data sets (out-patient visits and hospital admissions) used for the study. The
out-patient data were routine daily health records obtained from the Chiang Mai provincial
health office, while the hospital admission data were the hospital claim data obtained from
the National Health Security Office. Information about the health care system and the
health data are detailed as follows.

4.1.1 Health and welfare of Thai population
According to the 2003 Health and Welfare Survey (HWS), approximately 95% (60.7

million) of the total Thai population were covered by different health insurance schemes,
including the universal coverage (UC) scheme (74.7%), the social security scheme (SSS) -
for private employees and temporary public employees (9.6%) —, the civil servants medical
benefit scheme (CSMBS) — for civil servants, public employee, and their dependants (9%)
-~ , and private insurance (1.7%) @%) " Therefore, only 5% (3.2 million) of the total
population were still uninsured (e.g. they need to pay for health care services themselves at

the point of delivery).

When Thai people are ill, they generally visit their assigned health centres and hospitals
under their own health insurance schemes, which are usually located near their homes.
After providing health care services for patients, health centres and hospitals will claim the
cost of the services from the main offices of the health insurance schemes. To receive
health care services, an individual health care card needs to be presented. If people forget
their cards, they still receive health services from those health centres and hospitals as

necessary. They will be given some period of times (e.g. 3-7 days) for presenting their
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documents. However, an inability to provide the documents by the due date means they

have to pay for their health care services by themselves.

For out-patient services, health care providers generally receive the subsidy for their
services from their provincial health offices as an annual budget based on their public
health activities (e.g. primary health care services, health promotion activities). In other
words, a provincial health office is responsible for distributing the annual budget received
from the Ministry of Public Health to all government health care providers in a province.
Thus, a primary health care provider usually sends daily out-patient records to its provincial
health office, which is a centre for keeping all public health information of a province.
However, there is no financial incentive for health care providers specifically to reporting

their out-patient records to the provincial health office.

For hospital admissions, in each month, hospitals will send the daily routine health records
of hospital admissions, which include personal information (e.g. identification number, age,
and sex), and details of medical treatments used during the admissions, to the National
Health Security Office — a government health sector that is responsible for providing
reimbursement for hospitals under health insurance schemes throughout the country — in

order to get the reimbursement.
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Figure 4. 1 Health care providers under control of the Ministry of Public Health in a
province of Thailand.

Ministry of Public Health

Health care providers in each province: National Health

Security Office’

Provincial Health Office'

’

Regional Hospital (>1000 Beds)/Provincial Hospital ( > 100 Beds)

N ’
., .
-~ Py ‘

Community Hospital (10-120 Beds) ~veeee | a
N Health insurance claim for -~
e hospital admission cases .-
District Health Office ~'~-. oot

'

Health Centre (No admission beds),
located in a sub-district.

'Sources of OPD records, keeping health records from hospitals and health centres in a province.
*Source of hospital admission records, keeping hospital claim data of the country.

Note: — = the direction of administration systems. The higher levels is generally bigger and has more
authority than the lower one.
----# = the route of reporting hospital admission data for reimbursement.

4.1.2 Health centre

In general, health centres in Thailand are located in every sub-district (known as ‘Tam-bon’
in Thailand) to provide primary health care services for people in the community. Each
health care centre is assigned to be a main contractor for the population registration in the
UC scheme for its community. Although health centres are entrusted with providing
comprehensive care to their registered population, in practice, they also provide primary
care services for all people (with every type of health insurance schemes, and without
insurance) in the community. For Thai people who have a health centre as a main
contractor (some people who live near hospitals will register with a primary care unit of

their nearest hospitals instead), they have to visit their assigned health centres first when
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they are ill. Direct access to hospital care is not permitted, except in the event of an
accident or the need for emergency care. If local health centres cannot handle their own
patients, such as patients with severe illness or injuries that exceed their capacity, they will
transfer these patients to hospitals for more advanced care (secondary or tertiary care) as
necessary. Hence, there is no bed occupancy in a health centre and its health records are

normally called ‘out-patient visits’, which can be both elective and emergency situations.

4.1.3 Hospital

For each district in Thailand, there is at least one community hospital of the government to
provide the ambulatory care and in-patient care for the population in the community. The
number of hospital beds is an indicator of the size of a hospital, which can range from 10 to
120 beds. For the district located in the inner area of a province, usually named ‘Muang
district’, it will have a big, provincial hospital (=100 beds). If the city has a large
population, such as Muang district in Chiang Mai, it can also have a big regional hospital (>
1000 beds) as well as several government hospitals (such as a military hospital, a medical
school or university hospitals, and other specialized hospitals) and private hospitals with

various sizes.

In terms of hospital care, hospitals in Thailand generally consist of two big departments: an

out-patient department (OPD) and in-patient department (IPD or hospital admissions).

Out-patient Department (OPD)

Out-patient department (OPD) is responsible for ambulatory care (including primary care)
in a hospital. Apart from health care centres, out-patient departments of hospitals in
Thailand also have a primary care unit to serve as a main contractor for population
registration in regard to the UC Scheme for its nearest community. Health services at the
OPD consist of both scheduled and unscheduled visits to several health care units (e.g.
Paediatric unit, Medicine unit, Surgical unit, and Gynaecological unit), and emergency
visits to an emergency room (ER) of a hospital. Therefore, health records of out-patient
department in Thailand are the records of all ambulatory care settings in a hospital, which
comprise both elective and emergency visits. The process of health services at OPD in

hospitals in Thailand can vary depending on the administration system of each hospital.
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However, the overall process is very similar. Examples of health services at OPD and ER

are shown in Appendix 4A.

In-patient Department (IPD) or Hospital admissions

The in-patient department (IPD) of a hospital provides in-patient care for hospital
admission cases. When patients go to a hospital, all patients have to visit the OPD of a
hospital first. If patients are considered to be severe illness cases and need admissions, they
will be transferred from OPD to IPD for the admissions. Even if patients have appointments
to admit at a hospital (such as for elective operations), they still have to visit the OPD and
see OPD doctors for primary investigations before their admissions. Therefore, one patient
generally has a record of an out-patient visit and a hospital admission on the same day in
the routine health record data sets. This means that although out-patient visit data and
hospital admission data in the present study were obtained from the different sources, it is
possible that, on the same day, some individual records in the hospital admission data were
also presented in the out-patient visit data (if there is no missing record of out-patient visit
data, all hospital admission records should have at least one out-patient visit records on the
same day of their admissions). Thus, for the linkage series, it was decided that an out-
patient visit recorded on the same day of the hospital admission would not be counted as its
history of the previous visit before admission on that day (see Chapter 3: Methods, section
3.5.8).

With regard to bed capacity, if hospital beds are fully occupied and there is an out-patient
visit considered as a severe case and needed to be admitted, a hospital in Thailand always
provides an additional bed (or extra bed) for his/her admission. For example, during an
outbreak of diarrhoea or of dengue hemorrhagic fever or mass causalities (from accidents
or disaster events), additional beds can be seen between the usual fixed beds in hospital
wards or along the hallway of a hospital building when necessary. In some cases, if there is
too much workload for a small hospital and there is a bigger hospital available in the city,
patients from the smaller hospital may be transferred to the bigger hospital for admissions.
Therefore, daily count numbers of hospital admissions in Thailand are unlikely to be

artificially restricted by bed capacity.
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4.2 Quality of health data

4.2.1 An overlap of health records between OPD visits and hospital admissions

As mentioned earlier, in general, every patient who has been admitted to a hospital in
Thailand also has an OPD visit (for preliminary physical examination before admissions)
on the same date of that admission. Thus, there is an overlap of health data used for the
analysis in the present study. Because the OPD data comprised not only OPD visits, but
also hospital admissions, it may be possible that the observed effects of air pollution and
temperature from the OPD visits series may not truly represent the effects on daily OPD

visits due to some possible contributions of hospital admission cases in the data.

Since the hospital admission data in this study were the hospital claim data, which were
obtained from one institute (The National Health Security Office) only, even if we exclude
OPD visit records that were the same cases of these hospital admissions, the OPD data set
would still contain hospital admissions from other institutes (those that were not used for
health insurance claims, which we were unable to know how many they were). Therefore, it

was decided to use the whole original OPD data set, without any exclusion for this study.

4.2.2 Coding system of health records

Daily routine health records used in this study derived from some parts of the diagnosis
related group (DRG) records of health centres and hospitals. DRG was established in the
U.S.A. in 1983 because of the increasing cost of services. The Health Care Financing
Administration (HCFA) had changed the methods of reimbursement of treating patients
under the Medicare program for hospitals. Thailand began to use the DRG system for
routine health records almost 10 years before it officially adopted this system for
reimbursement of Thai health care cost in 1998 @%. However, the reimbursement of
hospital care services in Thailand have been applied for IPD (or hospital admissions) only
and mainly for patients with health insurance schemes introduced by the Ministry of Public
Health.

Like all provincial health offices in the country, the Chiang Mai provincial health office
also employs the DRG system and requires their registered health centres and hospitals to

report the daily health records of out-patient visits in each month to be used for providing
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subsidy (not for health insurance claim, but for other budgetary needs for public health
activities e.g. primary health care services and health promotion activities) for those health
centres and hospitals. Thus, out-patient data in the present study were the daily routine
health records (October 2002 to September 2006) obtained from health centres and
hospitals registered with the Chiang Mai provincial health office only.

By comparison, health records of IPD (or hospital admissions) are more reliable than OPD
visits in regard to accuracy of diagnoses, and completeness and accuracy of coding
practices. This is because of two important reasons. First, DRG records of IPD are used for
reimbursement of health insurance claims, while DRG records of OPD visits are requested
by the government for co-operation in keeping health records (for statistical reports) for the
country. Thus, there is financial incentive for hospitals to provide complete and accurate
records of hospital admissions, whereas there is no financial incentive for a provision of
OPD records. Hence, in this study, the missing data in some months of some hospitals were

found in the out-patient visit data more than those found in the hospital admission data.

Second, on a daily basis, there are less numbers of hospital admissions compared to OPD
visits. At OPD, medical doctors, nurses and other health care workers have to complete
their jobs and health records within a day. Thus, decisions in diagnosis, records of health
reports, and all medical investigations at OPD have to be made quickly and are likely to
have mistakes. At IPD, on the other hand, health records of hospital admissions are
discharge records. Thus, health care workers (such as doctors, nurses, or coders) at IPD can
gradually fill in health reports while patients are staying in a hospital. They are generally
able to spend more time thinking and writing discharge records, and more importantly
doctors can also request for more medical investigations (e.g. laboratory and x-ray) to
ensure their diagnoses. Therefore, IPD records are more likely to have fewer mistakes in

comparison to OPD records.

4.2.3 Coding practices of health records

According to the survey about medical coding practices in Thailand (206) " approximately
60% of the survey hospitals had certificated medical coders in coding practices, but 46.20%
of the coders had to work in other jobs as well. Hospitals that did not have certificated

medical coders, health personnel such as nurses, doctors, or public health practitioners
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would be trained to take responsibility for coding instead. It was found that, 85% of coders
had attended in a diagnosis/procedure coding training course. Approximately 44% of the
coders had 1-3 year experiences in coding practices, whereas 13.66 % of them had < 1 year
experiences. The most common method of coding was using only ICD books (53.90%),
followed by using ICD books with computer-aided coding program (27.80%) and using
only computer-aided program (18.31%).

The survey also revealed opinions of administrators and academic experts about reliability
of health records in Thailand. It was found that 34.13% of administrators and academic
experts in Thailand believed that >86% of health records were reliable, 33.15% of them
thought that 76-85% of health records were reliable. Approximately 30% of the
administrators and academic experts believed that the reliability of health records was 50-
75%, whereas only 3.75% of them thought that the reliability of health records was less
than 50%.

Regarding the error in coding, the survey found that there were several types of error in
coding, such as wrong codes, incomplete/missing codes, and codes uncorrelated with age
and sex of patients. The survey indicated that the error in coding practices in Thailand was
due to three main causes: first, insufficiency of coders; second, lack of knowledge and
experience and carefulness in rechecking codes; and third, lack of motivation in their work
due to an inappropriate career ladder and a lack of supportive measures in professional
knowledge and skill. |

It is important to note that this survey was conducted in 322 hospitals in Thailand and it
cannot be known whether hospitals in Chiang Mai province were included in the survey.
Even so, the results have demonstrated the likely situation of diagnostic records as well as
the procedure of coding practices in Thailand. During the data collection for this study, the
officer of the biggest hospital in Chiang Mai, which had large number of missing
diagnoses, also acknowledged that the main cause of missing code was due to insufficient
coders of the hospital. This information is in agreement with the first leading cause of
coding error of the above survey. In general, monthly reports of daily routine health records

will be sent to the Chiang Mai provincial health office by the due date although there is
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incomplete coding. In each month, the coders usually work with health records (input the
ICD-10 diagnostic codes into the individual health records) and stop coding in order to
hand in the reports to the provincial health office by the due date with non-specific to
particular patients or diseases in the data set. Thus, if this practice would cause bias to the

study results with respect to the missing information, it would be non-differential.

4.2.4 Factors affecting quality of health data

There are three main issues of concern regarding the quality of the health data: the
distinction between elective and emergency cases, the representativeness of the Chiang Mai

population, and the completeness of the data and the diagnostic accuracy.

Firstly, it is impossible to distinguish between elective and emergency cases for both out-
patient visits and hospital admissions series in this study. In general, one would expect
short-term effects of exposure to air pollution and temperature to only be associated with

(19, 78, 199, 201 * The use of combined data on elective and

emergency visits or admissions
emergency patients will render the series more ‘noisy’ and therefore, make an assessment
of air pollution and temperature effects more difficult. Since this situation could only serve

to reduce the apparent effects, any association observed will not be invalidated.

Secondly, the out-patient visits and hospitalizations in the health centres and hospitals may
not truly represent the entire residents of Muang district in Chiang Mai. This may be due to
two reasons: health care seeking behaviours and population mobility. First, health care
secking behaviours among individuals in the city could vary greatly. For example, some
inhabitants may choose alternative medicines, such as Thai traditional medicines (e.g.
massage, herbs) or buying medicines from drug stores to treat themselves “*. Some people
may visit private clinics or other hospitals, which are not included in the study. Second,
there is also the possibility of an influx of people from neighbouring areas into the study
area, which may introduce bias into the study and cause some distortions of the study
results. However, we would expect that most people in the northern region would share
similar characteristics in terms of behavioural and cultural lifestyle. In addition, it is
possible to assume that health care seeking behaviours or an influx of neighbouring

population would have not changed enormously in terms of a day-to-day variation. The
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proposed study is designed for assessing short-term effects only, which would reduce an

influence of this situation on study results.

Thirdly, this study is based on routinely collected health data from several health centres
and hospitals. Thus, the completeness of the data and the degree of diagnostic accuracy
could vary greatly among those selected health centres and hospitals. However, it is
possible to assume that the error in both diagnosis and data records would have acted

randomly over time.
4.3 Quality of air pollution and meteorological data

4.3.1 Air monitoring station

Daily mean levels of air pollutants and meteorological variables for Chiang Mai province
were obtained from the Pollution Control Department (PCD), Bangkok, Thailand. The PCD
is the central air monitoring system for the whole country. By using the standard computer
software called “AIRVIRO”, the PCD can control air monitoring stations and obtain levels
of air pollutants from those stations throughout the country via telephone systems. Thus,
the PCD is able to monitor air pollution situations (real-time monitoring) and is able to
forecast the air pollution situation in some particular areas of the country. The real-time
monitoring equipments can provide readings of air pollutant levels at any time interval such
as at every 30 minute or at every one hour, depending on the setting. Daily levels of
pollutants are provided for the public via the PCD’s website, presenting daily mean levels

of pollutants measured every one hour ending at 9am on the day of reporting.

An air monitoring station in Thailand is a movable container with 3 metres wide, 4 metres
long, and 2.4 metres high. It is usually located on a concrete base with an area of about 25
square metres (5 metres wide and S metre long). In general, there are two types of air
monitoring stations: an urban area station — located approximately 50 metres or more from
the nearest road, and a roadside station — located less than 10 metres from the nearest road.
Thus, in general, levels of air pollution obtained from a roadside station should be higher
than those obtained from an urban area station. The air data used for this study were the
average from the only two stations in the city of Chiang Mai, one roadside station and one

urban area station. The roadside station is located in the inner area of Muang district,
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whereas the urban area station is located in the outskirts of the district (approximately 10
kilometres from each other). Using the data from the station in the city central might
represent higher levels of exposure, while using data from the station in the outskirts might
represent lower levels of exposure. Thus, by using the average levels of air pollution from
both types of air monitoring stations within the same district, the air pollution data in this

study would reasonably represent exposure levels of the study population (though not the

same as personal exposure).

Figure 4. 2 The urban area air monitoring station in Chiang Mai.
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4.3.2 Factors affecting quality of air pollution and meteorological data

Completeness

Completeness of the air pollution and meteorological data is also important in assessing
morbidity in relation to daily changes of air pollutant and temperature. Based on
preliminary investigation of two-year data (October 2003- September 2005) obtained from
the PCD, the daily missing values of air pollutants and meteorological factors (temperature,
relative humidity, and rainfall) of the two air monitoring stations ranged from
approximately 4% (rainfall) to 27% (CO) of the total. Summary of daily average levels of
air pollution and meteorological factors from the preliminary findings can be seen in
Appendix 4B. As mentioned previously in the method chapter (section 3.4.2), the missing
data in one station were replaced by using the data from another station by adopting the Air

Pollution and Health: a European Approach (APHEA) protocol.

Measurement error

To obtain levels of air pollutants and temperature from the fixed air monitoring stations is
more likely to cause the so-called ‘measurement error’ in the study. Like many other time-
series studies, the use of fixed point sampling may not represent true exposure of the large
mobile population °. However, as mentioned earlier, instead of obtaining the exposure
levels of air pollutants from only one station, the average exposure levels from the two air
monitoring stations in two different geographical locations would be a better estimate of
exposure levels for the study population since the individual exposure could not be known.
For weather variables (temperature, humidity, and rain), it was decided to use the data from
one station only because there were little differences in the levels of weather variables
between the two stations. The levels of weather variables from the city station were used

because there were less missing data than another station.

Summary of data quality for the present study
Health data:
o Hospital admission data in Thailand are generally more reliable than out-patient
data due to the financial incentives of reimbursement from the government.
e Routine health records in Thailand have officially been using DRG coding system

since 1998 (with 10 years of a trial period earlier). Although the problems of
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missing and error in coding the data still remain, the reliability in coding practice
should be acceptable. This is supported by the survey of medical coding practices in
Thailand that approximately 70% of administrators and academic experts believed
in its reliability being >76% or more. Furthermore, most coders have also been
trained before practicing. In addition, missing and/or error in coding practices that
would have caused bias in the study appeared to be non-differential.

Any observed effects in the study would have been reduced by not only an overlap
of health records between OPD visits and admissions, but also other factors, such as
an inability to differentiate between elective and emergency cases, a mobile

population, and an incompleteness of the data as well as inaccuracy of diagnosis.

Air pollution and meteorological data:

Due to having two monitoring stations in the city, missing data of one station could
be replaced by calculations using data from another station.

Like other time series studies, measurement error due to using data from fixed
sampling sites to represent an exposure of individuals from a large and mobile

population was unavoidable.
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Chapter S: Descriptive results

5.1 Out-patient visits

Daily counts of out-patient (OPD) visits were obtained from the Chiang Mai provincial
health office for a 4-year period from October 2002 to September 2006. After data cleaning
and corrections, there were 1,398,369 visits recorded during this period. Of total daily
visits, 0.6% (8,092 counts) had missing information on age, 0.8% (10,431 counts) had
missing information on sex, and 18.6% (259,522 counts) had missing information on
occupation. Thus, when the data were stratified by age, sex or occupation, these

observations were excluded.

Figure 5.1 presents the total count of OPD visits on a monthly basis. Due to the fact that
there were different numbers of hospitals and health centres contributing to total counts of
OPD visits in each month, a steep increase or decrease of total counts of the visits had

occurred in some particular months throughout the study period.

5.1.1 Characteristics of study population of out-patient visits

Following the ICD-10 coding system, the out-patient data were divided into six disease
groups: respiratory disease (J00-J99), circulatory disease (I100-199), diabetes (E10-E14),
intestinal infectious disease (A00-A09), ‘other’ diseases (those not included in the four first
categories), and all-cause visits. The distribution of the disease groups by three main
characteristics (age, sex, and occupation) of the study population are presented in Table

5.1

Three age groups were defined for children (0-14 years), adults (15-64 years), and the
elderly (> 65 years). The majority of study population were adults (67.1%), followed by the
elderly (19.3%) and children (13.1%). It was found that approximately 50-70% of all six
disease groups were adults. However, children had higher OPD visits because of respiratory
(40.2%) and intestinal infectious (42.2%) diseases, compared to other diseases. Among
elderly people, the visits due to diabetes (31.2%) and circulatory diseases (37.4%) were

higher than other diseases.

82



C'hapter 5 Descriptive results

The daily visits among females were slightly higher than males in all disease groups. In
total, the distribution is approximately 60% females and 40% for males. Regarding
occupational groups, which were restricted among people at working ages (15-64 year)
only, approximately 25% of the study population were unemployed and economically
inactive people. This was followed by non-manual workers (21.6%) and manual workers
(7.6%). The grouping was done according to the 3-digit occupation code (see Appendix
3C). Among these three groups, unemployed and economically inactive people had higher
visits in diabetes (33.0%) and circulatory (26.5%) disease, while non-manual workers had
higher visits in respiratory (24.3%), intestinal infectious (22.6%), and ‘other’ (30.2%)
diseases. Compared to other occupations, manual workers held the lowest visits in all

diseases, ranging from 3.4% (intestinal infectious disease) to 7.0% (circulatory disease).

When the data were broken down into specific disease groups, there were limited counts in
some selected characteristics, which can be seen Appendix 5A. Besides all-cause visits, the
analysis could be done for all stratified groups for respiratory and ‘other’ visits. For
circulatory and diabetic visits, there were very small count numbers, preventing the
analyses for children (0-14 years), whereas, for intestinal infectious visits, there were

limited count numbers to analyze for the elderly (= 65 years) and manual workers.

5.1.2 Daily variation of the OPD visits

To visualize the daily variation of the OPD visits over a year, the mean daily count of all-
cause visits and the proportion of each disease group compared to all-cause visits
throughout a 4-year study period were plotted against day of the visits in one year (Figure
5.2). In general, approximately half of the total visits were the visits by ‘other’ diagnoses.
There was also a seasonal pattern of the visits by ‘other’ diseases over a year. The visits by
‘other’ diagnoses increased during the middle of winter to early summer (Jan-Mar) and
dropped after that. Then, the ‘other’ visits tended to increase during the changes of one
season to another season, such as early on the rainy season (May) and later on the rainy
season (Oct) up to early winter (Nov). Among the rest of the disease groups of interest,
respiratory visits held the highest percentage of 12.6%, while intestinal infectious visits
held the lowest percentage of 1.3%. The respiratory visits were found to be higher during

winter time from January to February than other period of a year. There were also some
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peaks of the visits due to respiratory and circulatory diseases in the middle of rainy season

(August), and in early winter (Nov).

The daily mean count of each disease groups of OPD visits are illustrated in Table 5.2. As
can be seen, the mean (SD) daily counts of OPD visits by all causes were 957 (680). Of
which, regardless ‘other’ diagnoses, respiratory visits were the most common causes of the
visits (mean=95.3, SD=53.4), followed by circulatory visits (mean=83.6, SD=61.1),
diabetic visits (mean=30.8, SD=23.7) and intestinal infectious visits (mean=9.17,

SD=5.53), respectively.

5.2 Hospital admissions

Daily counts of hospital admissions were obtained from the National Health Security Office
at the same period of time, obtaining out-patient visits from October 2002 to September
2006. The hospital admission data were the health care insurance claim data. This data is
used by involved hospitals in order to claim for budget that they had spent on admitted
patients who had health care insurance registered with their hospitals. After data cleaning

and corrections, there were 168,829 counts of the hospital admissions over the study period.

