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ABSTRACT 
 
As malaria declines in parts of Africa and elsewhere, and as more countries move towards 
elimination, it is necessary to robustly evaluate the effect of interventions and control 
programmes on malaria transmission. To help guide the appropriate design of trials to evaluate 
transmission-reducing interventions, we review eleven metrics of malaria transmission, 
discussing their accuracy, precision, collection methods and costs, and presenting an overall 
critique. We also review the non-linear scaling relationships between five metrics of malaria 
transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite 
rate and the basic reproductive number, R0. Our review highlights that while the entomological 
inoculation rate is widely considered the gold standard metric of malaria transmission and may 
be necessary for measuring changes in transmission in highly endemic areas, it has limited 
precision and accuracy and more standardised methods for its collection are required. In areas 
of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI 
and mFOI may be most appropriate. When assessing a specific intervention, the most relevant 
effects will be detected by examining the metrics most directly affected by that intervention. 
Future work should aim to better quantify the precision and accuracy of malaria metrics and to 
improve methods for their collection.  
 
  
1. INTRODUCTION 

 
Changes in malaria transmission must be measured accurately and precisely in order to 
evaluate the impact and cost-effectiveness of new and existing interventions. As malaria 
transmission declines across much of sub-Saharan Africa, there has been renewed focus on the 
need to codify a set of metrics, expectations about likely changes in those metrics across the 
spectrum of transmission in response to