Monthly variation of total counts of hospital admissions over the 4-year study period is
illustrated in Figure 5.3. The total counts of admissions were lowest during the beginning
of the study period and began to rise at the beginning of year 2. There was a fluctuation of
total counts in each month, ranging from about 3,000-4,000 from year 2 to year 4, with one
dramatic drop in month 31 (about 2,500 counts) and one considerable peak in month 35

(about 5,000 counts).

5.2.1 Characteristics of study population of hospital admissions

Similar to out-patient visit data, the hospital admission data were categorised in six disease
groups in accordance with the ICD-10 coding system. These included admissions due to
respiratory disease (J00-J99), circulatory disease (100-199), diabetes (E10-E14), intestinal
infectious disease (A00-A09), ‘other’ diseases (those not included in the four first
categories), and all-cause admissions. The distribution of the disease groups in three main
characteristics (age, sex, and occupation) of the study population are presented in Table

5.3.
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Overall, the total admissions by all causes were highest in adult (15-64 year, 64.0%),
followed by the elderly (= 65 years, 21.7%), and children (0-14 years, 14.0%), respectively.
Adults also held the highest counts of admissions in all disease groups, which accounted for
about 50-70%. By comparison, the admissions in the elderly due to circulatory, diabetic,
respiratory diseases were higher than in children, whereas the admissions in children due to

intestinal infectious diseases were higher than for the elderly.

Although males and females shared similar counts of hospital admissions (approximately
half of the total), the numbers of female patients were slightly higher than those of male
patients in all disease groups, except for respiratory admissions. The respiratory admissions

in males (52.18%) were slightly higher than those in females (47.52%).

Taking into account their occupation, hospital admissions in unemployed and economically
inactive people (5.5%-14.9%) were highest in all disease groups, followed by manual
workers (4.2%-7.6%), and non-manual workers (0.5%-1.8%). However, there were large
numbers of missing occupational codes in the data, which were more than 40% of the data.
Thus, the analysis in different occupational groups for hospital admissions series was

excluded.

The breakdown of the data into specific disease groups by sex and age can be seen in
Appendix 5B. According to the count numbers, we could analyze the data for both sex and
age for respiratory and other admissions only. For circulatory admissions, there were very
limited count numbers to analyze for children (0-14 years), while for intestinal infectious
admissions, there were limited count numbers preventing to analyze for all age groups. In

addition, the analysis for both age and sex could not be done for diabetic admissions.

5.2.2 Daily variation of the hospital admissions

The plot of the mean daily counts of all-cause admissions over the 4-year study period, and
the proportion of each disease groups compared to all-causes admissions against day of the
admissions in one year is shown in Figure 5.4. Overall, the admissions due to other
diagnoses held the highest percentage of about 80% of all-cause admissions. Regardless the
admissions by ‘other’ diagnoses, circulatory admissions held the highest percentage

(11.0%), followed by respiratory (7.9%), intestinal infectious (3.5%), and diabetic
85



C'hapter § Descriptive results

admissions (0.8%), respectively. The respiratory and circulatory admissions were slightly
higher in winter from late November to early January. There were no obvious seasonal

patterns for the rest of the disease groups.

The distribution of daily hospital admissions by causes of the admissions in accordance
with the ICD-10 coding systems are presented in Table 5.4. The mean (SD) hospital
admissions by all causes were 103.9 (47.9). When looking at specific disease groups, the
admissions by ‘other’ diagnoses held the highest daily counts of admissions (mean=80.4,
SD=40.1), followed by circulatory (mean=11.1, SD=8.9), respiratory (mean=7.8, SD=4.3),
intestinal infectious (mean=3.3, SD=2.5) admissions, respectively. The admissions due to

diabetes had the lowest mean (SD) of admissions, which were only 0.8 (1.0).

5.3 Linkage data between hospital admissions and out-patient visits

As described previously in chapter 3 (methods), the linkage data between hospital
admissions and out-patient visits was created by matching an identification number (ID) of
a patient between the two data sets. Sixteen percents of total counts of hospital admissions
(169,829 counts) were missing 1D, while 16.1% of total counts of out-patient visits
(1,398,369 counts) were missing ID. After matching the two data as well as cleaning and
corrections, there were remaining 29,937 counts (17.6% of total hospital admissions) of the
hospital admissions in the linkage data. The diagram of liking the two data sets can be seen

in Appendix 5C.

Monthly variation of total counts of hospital admissions in the linkage data over the 4-year
study period is shown in Figure 5.5. The monthly counts of this data began at month 7th of
the study period, which were generally fluctuated (approximately ranged from 600 to 1000
counts). However, the counts of admissions started to drop below 600 counts from the
month 41th, and dropped steadily to about 100 counts in the last month (48th). This may be
due to the low number of counts of the OPD visits during this period (see Figure 5.1),
resulting in low number of matched cases between OPD visits and hospital admissions for
the linkage data. Since the number of the visits prior to the admissions is an important

factor considered for the linkage series, the data from month 41th to 48th were excluded

86



Chapter § Descriptive results

from the analysis. Therefore, the linkage data used for the study were the data from month
7th to 40th (April 2003 to January 2006) only.

5.3.1 Characteristics of study population in the linkage data

After excluding data from month 41th to 48 (2095 observations), there were 29,937 counts
remaining in the linkage data. Of total 29,937 counts, there were only 9.1% (2,733 counts)
that had no history of the visits prior to their admissions (Table 5.5). The breakdown of
people with history of the visits prior to their admissions was shown in Table 5.6. As can
be seen, about half of the total (51.4%) were people with 2-5 visits prior the admissions,
while about one in four of the total were people with 1 visit (26.0%) and people with more

than 5 visits (22.5%) prior to their admissions.

Table 5.7 presents the proportion of disease groups of hospital admissions and out-patient
visits prior to their admissions relative to number of the visits before admissions. Overall,
approximately 30-40% of hospitalized people due to respiratory and circulatory diseases
had the history of out-patient visits with the same diseases prior to their admissions. These
people also had a history of visits due to ‘other’ diagnoses in about 20-30%, except only
those hospitalized by circulatory disease with no visits (11.3%) and with < 5 visits (16.3%)
prior to their admissions. For people admitted by intestinal infectious disease, between 8-
20% had a history of visits by the same diseases, and almost 20% had a history of visits by
respiratory disease. People admitted by intestinal infectious disease and ‘other’ disease
groups had similar history of previous visits due to ‘other’ diagnoses of about 40-50%.
However, it should be noted that the diagnoses of previous visits in some people cannot be
known due to the relatively high percentages of missing diagnoses of the out-patient visit

data.

The distribution of the disease groups in the linkage data by three main characteristics (age,
sex, and occupation) of the study population are illustrated in Table 5.8. Since the linkage
data is actually one part of the hospital admissions data — hospitalized people with no visit
and with at least one visit or more prior to their admissions —, the distribution of the disease
groups in the linkage data was similar to the hospital admissions data. The majority of the
patients were adults aged 15-64 years (68.6%), followed by the elderly aged > 65 years
(17.4%) and children aged 0-14 years (14.0%), respectively. The elderly had the higher
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admissions due to diabetic (31.0%) and circulatory (27.5%) diseases, whereas children had
the higher admissions due to intestinal infectious (40.2%) and respiratory (33.8%) diseases.
The proportion of females was generally higher than males in all disease groups, except
only respiratory admissions. In addition, there were large numbers of missing data on
occupational group, which accounted for about 21%. Thus, the stratified analysis of the

linkage data by occupation was excluded.

The data of specific disease groups stratified by the number of the visits prior to their
admissions can be seen in Appendix 5D. When the data were divided into subgroups
according to the number of out-patient visits prior to admissions, there were limited count
numbers to analyze for most diseases (except only all-cause and ‘other’ diseases). When the
data were broke down further by age and sex (not shown), there was also limited count
numbers to analyze for age and sex in different disease groups relative to the history of the

visits before admissions.

5.3.2 Daily variation of the hospital admissions in the linkage data

The plot of the mean daily counts of all-cause admissions over the study period, and of the
proportion of each disease group compared to all-cause admissions against day in one year
in the linkage data is presented in Figure 5.6. Similar to hospital admissions data, the
admissions in the linkage data due to ‘other’ diagnoses held the highest percentage with
approximately 80%. The percentage of circulatory and respiratory admissions was very
similar, which accounted for about 9%, followed by intestinal infectious admissions (4%).
The diabetic admissions had the lowest percentage of the admissions, which was about 1%

only.

The distribution of daily hospital admissions in the linkage data by causes of admissions in
accordance with the ICD-10 coding systems are presented in Table 5.9. The mean (SD) of
all-cause admissions was 28.9 (14.4). While the admissions by other diagnoses had the
highest daily mean of 22.9 (12.6), the diabetic admissions had the lowest daily mean of 0.2
(0.5). The daily mean of respiratory (mean = 2.1, SD = 1.6) and circulatory (mean = 2.6,
SD = 2.1) admissions was relatively similar, and the daily mean of intestinal infectious was

0.9 (1.0) only.
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5.4 Air pollution and meteorological data

5.4.1 Daily levels and seasonal variations of air pollutants in Chiang Mai

As mentioned previously in chapter 3 (methods), levels of air pollutants used for the
analysis were the daily mean levels from the two air monitoring stations located in the
Muang district, Chiang Mai province. Daily mean levels of air pollutants calculated from

the two stations from October 2002 to September 2006 are presented in Figure 5.7.

As can be seen, PM,o, O3, and NO, exhibited a strong seasonal variation, compared to other
pollutants. According to Thailand’s ambient air quality standards, there is a 24-hour
average standard of 120pg/m’ for PMo. In Figure 5.7-¢, the straight line represents the 24-
hour average standard levels in Thailand. As shown in the figure, during the study period,

daily mean levels of PMy occasionally exceeded the recommended standards of 120pg/m’.

In general, levels of PM;o were comparatively higher during the winter. In Thailand,
however, the peak of PMj levels was usually observed from the end of winter (February)
to early summer (March) because of two main reasons. Firstly, the occurrence of forest
fires is common during this period due to very dry conditions. Secondly, open burning of
crop residues to prepare soil for new crops is an agricultural tradition of local people among
three border countries (Thailand, Myanmar, and Lao), causing a rise of PMyo levels in the

Northern Thailand during this period of every year.

The daily levels of ozone appeared to be higher during summer (March-May) in relation to
the presence of higher sunlight in comparison to other periods in the same year. Daily
levels of NO, are generally related to motor vehicle emissions. In this study area, the peak
concentrations of NO, were observed during winter (Jan and Feb), which might be because
of poor local dispersion conditions together with light winds during the colder period. The
daily levels of NO, dropped during rainy season of a year. This may due in part to the wash
out by rains. Overall, there is no obvious trend for air pollutants in Chiang Mai. However,

as can be seen in Figure 5.7-f, daily levels of PM; s tended to be increasing over time.
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5.4.2 Daily levels and seasonal variations of meteorological variables

Figure 5.8 shows seasonal variations of daily mean levels of selected meteorological
variables observed in Chiang Mai for a 4-year period from October 2002 to September
2006. The minimum daily levels of temperature were about 20°C in winter (November-
February) and the maximum daily levels of temperature were just above 30°C in summer
(March-May). Relative humidity in Chiang Mai was very high during rainy season (June-
October), with the maximum levels of about 100%. The lower levels of relative humidity
were usually found in winter and possibly in early summer, which were below 40%. The
peak levels of rainfall were observed in rainy season, particularly during the end of July to
early September, which reached the maximum levels of about 7 mm/hr. While there was no
trend for daily mean levels of relative humidity and of rain, a slight increase in daily mean

level of temperature in Chiang Mai over the 4- year period was observed.

5.4.3 Correlations among air pollutants and meteorological variables.

Correlations among daily mean levels of air pollutants and meteorological variables in
Muang, Chiang Mai are presented in Table 5.10. Generally, there were low correlations
among air pollutants, with only one exception — the correlation between PM; 5 and NO,.
These two pollutants had a high correlation of about 0.81. There were also low correlations
among the three meteorological variables. The daily mean levels of temperature were
negatively correlated with humidity and rain, while the daily mean levels of relative
humidity and rain were positively correlated with each other. In addition, there was a low,
negative correlation between air pollutants and meteorological variables. The only one
positive correlation was found between O3 and temperature, but was also low (r=0.24).
However, it is important to note that the correlations among air pollutants and

meteorological variables may be different during different seasons.
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Table 5. 1 Characteristics of study population of the out-patient visits data in Muang,
Chiang Mai, from October 2002 to September 2006.

Intestinal
Respiratory  Diabetic ~ Circulatory infectious
Group (J00-J99) (E10-E14) (100-199) (A00-A09)  Other Missing _ All-cause
Total count 139,256 45,040 122,177 13,396 617,184 461,316 1,398,369
Age (year)
0-14 40.2% 1.0% 1.1% 42.2% 11.7% 10.2% 13.1%
15-64 49.1% 67.4% 61.2% 48.9% 67.9% 73.4% 67.1%
> 65 10.1% 31.2% 37.4% 8.3% 20.0% 15.5% 19.3%
Missing 0.6% 0.5% 0.3% 0.6% 0.4% 0.9% 0.6%
Sex
Male 46.6% 41.0% 41.2% 46.4% 43.0% 40.9% 42.5%
Female 52.9% 58.8% 58.2% 53.1% 56.3% 58.2% 56.8%
Missing 0.5% 0.2% 0.6% 0.5% 0.7% 0.9% 0.8%
Occupation*
Unemployed &
economically
inactive 19.0% 33.0% 26.5% 21.3% 27.1% 23.3% 25.2%
Non-manual 24.3% 27.5% 25.4% 22.6% 30.2% 7.6% 21.6%
Manual 3.8% 6.2% 7.0% 3.4% 6.8% 1.7% 6.8%
Missing 2.8% 1.2% 2.6% 2.3% 4.2% 35.7% 17.2%

*Excluding children (0-14) and the elderly (> 65).

Table 5. 2 Daily OPD visits by causes of the visits in accordance with ICD-10 coding
systems in Muang, Chiang Mai, from October 2002 to September 2006.

Percentile

Causes of visits n (day) Mean SD Min 10th 25th 50th 75th 90th Max
Respiratory (J00-J99) 1461 053 534 3 30.2 53 87 131 166 318
Circulatory (100-199) 1461 836 ' 61.1 0 22 85 122 163 323
Diabetic (E10-E14) 1461 3082237 0 9 30 44 59 162
Intestinal infectious

(A00-A09) 1461 QAL D53 0 5 8 13 17 33
Other 1461 422 253 16 120 198 393 630 J15: 81163
All-cause 1461 957 - 680 28 2102 3635 912 “1473 19496 3649
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Table 5. 3 Characteristics of study population of hospital admissions data in Muang,
Chiang Mai, from October 2003 to September 2006.

Intestinal
Respiratory  Diabetic  Circulatory infectious
Group (J00-J99) (E10-E14) (100-199) (A00-A09)  Other _ Missing _All-cause
Total count 12,006 1,184 16,694 4,867 133,189 889 168,829
Age (year)
0-14 23.9% 4.5% 2.3% 28.5% 14.1% 18.6% 14.0%
15-64 47.2% 58.3% 56.9% 60.1% 66.7% 52.9% 64.0%
>65 28.7% 37.3% 40.7% 11.2% 19.0% 14.6% 21.7%
Missing 0.2% 0.0% 0.1% 0.2% 0.2% 13.9% 0.3%
Sex
Male 52.2% 41.6% 48.8% 40.5% 46.8% 43.9% 47.2%
Female 47.5% 58.5% 50.9% 59.3% 52.8% 39.7% 52.4%
Missing 0.3% 0.0% 0.3% 0.3% 0.3% 16.4% 0.4%
Occupation*
Unemployed &
economically
inactive 8.9% 12.8% 14.9% 5.5% 14.2% 9.6% 13.5%
Non-manual 1.8% 1.2% 0.5% 1.0% 1.0% 0.3% 1.0%
Manual 4.2% 7.4% 7.0% 4.6% 7.6% 3.7% 7.2%
Missing 32.7% 37.1% 34.8% 49.6% 44.4% 53.5% 42.6%

*Excluding children (0-14) and the elderly (= 65).

Table 5. 4 Daily hospital admissions by causes of the admissions in accordance with
ICD-10 coding systems in Muang, Chiang Mai, from October 2003 to September 2006.

Percentile

Causes of admissions n(day) Mean SD Min 10th 25th 50th 75th 90th  Max

Respiratory (J00-J99) 1461 7.8 435 w007 530 5.0 o7 Ok 10087 14,0 v 29:0
Circulatory (100-199) 1461 110 -89 5 0.0 - 0% 605100150 190 -:32.0

Diabetic (E10-E14) 1461 0.8 1.0 00 00 0.0 1.0 1.0 2.0 6.0
Intestinal infectious

(A00-A09) 1461 33 2550 ) 1.0 1 e ) 5.0 7.0 13.0
Other 1461 804 401 130::320 450: 75.0. 115013702030
All-cause 1461 103:9: 47.97 180 452 630960 1460 :172:0 - 233.0
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Table 5. S Summary of the linkage data between out-patient visits and hospital
admissions by history of the visits prior to the admissions from April 2003 to January

2006.
OPD visits within 6 months
prior to admissions Count of admissions
Total 29,937 (100.0%)
No visit 2,733 (9.1%)
1 visit or more 27,204 (90.9%)

Table 5. 6 The breakdown of people with history of out-patient visits prior to their

admissions by number of th

e visits from April 2003 to January 2006.

History of the visits prior to
the admissions

Count of admissions

Total
1 visit
2-5 visits
>5 visits

27,204 (100.0%)
7,085 (26.0%)
13,990 (51.4%)
6,129 (22.5%)

Table 5. 7 Proportion of disease groups of hospital admissions and disease groups of
out-patient visits prior to their admissions from April 2003 to January 2006.

5.7a) People with one visit prior to the admissions

Disease groups Disease groups of out-patient visits prior to their admissions
of hospital Intestinal
admissions Respiratory  Diabetic  Circulatory _infectious Other  Missing _ All-cause
Respiratory 117 2 19 3 96 182 419
(J00-J99) (27.9%) (0.5%) (4.5%) (0.7%) (229%) (43.4%) (100.0%)
Diabetic 1 4 3 0 2 12 22
(E10-E14) (4.6%) (18.2%) (13.6%) (0.0%) (9.1%)  (54.6%) (100.0%)
Circulatory 12 20 285 2 85 349 753
(100-199) (1.6%) (2.7%) (37.9%) (0.3%) (11.3%) (46.4%) (100.0%)
Intestinal
infectious 24 0 5 17 59 35 140
(A00-A09) (17.1%) (0.0%) (3.6%) (12.1%)  (42.1%) (25.0%) (100.0%)
Other 157 31 121 24 2,374 3,029 5,736
(2.7%) (0.5%) (2.1%) (0.4%) (41.4%) (52.8%) (100.0%)
Missing 0 1 0 0 1 13 15
(0.0%) (6.7%) (0.0%) (0.0%) (6.7%) (86.7%) (100.0%)
All-cause 311 58 433 46 2,617 3,620 7,085
(4.4%) (0.8%) (6.1%) (0.7%) (36.9%) (51.1%)  (100.0%)
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5.7b) People with 2-5 visits prior to the admissions

Descriptive results

Disease groups

Disease groups of out-patient visits prior to their admissions

of hospital Intestinal
admissions Respiratory  Diabetic  Circulatory infectious Other  Missing _ All-cause
Respiratory 355 8 40 25 277 314 1,019
(J00-J99) (34.8%) (0.8%) (3.9%) (2.5%) (272%) (30.8%) (100.0%)
Diabetic 1 24 4 0 28 34 91
(E10-E14) (1.1%) (26.4%) (4.4%) (0.0%) (30.8%) (37.4%) (100.0%)
Circulatory 35 26 371 1 198 583 1,214
(100-199) (2.9%) (2.1%) (30.6%) (0.1%) (16.3%) (48.0%) (100.0%)
Intestinal
infectious 75 2 16 93 166 77 429
(A00-A09) (17.5%) (0.5%) (3.7%) (21.7%) (38.7%) (18.0%) (100.0%)
Other 385 88 235 64 4,848 5,586 11,206
(3.4%) (0.8%) (2.1%) (0.6%) (43.3%) (49.9%  (100.0%)
Missing 1 0 0 0 8 22 31
(3.2%) (0.0%) (0.0%) (0.0%) (25.8%) (71.0%) (100.0%)
All-cause 852 148 666 183 5,525 6,616 13,990
(6.1%) (1.1%) (4.8%) (1.3%) (39.5% (47.3%) (100.0%)
5.7¢) People with > 5 visits prior to the admissions
Disease groups Disease groups of out-patient visits prior to their admissions
of hospital Intestinal
admissions Respiratory Diabetic  Circulatory infectious Other _ Missing _ All-cause
Respiratory 193 9 33 10 176 137 558
(J00-J99) (34.6%) (1.6%) (5.9%) (1.8%) (31.5%) (24.6%) (100.0%)
Diabetic 2 39 5 0 34 19 99
(E10-E14) (2.0%) (39.4%) (5.1%) (0.0%) (34.3%) (19.2%) (100.0%)
Circulatory 23 23 129 2 111 166 454
(100-199) (5.1%) (5.1%) (28.4%) (0.4%) (24.5%) (36.6%) (100.0%)
Intestinal
infectious 36 6 15 16 89 27 189
(A00-A09) (19.1%) (3.2%) (7.9%) (8.5%) 47.1%) (14.3%) (100.0%)
Other 170 105 193 24 2,284 2,036 4,812
3.5%) (2.2%) (4.0%) (0.5%) (47.5%) (42.3%) (100.0%)
Missing 0 0 1 0 9 7 17
(0.0%) (0.0%) (5.9%) (0.0%) (52.9%) (41.2%) (100.0%)
All-cause 424 182 376 52 2,703 2,392 6,129
(6.9%) (3.0%) (6.1%) (0.9%) (44.1%) (39.0%) (100.0%)
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Table 5. 8 Characteristics of study population of the linkage data in Muang, Chiang Mai,

from April 2003 to January 2006.

Intestinal
Respiratory  Diabetic  Circulatory infectious
Group (J00-J99)  (E10-E14)  (100-199)  (A00-A09) Other Missing _ All-cause
Fotal cotint 2,226 232 2,684 934 23,790 71 29,937
Age (year)
0-14 33.8% 3.5% 2.5% 40.2% 12.5% 19.7% 14.0%
15-64 46.8% 65.5% 70.0% 49.0% 71.3% 62.0% 68.6%
> 65 19.4% 31.0% 27.5% 10.8% 16.2% 18.3% 17.4%
Missing 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Sex
Male 53.3% 41.8% 47.1% 45.3% 44.2% 43.7% 45.1%
Female 46.6% 58.2% 52.9% 54.7% 55.8% 56.3% 54.9%
Missing 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Occupation*
Unemployed &
economically
inactive 18.9% 29.3% 32.3% 11.8% 30.2% 26.8% 29.0%
Non-manual 2.4% 0.0% 0.6% 1.8% 1.0% 0.0% 1.1%
Manual 9.7% 13.4% 18.0% 12.2% 18.7% 12.7% 17.7%
Missing 15.9% 22.8% 19.1% 23.2% 21.5% 22.5% 20.9%

*Excluding children (0-14) and the elderly (> 65).

Table 5. 9 Daily hospital admissions of the linkage data by causes of the admissions in
accordance with ICD-10 coding systems in Muang, Chiang Mai, from April 2003 to January

2006.
Percentile
Causes of admissions n (day) Mean SD Min 10th 25th 50th 75th 90th Max
Respiratory (J00-J99) 1037 2.1 1.6 0 0 1 2 3 4 9
Circulatory (100-199) 1037 2.6 2 0 0 1 2 4 5 10
Diabetic (E10-E14) 1037 0.2 0.5 0 0 0 0 0 1 3
Intestinal infectious
(A00-A09) 1037 0.9 1.0 0 0 0 1 1 2 6
Other 1037 229 12.6 1 7 11 23 33 39 60
All-cause 1037 28.9 14.4 2 10 15 30 40 47 70
Table 5. 10 Correlations among air pollutants and meteorological variables.

SO, NO, CO 0, PM;;, PM,s Temperature Humidity rain
SO, 1
NO, 0.36 |
CcO 0.17 0.58 1.00
0, 0.19 0.51 0.34 1
PM,, 0.36 0.81 0.60 0.63 1
PM; ;s -0.01 0.46 0.66 0.40 0.62 1
Temperature | -0.05 -024 -0.22 024 -0.07 0.14 1
Humidity -0.18 -050 -046 -066 -0.53 -0.58 -0.22 1
Rain -008 -0.18 -0.14 -023 -022 -0.15 -0.05 0.28 1
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Figure 5. 1 Monthly variation of total counts of OPD visits in the selected heath
centres and hospitals Muang, Chiang Mai, from October 2002 to September 2006.
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Figure 5. 2 Overview of a one-year variation of out-patient visits by causes of the visits
over the study period.
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Figure 5. 3 Monthly variation of total counts of hospital admissions in the selected
hospitals in Muang, Chiang Mai, from October 2002 to September 2006.
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Figure 5. 4 Overview of a one-year variation of hospital admissions by causes of the
admissions over the study period.
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5.4b) Daily mean percentage of each disease group compared to all-cause admissions.
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Figure 5. 5 Monthly variation of total counts of linkage data (between out-patient
visits and hospital admissions) in Muang, Chiang Mai, from April 2003 to September
2006.
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Figure 5. 6 Overview of a one-year variation of hospital admissions in the linkage data
by causes of the admissions over the study period.
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5.6b) Daily mean percentage of each disease group compared to all-cause admissions in the
linkage data
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Figure 5. 7 Daily levels of air pollutants in Chiang Mai for 4-year period measured
from October 2002 to September 2006.

Note: Daily mean levels of 1-hr average for all pollutants, except noted.
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*Data on PM, s were available from April 2004.
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Figure 5. 8 Daily levels of meteorological variables in Chiang Mai for 4-year period
measured from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

This chapter presents the results of time-series analyses for the effects of air pollution and
temperature on daily out-patient visits in Muang, Chiang Mai, from October 2002 to
September 2006. It begins with the relationships between air pollution and out-patient

visits, followed by the relationships between temperature and out-patient visits.

6.1 Air pollution and out-patient visits

Generally, the graphical assessments showed linear relationships between air pollution and
daily out-patient visits (not shown). Therefore, all results presented here were the linear
associations between them. In addition, the effects were the relative risk estimates of a 10-

unit increase of a pollutant (one-unit increase for CO) on the daily out-patient visits.

6.1.1 Lag structures of air pollution effects

As described in chapter 3, the effects of air pollution on daily out-patient visits were
examined through distributed lag models from lag O to 4 days. This was because this time
period had been shown to be sufficient to capture the short-term effects of air pollution
according to the literature and this period could make the results comparable to the PAPA

studies (which also used this lag period).

Overall, daily variations of SO, and O; levels had positive effects on daily out-patient
visits, but not statistically significant. The effects of other pollutants were generally
negative, and also not statistically significant. The effects of most pollutants were found to
be larger at lag 2-3 days. Estimated lag structures for the effects of a 10-unit increase of a

pollutant (one-unit increase for CO) on all studied health outcomes are detailed below.

All-cause visits
No significant effects of air pollutants (except only PM;o) on all-cause visits were found
(Figure 6.1). The risk estimates tended to be larger at lag 3 days and remained stable or

slightly dropped after that.
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Respiratory visits

Some small positive effects of SO, and O3 were found, particularly at lag 2 days (Figure
6.2). NO,, CO, and PM; s effects were found to be larger at lag 3 days, while PM, effects
relatively fluctuated over 0-4 days. However, none of these effects were statistically

significant.

Circulatory visits
The risks of circulatory visits were larger at lag 4 days in association with a 10-unit
increase in SO,;, NO,, PM;y and one-unit increase in CO (Figure 6.3). The risk of

circulatory visits at lag 3 days was also found to be associated with a 10-unit increase in O3
and PM2‘5.

Diabetic visits
The risk estimates of diabetic visits in association with a 10-unit increase in selected air
pollutants were relatively small and close to 1, with little fluctuations over the 0-4 days

period (Figure 6.4).

Intestinal infectious visits
Similar to diabetic visits, the estimated effects of each pollutant on intestinal infectious
visits were relatively small and close to 1 (Figure 6.5). A small increase in positive effects

of most pollutants was found at lag 2-3 days.

Other visits
Some positive effects on ‘other’ visits were found at lag 0 day for NO;, O3, and PM,, and
found at lag 2 and 3 days for CO and SO,, respectively (Figure 6.6). However, the risk

estimates were not statistically significant.

6.1.2 Air pollution effects on daily out-patient visits

In general, positive effects were predominantly found for SO,, O;, and NO, but did not
reach the statistically significant at 5% level. The negative, but significant, effects were
occasionally found for PM ;o and PM, 5. The estimated effects presented here are the sum of
all lags (lag 0-land lag 0-4 days) from single pollutant, distributed lag models, and are
described separately for each selected health outcome.
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All-cause visits

There were only two pollutants: SO, and O; that had positive effects on all-cause visits
(Table 6.1), with 4.7% (95% CI, -0.91% to 20.5%) increase in all-cause visits per 10-unit
increase in SO, (ppb) and 0.1% increase in all-cause visits per 10-unit increase in O3 (ppb).
This was found at lag 0-4 days, but not statistically significant. At the same lag, a negative
effect with borderline significance was found for PM;o (RR = 0.988, 95% CI, 0.977 to
1.000, p-value = 0.053) and for PM,s (RR=0.985, 95% CI, 0.970 to 1.001, p-value =
0.062).

Respiratory visits

Positive effects on respiratory visits were found for SO, and NO,, while negative effects
were found for other pollutants (Table 6.2). For instance, at lag 0-4 days, the respiratory
visits increased by 4.4% (95% CI, -10.9% to 22.4%) per 10-unit increase in SO, (ppb), and
by 1.0% (95%CI, -2.3% to 4.5%) per 10-unit increase in NO, (ppb). Negative, but
significant, effects were found for O; at lag 0-1 day (RR = 0.969, 95% CI, 0.942 to 0.998,
p-value = 0.036). The negative effects of PM, s were also found to be significant, with the
RR of 0.986 (95% Cl, 0.973 to 1.000, p-value = 0.042) at lag 0-1 day, and of 0.976 (95%
CI, 0.959 to 0.993, p-value = 0.006) at lag 0-4 days.

Circulatory visits

As can be seen in Table 6.3, SO, effects on circulatory visits were relatively large, although
the effects were not statistically significant at the 5% level. It was found that circulatory
visits increased by 11.2% (95% CI, -6.0% to 31.5%) and by 22.2% (95% CI, -2.8% to
53.6%) in association with a 10-unit increase in SO, (ppb) at lag 0-1 day and at lag 0-4
days, respectively. Circulatory visits also increased by 1.7 % (95% Cl, -3.6% to 7.3%) in
association with a 10-unit increase in O, (ppb) lat lag 0-4 days. The other pollutants
provided negative association with circulatory visits, but none of the estimates was

statistically significant (except only PM, s at lag 0-1 day).

Diabetic visits
As shown in Table 6.4, the relatively large estimated effects on diabetic visits were found
for SO,, while smaller effects were found for NO; and CO. There was a rise in diabetic

visits of 5.3% (95% CI, -19.2% to 37.2%) per 10-unit increase in SO (ppb) at lag 0-1 day
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and of 25.5% (95%ClI, -12.1% to 79.2%) per 10-unit increase in SO, (ppb) at lag 0-4 days.
The effects of other pollutants were found to be negative. However, all estimated effects of

all pollutants on diabetic visits were non-significant.

Intestinal infectious visits

As can be seen in Table 6.5, none of the air pollutants provided positive effects on
intestinal infectious visits in the present study. In addition, the effects of PM;o and PM, s
were found to be statistically significant at 5% level. For example, at lag 0-1 day, the
relative risks were 0.987 (95% CI, 0.976 to 0.999, p-value = 0.033) for PM,,, and were
0.962 (95% CI, 0.932 to 0.993, p-value = 0.018) for PM, .

Other visits

Some small positive effects on ‘other’ visits were found for SO, and Os, but not statistically
significant (Table 6.6). A 10-unit increase in SO; (ppb) at lag 0-4 days was associated with
a 1.3% (95% CI, -12% to 16.6%) increase in ‘other’ visits, whereas a 10-unit increase in O
(ppb) at lag 0-4 days was associated with a 2.5% (95% Cl, -0.7% to 5.8%) increase in
‘other’ visits. Negative effects were found for other pollutants and were found to be
significant for CO (both lags) and PM; s (lag 0-4 days). At lag 0-4 days, the relative risks
were about 0.935 (95% CI, 0.877 to 0.997, p-value = 0.040) for CO, and were about 0.981
(95% ClI, 0.965 to 0.997, p-value = 0.017).

6.1.3 Air pollution and effect modification

The estimated effects of air pollution on selected health outcomes when the out-patient visit
data was stratified by age, sex, and occupation are presented in this section. To determine
whether air pollution effects were modified by these subgroups, the test for heterogeneity
between subgroups was carried out. Effects of season on association between air pollution

and daily out-patient visits were also examined.

I. Effect modification by age
There was no evidence of effect modification by age on the association between air
pollution and daily out-patient visits in the present study (Figure 6.7). Overall, the effects

of air pollution were found to be stronger in the elderly in comparison to adults and
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children. However, most effects were not significant, and there were no differences in the

estimated effects between age groups.

I1. Effect modification by sex

In general, air pollution effects did not vary by sex in this study (Figure 6.8). The estimated
effects of most pollutants seemed to be negative and centred around one, except only SO,
effects, but not significant. By comparison, the risks of all-cause, circulatory, diabetic, and
‘other’ visits were slightly higher in males than in females, whereas the risks of respiratory
and intestinal infectious visits were higher in females than in males. However, there was no

significant difference in the estimated effects between males and females.

II1. Effect modification by occupation

Overall, there was little evidence of modification of air pollution effects by occupation in
the present study (Figure 6.9). The effects of air pollution varied from pollutant to
pollutant, and did not consistent across all disease groups. Larger, positive effects on the
visits in different occupational groups were found for SO, than for other pollutants.
Generally, the effects of most pollutants were relatively stronger manual workers for most
diseases, except for circulatory visits, which the effects of all pollutants were higher in non-
manual workers. However, most results from the test for heterogeneity between groups

were not significant.

IV. Effect modification by season

As described earlier, there are three seasons in Chiang Mai, including winter (November-
February), summer (March-May), and rainy (June-October) season. Thus, it was decided to
examine whether air pollution effects on daily out-patient visits were modified by season.
To investigate air pollution effects in different seasons, an indicator variable of season was
incorporated into the models (1= winter, 2=summer, and 3=rainy). The risk estimates of
daily out-patient visits per 10-unit increase of a pollutant (one-unit increase for CO) in

different seasons are shown in Figure 6.10.

Overall, there was no evidence of effect modification by season on association between air
pollution and out-patient visits, with only one exception — the association between air

pollution and respiratory visits (p-value of the test for interaction < 0.05 for the effects of
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all pollutants). By comparison, the effects of SO, were larger than those of other pollutants
in all seasons, but the confidence intervals were relatively wide. The effects of SO, were
higher in summer for all-cause and respiratory visits, but were higher in rainy season for
circulatory and diabetic visits. The estimated effects of other pollutants seemed to centre
around 1 in all seasons. In addition, although the risk estimates for O; effects were small, as

one would expected, the O; effects were stronger in summer compared to other seasons.

6.1.4 Air pollution effects for two-pollutant models

There is a mix of air pollutants in the air. In general, individuals are not exposed to only
one pollutant at a time. Since air pollutants are either positively or negatively correlated,
with each other, to distinguish the most affecting pollutant is very difficult. Nevertheless,
the two-pollutant models may help determine which pollutant is the better predictor of the

health outcomes.

Based on positive effects of single pollutant model results, three pollutants, including SO,
O3, and NO,, were selected for developing two-pollutant models as they provided more
positive effects than other pollutants studied. The two-pollutant models used the same basic
structure as the single-pollutant models, with the inclusion of linear terms of selected two
pollutants at one time. The two-pollutant analyses focused on main health outcomes,
including all-cause, respiratory, circulatory, diabetic, intestinal infectious and ‘other’ visits.
In addition, the analyses were undertaken for all ages and for the elderly (= 65 year) only
because the positive associations in this study were mostly found in the elderly compared to

other age groups.

The results of single pollutant models and two-pollutant models for the effects of a 10-unit
increase in a pollutant at average lag 0-4 days on daily out-patient visits in all ages and in
the elderly (>65 year) are presented in Table 6.7. As can be seen, when including SO, and
O; into the models, the risk estimates of each pollutant were not different from those
obtained from the single pollutant models. Similarly, when including O3 and NO; into the
same models, there was also no significant difference in the risk estimates of each pollutant
in the models compared to the single pollutant models. When SO, and NO, were included
in the models, only one considerable reduction of the effects of SO, on circulatory visits
was observed. That was, the risk estimates of SO; decreased from 14.7% (95% Cl, -7.8% to
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42.8%) in single pollutant model to 3.4% (95% CI, -1.9% to 9.0%) in the two-pollutant

model.

In brief, there were generally no significant changes of the risk estimates of each selected
pollutants in the two-pollutant models when compared to those obtained from the single

pollutant models.

6.2 Temperature and out-patient visits

6.2.1 General relationships between temperature and out-patient visits

General relationships between temperature and out-patient visits were investigated by
plotting the counts of the visits against average temperature at lag 0-1 days (for short lag)
and at lag 0-13 days (for long lag). Adjustments were made for humidity, rain, and the two
selected pollutants: SO, and O;. These two pollutants were selected with respect to the air
pollution results as they predominantly provided positive effects on daily out-patient visits
than other pollutants. In addition, Os is likely to be a confounder as its occurrence related to
the presence of sunlight or warm climate. Since literature suggests that PM, is more likely

to confound the association between temperature and health outcomes '>”

, replacing SO,
with PM in the models was also done, but there were little changes in the risk estimates
(not shown). The plots of adjusted relationships between temperature and out-patient visits

are shown in Figure 6.11.

All-cause visits
When adjusting for meteorological variables (humidity and rain) and air pollution (SO and
O3), there was a linear increase in all-cause visits when temperature was above 29°C, but

found for temperature at a long lag (0-13 days) only.

Respiratory visits

The plots of the relationship between temperature and respiratory visits showed a somewhat
linear decrease of respiratory visits with increasing temperature, which was more apparent
for the short lag (0-1 day) than that for the longer lag (0-13 day) period. The likelihood

ratio test between the models with and without splines of temperature also showed that the
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model without the splines of temperature fitted better than that with the splines of

temperature, suggesting a linear association between them.

Circulatory visits

The plot of the relationship between temperature and circulatory visits showed that there
was a linear increase in circulatory visits at temperature above 29°C, which was more
apparent for temperature at a long lag (0-13 days) than for temperature at short lag (0-
l1day).

Diabetic visits

The plot of the relationship between temperature and diabetic visits showed a flat line of
the estimated risks, which centred around 1 for temperature at a short lag (0-1 day). For
temperature at a long lag (0-13 days), there was a linear increase in diabetic visits with

temperature threshold of about 29°C.

Intestinal infectious visits

By comparison, the linear relationship between temperature and intestinal infectious visits
was more visible for temperature at a short lag (0-1 day) than for temperature at longer lag
(0-13 days). The plot of the relationship at short lag showed a linear increase in the visits
with increasing temperature, although the visits declined slightly when temperature was

above 29 °C.

Other visits
The plot of the relationship between ‘other’ visits and temperature illustrated that there was
a linear increase in ‘other’ visits with increasing temperature for both shot lag (0-1 day) and

long lag (0-13 days), but the slope of the relationship was steeper for longer lag.

To sum up, based on the graphical assessments, a linear association between out-patient
visits and temperature with temperature threshold at about 29 °C was visible at longer lag
(0-13 days) for all-cause, circulatory, and diabetic visits. Therefore, the quantification of
hot temperature at above 29 °C was carried out for these three diseases. Since a linear

association with no temperature threshold was obviously shown for respiratory, intestinal
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infectious and ‘other’ visits, quantifying temperature effects by using linear terms of
temperature was done for these diseases. However, the quantification of temperature effects
at long lag (0-13 day) was undertaken for ‘other’ visits, whereas the quantification of the

effects at a short lag (0-1 day) was done for respiratory and intestinal infectious visits.

6.2.2 Lag structure of temperature effects

The effects of temperature on daily out-patient visits for specified lag period are presented
in Figure 6.12. Generally, there was no significant effect of temperature on out-patient
visits over 0-13 day lag period. Larger, positive effects were mostly observed at lag 2,
while larger, negative effects were shown at lag 1 for most diseases. The estimated effects
remained stable from lag 3 to lag 13. There was also no increase or decrease in temperature
effects beyond 13 days (not shown). Thus, the use of temperature at lag 0-13 days for

further investigations of temperature effects in the present study should be sufficient.

6.2.3 Temperature effects on out-patient visits

As mentioned earlier, a temperature threshold of 29°C was used for quantifying
temperature effects for all-cause, circulatory, and diabetic visits, while a linear term of
temperature was used for respiratory, intestinal infectious, and ‘other’ visits. The
quantification was examined through the distributed lag models of temperature for short lag
(0-1 day) for respiratory and intestinal infectious visits, and longer lag (0-13 days) for the
rest of the disease groups. The same core model used for determining air pollution effects
was employed for the quantification, but using 6df of the spline for time and adjusting for
two pollutants: SO, and Os. Thus, the estimated effects were the sum of all lags from lag 0
to 1day and from lag 0 to 13 days. Generally, without stratification, the temperature effects
on all people reached the statistically significant at 5% level for most health outcomes. The
test for heterogeneity between each stratified group (age, sex, and occupation) was also
investigated. The analysis results are detailed separately for each health outcomes as the

followings.

All-cause visits
Overall, there were positive effects of hot temperature (above 29°C) on all-cause visits, but
the effects were not statistically significant for all subgroups (Table 6.8). There was a 9.4%

(95% Cl, 2.8% to 16.5%) increase in all-cause visits in all people per 1°C increase in
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temperature above 29°C. When the data were stratified by age, the risk estimates in adults
(15-64 years) and the elderly (= 65 years) were found to be significant and broadly the
same, while the smallest and non-significant estimates were found in children (0-14 years).
For each 1°C increase in temperature above 29°C, the risk of all-cause visits in males
(11.6% increase, 95% Cl, 4.7% to 19.0%) was almost two-times higher than that in females
(6.3% increase, 95% Cl, -0.6% to 13.7%). For occupation, the estimate was significant and
slightly higher in unemployed and economically inactive people (9.9% increase, 95% CI,
3.1% to 17.1%) than those in non-manual and manual workers, which were similar and not

significant.

Respiratory visits

Generally, there was a reduction in respiratory visits with increasing temperature, but the
reduction was not significant for all subgroups as shown in Table 6.9. For each 1°C
increase in temperature (no threshold), there was a borderline significant reduction of
respiratory visits in all people of about 0.9 % (95% CI, -1.9% to 0.0%). The decreased risks
of the visits were found to be similar for all age groups, ranging from 0.2% to 1.0%. The
risk of respiratory visits significantly decreased in females (-2.0%, 95% Cl, -3.1% to -
0.9%), but not in males (which was in opposite direction and not significant). A significant
decline in the visits was also observed in unemployed and economically inactive people (-
1.1%, 95% ClI, -2.1% to 0.0%), whereas a decline in the visits and an increase in the visits

were found for non-manual and manual workers, but none of them was significant.

Circulatory visits

There was an increase in circulatory visits by 19.2% (95% Cl, 7.0% to 32.8%) per 1°C
increase in temperature above 29°C in all people (Table 6.10). The increased risk of
circulatory visits in adults (20.4%, 95%CI, 8.2% to 34.0%) was slightly higher than that in
the elderly (17.5%, 95%Cl, 3.2% to 33.9%). The increased risk found in males (22.7%,
95% CI, 9.8% to 37.1%) was higher compared to females (17.3%, 95% CI, 4.5% to
31.7%). When stratified by occupation, the risks were highest in unemployed &
economically inactive people (23.2%, 95% CI, 8.9% to 39.3%), followed by manual
workers (19.1%, 95% CI, -0.8% to 43.0%), and non-manual workers (10.9%, 95% CI, -
2.3% to 25.8%), respectively.
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Diabetic visits

There was an increase in diabetic visits by 26.3% (95% CI, 7.1% to 49.0%) per 1°C
increase in temperature in all people when temperature >29°C (Table 6.11). The estimated
risks of diabetic visits in adults (25.9%, 95% CI, 6.8% to 48.5%) were higher than those in
the elderly (17.5%, 95% CI, -4.5% to 44.6%). The increased risks in males (28.6%, 95%
CI, 7.7% to 53.6%) were slightly higher than females (23.3%, 95% CI, 3.0% to 47.7%). For
occupation, the significant, positive effects of hot temperature were found in non-manual
workers (32.5%, 95% CI, 8.7% to 61.6%) and in unemployed & economically inactive
people (24.0%, 95% Cl, 2.9% to 49.5%), whereas a non-significant, negative effect was
found in manual workers (-2.2%, 95% Cl, -22.9% to 34.4%).

Intestinal infectious visits

In general, for each 1°C increase in temperature (no threshold), there was an increase in
intestinal infectious visits for all diseases, but the increased risks were not statistically
significant at 5% level for all diseases (Table 6.12). There was a 2.6 % (95% CI, 0.4% to
4.8%) increase in the visits per 1°C increase in temperature in all people. The smallest,
non-significant, increase of 0.2% (95% Cl, -2.7% to 3.2%) was found in children, while the
largest, significant increase of 7.7% (95% CI, 0.2% to 15.6%) was found in the elderly.

Other visits

Most estimated effects of temperature on ‘other’ visits were found to be statistically
significant at 5% level, but the effects were relatively small in all people and all subgroups
studied (Table 6.13). Overall, the risk estimates of ‘other’ visits of all groups of people
were very similar, which ranged about 0.6% to 5.5% only. The lowest estimate, but not
significant, was found in manual workers (0.6%, 95% CI, -3.4% to 4.8%), while the
highest, significant estimate was found in children (5.5%, 95% CI, 1.2% to 10.1%)).

Neoplasm visits

Neoplasms or cancers were not the main outcome of interest in this study at the first place.
However, due to the significant effects of temperature on ‘other’ visits (and admissions),
this raised a question about which particular sub-disease groups could be the contribution

of the effects. In general, diagnoses in ‘other’ disease groups vary greatly and therefore
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make it difficult to divide into subgroups. However, among several kinds of diseases in this
category, it was found that the visits and admissions due to neoplasms (ICD-10: C00-D48)
were relatively large count numbers compared to other diseases, which accounted for 6.1%
for the visits and 28.4% for the admissions. Therefore, further investigations of both air
pollution (results are shown later for hospital admissions only) and temperature effects on

this group were undertaken.

There was a significant association between hot temperature and neoplasm visits in this
study (though wide confidence intervals), as can be seen in Table 6.14. It was found that
there was an increase in neoplasm visits by 28.3% (95% Cl, 4.2% to 58.1%) among all
people for each 1°C increase in temperature above 29°C. In addition, the positive,
significant effect was shown in adults (29.8% increase, 95% CI, 4.1% to 61.9%), whereas
the negative, but not significant effects was shown in the elderly (15.4% decrease, 95% Cl,
-37.4% to 14.4%).

6.2.3 Effect modification by age, sex, and occupation

According to the results shown in Table 6.8-6.14, there was generally no evidence of effect
modification by subgroups (age, sex, and occupation) of people on the association between
temperature and daily out-patient visits in this study. There were only some significant

differences between subgroups obtained from the tests for heterogeneity.

6.2.4 Effect modification by season.

To investigate whether temperature effects on daily out-patient visits were modified by
season, the general relationships between temperature and the visits in each season: winter
(November-February), summer (March-May), and rainy (June-October) season, were
plotted separately. The plots of the relationships between temperature and the visits in each
season are shown in Figure 6.13. Overall, the somewhat linear relationships were seen in
each season for most health outcomes. Thus, the quantification of temperature effects in
different seasons was done by assuming that there was no temperature threshold. The risk
estimates of temperature effects for each 1°C increase in temperature in each season are

presented in Table 6.15.
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As can be seen, there were positive effects of temperature in all seasons for most health
outcomes, except only respiratory and circulatory visits. For each 1°C increase in
temperature, there was an increase in respiratory visits in rainy season, but a decrease in
winter and summer. For circulatory visits, the increase in the visits per 1°C increase in
temperature was found in summer and rainy season, but not in winter. Overall, there were
no significant differences between seasons, with only one exception, all-cause visits (p-
value =0.019). It was found that the temperature effect on all-cause visits was much higher
effects in summer (17.5% increase) than winter (2.1% increase) and rainy (3.0% increase)

se€asons.

6.3 Sensitivity analyses for out-patient visits series

To examine how using different approaches would have influenced the study results, two
sensitivity tests were performed for out-patient visit series. Firstly, with regard to model
distributional assumption, the effect estimates obtained by using negative binomial (NB)
regression (used in this study) were compared with those obtained by using overdispersed
Poisson (OP) regression (the conventional method commonly used in time series studies).
Secondly, to assess the adequacy of seasonal control, the effect estimates from choosing
different degrees of freedom for the splines of time in the models were explored. The
sensitivity of the results was tested for all main health outcomes (all people only). For air
pollution, the sensitivity of estimates was assessed for three pollutants: SO;, O3 and NO,,
since these pollutants mostly provided the notable associations with the health outcomes in

this study.

6.3.1 Results of the sensitivity tests for model distribution assumption

Table 6.16 presents the risk estimates of the effects of the selected pollutants on daily out-
patient visits obtained by using NB and OP models. Overall, the effects of air pollution
estimated by both models are relatively similar with some occurrences of opposite
directions of the estimates (one provided negative effects and another one provided positive

effects).

Table 6.17 shows the risk estimates of out-patient visits in association with 1°C increase in

temperature obtained by NB and OP models. As can be seen, the estimates derived from
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both models are broadly similar in terms of the direction of the effects (positive or

negative), with slightly higher estimates provided by NB model compared to OP model.

6.3.2 Results of the sensitivity tests for model seasonality

Varying degrees of freedom for time used for modelling was done to explore the impact of

the changes on the estimated effects of air pollution and temperature.

Degree of freedom for time and air pollution effects

Sensitivity of the results on air pollution effects when using different degrees of freedom
(df) were shown in Figure 6.14 to 6.16. As can be seen, there was no significant difference
in the estimated effects of the selected air pollutants (SO,, O3, and NO;) on daily out-
patient visits when changing degrees of freedom of the time splines from 1df to 10 df per

year.

Besides the estimated effects, model diagnostics was also examined in determining the
impact of different degrees of freedom for the time splines on the study results. It was
found that the more degrees of freedom, the more negative autocorrelations provided by the
PACEF plots, which can be seen in Appendix 6A (Figure 6A-1 to 6A-3). When using |
df/year for the splines of date, the negative autocorrelations in the PACF plots were the
least compared to those when using higher degrees of freedom. In addition, the (1/df)
deviance values obtained by using 1df were also lowest compared to those obtained by
using higher degrees of freedom. However, the AIC values of the models with 1df were

slightly higher than those with higher degrees of freedom.

Degree of freedom for time and temperature effects

The estimated risks of 1°C increase in temperature on daily out-patient visits with respect
to different degrees of freedom of the time splines are illustrated in Figure 6.17. The
estimated splines curves of the risks and their confidence intervals can be seen in Appendix
6A (Figure 6A-4). It was found that there was an increase in temperature effects when
using 5 df upward for most health outcomes. Although there was a slight increase with
some fluctuations of the effects when using 5 df up, the overall effects were generally
stable. This suggested that the model was found to be adequately controlled when using 5

df upward, whereas the model was uncontrolled when using 1-4 df of the spline for time.
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Model diagnostics for temperature effects

The model diagnostics for temperature effects with regard to changing degrees of freedom
were also examined (for all-cause visits only). This can be seen in Appendix 6A (Figure
6A-5). Similar to the model diagnostics for air pollution effects, the PACF plots shows
higher presence of negative autocorrelations when increasing degrees of freedom. The use
of 1 df provided the least negative autocorrelations in comparison to the use of higher
degrees of freedom. When looking at the (1/df) deviance values, the model with 1df also
provided the lowest values compared to other models with higher degrees of freedom.
However, the AIC values derived from the model with 1df were slightly higher than those

derived from the models with higher degrees of freedom.

In brief, according to the above results, it was decided to continue using 1df for time for
modelling air pollution effects since there were little changes of the estimated effects.
Howeve‘r, when modelling temperature effects, because the model was stabilised when
using 5 df up, the core model with the use of 6 df for time was chosen in the present study.
At first, the use of 5df was used, but there were some problems with collenearity of
variables when running the model with 5df for time in Stata (reported by Stata, and this
made it unable to perform the estimations). Therefore, 6df was selected for the modelling
temperature effects instead because it provided the lowest values of overdispersed

parameters, which were very similar to using 5df (¢=1.12 for using 5df, and ¢=1.13 for

using 6df).

Estimation of fitted values over time with regard to the choice of seasonal adjustment

As described previously in the analytical method section in Chapter 3, dummy variables of
month of the visits over the study period (i.movisit 1-48, 4-year data) were used to control
for seasonality in this study with respect to different number of hospitals contributing to the

6 %Y, the use of dummy variables of

data in each month. According to Schwartz et al 199
the month of the study may cause an over specifying the model. Thus, in addition to
examining the model diagnostics, scatter plots of the fitted values of all-cause visits over
time (date) when modelling without adjusting for anything and with adjusting for only
‘i.movisit” were also explored to see whether this dummy variables reasonably captured the

changes of the outcome over the study period, which can be seen in Appendix 6B (Figure
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6B-1 and 6B-2). As shown in the Figure, the use of month of the visits over the study

period (1-48) was presented an adequate control for the changes of the health outcome over

time.

Summary of out-patient visits series:

Air pollution effects

There was little evidence of air pollution effects on daily out-patient visits in Chiang
Mai in the present study. The effects were found to be larger for SO, followed by
03, and NO; respectively, although imprecisely estimated.

The use of lag 0-4 days for the investigation were sufficient to capture the short-
term effects of air pollution since lag effects were predominantly found at lag 2-3
days.

There was no evidence of effect modification of air pollution by age, sex,
occupation, and season in the present study as there were generally no statistically
significant differences between subgroups. However, the air pollution effects were
seen to be stronger in the elderly and in manual workers for some pollutants for
some diseases.

By comparison, there was no significant difference in air poliution effects between
those obtained by single pollutant models and those obtained by two-pollutant

models.

Temperature effects

There was some significant evidence of hot temperature effects on daily out-patient
visits in the present study. The most significant effects of temperature were found
for diabetic visits and circulatory visits (though wide confidence intervals). For each
1°C increase in temperature, there was an increase of 26.3% (95%CI, 7.1% to
49.0%) for diabetic visits and of 19.2% (95%CI, 7.0% to 32.8%) for circulatory
visits.

Because lag effects of temperature were mostly found at longer lag (0-13 days) and
did not increase or decrease beyond lag 13 days, the use of temperature at a long lag
(0-13 days) for the investigation was sufficient to capture temperature effects in this

study.
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There was little consistent evidence of effect modification by age, sex, and
occupation, although there were some noticeable differences between subgroups.
For example, the effects of temperature on some disease groups, such as all-cause,
circulatory, and diabetic visits, were found to be stronger in males than in females.

The temperature effects were partly modified by season. Some differences in the
magnitude and directions of the effects between seasons were shown, but most of

them were not significant.

Sensitivity analyses

There were no significant changes in the risk estimates of air pollution and
temperature effects obtained by NB models in comparison to those obtained by OP
models.

There was no significant impact of changing degrees of freedom of the time splines
on air pollution effects.

When increasing degrees of freedom of the time splines for temperature models, the

risk estimates increased considerably at 5df, but remained fairly stable after that.
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Table 6. 1 Risk estimates for single pollutant, distributed lag models for the effects of al0-unit
increase of a pollutant (one-unit increase for CO) on daily all-cause visits among all people in
Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO; (ppb) 0-1 day 0.931 0.841 1.029 0.162
0-4 days 1.047 0.909 1.205 0.525
NO,(ppb) 0-1 day 0.978 0.950 1.006 0.127
0-4 days 0.988 0.953 1.024 0.512
CO-8hr(ppm) 0-1 day 0.956 0.912 1.002 0.060
0-4 days 0.952 0.893 1.014 0.126
Os(ppb) 0-1 day 1.004 0.980 1.030 0.733
0-4 days 1.001 0.969 1.033 0.961
PM,(png/m’) 0-1 day 0.997 0.990 1.003 0.296
0-4 days 0.988 0.977 1.000 0.053
PM,s(ug/m’)  0-1 day 0.985 0.970 1.001 0.062
0-4 days 0.985 0.970 1.001 0.062

*The estimates are the sum of all lags.

Table 6. 2 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily respiratory visits among all people
in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 0.982 0.874 1.104 0.763
0-4 days 1.044 0.891 1.224 0.592
NO,(ppb) 0-1 day 1.010 0.977 1.045 0.541
0-4 days 1.007 0.966 1.049 0.749
CO-8hr(ppm)  0-1 day 0.994 0.941 1.051 0.835
0-4 days 0.989 0918 1.066 0.774
O:(ppb) 0-1 day 0.969 0.942 0.998 0.036
0-4 days 0.966 0.930 1.004 0.078
PM,¢(pg/m’) 0-1 day 0.998 0.992 1.004 0.457
0-4 days 0.997 0.990 1.005 0.435
PM,s(ug/m’)  0-1day 0.986 0.973 1.000 0.042
0-4 days 0.976 0.959 0.993 0.006

*The estimates are the sum of all lags.
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Table 6. 3 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily circulatory visits among all people
in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 1.112 0.940 1.315 0.216
0-4 days 1.222 0.972 1.536 0.086
NO,(ppb) 0-1 day 0.984 0.939 1.032 0.513
0-4 days 0.995 0.938 1.055 0.868
CO-8hr(ppm)  0-1 day 0.949 0.878 1.026 0.189
0-4 days 0.978 0.882 1.084 0.671
Os(ppb) 0-1 day 0.981 0.941 1.022 0.364
0-4 days 1.017 0.964 1.073 0.538
PM,o(ng/m*) 0-1 day 0.994 0.986 1.003 0.178
0-4 days 0.998 0.988 1.008 0.689
PM,s(ug/m’)  0-1day 0.976 0.955 0.997 0.028
0-4 days 0.980 0.953 1.006 0.134

*The estimates are the sum of all lags.

Table 6. 4 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily diabetic visits among all people in
Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 1.053 0.808 1.372 0.702
0-4 days 1.255 0.879 1.792 0.211
NO,(ppb) 0-1 day 1.004 0.932 1.082 0.910
0-4 days 0.990 0.903 1.086 0.832
CO-8hr(ppm)  0-1 day 1.003 0.888 1.133 0.960
0-4 days 0.944 0.803 1.111 0.488
Os(ppb) 0-1 day 0.980 0.919 1.047 0.554
0-4 days 0.985 0.906 1.071 0.726
PM,o(ng/m’) 0-1 day 0.996 0.983 1.009 0.530
0-4 days 0.993 0.977 1.009 0.380
PM,s(ug/m’)  0-1 day 0.981 0.950 1.013 0.240
0-4 days 0.968 0.930 1.008 0.111

*The estimates are the sum of all lags.
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Table 6. 5 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily intestinal infectious visits among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 0.830 0.637 1.082 0.168
0-4 days 0.876 0.616 1.247 0.462
NO,(ppb) 0-1 day 0.975 0.910 1.044 0.469
0-4 days 0.996 0.913 1.086 0.928
CO-8hr(ppm) 0-1 day 0.932 0.831 1.046 0.232
0-4 days 0.876 0.751 1.023 0.094
O;(ppb) 0-1 day 0.968 0911 1.028 0.288
0-4 days 0.963 0.891 1.041 0.342
PM,o(pg/m’) 0-1 day 0.987 0.976 0.999 0.033
0-4 days 0.985 0.970 1.000 0.047
PM, s(ug/m?) 0-1 day 0.962 0.932 0.993 0.018
0-4 days 0.981 0.942 1.021 0.337

*The estimates are the sum of all lags.

Table 6. 6 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase in air pollutants (one-unit increase for CO) on daily other visits among all people in
Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO; (ppb) 0-1 day 0.917 0.828 1.016 0.098
0-4 days 1.013 0.880 1.166 0.860
NO,(ppb) 0-1 day 0.979 0.951 1.008 0.150
0-4 days 0.978 0.943 1.014 0.226
CO-8hr(ppm) 0-1 day 0.951 0.907 0.996 0.034
0-4 days 0.935 0.877 0.997 0.040
Os(ppb) 0-1 day 1.011 0.986 1.036 0.392
0-4 days 1.025 0.993 1.058 0.131
PMo(pg/m®) 0-1 day 0.998 0.994 1.003 0.547
0-4 days 0.997 0.991 1.004 0.399
PM, s(ng/m’) 0-1 day 0.989 0.977 1.001 0.068
0-4 days 0.981 0.965 0.997 0.017

*The estimates are the sum of all lags.
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Table 6. 7 Risk estimates for single pollutant and two-pollutant models for a 10-unit increase
of a pollutant (average lag 0-4 days) on daily out-patient visits in all ages and in the elderly (>
65 year) in Muang, Chiang Mai, from October 2002 to September 2006.

Outcome Single pollutant SO, & O; SO, & NO, 0; & NO,
RR (95%CI) RR(95%CI) RR(95%CI) RR(95%CI)
All-cause
all ages SO, | 1.053 (0.918-1.208) | 1.050 (0.915-1.205) | 1.070 (0.930-1.231)
0; 1.015 (0.983-1.047) | 1.014 (0.982-1.047) 1.018 (0.986-1.051)
NO, | 0.985 (0.951-1.020) 0.981 (0.947-1.017) | 0.981 (0.947-1.016)
>65 year SO, | 1.122(0.967-1.303) | 1.120 (0.964-1.300) | 1.125 (0.966-1.311)
0; 1.013 (0.978-1.049) [ 1.011 (0.976-1.048) 1.013 (0.977-1.050)
NO, | 1.003 (0.965-1.042) 0.997 (0.958-1.037) | 1.000 (0.962-1.040)
Respiratory
all ages SO, | 1.054 (0.907-1.224) | 1.060 (0.913-1.232) | 1.052 (0.903-1.226)
0, 0.973 (0.939-1.009) | 0.973 (0.938-1.009) 0.972 (0.936-1.008)
NO, | 1.008 (0.976-1.041) 1.002 (0.963-1.042) | 1.010 (0.971-1.051)
>65 year SO, | 1.157 (0.871-1.537) | 1.148 (0.864-1.526) | 1.116 (0.836-1.491)
0, 1.034 (0.963-1.111) | 1.032 (0.961-1.109) 1.024 (0.952-1.103)
NO, | 1.054 (0.978-1.135) 1.048 (0.971-1.130) | 1.048 (0.971-1.131)
Circulatory
all ages SO, | 1.147(0.922-1.428) | 1.139 (0.914-1.418) | 1.034 (0.981-1.090)
0; 1.036 (0.983-1.092) | 1.034 (0.981-1.090) 1.040 (0.986-1.098)
NO, | 0.986 (0.931-1.043) 0.977 (0.921-1.035) | 0.977 (0.922-1.036)
>65 year SO, | 1.174 (0.908-1.519) | 1.169 (0.904-1.512) | 1.195 (0.918-1.556)
0; 1.024 (0.962-1.091) | 1.022 (0.960-1.089) 1.027 (0.964-1.095)
NO, | 0.990 (0.926-1.059) 0.980 (0.915-1.050) | 0.985 (0.920-1.054)
Diabetic
all ages SO, | 1.379 (0.983-1.933) | 1.385 (0.988-1.942) | 1.364 (0.966-1.926)
0, 0.975 (0.899-1.058) | 0.972 (0.896-1.054) 0.969 (0.892-1.052)
NO, | 1.030 (0.945-1.124) 1.014 (0.928-1.108) | 1.038 (0.950-1.134)
>65 SO, | 1.114(0.727-1.707) | 1.135 (0.741-1.738) | 1.105 (0.715-1.709)
0; 0.900 (0.811-0.998) | 0.899 (0.810-0.997) 0.893 (0.804-0.993)
NO, | 1.015 (0.909-1.134) 1.010 (0.902-1.131) | 1.040 (0.929-1.164)
Intestinal
infectious*
all ages SO, | 0.988 (0.719-1.357) | 0.989 (0.720-1.359) | 0.988 (0.715-1.367)
0; 0.982 (0.914-1.056) | 0.982 (0.914-1.056) 0.982 (0.912-1.057)
NO, | 0.999 (0.923-1.081) 1.000 (0.922-1.084) | 1.003 (0.925-1.087)
Other
all ages SO, | 1.029 (0.900-1.178) | 1.024 (0.895-1.172) | 1.054 (0.919-1.210) | 1.027 (0.995-1.060)
0, 1.021 (0.990-1.054) | 1.021 (0.989-1.053) 0.968 (0.935-1.003)
NO, | 0.974 (0.941-1.008) 0.971 (0.938-1.006)
>65 SO, | 1.073 (0.934-1.232) | 1.070 (0.932-1.230) | 1.076 (0.934-1.240) | 1.012 (0.978-1.047)
04 1.011 (0.978-1.046) | 1.010 (0.977-1.045) 0.998 (0.962-1.035)
NO, | 1.000 (0.965-1.037) 0.997 (0.960-1.034)

*There were insufficient intestinal infectious visits among the elderly (>65 year) for the analysis.
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Chapter 6 Regression results: Out-patient visits

Table 6. 8 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily all-cause visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95% CI
Group Mean * SD RR  Lower Upper p-value p-value®

All people 94320 84558 1.094 1.028 1.165 0.005 N/A
Age

0-14 years 11423 8388 1.066 0975 1.165 0.158

15- 64 years 63641 605.70 1.098 1.027 1.173 0.006

> 65 years 18634 15477 1.108 1030 1.193 0.006 0.798
Sex

Male 39795 32988 1.116 1.047 1.190 0.001

Female 54329 51564 1.063 0994 1.137 0.074 0.304
Occupation

Unemployed &

economically inactive 193,70 159.69 1.119 1.041 1.203 0.002
Non-manual workers 18946 12349 1.083 1.005 1.166 0.036
Manual workers 50.73 56.27 1.073 0.964 1.194 0.198 0.753

? Mean daily count of all-cause visits when T > 29°C (n = 266 days).
® p-value of the test for heterogeneity between groups.

Table 6. 9 Relative risk estimates distributed lag models (0-1 day) for temperature effects
(linear) on daily respiratory visits in Muang, Chiang Mai, from October 2002 to September
2006.

95% Cl1
Group Mean * SD RR Lower Upper p-value p-value®

All people 95.32 53.40 0991 0981 1.000 0.053 N/A
Age

3-14 years 38.28 20.58 0993 0980 1.006 0.295

15- 64 years 46.83 28.65 0990 0979 1.001 0.070

> 65 years 9.67 6.92 0.998 0.978 1.018 0.810 0.782
Sex

Male 44.40 24.40 1.005 0994 1.017 0.344

Female 50.45 29.86 0980 0969 0.991 0.000 0.002
Occupation

Unemployed &

economically inactive 18.02 10.74 0985 0970 0.999 0.042
Non-manual workers 23.02 1530 0.991 0.976 1.006 0.216
Manual workers 3.55 3.30 1.015 0.983 1.048 0.370 0.249

* Mean daily count of respiratory visits when there was no temperature threshold (n = 1387 days).
> p-value of the test for heterogeneity between groups.
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Chapter 6 Regression results: OQut-patient visits

Table 6. 10 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily circulatory visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95% CI
Group Mean * SD RR Lower Upper p-value p-value®

All people 77.19 60.91 1.192  1.070  1.328 0.001 N/A
Age*®

0-14 years 0.75 1.37 - - - -

15- 64 years 46.96 37.72 1.204 1.082 1.340 0.001

> 65 years 29.28 2358 1.175  1.032  1.339 0.015 0.777
Sex

Male 32.20 2515 1.227 1.098 1371 0.000

Female 4491 3644 1.173 1.045 1.317 0.007 0.582
Occupation

Unemployed &

economically inactive 20.21 17.37 1.245 1.084 1429 0.002
Non-manual workers 20.36 15.86 1.124  0.989 1.277 0.074
Manual workers 5.00 5.98 1.187 0971 1.450 0.094 0.564

 Mean daily count of circulatory visits when T >29°C (n = 266 days).
b p-value of the test for heterogeneity between groups.
¢ There were limited daily counts of circulatory visits among age 0-14 years for the analysis.

Table 6. 11 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily diabetic visits in Muang, Chiang Mai, from October 2002 to
September 2006.

95% ClI
Group Mean * SD RR Lower Upper p-value p-value®

All people 29.16 2344 1263 1.071 1490 0.006 N/A
Age*®

0-14 years 0.27 0.70 - - - -

15- 64 years 19.71 16.16 1.259 1.068 1.48S 0.006

> 65 years 9.07 7.82 1.175 0955 1.446 0.128 0.609
Sex

Male 12.02 9.38 1.286 1.077 1.536 0.006

Female 17.13 1479 1233 1.030 1.477 0.023 0.744
Occupation

Unemployed &

economically inactive 9.49 8.36 1.197 0983 1458 0.074
Non-manual workers 8.27 7.24 1.374 1.120 1.685 0.002
Manual workers 1.65 2.03 0.901 0.647 1.255 0.539 0.104

* Mean daily count of diabetic visits when T >29°C (n = 266 days).
® p-value of the test for heterogeneity between groups.
¢ There were limited daily counts of diabetic visits among age 0-14 years for the analysis.
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Chapter 6 Regression results: Out-patient visits

Table 6. 12 Relative risk estimates for distributed lag models (0-1 day) for temperature effects
(linear) on daily intestinal infectious visits in Muang, Chiang Mal, from October 2002 to
September 2006.

95% CI1
Group Mean * SD RR  Lower Upper p-value p-value®

All people 9.21 5.56 1.026 1.004 1.048 0.018 N/A
Age

0-14 years 3.89 2.74 1.002 0973 1.032 0.895

15- 64 years 4.50 3.28 1.038 1.008 1.069 0.013

> 65 years 0.77 0.99 1.077 1.002 1.156 0.043 0.090
Sex

Male 4.25 297 1.042 1011 1.074 0.008

Female 491 3.42 1.009 0982 1.038 0.508 0.124
Occupation®

Unemployed &

economically inactive 1.96 1.74 1016 0973 1.061 0.462
Non-manual workers 2.06 1.89 1.023  0.979 1.070 0.310 0.833
Manual workers 0.31 0.62 - - - -

! Mean daily count of intestinal infectious visits when there was no temperature threshold (n = 1387 days).
® p-value of the test for heterogeneity between groups.
“There was too limited counts of intestinal infectious visits to analyze for manual workers.

Table 6. 13 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (linear) on daily other visits in Muang, Chiang Mai, from October 2002 to September
2006.

95% Cl1
Group Mean " SD RR Lower Upper p-value p-value®

All people 42244 25286 1.037 1.015 1.05% 0.001 N/A
Age

0-14 years 49.53 31.80 1.055 1.012 1.101 0.012

15- 64 years 286.86 184.75 1.046 1.022 1.070 0.000

> 65 years 84.39 4337 1.007 0986 1.030 0.502 0.029
Sex

Male 181.58 10449 1.046 1.022 1.070 0.000

Female 237.73 15065 1.028 1.006 1.052 0.015 0.288
Occupation

Unemployed &

economically inactive 11474 7947 1034 1.008 1.060 0.010
Non-manual workers 127.35 78.99 1.051 1.022 1.080 0.000
Manual workers 28.73 28.53 1.006 0966 1.048 0.765 0.222

* Mean daily count of other visits when there is no temperature threshold (n = 1387 days).
® p-value of the test for heterogeneity between groups.
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Regression results: Out-patient visits

Table 6. 14 Relative risk estimates for distributed lag models (0-13 days) for temperature
effects (>29°C) on daily neoplasm visits in Muang, Chiang Mai, from October 2002 to

September 2006.
95% CI
Group Mean * SD RR Lower Upper p-value p-value”

All people 15.13 3059 1283 1.042 1.581 0.019 N/A
Age

0-14 years ¢ 0.57 1.07 - - - -

15- 64 years 11.54 24.00 1298 1.041 1.619 0.021

> 65 years 298 6.12 0846 0626 1.144 0.278 0.025
Sex

Male 4.49 894 1223 0940 1.590 0.134

Female 1063 2196 1.143 0918 1424 0.232 0.699
Occupation

Unemployed &

economically inactive 6.635 15301 1218 0.933 1.591 0.147

Non-manual 1.211 1.510 1.169 0.807 1.695 0.409

Manual workers 2.835 7280 0951 0.665 1.361 0.784 0.542

® Mean daily count of all-cause admissions when T > 29°C (n = 266 days).
® p-value of the test for heterogeneity between groups.
¢ There were limited count of neoplasm visits in children for the analysis.
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Chapter 6 Regression results: Out-patient visits

Table 6. 15 Risk estimates of daily out-patient visits per one degree Celsius increase in
temperature in different seasons in Maung, Chiang Mai, from October 2002 to September
2006.

95%CI
Outcome® Season * Mean SD RR Lower Upper p-value p-\'llllleb
All-cause Winter 989.74  600.47 1.021 0.978 1.065 0.349
Summer  1025.04 841.30 1.175 1.076 1.284 0.000
Rainy 890.67  624.05 1.030 0.924 1.148 0.592 0.019

Respiratory Winter 122:17 59.86 0.992 0.977 1.008 0318
Summer 78.40 43.81 0.992 0.970 1.014 0.463
Rainy 84.38 44.56 1.016 0.986 1.046 0.305 0.346

Circulatory Winter 94717  67.158 0.996 0.923 1.075 0.918
Summer 84.196  62.572 1.023 0.883 1.186 0.761
Rainy 74.565  53.404 1.019 0.854 1.217 0.832 0.936

Diabetic Winter 33.01 24.08 1.045 0.912 1.198 0.523
Summer 32.43 2567 1.171 0.942 1.455 0.155

Rainy 28.15 21.88 1.061 0.808 1.393 0.669 0.681
Intestinal Winter 10.01 5.74 1.036 0.998 1.075 0.061
infectious Summer 9.69 5.24 1.028 0.978 1.079 0.280

Rainy 8.19 5.39 1.045 0.975 1.120 0.217 0.928
Other Winter 47843  271.95 1.090 1.036 1.146 0.001

Summer 414.55 242.87 1.074 1.000 1153 0.049

Rainy 383.18 234.96 1.035 0.931 1.149 0.527 0.680

* A linear relationship was assumed for all seasons, winter: n = 481 days, summer: n = 368 days, and rainy: n
= 612 days.

® p-value for test for heterogeneity between seasons.

“Quantifying temperature effects at a long lag (0-13 days) for all diseases, except respiratory and intestinal
infectious admissions, which was done for the effects at a short lag (0-1 day).
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Table 6. 16 Risk estimates of daily out-patient visits in distributed lag models (0-4 days) for a
10-unit increase of a pollutant between using negative binomial regression (NB) and using
overdispersed Poisson regression (OP).

Negative binomial regression

Overdispersed Poisson regression

95%CI 95%Cl1
Pollutant Outcome RR Lower  Upper RR Lower  Upper
SO,
All-cause 1.047 0.909 1.205 0.995 0.881 1.125
Respiratory 1.044 0.891 1.224 1.029 0.882 1.201
Circulatory 1.222 0.972 1.536 1.155 0.939 1.42
Diabetic 1.25% 0.879 1.792 1.307 0.938 1.822
Intestinal infectious 0.876 0.616 1.247 0.870 0.603 1.254
Other 1.013 0.880 1.166 1.009 0.889 1.146
0;
All-cause 1.001 0.969 1.033 0.985 0.957 1.014
Respiratory 0.966 0.93 1.004 0.965 0.929 1.002
Circulatory 1.017 0.964 1.073 1.015 0.967 1.066
Diabetic 0.985 0.906 1.071 0.983 0.908 1.063
Intestinal infectious 0.963 0.891 1.041 0.964 0.891 1.044
Other 1.025 0.993 1.058 1.004 0.974 1.035
NO;
All-cause 0.988 0.953 1.024 0.977 0.947 1.008
Respiratory 1.007 0.966 1.049 1.005 0.966 1.046
Circulatory 0.995 0.938 1.055 1.016 0.965 1.069
Diabetic 0.99 0.903 1.086 1.019 0.935 1.11
Intestinal infectious 0.996 0.913 1.086 0.993 0.908 1.085
Other 0.978 0.943 1.014 0.970 0.939 1.002

Table 6. 17 Risk estimates of daily out-patient visits per one degree Celsius increase in
temperature (lag 0-13 days) between using negative binomial regression (NB) and using
Overdispersed Poisson regression (OP).

Negative binomial regression Overdispersed Poisson regression
Outcome 95%CI 95%CI
(terzlel;e;:;u ' | Coef. SE Rrr  Lower Upper vaﬁ:le Coef. SE o Lower Upper Vi?l:le
All-cause
(>29°C) 0.090 0032 1.094 1028 1.165 0.005 | 0052 0.032 1.053 0989 1.121  0.108
Respiratory*
(linear) 20,009 0005 0991 0981 1.000 0.053 |-0.007 0.005 0993 0984 1.002  0.147
Circulatory
(>29°C) 0175 0055 1.192 1070 1328 0001 | 0.160 0.053 1.173 1.059 1.301  0.002
Diabetic
(>29°C) 0234 0084 1263 1071 1490 0006 | 0.195 0082 1215 1035 1.426 0.017
Intestinal
infectious™*
(linear) 0.025 0011 1.026 1.004 1.048 0018 | 0.026 0.011 1.026 1.004 1.049 0.021
Other
(linear) 0.036 0011 1.037 1015 105 0.001 | 0.036 0.010 1.036 1016 1.057  0.001

*Temperature effects at short lag (0-1day) were examined for these two diseases.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 1 Risk estimates for single pollutant models for the effects of a 10-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily all-cause visits among
all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Regression results: Out-patient visits

Figure 6. 2 Risk estimates for single pollutant models for the effects of a 10-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily respiratory visits
among all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 3 Risk estimates for single pollutant models for the effects of a 10-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily circulatory visits
among all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Regression results: Out-patient visits

Figure 6. 4 Risk estimates for single pollutant models for the effects of a 10-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily diabetic visits among
all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Regression results: Qut-patient visits

Figure 6. 5 Risk estimates for single pollutant models for the effects of a 10-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily intestinal infectious
visits among all people in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 6 Risk estimates for single pollutant models for the effects of a 10-unit increase of a
pollutant (one-unit increase for CO) in different lags (0-4 days) on daily other visits among all
people in Muang, Chiang Mai, from October 2002 to September 2006.
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Regression results: Out-patient visits

Figure 6. 7 Risk estimates for single pollutant, distributed lag models (0-4 days) for al0-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in different age
groups in Muang, Chiang Mai, from October 2002 to September 2006.

Note: 1. C = Children (0-14 years), A = Adult (15-64 years), E = Elderly (> 65years).
2. There were limited counts to analyze for children for circulatory and diabetic visits, and

for the elderly for intestinal infectious visits.
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Chapter 6 Regression results: Out-patient visits

Figure 6. 8 Risk estimates for single pollutant, distributed lag models (0-4 days) for al0-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in males and
females in Muang, Chiang Mai, from October 2002 to September 2006.

Note: M = Male, F = Female.
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Figure 6. 9 Risk estimates for single pollutant, distributed lag models (0-4 days) for al0-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in different
occupational groups in Muang, Chiang Mai, from October 2002 to September 2006.

Note: U = unemployed & economically inactive people, N = non-manual workers, M = manual workers.
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Figure 6. 10 Risk estimates for single pollutant, distributed lag models (0-4 days) for al10-unit
increase of a pollutant (one unit increase for CO) on daily out-patient visits in different
seasons in Muang, Chiang Mai, from October 2002 to September 2006.

Note: W = Winter, S = Summer, R = Rainy.

6.10a) All-cause visits

s02 NO2

]I ﬂml%*‘m

CO-8hr 03 PM-10 PM-2.5

6.10b) Respiratory visits

$02 NO2 CO-8hr 03 PM-10 PM-2.5

Pty

W S R W S R W 8§ R W S ﬂ W S R W S ﬁ
season
Graphs by pollutant

*The upper limits were truncated at 1.4.

6.10c) Circulatory visits

802 NO2 CO-8hr 03 PM-10 PM-2.6

o~

15
i

—T—7 7T T—T—T T—T—T T—T—T T—T—
W TIROW S RN T W TR N TR W R
season

Graphs by pollutant

*The upper limit was truncated at 2.0.

6.10d) Diabetic visits

s02 NO2 CO-8hr 03 PM-10 PM-2.5

25
i

L2
& &
555 ¢ 3 -Q—'—}-i—r—i- :
“ 4 n-l
ey T ity ey | g e —y———y e OyeieyS e Sy—— Spey ey Ryt
R R o W BT TGN e W R W TR W S NG T e IR N T R RN R W R
season season
Graphs by pollutant Graphs by pollutant

*The upper limits were truncated at 2.0.

6.10e) Intestinal infectious visits

PM-10 PM-25
<]

,WQHHM

)

RR

season
Graphs by pollutant

*The upper limits were truncated at 1.5, limited counts

to analyze for PM, s effects in all seasons.

Sp———
WSRWSRW!RW&RWSRWSR

*The upper limits were truncated at 2.5.

6.10f) Other visits

802 NO2 CO-8hr 03

RR
1 12
e ——=

s T ™ T T s oty - mpo——
RW 8 RW 8 RW 8 RW § R
season

I rvp—— y——
Wi ROW R

Graphs by poliutant

138



Chapter 6 Regression results: Out-patient visits

Figure 6. 11 General relationships between daily out-patient visits and temperature at both
short lag (0-1 day) and long lag (0-13 days) in Muang, Chiang Mai, from October 2002 to
September 2006.

Note:

-Relationship between temperature and daily out-patient visits, adjusting for day of the week, holidays, month
of the study (1-48), Thai new year, International new year, influenza, AR term at lag 1,7,14,21, 28, humidity,
rain, SO,, and Os.

-The x-axis represents temperature range (°C), and the y-axis represents the estimated relative risk (RR) of
daily out-patient visits. The centre line in each graph is the estimated spline curve, and the upper and lower
lines are the 95 percent confidence limits.

-The left graphs of each disease group show the relationship for temperature at a short lag (0-1 day), whereas
the right graphs of each disease group show the relationship for temperature at a long lag (0-13 days).
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6.11d) Diabetic visits
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Figure 6. 12 Temperature effects on daily out-patient visits in different specified lags (0, 1, 2,
3-4, 5-8, and 9-13 days) in Muang, Chiang Mai, from October 2002 to September 2006.
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Figure 6. 13 General relationships between daily out-patient visits and temperature in
different seasons in Muang, Chiang Mai, from October 2002 to September 2006.
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6.13d) Diabetic visits (average temperature 0-13 days)

w

Winter
Diabetic visits in winter

Summer

Diabetic visits in summer

Rainy

Diabelic visits in rainy season

2 2 » 2%

2l2Armlo-'rmv‘.vzénI!-lhl'm'c:)i Awwnmo-llun('c);o i Awgmwmno?!’ldm'c) ;’ »
6.13¢) Intestinal infectious visits (average temperature 0-1 day)
Winter Summer Rainy

Intestinal infectious visits in winter

Intestinal infectious visits in summer

Intestinal infactious visits in rainy season

24 % k]
Average Temperature 0-1 day(*c)

2% 30
Average Temporature 0-1 day(*c)

6.13f) Other visits (average temperature 0-13 day)
Winter

25

Other visits in winter

Summer

Other visits in summer

2 P
Avarage Tomparature 0-1 day(*c)

Rainy

Other visits in rainy season

4

2 % % »
Average Temperature 0-13 days(*c)

» 2 »
Average Temperature 0-13 days(°c)

24

143



Chapter 6 Regression results: Out-patient visits

Figure 6. 14 Risk estimates of daily out-patient visits using different degrees of freedom per
year for a 10-unit increase of SO, at lag 0-4 days.
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Figure 6. 15 Risk estimates of daily out-patient visits using different degrees of freedom per
year for a 10-unit increase of O; at lag 0-4 days.
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Figure 6. 16 Risk estimates of daily out-patient visits using different degrees of freedom per
year for a 10-unit increase of NO, at lag 0-4 days.
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Figure 6. 17 Risk estimates of daily out-patient visits per one degree Celsius increase in
temperature in Muang, Chiang Mai, from October 2002 to September 2006.
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Chapter 7 Regression results: Hospital admissions

This chapter provides the regression analysis results of air pollution and temperature effects
on daily hospital admissions in Muang, Chiang Mai, from October 2002 to September
2006. First of all, the association between air pollution and hospital admissions are
presented. Then, the association between temperature and hospital admissions are

illustrated.

7.1 Air pollution and hospital admissions

Similar to out-patient visits, the results described in this chapter suggested the linear
relationship between air pollution and hospital admissions. The risk estimates of air
pollution on hospital admissions were also employed the same method used for the out-
patient visits. The results were the estimate effects of a 10-unit increase of a pollutant, but
one-unit increase for CO. The lag structure of air pollution effects are presented first,
followed by the regression results obtained from the single pollutant models and two

pollutant models respectively.

7.1.1 Lag structures of air pollution effects

The distributed lag model was employed to determine air pollution effects on the exposure
day and up to 4 subsequent days. It was found that the estimated effects of air pollution
were generally fluctuated over lag 0-4 day period, and were not statistically significant.
Some positive significant effects were occasionally found for some pollutants such as SO,
and CO, which might be due to chance. The estimated effects on main health outcomes are

described below.

All-cause admissions
Overall, the effects of air pollutants on all-cause admissions were non-significant and were
slightly fluctuated over 1-4 days after exposure (Figure 7.1). However, there were

significant effects on daily all-cause admissions at lag 2 days for SO, and lag 0 day for O;.

Respiratory admissions
The effects of air pollutants on respiratory admissions were found to be non-significant and

reverted to RR = 1 over 2-4 days after exposure, except only SO, effects that tended to
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increase slightly (Figure 7.2). A significant, positive effect of CO was found at lag 1 day,
while the significant effect of O3 was found to be positive at lag 0 day, but negative at lag 1

day.

Circulatory admissions

In general, the effects of air pollutants on circulatory admissions were not significant, with
little fluctuations over lag 0-4 days (Figure 7.3). However, while the effects of most
pollutants were relatively stable, the effects of O; gradually declined with time. The
positive significant effects of CO on daily circulatory admissions were found at lag 1 day,

while the negative significant effects PM,o were found at lag 2 days.

Diabetic admissions

There was no significant effect of air pollution on daily diabetic admissions over lag 0-4
days (Figure 7.4). Generally, the estimated effects of all pollutants slightly fluctuated over
the period, with greater estimated effects at lag 2 days.

Intestinal infectious admissions

The overall estimated effects of air pollution on daily intestinal infectious admissions were
found to be non-significant (Figure 7.5). However, some significant effects were
occasionally found. The only one significant, positive effect was found at lag 3 days for
PM, 5, whereas the significant, negative effects were found at lag 1 day for CO and at lag 2

days for Os.

Other admissions
Generally, there was no significant effect of air pollution on daily other admissions (Figure
7.6). One positive effect on other admissions was found on lag 1 day, while the rest of the

estimated effects were negative or centred around one.
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7.1.2 Air pollution effects on daily hospital admissions

The estimated effects presented in this section were the sum of all lags, which were lag 0-1
day and lag 0-4 days. In general, the overall estimated effects were found to be non-
statistically significant. The greater estimates were found for SO,, O3, and CO than for
other pollutants. The effects of air pollution on each selected health outcome are detailed as

follows.

All-cause admissions

There were two pollutants: SO, and Os that provided positive effects on daily all-cause
admissions, but none of the estimates were not statistically significant (Table 7.1). At lag
0-4 days, a 10-unit increase of SO, was associated with a 2.6% (95% CI, -9.9% to 16.9%)
increase in all-cause admissions and of O3 was associated with a 0.4% (95% ClI, -2.4% to
3.4%) increase in all-cause admissions. In contrast, the rest of selected pollutants (NO,
CO, PM,y and PM,s) provided negative (with some significant) effects on all-cause

admissions.

Respiratory admissions

Although imprecisely estimated, the larger effects on daily respiratory admissions were
found for SO,, followed by CO and Os, respectively (Table 7.2). For example, at lag 0-4
days, there was an increase in respiratory admissions of 41.0% (95% ClI, 1.0% to 97.0%)
per 10-unit increase of SO, of 5.9% (95% CI, -8.8% to 22.9%) per one-unit increase of
CO, and of 1.5% (95% CI, -5.6% to 9.2%) per 10-unit increase of O;. The negative,

estimated effects were found for NO,, PM;o and PM; s, but none of them was significant.

Circulatory admissions

The non-significant, positive effects of SO, and CO on daily circulatory admissions were
found for both lag 0-1 day and lag 0-4 days (Table 7.3). For instance, the circulatory
admissions increased by 5.0% (95% CI, -14.9% to 29.5%) at lag 0-1 day, and by 8.2%
(95% CI, -18.8% to 44.1%) per 10-unit increase of SO,. there were negative effects for
both lags for NO, and PM, 5, whereas there were positive effects at lag 0-1 day and negative
effects at lag 0-4 days for Os and PM;o. However, all of the estimates effects were not

statistically significant.
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Diabetic admissions

The overall estimated effects of air pollution on daily diabetic admissions were not
significant, and mostly negative (Table 7.4). There were only two positive effects, which
were found for SO, and CO at lag 0-4 days. The large estimates of 40.1% (95% CI, -50.5%
to 96.5%) increase in diabetic admissions were found to be associated with a 10-unit
increase of SO, while the small estimates of 0.5% (95% CI, -38.0% to 62.9%) were found
to be associated with one-unit increase of CO, but these estimates were imprecise as the Cls

were considerably wide.

Intestinal infectious admissions

Generally, there were negative effects of air pollution on daily intestinal infectious
admissions (Table 7.5). As can be seen, the negative effects of PM;o were statistically
significant for both lags, with RR of 0.976 (95% ClI, 0.959 to 0.993) at lag 0-1 day, and of
0.977 (95% CI, 0.955-0.999) at lag 0-4 days. The significant, negative effect was also
found for CO at lag 0-1 day, with RR of 0.815 (95% CI, 0.685 to 0.970). There was only
one positive effects found for NO; at lag 0-4 days, with RR of 1.052 (95% CI, 0.920 to
1.202).

Other admissions

Similar to intestinal infectious admissions, the estimated effects of air pollution on daily
‘other’ admissions were mainly found to be negative, which were statistically significant
for some pollutants, such as NO, and PM;, (Table 7.6). O; was the only one pollutant that
provided positive effects on ‘other’ admissions. It was found that a 10-unit increase in O;
was in association with 2.0% (95% CI, -0.6% to 4.6%) increase in ‘other’ admissions at lag
0-1 days, and with 0.9% (95% CI, -2.2% to 4.2%) increase in ‘other’ admissions at lag 0-4
days.

Neoplasm admissions

As mentioned in previous chapter, due to the finding of some positive effects of air
pollution on ‘other’ visits and admissions, this raised a concern about which particular sub-
disease groups were the contribution of this pollution signal, though not significant. The

diagnoses in ‘other’ diseases vary enormously with several kinds of diseases, but there were
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relatively larger numbers of the visits/ admissions due to cancers or neoplasms (ICD-10:
C00-D48), with 6.1% for the visits and 28.4% for the admissions. Since previous literature
has shown evidence of the association between air pollution and cancers '¢*'%%, this study
explored further to see whether there was any effect of air pollution on neoplasm visits and
admissions. While there was no significant effect on neoplasm visits (not shown), there was
a significant effect of O3 (lag 0-1 day) on neoplasm admissions (Table 7.7), with an
increase in the admissions of 6.8% per 10-ppb increase in O3 level. When the data were
stratified by age and sex, the effects of O; (lag 0-1 day) remained significant for all
subgroups, but no statistically significant differences between subgroups (see Appendix
TA, p. 325-6).

7.1.3 Air pollution and effect modification

As mentioned previously in the descriptive chapter, there were considerable missing values
of occupation for hospital admissions data. Therefore, the occupation variable was
excluded for the analysis with regard to effect modification. There were three variables:
sex, age and season, to be examined whether they had modified air pollution effects in the

hospital admissions data.

1. Effect modification by age

Overall, there was no evidence of effect modification by age on the association between air
pollution and daily hospital admissions in this study (Figure 7.7). However, the estimated
effects of air pollution in children and the elderly were relatively larger than those in adults,
as can be seen from the respiratory admissions. None of the estimated effects in each age

group were statistically significant at 5% level.

11. Effect modification by sex

There was also no significant difference in the estimated effects of air pollution between
males and females in the present study (Figure 7.8). Although there was no significant
difference between sex groups, the air pollution effects on respiratory admissions in
females were slightly greater than those in males. However, there was a contradictory result
of air pollution effects between sex groups for circulatory admissions, which was found that
the CO effects were positive and larger in males, whereas the SO, effects were positive and

larger in females.
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I11. Effect modification by season

No evidence of interaction between season and air pollution effects on daily hospital
admissions was found in this study (Figure 7.9). For circulatory admissions, the effects of
CO and SO; were found to be greater in winter than other seasons, but no significant

difference in the effects between seasons.

7.1.4 Air pollution effects for two-pollutant models

By considering the results from single pollutant models, there were three pollutants: SO,
O3, and CO that provided more positive effects on daily hospital admissions than other
pollutants. Therefore, these three pollutants were chosen to be included in the two pollutant
models. The same methods used for the out-patient visits series were employed for
determining the effects of the three pollutants in the two-pollutant models for the hospital
admissions series. The results obtained from the two-pollutant models are illustrated in
Table 7.8. As shown in the Table, the overall estimated effects of each pollutant on daily
hospital admissions obtained by the two-pollutant models were relatively higher than those
obtained by single pollutant models. However, the increased estimates in the two-pollutant

models were not very consistent.

For example, when there were SO, and CO in the models, SO, effects were found to be
larger than those in the single pollutant models for all disease groups among people in all
ages. But, when looking at the elderly people (= 65 year), it was found that SO, effects
(when CO were included in the models) were smaller than those in the single pollutant
models (i.e. respiratory disease). For Os, the estimated effects among both all ages and the
elderly found in the two-pollutant models (either with SO, or with CO) were generally
higher than those found in the single pollutant models for all-cause, respiratory, and other
admissions, but not for circulatory, diabetic, and intestinal infectious admissions. The
estimated effects of CO when included O3 in models were relatively larger than those
obtained in the single pollutant models for all disease groups and for both all ages and the
elderly, but its effects when having SO; in the models, instead of CO, were not consistently

larger than those observed in the single pollutant models.
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7.2 Temperature and hospital admissions

The results of investigating the effects of temperature on daily hospital admissions are
presented in this section. It begins with the description of the general relationships between
temperature and hospital admissions. This is followed by the lag structure of the
temperature effects and their estimated effects on all selected health outcomes. The

investigation of effect modification by age, sex, and season was also included.

7.2.1 General relationships between temperature and hospital admissions

By adopting the same procedure used for out-patient visits series, the plots of general

relationship between temperature and hospital admissions are shown in Figure 7.10.

As can be seen, the use of temperature average at longer lag (0-13 days) better captured
short-term effects of temperature on daily hospital admissions than the use of temperature
average at a short lag (0-1 day) for most outcomes, except for respiratory and intestinal
infectious admissions. An obvious linear increase with increasing temperature was seen for
these two diseases. Similar to out-patient visit data, there was no cold effect found for

hospital admission data, but heat effects only.

Based on graphical visualization for temperature at a long lag (0-13 days), the temperature
threshold of 29°C was used for quantifying the short-term effects of temperature on all-
cause, circulatory, and other admissions, whereas a linear term of temperature was used for
diabetic admissions. Due to apparent linear increase of respiratory and infectious
admissions with increasing temperature at a short lag (0-1 day), a linear term of

temperature was used for quantifying temperature effects for these two diseases.

7.2.2 Lag structure of temperature effects

Temperature effects on daily hospital admissions for specified lag period are shown in
Figure 7.11. Overall, there were no significant effects of temperature over 0-13 day period.
The temperature effects were generally found to be larger at lag 1 and lag 2 days and
relatively stable from lag 3 to 13 days. There was no significant increase or decrease of the
temperature effects beyond lag 13 days in this study (not shown). Thus, the quantification
of temperature effects for long lag up to 13 days should suffice for the study.
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7.2.3 Temperature effects on hospital admissions

To quantify temperature effects, the distributed lag models were used, with adjustment for
all possible potential confounders like the out-patient visit series. As mentioned earlier, for
all-cause, circulatory, and other admissions, the linear relationship between temperature
and these three outcomes were assumed when temperature were above 29°C. For
respiratory, diabetic, and intestinal infectious admissions, the linear terms of temperature
was employed for quantifying temperature effects. The distributed lag model from the
exposure day and up to 13 previous days were carried out for most health outcomes, except
for respiratory and intestinal infectious admissions (short lag, 0-1day). Thus, the estimated
effects presented here were the sum of all lags from 0 to 13 days for long lag and from 0 to
1 day for short lag. Generally, for each 1°C increase in temperature, there were positive
effects of temperature on most health outcomes, but not consistently significant across
subgroups studied. The effects of temperature on each health outcome are described

separately as the followings.

All-cause admissions

Overall, there were positive effects of temperature on all-cause admissions, with only one
exception — the effects in children (Table 7.9). For each 1 °C increase in temperature above
29°C, there was an increase in all-cause admissions of about 4-12%. It was found that the
all-cause admissions in all people increased by 5.3% (95% Cl, -0.2% to 11.1%) per 1°C
increase in temperature above this threshold. The effects of hot temperature were found to

be largest and significant in the elderly, and slightly greater in males than in females.

Respiratory admissions

Generally, there was a small, positive increase in respiratory admissions in association with
1 °C increase in temperature (no threshold) (Table 7.10). The respiratory admissions in all
people significantly increased by 2.8% (95%CI, 0.6% to 5.0%) per 1°C increase in
temperature. The estimated effects of respiratory admissions were slightly greater in the

elderly than in other age groups, and also slightly greater in females than in males.
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Circulatory admissions

There was no evidence of hot temperature effects on daily circulatory admissions in the
present study (Table 7.11). When temperature above 29°C, there was a decrease in
circulatory admissions in most subgroups, and none of the estimates was significant. The
only one positive increase was found in the elderly, but the estimate was small and also

non-significant.

Diabetic admissions

Due to limited daily counts of daily diabetic admissions, the temperature effects could be
estimated for all people only (Table 7.12). The imprecise estimate was found for diabetic
admissions with very wide confidence interval. For each 1 °C increase in temperature, the

diabetic admissions were found to increase about 4.2% (95% CI, -11.6% to 22.9%).

Intestinal infectious admissions

There were significant, positive effects of temperature on intestinal infectious admissions in
all people, children, and male people, while there were non-significant, positive effects on
the admissions in adult, the elderly and female people (Table 7.13). Among all people, it
was anticipated that the intestinal infectious admissions significantly rose by 5.8% (95%
Cl, 2.3% to 9.3%) per 1 °C increase in temperature. The increase in intestinal infectious
admission with increasing temperature admissions was found to be significantly larger in
children (13.1% increase, 95% ClI, 6.4% to 20.3%) and male people (10.6% increase, 95%
Cl, 4.8% to 16.6%) in comparison to other subgroups.

Other admissions

Overall, there were positive effects of hot temperature on ‘other’ admissions, but most of
the effects were not statistically significant (Table 7.14). The stronger estimated effects
were found for the elderly and male people, while the overall estimated effects on all

people were not significant at 5% level.

Neoplasm admissions
Similar to the visits series, hot temperature effects on neoplasm admissions were also

examined, although not the main outcome of interest. There were generally positive, but not
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significant effects of hot temperature on neoplasm admissions (Table 7.15). The effects
were found much stronger in children and male people, but no statistically significant

differences between subgroups.

7.2.4 Temperature and effect modification by age and sex

Based on the results shown in Table 7.9-7.14, there was little evidence of effect
modification by age and sex on the association between temperature and daily hospital
admissions in this study. Overall, the estimated effects of temperature for most outcomes
seemed to be larger in the elderly and male people. However, the significant differences
between subgroups were found for intestinal infectious admissions only, with strongest

estimates in children and male people.

7.2.5 Effect modification by season

The effect modification by season for hospital admission series was investigated by the
same method used for out-patient visit series. The investigation of temperature effects was
undertaken by looking at the relationships between temperature and hospital admissions in
each season separately. The plots of the general relationships between them are illustrated
in Figure 7.12. As shown in the figure, there was generally no visible apparent temperature
threshold for all seasons. Therefore, a linear association was assumed for quantification
temperature effects for all seasons. The estimated effects in each season are illustrated in
Table 7.15. Overall, the positive, larger estimated effects of temperature were found in
summer than other seasons for most outcomes. However, there were no significant

differences in the estimated effects between seasons.
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7.3 Sensitivity analyses of hospital admissions series

For hospital admissions series, the effect of re-admissions on the estimated risks is of most
concern. It was speculated that even a small number of re-admissions could lead to the
distortions in the data, which might result in false conclusions ®°®). Since literature review
has suggested that temperature effects, such as cold effects, may delay for more than two
weeks after exposure > 18 the hospital admissions within 30 days could possibly due to
the same episode. Because the present study investigated not only air pollution effects, but
also temperature effects, it was decided to exclude the re-admissions within 30 days due to
with the same diagnosis from the data set for the hospital admission series. Therefore,
investigations of air pollution and temperature effects on the main outcomes of interest,
using different types of admission data: all admissions, single admissions only, and the one
used in the present study (with exclusions of re-admissions by the same diagnosis within 30
days), were undertaken. The risk estimates of air pollution effects and temperature effects

are presented in Table 7.16 and 7.17, respectively.

As can be seen, although different types of admission data were used for the analysis, the
estimated effects of selected air pollutants on hospital admissions were relatively similar,
except for SO; and CO effects. The estimated effects of SO, obtained from the data used in
the present study were higher than those obtained from the data with all admissions or
single admissions in all disease groups, with only one exception, diabetic admissions, that
the estimated effects were higher when using data with single admissions. Also, the
estimated effects of CO on most health outcomes, using the data with single admissions,
were slightly higher than those using the data with all admissions and with some exclusion
employed by this study. For temperature, overall, the risk estimates of temperature effects
on daily hospital admissions obtained by all types of admissions data were found to be
similar. Even though the estimated effects of temperature were slightly lower when using
single admissions data for diabetic admissions, the overall estimates were broadly the same

for the rest of the outcomes.
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Summary of hospital admissions series:

Air pollution effects

There was some evidence of the association between air pollution and hospital
admissions. Although the findings were non-significant at 5% level, the estimated
effects were larger, particularly for SO,, CO, and Os.

Since the effects of air pollution were generally found during 1-2 days after
exposure, the use of lag 0-4 days for the investigation was sufficient to capture the
short-term effects of air pollution in this study.

There was no evidence of effect modification by age, sex, and season.

The effects of the three selected air pollutants: SO,, CO, and Oj; in the two-pollutant
models were larger than those in the single pollutant models. But this finding was

not consistent across all disease groups.

Temperature effects

The positive effects of hot temperature were found for most diseases, but not
consistently significant across subgroups. Most of the significant effects were found
for respiratory and intestinal infectious admissions.

There were some findings, which were contradictory to out-patient visits series.
When temperature above 29°C, there was an increase in circulatory visits, while
there was a decline in circulatory admissions.

The investigation of temperature effects up to lag 13 days was sufficient since the
effects did not increase or decrease beyond this period.

There was little evidence of effect modification by age and sex.

The temperature effects on hospital admissions were partially modified by season.

Sensitivity analyses:

In the present study, the re-admissions in the data did not greatly affect the
estimated effects of temperature, but had some impacts on the estimated effects of
SO, and CO. That was, the SO, effects in this study (exclusion of re-admissions by
the same diagnosis within 30 days) were slightly larger than those used the data,
comprising all re-admissions or single admissions, while the CO effects in this

study were slightly smaller than those used other two types of admissions.
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Table 7. 1 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily all-cause admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 1.002 0913 1.101 0.959
0-4 days 1.026 0.901 1.169 0.699
NO,(ppb) 0-1 day 0.969 0.944 0.995 0.020
0-4 days 0.977 0.944 1.010 0.164
CO-8hr(ppm) 0-1 day 0.956 0.916 0.997 0.038
0-4 days 0.977 0.922 1.034 0.421
Os(ppb) 0-1 day 1.018 0.996 1.040 0.115
0-4 days 1.004 0.976 1.032 0.793
PM,o(pg/m’) 0-1 day 0.994 0.990 0.999 0.009
0-4 days 0.993 0.987 0.998 0.012
PM, s(ug/m’) 0-1 day 0.990 0.981 1.000 0.053
0-4 days 0.987 0.975 1.000 0.044

*The estimates are the sum of all lags.

Table 7. 2 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily respiratory admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 1.128 0.889 1.430 0.322
0-4 days 1.410 1.010 1.970 0.044
NO,(ppb) 0-1 day 0.998 0.933 1.068 0.956
0-4 days 0.976 0.894 1.064 0.578
CO-8hr(ppm) 0-1 day 1.064 0.953 1.189 0.269
0-4 days 1.059 0.912 1.229 0.456
O;(ppb) 0-1 day 1.012 0.956 1.071 0.685
0-4 days 1.015 0.944 1.092 0.681
PMo(ug/m’) 0-1 day 0.998 0.987 1.010 0.733
0-4 days 0.995 0.980 1.009 0.475
PM, s(ug/m’) 0-1 day 0.991 0.966 1.016 0.460
0-4 days 0.978 0.947 1.009 0.167

*The estimates are the sum of all lags.
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Table 7. 3 Risk estimates for single pollutant, distributed 1ag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily circulatory admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 1.050 0.851 1.295 0.649
0-4 days 1.082 0.812 1.441 0.591
NO,(ppb) 0-1 day 0.991 0.937 1.049 0.764
0-4 days 0.979 0911 1.052 0.557
CO-8hr(ppm) 0-1 day 1.001 0911 1.100 0.983
0-4 days 1.009 0.889 1.144 0.893
O;(ppb) 0-1 day 1.028 0.980 1.078 0.255
0-4 days 0.990 0.932 1.052 0.741
PM,o(ng/m’) 0-1 day 1.001 0.991 1.010 0.914
0-4 days 0.999 0.986 1.011 0.811
PM, s(pg/m’) 0-1 day 0.993 0.973 1.014 0.533
0-4 days 0.996 0.970 1.023 0.772

*The estimates are the sum of all lags.

Table 7. 4 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily diabetic admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO; (ppb) 0-1 day 0.821 0.384 1.758 0.612
0-4 days 1.401 0.495 3.965 0.525
NO,(ppb) 0-1 day 0.823 0.660 1.025 0.082
0-4 days 0.934 0.708 1.231 0.626
CO-8hr(ppm)  O-1 day 0.891 0.623 1272 0.524
0-4 days 1.005 0.620 1.629 0.984
Os(ppb) 0-1 day 0.998 0.834 1.195 0.985
0-4 days 0.990 0.792 1.237 0.928
PMo(pg/m’) 0-1 day 0.948 0.912 0.985 0.006
0-4 days 0.955 0.910 1.003 0.067
PM,s(pg/m’)  O-1 day 0.956 0.889 1.028 0.221
0-4 days 0.947 0.863 1.039 0.246

*The estimates the sum of all lags.
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Table 7. 5 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CQO) on daily intestinal infectious admissions
among all people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO; (ppb) 0-1 day 0.663 0.433 1.014 0.058
0-4 days 0.718 0.400 1.287 0.265
NO,(ppb) 0-1 day 0.953 0.860 1.057 0.366
0-4 days 1.052 0.920 1.202 0.459
CO-8hr(ppm) 0-1 day 0.815 0.685 0.970 0.021
0-4 days 0.853 0.676 1.076 0.179
Os(ppb) 0-1 day 0.988 0.908 1.075 0.782
0-4 days 0.944 0.847 1.052 0.295
PM,o(ng/m’) 0-1 day 0.976 0.959 0.993 0.006
0-4 days 0.977 0.955 0.999 0.043
PM, s(pg/m’) 0-1 day 0.976 0.941 1.012 0.194
0-4 days 0.987 0.942 1.035 0.592

*The estimates the sum of all lags.

Table 7. 6 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily other admissions among all people
in Muang, Chiang Mai, from October 2002 to September 2006.

95% Confidence Interval

Pollutant (unit) Lag RR* Lower Upper p-value
SO, (ppb) 0-1 day 0.996 0.893 1.111 0.942
0-4 days 0.988 0.849 1.149 0.875
NO,(ppb) 0-1 day 0.958 0.929 0.988 0.006
0-4 days 0.957 0.920 0.995 0.027
CO-8hr(ppm) 0-1 day 0.943 0.898 0.991 0.021
0-4 days 0.967 0.905 1.034 0.325
O;(ppb) 0-1 day 1.020 0.994 1.046 0.129
0-4 days 1.009 0.978 1.042 0.562
PMo(pg/m’) 0-1 day 0.993 0.988 0.998 0.007
0-4 days 0.991 0.984 0.998 0.007
PMz.s(pg/m3) 0-1 day 0.991 0.980 1.002 0.116
0-4 days 0.987 0.973 1.001 0.070

*The estimates the sum of all lags.
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Table 7. 7 Risk estimates for single pollutant, distributed lag models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) on daily neoplasm admissions among all
people in Muang, Chiang Mai, from October 2002 to September 2006.

95% Cl1
Pollutant (unit) Lag Coef. SE RR* Lower Upper p-value
SO; (ppb) 0-1 day 0.008 0.010  1.082 0.889 1.317 0.431
0-4days 0.017 0.014 1.190 0.913 1.551 0.199
NO»(ppb) 0-1 day -0.003  0.003 0.967 0915 1.023 0.248
0-4 days -0.006 0.004 0.945 0.881 1.013 0.111
CO-8hr(ppm) 0-1 day -0.111 0.047  0.895 0.817 0.981 0.017
0-4 days -0.093 0.061 0.911 0.809 1.027 0.127
Os(ppb) 0-1 day 0.007 0.002  1.068 1.022 1.116 0.004
0-4days 0.005 0.003 1.047 0.992 1.105 0.098
PM,o(pg/m’) 0-1 day -0.000 0.000 0.996 0.986 1.005 0.370
0-4 days -0.001 0.001 0.992 0.981 1.004 0.206
PM, s(ug/m’) 0-1 day -0.002 0.001  0.985 0.966 1.005 0.139
0-4 days -0.002 0.001  0.979 0.955 1.003 0.084

*The estimates are the sum of all lags.
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Table 7. 8 Risk estimates of single pollutant models and two-pollutant models for a 10-unit
increase of a pollutant (one-unit increase of CO) at average lag 0-4 days on daily hospital
admissions in all ages and in the elderly(= 65 year) in Mauang, Chiang Mai, from October

2002 to September 2006.
Outcome Single pollutant SO, & O, SO, & CO 0; & CO
RR (95%CI) RR(95%CI) RR(95%CI) RR(95%CI)
All-cause
all ages SO, | 1.024 (0.898-1.168) | 1.023 (0.897-1.166) | 1.038 (0.909-1.185)
0O 1.002 (0.976-1.028) | 1.004 (0.976-1.032) 1.004 (0.977-1.033)
CO | 0.977 (0.923-1.035) 0.972 (0.916-1.031) | 0.984 (0.928-1.043)
>65 year SO, | 0.922(0.741-1.147) | 0.932 (0.748-1.161) | 0.927 (0.743-1.157)
0O; 1.009 (0.967-1.053) | 1.018 (0.971-1.066) 1.010 (0.964-1.058)
CO 1.003 (0.913-1.103) 1.019 (0.925-1.124) | 1.008 (0.915-1.111)
Respiratory
all ages SO, | 1.383 (0.987-1.937) | 1.467 (1.045-2.058) | 1.402 (0.998-1.969)
0O; 1.000 (0.934-1.071) | 0.986 (0.915-1.061) 1.009 (0.936-1.087)
CO 1.061 (0.914-1.232) 1.035(0.890-1.203) | 1.072 (0.920-1.249)
>65 year SO, | 1.432(0.761-2.695) | 1.402 (0.738-2.665) | 1.362 (0.713-2.602)
0 1.009 (0.890-1.143) | 1.029 (0.896-1.182) 1.045 (0.910-1.200)
CO 1.231 (0.940-1.613) 1.208 (0.916-1.595) | 1.205 (0.912-1.592)
Circulatory
all ages SO, | 1.078 (0.807-1.440) | 1.048 (0.784-1.402) | 1.080 (0.805-1.447)
0, 0.994 (0.939-1.052) | 0.989 (0.929-1.052) 0.983 (0.923-1.046)
cO 1.006 (0.887-1.141) 1.005 (0.884-1.142) | 1.028 (0.903-1.169)
>65 year SO, | 1.030 (0.659-1.609) | 1.002 (0.639-1.574) | 0.948 (0.602-1.495)
0, 0.994 (0.910-1.085) | 0.986 (0.895-1.086) 0.978 (0.887-1.077)
CO 1.128 (0.928-1.370) 1.128 (0.924-1.378) | 1.149 (0.941-1.404)
Diabetic*
all ages SO, | 1.543 (0.541-4.401) | 1.355(0.471-3.900) | 1.559 (0.543-4.479)
O; 1.050 (0.850-1.298) | 1.008 (0.801-1.269) 1.005 (0.800-1.263)
CO | 0.967 (0.597-1.567) 0.959 (0.586-1.570) | 0.993 (0.605-1.631
Intestinal
infectious*
all ages SO, | 0.712(0.393-1.290) | 0.787 (0.437-1.417) | 0.760 (0.419-1.380)
0; 0.953 (0.860-1.057) | 0.944 (0.846-1.054) 0.954 (0.854-1.065)
CO 0.847 (0.672-1.066) 0.860 (0.678-1.090) 0.875 (0.691-1.108)
Other
all ages SO, | 0.987 (0.847-1.150) | 0.981 (0.842-1.143) | 1.001 (0.857-1.168)
0O, 1.006 (0.976-1.037) | 1.012 (0.980-1.046) 1.012 (0.980-1.046)
CO | 0.969 (0.907-1.035) 0.965 (0.901-1.033) | 0.971 (0.908-1.039)
>65 SO, | 0.850 (0.647-1.117) | 0.880 (0.669-1.158) | 0.875 (0.664-1.153)
0, 1.013 (0.960-1.068) | 1.024 (0.966-1.085) 1.013 (0.956-1.072)
CO | 0.963 (0.856-1.083) 0.987 (0.874-1.115) | 0.968 (0.858-1.093)

*There were limited counts of admissions among the elderly (=65 year) for the analysis.
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Table 7. 9 Relative risk estimates for distributed lag models (0-13 days) for

temperature effects (>29°C) on daily all-cause admissions in Muang, Chiang Mai.
from October 2002 to September 2006.

95% CI
Group Mean * SD RR  Lower Upper p-value p-value"

All people 110.50 50.78 1.053 0998 1.111 0.061
Age

0-14 years 15.35 8.69 0972 0.868 1.088 0.618

15- 64 years 71.47 3246 1.046 0984 1.113 0.151

> 65 years 23.59 1234 1.119 1.022 1.226 0.015 0.158
Sex

Male 52.50 2405 1.064 0994 1.139 0.076

Female 57.90 2785 1.038 0972 1.109 0.266 0.609

Mean daily count of all-cause admissions when T > 29°C (n = 266 days).
® p-value of the test for heterogeneity between groups.

Table 7. 10 Relative risk estimates for distributed lag models (0-1 day) for
temperature effects (linear) on daily respiratory admissions in Muang, Chiang Mai,
from October 2002 to September 2006.

95% Cl1
Group Mean * SD RR  Lower Upper p-value p-value®

All people 7.81 4.26 1.028 1.006 1.050 0.011
Age

0-14 years 1.88 1.62 1.028 0984 1.073 0.216

15- 64 years 3.70 2.64 1.027 0995 1.059 0.094

> 65 years 2.21 1.70 1.037 0997 1.078 0.070 0.925
Sex

Male 4.06 2.69 1.029 0999 1.060 0.055

Female 3.73 2.47 1.034 1.003 1.066 0.034 0.823

Mcan daily count of respiratory admissions when no temperature threshold (n=1387 days).
p -value of the test for heterogeneity between groups.
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Table 7. 11 Relative risk estimates for distributed lag models (0-13 days) for
temperature effects (>29°C) on daily circulatory admissions in Muang, Chiang Mai,
from October 2002 to September 2006.

95% CI
Group Mean * SD RR Lower Upper p-value p-value®

All people 11.18 5.86 0.979 0.867 1.105 0.730
Age°

0-14 years 0.27 0.60 - - - -

15- 64 years 6.52 3.74 0.941 0.801 1.106 0.462

> 65 years 4.39 272 1.021 0.844 1.234 0.832 0.521
Sex

Male 5.53 351 0952 0.801 1.132 0.579

Female 5.64 3.28 0999 0842 1.184 0.988 0.697

* Mean daily count of circulatory admissions when T > 29°C (n = 266 days).
® p-value of the test for heterogeneity between groups.
¢ There were limited daily counts of circulatory admissions among age 0-14 years for the analysis.

Table 7. 12 Relative risk estimates for distributed lag models (0-13 days) for
temperature effects (linear) on daily diabetic admissions in Muang, Chiang Mai, from
October 2002 to September 2006.

95% CI1
Group® Mean® SD RR Lower Upper p-value p-value®
All people 0.77 0.95 1.042 0.884 1.229 0.623 N/A

® Mean daily count of diabetic admissions when no temperature threshold (n = 1387 days).
® p-value of the test for heterogeneity between groups.
¢ There were very limited daily counts of diabetic admissions among subgroups for the analysis.

Table 7. 13 Relative risk estimates for distributed lag models (0-1 day) for
temperature effects (linear) on daily intestinal infectious admissions in Muang,
Chiang Mai, from October 2002 to September 2006.

95% CI
Group Mean * SD RR Lower Upper p-value p-value®

All people 3.31 2.49 1.058 1.023 1.093 0.001
Age

0-14 years 0.94 1.13 1.131 1.064 1.203 0.000

15- 64 years 1.98 1.85 1.023 0979 1.068 0.307

> 65 years 0.37 0.63 1.044 0942 1.156 0.415 0.032
Sex

Male 1.34 1.34 1.106 1.048 1.166 0.000

Female 1.96 1.73 1.027 0984 1.072 0.228 0.034

 Mean daily count of intestinal infectious admissions when no temperature threshold (n = 1387 days).
® p-value of the test for heterogeneity between groups.
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Table 7. 14 Relative risks for distributed lag models (0-13 days) for temperature
effects (linear) on daily other admissions in Muang, Chiang Mai, from October 2002
to September 2006.

95% CI1
Group Mean * SD RR Lower Upper p-value p-value®

All people 86.01 4299 1.053 0990 1.119 0.100
Age

0-14 years 12.00 7.54 0988 0.869 1.123 0.853

15- 64 years 57.67 28.07 1.039 0.971 1.112 0.264

> 65 years 16.27 9.83 1.130 1.010 1.266 0.033 0.275
Sex

Male 40.46 19.99 1.087 1.005 1.175 0.036

Female 45.47 2410 1.011 0939 1.089 0.769 0.187

? Mean daily count of other visits when temperature > 29°C (n = 266 days).
® p-value of the test for heterogeneity between groups

Table 7. 15 Relative risk estimates for distributed lag models (0-13 days) for
temperature effects (>29°C) on daily neoplasm admissions in Muang, Chiang Mai
from October 2002 to September 2006.

95% Cl1
Group Mean® SD Coef. SE RR  Lower Upper p-value p-value b

All people 19.19 1546 0.062 0.062 1.064 0942 1.202 0.315
Age

0-14 years 1.40 1.76 0.256 0.209 1.291 0.858 1.944 0.221

15- 64 years 1347 11.28 0.048 0.069 1.049 0917 1.201 0.487

> 65 years 431 3.81 0.019 0.107 1020 0.827 1.256 0.856 0.594
Sex

Male 7.81 6.97 0.173 0.087 1.189 1.003 1.410 0.046

Female 11.38 9.15 -0.036 0073 0965 0836 1.113 0.622 0.064

® Mean daily count of all-cause admissions when T > 29°C (n = 266 days).
® p-value of the test for heterogeneity between groups.
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Chapter 7 Regression results: Hospital admissions

Table 7. 16 Risk estimates of daily hospital admissions per one degree Celsius increase
in temperature in different seasons in Maung, Chiang Mai, from October 2002 to
September 2006.

95%CI
Outcome © Season " Mean SD RR Lower Upper p-value  p-value"
All-cause Winter 97.62 44.99 1.032 0.754 1.412 0.845
Summer 106:76 . 51.35 1.101 1.032 1.176 0.004

Rainy 107.12 . 4751 0.991 0.911 1.078 0.837 0.151
Respiratory Winter 7.78 4.53 1.039 1.001 1.078 0.043

Summer 7.60 4.22 1.052 1.003 1.104 0.037

Rainy 7.97 4.12 0.987 0.926 1.052 0.692 0.272
Circulatory Winter 11.46 5.87 0.951 0.863 1.048 0.313

Summer 10.81 5.98 1.075 0.941 1.229 0.289

Rainy 10.88 5.88 0.860 0.688 1.077 0.188 0.173
Diabetic Winter 0.68 0.86 1.032 0.689 1.545 0.880

Summer 0.84 1.00 0913 0.564 1.480 0.712

Rainy 0.80 0.99 1.315 0.562 3.079 0.528 0.760
Intestinal
infectious Winter 2.62 237 1.052 0.986 1.122 0.126

Summer 3.87 2.44 1.093 1.024 1.167 0.008

Rainy 3.46 2.47 1.022 0.927 1.127 0.664 0.492
Other Winter 73.70 37.65 1.059 1.010 1.109 0.017

Summer 83.42 43.18 L1115 1.036 1.200 0.004

Rainy 83.81 39.50 1.019 0.930 1.118 0.683 0.296

* A linear relationship was assumed for all seasons, winter: n = 481 days, summer: n= 368 days, and rainy:
n= 612 days.

® p-value of test for heterogeneity between seasons.

 Quantifying temperature effects at a long lag (0-13 days), except respiratory and intestinal infectious
admissions, which was done for the effects at a short lag (0-1 day).
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Table 7. 17 Risk estimates of daily hospital admissions per 10-unit increase of a
pollutant (one-unit increase for CO) for single, distributed lag models at lag 0-4 days,
using different types of admission data in Muang, Chiang Mai, from September 2002
to October 2006.

Excluded re-admissions within

Pollutant (unit) All admissions __ Single admissions 30 days with the same diagnosis*
All-cause
SO, (ppb) 0.997 0.999 1.026
(0.876-1.134) (0.876-1.139) (0.901-1.169)
NO, (ppb) 0.971 0.980 0.977
(0.940-1.004) (0.948-1.014) (0.944-1.010)
CO-8hr (ppm) 0.964 0.984 0.977
(0.910-1.021) (0.929-1.042) (0.922-1.034)
Os(ppb) 1.004 0.998 1.004
(0.977-1.032) (0.971-1.026) (0.976-1.032)
PM,o(pg/m’) 0.993 0.993 0.993
(0.987-0.998) (0.987-0.999) (0.987-0.998)
PM, s(ng/m’) 0.987 0.989 0.987
(0.975-1.000) (0.977-1.002) (0.975-1.000)
Respiratory
SO, (ppb) 1.327 1.323 1.410
(0.958-1.840) (0.924-1.894) (1.010-1.970)
NO; (ppb) 0.980 0.967 0.976
0.902-1.066) (0.881-1.061) (0.894-1.064)
CO-8hr (ppm) 1.047 1.075 1.059
(0.906-1.210) (0.917-1.260) (0.912-1.229)
Os(ppb) 1.029 1.008 1.015
(0.959-1.103) (0.933-1.089) (0.944-1.092)
PM,o(pg/m’) 0.997 0.993 0.995
(0.983-1.011) (0.978-1.009) (0.980-1.009)
PM, s(ug/m’) 0.987 0.976 0.978
(0.957-1.017) (0.943-1.010) (0.947-1.009)
Circulatory
SO: (ppb) 1.033 1.017 1.082
(0.779-1.369) (0.754-1.372) (0.812-1.441)
NO; (ppb) 0.973 0.979 0.979
(0.906-1.044) (0.908-1.055) (0.911-1.052)
CO-8hr (ppm) 0.993 1.026 1.009
(0.878-1.123) (0.900-1.170) (0.889-1.144)
Os(ppb) 0.980 0.983 0.990
(0.923-1.040) (0.923-1.047) (0.932-1.052)
PM,(ng/m’) 0.996 1.001 0.999
(0.984-1.008) (0.988-1.014) (0.986-1.011)
PM, s(pg/m’) 0.991 0.998 0.996

(0.966-1.017)

(0.971-1.026)

(0.970-1.023)

*Data used in the present study.

(Table 7.17 continues next page)
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Table 7.17 Risk estimates of daily hospital admissions, using different types of
admission data (continued).

Excluded re-admissions with the

Pollutant (unit) All admissions __Single admissions _same diagnosis within 30 days*
Diabetic
SO; (ppb) 1.341 1.592 1.401
(0.489-3.682) (0.538-4.709) (0.495-3.965)
NO; (ppb) 0.965 0.891 0.934
(0.737-1.263) (0.667-1.192) (0.708-1.231)
CO-8hr (ppm) 1.012 1.033 1.005
(0.631-1.623) (0.624-1.710) (0.620-1.629)
Os(ppb) 1.010 1.025 0.990
(0.813-1.254) (0.813-1.291) (0.792-1.237)
PM,o(pg/m*) 0.959 0.953 0.955
(0.915-1.006) (0.906-1.004) (0.910-1.003)
PM, 5(ug/m’) 0.963 0.940 0.947
(0.881-1.054) (0.851-1.039) (0.863-1.039)
Intestinal infectious
SO, (ppb) 0.731 0.677 0.718
(0.409-1.307) (0.373-1.231) (0.400-1.287)
NO, (ppb) 1.058 1.057 1.052
(0.926-1.209 (0.923-1.209) (0.920-1.202)
CO-8hr (ppm) 0.997 0.866 0.853
(0.986-1.008) (0.685-1.095) (0.676-1.076)
Os(ppb) 0.977 0.940 0.944
(0.955-0.999) (0.842-1.049) (0.847-1.052)
PM(pg/m’) 0.977 0.978 0.977
(0.955-0.999) (0.956-1.001) (0.955-0.999)
PM, 5(pg/m’) 0.983 0.987 0.987
(0.938-1.029) (0.941-1.035) (0.942-1.035)
Other
SO, (ppb) 0.970 0.962 0.988
(0.836-1.126) (0.827-1.118) (0.849-1.149)
NO, (ppb) 0.952 0.960 0.957
(0.916-0.989) (0.924-0.998) (0.920-0.995)
CO-8hr (ppm) 0.953 0.970 0.967
(0.892-1.018) (0.908-1.036) (0.905-1.034)
Os(ppb) 1.008 1.004 1.009
(0.977-1.041 (0.972-1.036) (0.978-1.042)
PM,o(ng/m’) 0.991 0.991 0.991
(0.984-0.997) (0.984-0.997) (0.984-0.998)
PM, 5(ug/m’) 0.987 0.989 0.987

(0.973-1.001)

(0.973-1.001)

(0.973-1.001)

*Data used in the present study.
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Table 7. 18 Relative risks of temperature effects on daily hospital admissions per one
degree Celsius increase in temperature for distributed lag models (0-13 days), using
different types of admission data in Muang, Chiang Mai, from September 2002 to

October 2006.
95% CI
Type of admission data Mean * SD RR Lower Upper p-value
All-cause (>29°C)
All 122.70 58.90 1.064 1.007 1.123 0.026
Single 98.89 42.77 1.051 0.996 1.110 0.072
Some excluded 110.50  50.78 1.053 0.998 1.111 0.061
Respiratory (linear) ©
All 8.22 4.39 1.024 1.003 1.045 0.026
Single 7.12 3.90 1.025 1.003 1.048 0.025
Some excluded ® 7.81 4.26 1.028 1.006 1.050 0.011
Circulatory (>29°C)
All 11.65 6.04 0.991 0.880 1117 0.884
Single 10.32 535 0.958 0.845 1.086 0.505
Some excluded ® 11.18 5.86 0.979 0.867 1.105 0.730
Diabetic (linear)
All 0.81 0.98 1.051 0.895 1.234 0.546
Single 0.71 0.89 1.022 0.860 1.214 0.805
Some excluded ® 0.77 0.95 1.042 0.884 1.229 0.623
Intestinal infectious (linear) ©
All 3.35 2,63 1.056 1.021 1.091 0.001
Single 3.19 242 1.056 1.021 1.092 0.002
Some excluded ® 3:31 2.49 1.058 1.023 1.093 0.001
Other (>29°C)
All 97.21 50.92 1.066 1.002 1:133 0.042
Single 76.34 35.81 1.056 0.993 1.122 0.082
Some excluded " 86.01 42.99 1.053 0.990 1.119 0.100

* Mean daily count of the admissions when temperature > 29°C (n = 266 days), and when no temperature

threshold (n = 1387 days).

® Re-admissions by the same diagnosis within 30 days were excluded, which were used in the present study.
‘ Temperature effects for short lag (0-1 day) were examined for these two diseases.
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Chapter 7 Regression results: Hospital admissions
Figure 7. 1 Risk estimates for single pollutant models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
all-cause admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 2 Risk estimates for single pollutant models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
respiratory admissions among all people in Muang, Chiang Mai, from October 2002
to September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 3 Risk estimates for single pollutant models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
circulatory admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Chapter 7 Regression results: Hospital admissions

Figure 7. 4 Risk estimates for single pollutant models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
diabetic admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Figure 7. 5 Risk estimates for single pollutant models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
intestinal infectious admissions among all people in Muang, Chiang Mai, from
October 2002 to September 2006.
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Figure 7. 6 Risk estimates for single pollutant models for the effects of a 10-unit
increase of a pollutant (one-unit increase for CO) in different lags (0-4 days) on daily
other admissions among all people in Muang, Chiang Mai, from October 2002 to
September 2006.
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Figure 7. 7 Risk estimates of for single pollutant, distributed lag models (0-4days) for
a 10-unit increase of a pollutant (one unit increase for CO) on daily hospital
admissions in different age groups in Muang, Chiang Mai, from October 2002 to

September 2006.

Note: 1. C = Children (0-14 year), A = Adult (15-64 year), E = Elderly (> 65 year)
2. There were limited counts to analyze in children for circulatory admissions, and in the elderly for

intestinal infectious admissions.
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Figure 7. 8 Risk estimates of for single pollutant, distributed lag models (0-4days) for
a 10-unit increase of a pollutant (one unit increase for CO) on daily hospital
admissions in males and females in Muang, Chiang Mai, from October 2002 to

September 2006.
Note: M = Male, F = Female
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Figure 7. 9 Risk estimates of for single pollutant, distributed lag models (0-4days) for
a 10-unit increase of a pollutant (one unit increase for CO) on daily hospital
admissions in different seasons in Muang, Chiang Mai, from October 2002 to

September 2006.

Note: W = Winter, S = Summer, R = Rainy season
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Figure 7. 10 General relationship between daily hospital admissions and temperature at both
short lag (0-1 day) and long lag (0-13 days) in Muang, Chiang Mai, from October 2002 to
September 2006.

Note:

-Relationship between temperature and daily hospital admissions, adjusting for day of the week, holidays,
month of the study (1-48), Thai new year, International new year, influenza, AR term at lag 1, humidity, rain,
SO,, and Os.

-The x-axis represents temperature range (°C), and the y-axis represents the estimated relative risk (RR) of
daily out-patient visits. The centre line in each graph is the estimated spline curve, and the upper and lower
lines are the 95 percent confidence limits.

-The left graphs of each disease group show the relationship for temperature at a short lag (0-1 day), whereas
the right graphs of each disease group show the relationship for temperature at a long lag (0-13 days).
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d) Diabetic admissions
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Chapter 7 Regression results: Hospital admissions

Figure 7. 11 Temperature effects on daily hospital admissions in different specified
lags (0, 1, 2, 3-4, 5-8, and 9-13 days) in Muang, Chiang Mai, from October 2002 to
September 2006.

a) All-cause admissions (29°C) b) Respiratory admissions (linear)
Temperature effects on all-cause admissions in all people Temperature effects on respiratory admissions in all people
5 c
8] W 3

RR
1
SRR
RR
1.02
1 L s
o
e
p o
e

T % T T T ) T
2 5-8 9-13 0 1 2 34 58 913
lag (day) lag (day)

CE

¢) Circulatory admissions (29°C) d) Diabetic admissions (linear)

Temperature effects on circulatory admissions in all people Temperature effects on diabetic admissions in all people

3 -
- &

9.
o o
0 1 2 y 58 913 0 1 2 ; 58 913
lag (day) lag (day)
e) Intestinal infectious admissions(linear) f) Other admissions (29°C)
Temperature effects on intestinal infectious admissions g Temperature effects on other admissions in all people

1.05
L
e
———————
RR

1

—

L

- Lot o J, I l l [ 1
2
@ 8- : y ~ v
i 2 34 58 913 0 1 2 58 913
\ lag (day) lag (day)

183



Chapter 7 : Regression results: Hospital admissions

Figure 7. 12 Plots of the general relationships between daily hospital admissions and
temperature in different seasons in Muang, Chiang Mai, from October 2002 to
September 2006.
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d) Diabetic admissions (average temperature 0-13 days)
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Chapter 8 Regression results: Linkage data

The regression analysis results from the linkage data series are presented in this chapter.
The linkage data was created by matching an individual record in the hospital admission
data with his/her individual record in the out-patient visit data (the method of linking can be
seen in chapter 3, section 3.5.8, p. 58). This was carried out to examine whether the risk of
hospital admissions due to short-term effects of air pollution and temperature increased by
history of previous out-patient visits before admissions. The estimated effects of air
pollution among people with and without history of previous visits before admissions are
described first. Then air pollution effects across different numbers of the visits prior to
admissions are illustrated. Due to small count numbers when stratified by age, sex, and
season, a modification of air pollution effects was examined for all causes only. Similarly,
temperature effects in the linkage series with regard to the frequency of previous visits

before admissions are also presented.

8.1 Air pollution effects

The main focus of this section is whether air pollution effects on hospital admissions were
modified by the history of out-patient visits prior to admissions. The effects of air pollution
on hospital admissions in the linkage data were estimated for a 10-unit increase of a
pollutant (one-unit increase for CO), which were the same as those done previously for the
out-patient visits and hospital admissions series. The method of analyses was also the same.
However, unlike previous result chapters, this chapter presents the estimated effects of air
pollution for single pollutant, distributed lag model for lag 0-4 days only (no estimate for
lag 0-1 day). The longer lag was chosen because the larger estimates of most pollutants in
this study were predominantly found beyond lag 0-1 day (mostly at lag 2-3 days).
Additionally, since the main interest was to see whether there was an increased risk with
respect to history of previous visits, not about lag effects, looking at one lag period should

be sufficient.
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8.1.1 Air pollution effects among people with and without history of out-patient visits

prior to hospital admissions

This section presents the comparison of the estimated effects of air pollution on hospital
admissions among people with and without history of out-patient visits prior to their
admissions. The risk of hospital admissions was estimated for all disease groups, except
only diabetic admissions, for which numbers were very small (mean of total daily counts =
0.2, SD = 0.5). The risk estimates of air pollution effects on hospital admissions among
people with and without history of the visits before admissions for specific disease groups
are shown in Table 8.1-8.5. By comparison, the stronger effects of air pollution in people
with history of the visits before admissions than those in people without history did not
show consistently across all diseases. In addition, there were only some pollutants that

exhibited significant differences between these two groups.

For all-cause admissions, the finding of more harmful or less protective effects in people
with history than people without history was found for most pollutants, except NO, and O;.
But there were only SO, and CO that exhibited significant differences between the two
groups. An increased risk of 25.5% (95% CI, -2.6% to 60.3%) was found in people with
history of the visits prior to admissions, while a decreased risk of 49.8% (95% Cl, -78.1%
to 14.6%) was found in people without history in association with a 10-unit increase in SO
(ppb). According to the test for interaction, this difference was significant (p-value =
0.039). Although the negative effects of CO were found for both groups, people without
history of the visits had higher protective effects (35.1% decrease, 95% Cl, -52.5% to -
11.4%) than people with history (8.7% decrease, 95% CI, -18.0% to 1.6%) per one-unit
increase of CO (ppm). This difference was also significant (p-value = 0.042).

For respiratory admissions, the finding of more harmful effects in people with history than
people without history was found for all pollutants, although the differences between the
two groups were not statistically significant at 5% level. Similar finding was seen for
circulatory admissions, with only one exception — O; effects (which were positive in people
without history, but negative in people with history). There was a borderline significance
between the two groups found for PM,;s effects on circulatory admissions (p-value =

0.057).
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In contrast to other disease groups, for intestinal infectious admissions, there were harmful
effects in people without history, but protective effects in people with history found for SO,
and CO, whereas there was an opposite direction of this pattern found for the rest of the
pollutants. However, none of the estimated effects were significant, and also no significant

differences in the estimated effects between the two groups were observed.

For ‘other’ admissions, the patterns of air pollution effects were found to be similar to all-
cause admissions, particularly for SO, and CO effects, which exhibited more harmful or
less protective effects in people with history than in people without history. The differences
in SO; and CO effects between the two groups were also significant. However, the opposite
direction of the effects (less harmful or more protective) was observed for some other
pollutants. However, there was only one borderline significance between the two groups,

which was found for NO; effects (p-value = 0.059).

To sum up, there was no evidence of an increased effect of air pollution in people with
history of out-patient visits prior to admissions compared to that in people without history
as this pattern was not consistent across the studied pollutants or diseases. Approximately,
there were about half of the estimates followed this pattern, while there were about half of

the estimates showed the opposite direction of this pattern.

8.1.2 Do air pollution effects differ in accordance with the numbers of out-patient
visits prior to hospital admissions?

Besides looking at the overall effects of air pollution on hospital admissions in people with
and without history of the visits prior to admissions, the visits were also broken down into
different group numbers (1, 2-5, and >S5 visits) in order to see whether there were any
changes of air pollution effects across these subgroups. The °0 visit’ group, representing the
admissions without history of the visits prior to admissions, was kept as a baseline for
comparison. The effects of air pollution in each subgroup were examined first. Then, test
for trends of air pollution effects across the numbers of previous visits before admissions
was undertaken (see analytical methods in chapter 3, p. 64). Like all previous analyses, the
quantification of air pollution effects in each subgroup as well as the test for trends of air
pollution effects were done for a 10-unit increase of all pollutants, but one-unit increase of
CO.
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Figure 8.1 presents the plots of the estimated effects of each pollutant on hospital
admissions across different group numbers of previous visits before admissions. As can be
seen, SO, exhibited an increasing pattern of the effects with increasing number of the out-
patient visits prior to admissions for most diseases, except for respiratory and intestinal
infectious admissions. The relative risk of this increasing trend (though not significant) is
shown in Table 8.7. For example, there was an increase in all-cause admissions of 13.0%

(95% Cl, -9.0% to 42.0%) for a 10- unit increase in SO, (ppb) per visit-category.

The somewhat increase in air pollution effects across the history of the visits was also
found for some other pollutants, such as the effects of CO and PM;o on all-cause,
respiratory, and ‘other’ admissions, but the effects did not always increase steadily with
increasing number of previous visits. The results of tests for trends (Table 8.7) showed an
increased risk of 2.0% (all-cause), 7.0% (respiratory), and 4.0% (other) for one-unit
increase of CO (ppm) per visit-category, but no trend for PM,o. However, none of the tests

were statistically significant.

As shown in Figure 8.1, a decrease in O; effects across the group numbers of previous
visits was shown for circulatory admissions, whereas a somewhat increase in O; effects
across the visit groups was seen for respiratory admissions. This corresponds to the
estimated trends (Table 8.7). There was a reduction of 6.0% (95% CI, -17.0% to 8.0%) for
circulatory admissions and a small increase of 2.0% (95% CI, -11.0% to 17.0%) for
respiratory admissions in association with a 10-unit increase in O3 (ppb) per visit-category,

but not statistically significant.

In brief, when looking at air pollution effects across the numbers of out-patient visits before
admissions, an increase in the effects with increasing numbers of the visits was more
apparent for SO, than for other pollutants. On the contrary to SO, the apparent decreasing
effects with increasing number of the visits were found for Os, but for circulatory

admissions only.
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8.1.3 Are air pollution effects with respect to the history of out-patient visits before

admissions modified by the factors like age, sex or season?

The effect modification of air pollution across the numbers of out-patient visits prior to
admissions by age, sex, and season were also examined because it might be possible that
these factors had some influence on the frequency of the visits of a patient (e.g. the elderly
may visit a hospital more often than other age groups, the daily visits to a hospital may be
inhibited by rain or too hot/cold weather in different season). Since there were large
numbers of missing information of occupation (>30% missing), the modified effects by
occupation were not undertaken for the linkage series. Due to the problem of very limited
counts of most diseases across the group numbers of previous visits before admissions
when stratified by age, sex, and season, resulting in very imprecise estimates, it was

decided to present the analysis results for all-cause admissions only.

Effect modification by age

Overall, there was some evidence of effect modification by age, which can be seen in
Figure 8.2. Even though, there is no apparent increase or decrease in estimated effects of
most pollutants across the visit groups, the effects of some pollutants across the visits
between age groups were found to be different. For example, there was a J-shaped pattern
of NO; effects across the visit groups in children, with stronger, positive effects in ‘0 visit’
and *>5 visits’ groups, and a small negative effect in ‘1 visit’ group. However, all of NO;
effects across the visits in adults and the elderly were negative with a somewhat small

decreasing trend with increasing numbers of previous visits.

According to tests for trends, some differences in air pollution effects across the visit
groups between age groups were also observed. For examples, there was a somewhat
increasing trend of SO, effects in all age groups, and the relative risk of this trend was also
found in all age groups (Table 8.7). The risk associated with a 10-unit increase in SO,
(ppb) per visit-category was greater in the elderly (28.0% increase) than in children (19.0%
increase) and adults (11.0% increase). In contrast, the weakest increasing trend per one-unit
increase in CO (ppm) for each visit-category was seen in adults (1.0% increase), compared

to children (9.0% increase) and the elderly (6.0% increase). Notably, tests for heterogeneity
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of the estimated trends across the visits between age groups were also undertaken, but none

of the tests were significant at 5% levels (results not shown).

Effect modification by sex

The plots of estimated effects of air pollution across the numbers of the visits prior to
admissions when stratified by sex are illustrated in Figure 8.3. Overall, there was no
evidence of the effect modification by sex as the effects of most pollutants across the visit
groups in males and females were broadly the same. There were also no significant
differences in the estimated trends between males and females for all pollutants (Table

8.7).

Effect modification by season

Figure 8.4 presents the estimated effects of air pollution across the group numbers of the
visits prior to the admissions for all seasons (winter, summer, and rainy). In general, there
was some evidence of a modification of air pollution effects by season as the effects of each
pollutant across the visit groups varied across seasons. For instance, there was a somewhat
increase in the effects of SO, and CO across the visit groups in summer and rainy seasons,
while there was no obvious increase or decrease in the effects of the two pollutants across
the visit groups in winter. This corresponds to the estimated trends of these two pollutants
across the visit groups illustrated in Table 8.7. There were however no significant

differences in the estimated trends across the visit groups for all pollutants.
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8.2 Temperature effects

This section describes temperature effects on hospital admissions in the linkage series.
Similar to air pollution effects, the estimated effects of temperature were explored for
hospital admissions in both people with and without history of out-patient visits prior to
their admissions. Then, temperature effects across the group numbers of previous visits
before admissions were investigated. To see whether temperature effects across the group
numbers of previous visits were modified by age, sex, and season, the data analyses when

stratified by these factors were also undertaken.

8.2.1 Temperature effects among people with and without history of out-patient visits

prior to hospital admissions

According to graphical assessments (Appendix 8A, Figure 8A-1), the temperature
threshold of 29°C was used for quantifying temperature effects (lag 0-13 days) on all-cause,
circulatory and ‘other’ admissions, and a linear term of temperature was used for
quantifying temperature effects (lag 0-1 day) on respiratory and intestinal infectious
admissions. There was no investigation of temperature effects on diabetic admissions due

to the very limited counts of diabetic admissions in the linkage data.

The risk estimates of temperature effects on hospital admissions in people with and without
history of out-patient visits prior to admissions are shown in Table 8.6. Opposite to air
pollution effects, the overall effects of temperature were found to be stronger in people
without history of previous visits before admissions compared to people with history. There
was only one exception, the estimated effects on circulatory admissions. However, none of
the estimates reached the statistical significance at 5% level, and also no significant
difference in the estimates between the two groups. For each 1°C increase in temperature,
there was an increase in hospital admissions in people without history of the visits, ranging
from 4.5% (respiratory) to 33.7% (other), while there was a smaller increase in people with
history, ranging from 3.8% (all-cause) to 9.7% (intestinal infectious). In contrast to other
disease groups, for circulatory admissions, the protective effect was found for people with
no history (13.6% decrease), whereas the harmful effect was found for people with history

(5.3% increase) per 1°C increase in temperature above 29°C.
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8.2.2 Do temperature effects differ in accordance with the numbers of out-patient

visits prior to hospital admissions?

Figure 8.5 presents the estimated effects of temperature across the numbers of previous
out-patient visits before admissions. There was generally no apparent increase or decrease
in temperature effects across the number of previous visits in association with each 1°C
increase in temperature (relative to the identified temperature threshold) for all diseases.
According to tests for trends shown in Table 8.8, there was no statistical significance in the

estimated trends of temperature effects across the visit groups for all diseases.

8.2.3 Are temperature effects with respect to the history of out-patient visits prior to

the admissions modified by factors like age sex, and season?

The effect modification of temperature effects by age, sex, and season with respect to the
group numbers of out-patient visits prior to admissions are illustrated in this section for all-
cause, respiratory, circulatory, and ‘other’ admissions. No stratified analysis for intestinal
infectious admissions across the groups was carried out because of very small counts of this

disease.

I. Effect modification by age

There was little evidence of effect modification by age across the numbers of previous
visits before admissions as shown in Figure 8.6. Since the estimates could not be done for
all visit categories in each age group, it is difficult to describe the effect modification by
age here. Nevertheless, the pattern of temperature effects across the visits in children was
seen to differ from those in adults and the elderly. For example, the temperature effects on
‘other’ admissions across the visits in children (0-14 years) were fluctuated and negative,
while the effects across the visits in adults and the elderly were fairly stable and positive.
There seemed to be an increasing pattern of temperature effects across the visits in children
for respiratory admissions, but no clear pattern was observed in adults and the elderly due

to inability to analyze for the estimated effects for these people in some visits groups.

When looking at the estimated trends of temperature effects across the visit groups (Table

8.8), there was only a small increase or decrease in the estimated trends across the visit
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groups and none of them were significant. There were also no significant differences in the

estimated trends between age groups.

I1. Effect modification by sex

Figure 8.7 presents the estimated effects of temperature across the number of out-patient
visits prior to admissions between males and females. Overall, there was no evidence of
modification of temperature effects by sex as the effects across the visit groups in males
and females were broadly similar for most diseases. This was consistent with the results
from tests for trend (Table 8.8), which showed similar trends of the effects across the visit
groups in males and females, except for circulatory admissions. For each 1°C increase in
temperature per visit-category, there was a decrease in circulatory admissions of about
6.0% in males, whereas there was an increase in circulatory admissions of about 4.0% in
females. These estimates were however very imprecise with very wide confidence
intervals. There were also no significant differences in the estimated trends across the visit

groups between males and females for all diseases.

I11. Effect modification by season

Based on graphical visualization of the general relationships between temperature and the
studied health outcomes (sce Appendix 8A, Figure 8A-2), a linear association was
assumed for all seasons. Therefore, linear terms of temperature were used for quantifying

temperature effects across seasons for all diseases.

The estimated effects of temperature across the visit groups when stratified by season are
presented in Figure 8.8. There were only two diseases (all-cause and ‘other’ admissions)
that the effects across the visits group could be estimated for all seasons. Overall, there was
little evidence of modification of temperature effects by season as the patterns of
temperature effects across the visit groups in each season were slightly different. For
example, for all-cause admissions, the somewhat downward patterns of the effects across
the visit groups was visible in summer, but no clear patterns were shown in winter and
rainy season. However, according to the estimated trends of temperature effects across the
visit groups in different seasons shown in Table 8.9, there was a decreasing trend of the

effects for all-cause admissions in all seasons (although a relatively large reduction was
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shown in summer). In general, none of the estimated trends were statistically significant at

5% level, and no significant differences in the trends between seasons were found.
8.3 Sensitivity analyses for the linkage series

8.3.1 Linked period

In the present study, the 6-month period was chosen to assess whether the history of out-
patient visits of a patient within a 6-month period prior to the admissions would have
increased their vulnerability to air pollution and temperature exposure. Thus, the use of
different time periods to obtain the count numbers of out-patient visits prior to admissions
was explored to see whether it had different impacts on the findings. It was decided to
choose 3 months for a shorter period and 12 months for a longer period to compare with the

6-month period already used in this study.

The overall time period used for the sensitivity analyses was restricted to be between
October 2003 and January 2006. This was because the out-patient visit data began from
October 2002, and therefore the history of out-patient visits for a 12-month period prior to
admissions could be obtained for all patients (if they had the history) admitted from
October 2003. Additionally, due to a dramatic drop of the linkage data from February to
September 2006 (month 41th-48th, see descriptive result, section 5.3, p. 85), the linkage
data created for the sensitivity tests for all time scales were also excluded month 41th-48th.
The sensitivity analyses were undertaken for all-cause admissions only. The sensitivity tests
showed that, when using different time period to obtain the linkage data, there were
generally little changes in the patterns of air pollution and temperature effects across the

number of the history of visits prior to the admissions, which can be seen in Appendix 8B.

For air pollution, according to the plots of estimated effects (Figure 8B-1), the differences
in the patterns of air pollution effects across the visit groups when using different time
period were visible for O only. It was found that Oj effects exhibited a decreasing pattern
across the visit groups for the use of a shorter period (3 months), but no increasing or
decreasing pattern for the use of longer periods (6 and 12 months). However, overall, there
were no significant differences in the estimated trends of O; effects across the visit groups

(Table 8B-1). The positive trend found for SO, effects was slightly larger when using a
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shorter period to obtain the linkage data, while the trends found for other pollutants were

the same for all time periods used to obtain the linkage data.

For temperature, no apparent upward or downward pattern was visible from the plots of the
effects across the visit groups (Figure 8B-2). However, a positive trend of temperature
effects was found when using a shorter period (3 months), whereas negative trends were

found when using longer periods (6 and 12 months), which can be seen in Table 8B-2.

Based on this result, the use of a shorter period, which comprised more recent visits,
seemed to provide stronger effects of both air pollution and temperature. These differences

were however not statistically significant.

8.3.2 Inclusion of unmatched hospital admission cases in the linkage data

As mentioned previously, for Thai hospital system, all patients need to visit an out-patient
department for preliminary investigations before admission to hospital. Therefore, health
records of out-patient visits and hospital admissions on the same day generally presents in
the two data sets. In other words, each hospital admission case should have at least one out-

patient visit recorded on the same date of the admission (if there is no missing record).

In this study, it was decided that all out-patient visits recorded on the same day of the
admission were not counted as a history of the visits prior to that admission. But the
hospital admission that had only one record of out-patient visit, which occurred on the same
day of the admission, was kept for the analysis in the linkage series as a hospitalized patient
with no history of the visits prior to his/her admission (because this person had no previous
visits before his/her admission date). Meanwhile, all hospital admissions that could not be
matched with out-patient data or did not have any records in the out-patient visit data were

excluded from the analysis.

Due to the problems with missing data and/or errors in inputting information in routine
health records in both hospital admission and out-patient visit data sets, it was a concern
whether all hospitalized people in this study truly had one out-patient visit when there was
one record (occurring on the same date of admissions) presented the out-patient data set, or

whether they actually had several out-patient visits before admissions (but those records
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were missing and/or errors inputting information). This could result in unmatched cases
when linking the two data sets for the linkage series. There was however nothing could be

done to address this common problem of the data.

Nevertheless, for the ‘O visit’ group, it might be possible to assume that all hospital
admissions, which could not be matched with the out-patient visit data, had their own “one
previous out-patient visit” on the same date of their admissions in the out-patient visit data
(but those records were just missing and/or errors). In this case, the unmatched hospital
admission cases (which were excluded in this study) could also be counted as people with

‘0 visit’ or no history of the visits prior to admissions and retained for the analyses.

To see whether an inclusion of the hospital admissions, which could not be matched with
out-patient visit data, as people with ‘0’ visits would have an impact on the linkage results,
sensitivity tests were carried out to compare the patterns of air pollution and temperature

effects across the group numbers of out-patient visits between two data sets:

1. the data used in this study — excluded all unmatched hospital admission cases and
counted the matched cases that had only one record on the same date of admissions in out-

patient data as people with no history of previous visits, and

2. the data that kept all unmatched hospital admissions cases by counting these admissions
with no records presented in out-patient data, as people with no history of the visits —

presumably, their out-patient records on the same date of admissions were missing.

Similar to the previous analyses, sensitivity tests for both air pollution and temperature
effects in this section were undertaken for all-cause admissions only. The sensitivity
analyses showed that the patterns of air pollution and temperature effects between the two

data sets were broadly the same, which can be seen in Appendix 8B.

For air pollution, the plots of the patterns of air pollution effects across the visit groups
were broadly similar for all pollutants (Figure 8B-3), but small differences were found
from tests for trends (Table 8B-3). For example, there was a slightly larger positive trend

for SO, effects for the ‘matched cases only’ data (13.0% increase for each 10-ppb increase
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in SO, per visit-category, 95% CI, -10.0% to 42.0%) compared to ‘both unmatched and
matched cases’ data (10.0% increase for each 10-ppb increase in SO, per visit-category,
95% Cl, -5.0% to 27.0%).

For temperature, the plots of its patterns across the visit groups were similar for both data
sets (Figure 8B-4). There was a contrasting pattern of the estimated trends across the visit
groups between these two data sets (Table 8B-4). The small, decreasing trend of all-cause
admissions of 0.7% (95% ClI, -8.9% to 8.2%) for each 1°C increase in temperature (>29°C)
per visit-category was found for the ‘matched cases only’ data, whereas the small,
increasing trend of all-cause admissions of 0.8% (95% Cl, -5.3% t07.3%) was found for the

‘both unmatched and matched cases’ data. This difference was however not significant.

Summary of the linkage series:

Air pollution effects

o There was no consistent evidence of an increased effect of air pollution in people
with a history of out-patient visits before admissions in comparison to people
without history.

e When looking at air pollution effects across the group numbers of out-patient visits
prior to admissions, an increased effect of air pollution with increasing number of
the visits was mostly found for SO,, whereas no apparent increasing or decreasing
effects across the visit groups was found for other pollutants. The tests for trends of
air pollution effects across the visit groups were generally consistent with the
estimated effects. However, none of the tests reached statistical significance at 5%
level.

o There was little evidence of the effect modification of air pollution across the
history of the visits by age, sex, and season. The different patterns of air pollution
effects across the visit groups with respect to age, sex, and season were present for
all pollutants, but the shape of the patterns varied from pollutant to pollutant. There
were however no statistically significant differences in estimated trends across the

visits between subgroups.
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Temperature effects

Unlike air pollution effects, a higher risk of hospital admissions in association with
each 1°C increase in temperature was found in people with no history of the visits
prior to their admissions compared to people with history. This was found for all
diseases, except only circulatory admissions. However, none of the differences were
significant.

Overall, there was no apparent increase or decrease in temperature effects across the
group numbers of the visits prior to admissions for all diseases. There was also no
significant trend of temperature effects across the visit groups for all diseases.

There was little evidence of effect modification of temperature effects across the
visit groups by age, sex, and season. Generally, the estimated effects of temperature
across the group numbers of the visits prior to admissions were slightly different in
each subgroup. However, there was no obvious increase or decrease in the effects
across the visit groups. There was also no statistically significant difference in the

estimated trends across the visits between subgroups.

Sensitivity analyses

There were no considerable changes in the estimated effects and trends of air
pollution and temperature effects across the group numbers of previous visits before
admissions when using different time periods for obtaining the linkage data.
However, the estimated effects of air pollution (e.g. SO,) and temperature effects
were slightly larger when using a shorter time period in obtaining the previous visits
before admissions than those when using longer periods.

The different assumption in obtaining the ‘O visit’ groups or no history of the
previous visits did not affect the estimated effects and trends of air pollution and

temperature effects in the linkage series.
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Table 8. 1 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a 10-unit increase of a pollutant (one-unit increase for CO) on daily all-cause admissions in
relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April 2003 to January 2006.

Pollutant History of 95% CI Test for
(unit) visits RR Lower Upper p-value  Interaction ®
SO, (ppb) No history  0.502 0.219 1.146 0.102

With history 1,250 0.974 1.603 0.079 0.039
NO,(ppb) No history  1.010 0.836 1.220 0.919

With history  0.937 0.879 1.000 0.050 0.462
CO-8hr(ppm)  Nohistory  0.649 0.475 0.886 0.007

With history  0.913 0.820 1.016 0.095 0.042
Os(ppb) No history  1.023 0.880 1.189 0.766

With history  1.003 0.953 1.055 0.922 0.808
PMo(ug/m’)  Nohistory 0972 0.943 1.001 0.061

With history 0,995 0.984 1.005 0.306 0.148
PM,s(ug/m’)  Nohistory  0.959 0.851 1.081 0.493

With history  0.977 0.937 1.018 0.272 0.773

* p-value for test for heterogeneity between groups.

Table 8. 2 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a 10-unit increase of a pollutant (one-unit increase for CO) on daily respiratory admissions
in relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April 2003 to January 2006.

Pollutant History of 95% CI Test for
(unit) visits RR Lower Upper p-value  Interaction *
SO, (ppb) No history  0.747 0.034 16.299 0.853

With history  1.356 0.574 3.202 0.487 0.715
NO,(ppb) No history  0.751 0.398 1.417 0.377

With history  1.214 0.972 1.517 0.087 0.162
CO-8hr(ppm) Nohistory — 0.779  0.277 2.189 0.635

With history 1,120 0.770 1.629 0.552 0.517
Os(ppb) Nohistory  0.755  0.436 1.309 0.317

With history  0.874 0.728 1.048 0.147 0313
PM(pg/m’)  Nohistory — 0.956 0.864 1.057 0.379

With history  1.006 0.970 1.043 0.756 0.439
PM,s(ug/m’) _Nohistory  0.962 0.630 1.470 0.859

With history  1.036 0.904 1.188 0.608 0.744

* p-value for test for heterogeneity between groups.
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Chapter 8

Regression results: Linkage data

Table 8. 3 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a 10-unit increase of a pollutant (one-unit increase for CO) on daily circulatory admissions
in relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April 2003 to January 2006.

Pollutant History of 95% CI Test for
(unit) visits RR Lower Upper p-value  Interaction *
SO, (ppb) No history  (.454 0.045 4.609 0.504

With history 1,710 0.764 3.826 0.192 0.289
NOa(ppb) No history  0.660 0.359 1.214 0.181

With history 0,976 0.802 1.188 0.808 0.231
CO-8hr(ppm)  Nohistory  0.668 0.248 1.801 0.425

With history 0919 0.660 1.281 0.618 0.550
Os(ppb) No history  1.475 0.934 2.329 0.095

With history 0,983 0.838 1.152 0.830 0.100
PMo(ug/m*)  Nohistory 0975 0.887 1.071 0.598

With history  1.010 0.979 1.042 0.545 0.486
PM,s(ng/m’)  Nohistory  0.699 0.480 1.017 0.061

With history  1.023 0.914 1.144 0.693 0.057

* p-value for test for heterogeneity between groups.

Table 8. 4 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a 10-unit increase of a pollutant (one-unit increase for CO) on daily intestinal infectious
admissions in relation to the history of out-patient visits prior to their admissions in Muang,
Chiang Mai, from April 2003 to January 2006.

Pollutant History of 95% CI Test for
(unit) visits RR Lower Upper p-value  Interaction®
SO, (ppb) Nohistory 2459  0.099 60.946 0.583

With history 0474  0.103 2.190 0.339 0.364
NO(ppb) Nohistory  1.025 0516 2.035 0.944

With history  1.116  0.789 1.579 0.536 0.828
CO-8hr(ppm) _Nohistory 1306  0.433 3.944 0.636

With history  1.079 0.605 1.925 0.797 0.764
Os(ppb) No history — 0.843 0.477 1.490 0.557

With history  0.860 0.645 1.147 0.304 0.951
PM,o(pg/m*)  Nohistory — 0.950  0.855 1.057 0.346

With history  1.002  0.948 1.059 0.942 0.383
PM,s(ug/m’) Nohistory  0.806 0496 1311 0.385

With history  0.937  0.744 1.180 0.581 0.439

* p-value for test for heterogeneity between groups.
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Regression results: Linkage data

Table 8. 5 Risk estimates for single pollutant, distributed lag models (0-4 days) for the effects
of a 10-unit increase of a pollutant (one-unit increase for CO) on daily other admissions in
relation to the history of out-patient visits prior to their admissions in Muang, Chiang Mai,
from April 2003 to January 2006.

Pollutant History of 95% CI Test for
(unit) visits RR Lower Upper p-value  Interaction ”
SO, (ppb) No history  0.333 0.125 0.887 0.028

With history 1,234 0.929 1.639 0.147 0.012
NO,(ppb) No history  1.131 0.905 1.413 0.279

With history  0.902 0.838 0972 0.006 0.059
CO-8hr(ppm)  Nohistory  0.595 0.410 0.864 0.006

With history  0.891 0.787 1.008 0.066 0.044
Os(ppb) Nohistory  1.027  0.861 1.226 0.766

With history 1,026 0.968 1.087 0.393 0.992
PMo(ug/m’)  Nohistory  0.976 0.941 1.011 0.177

With history  0.992 0.980 1.004 0.197 0.400
PM,s(ug/m*)  Nohistory  1.007 0.876 1.158 0.924

With history  0.968 0.923 1.016 0.190 0.600

* p-value for test for heterogeneity between groups.
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Chapter 8 Regression results: Linkage data

Table 8. 6 Relative risk estimates for temperature effects (for each 1°C increase in
temperature) on daily hospital admissions in relation to history of previous visits in Muang,
Chiang Mai, from April 2003 to January 2006.

95%CI Test for
Outcome n(day) Mean" SD RR" Lower Upper p-value interaction ©
All-cause (29°C) 173
No history 3.08 2.09 1.217 0.883 1.678 0.230
With history 26.34 13.83  1.038 0.922 1.168 0.541 0.362
Respiratory (linear) 974
No history 0.22 0.49 1.045 0.868 1.260 0.641
With history 1.92 151 1.040 0.979 1.104 0.206 0.962
Circulatory (29°C) 173
No history 0.31 0.57 0.864 0.267 2.799 0.808
With history 2.28 1.91 1.053 0.734 1.510 0.778 0.752
Intestinal infectious 974
(linear)
No history 0.17 0.43 1171 0.945 1.450 0.150
With history 0.74 0.90 1.097 0.992 1212 0.071 0.588
Other (29°C) 173
No history 224 1.72 1.337 0.922 1.938 0.126
With history 21.26 12,17 = 1059 0.924 1.213 0.410 0.248

* Mean daily count of hospital admissions relative to the identified temperature threshold.

Temperature effects at short lag (0-1day) for respiratory and intestinal infectious admissions, and at a long
lag (0-13 days) for all-cause, circulatory, and other admissions.
¢ p-value for test for heterogeneity between groups.
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Table 8. 9 Estimated trends of temperature effects (lag 0-13 days) across the group numbers
of out-patient visits (0, 1, 2-5, and >5 visits) prior to hospital admissions in different seasons in
Muang, Chiang Mai, from January 2003 to April 2006.

Note: The estimated trends = a relative risk ratio for 1°C increase in temperature per visit-category.

95% CI1

Outcome " n(day) Mean ¥ SD RR Lower Upper p-value p-value®
All-cause (>29°C)

Winter 324 2719 1716 -~ 0.991 10918 1.071 0.679

Summer 232 29.93 1833 10965 - 0.361 1.081 0.307

Rainy 418 29.37 17.39 0.985 0.840 1.156 0.730 0.930
Other (>29°C)

Winter 324 21.18 1496 0.990 0.902 1.088 0.698

Summer 232 24.02 16.02 0.965 0.831 1:121 0411

Rainy 418 2351 1528 1.013.. 0.824 1.245 0.812 0.927

*Only these two diseases that the estimates could be done for all three seasons.
®Mean daily counts of hospital admissions in each season.

¢ p-value for test for heterogeneity of the estimated trends between seasons.
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Figure 8. 1 Risk estimates for single pollutant, distributed lag models (0-4days) for a
10-unit increase of a pollutant (one unit increase for CO) on daily hospital admissions
by history of the visits prior to admissions in Muang, Chiang Mai, from April 2003 to

January 2006.
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8.1d) Intestinal infectious admissions
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Figure 8. 2 Risk estimates for single, distributed lag models (0-4 days) for a 10-unit
increase of a pollutant (one-unit increase for CO) on daily all-cause admissions by
history of the visits prior to admissions in different age groups in Muang, Chiang Mai,
from April 2003 to January 2006.
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Figure 8. 3 Risk estimates for single, distributed lag models (0-4 days) for a 10-unit
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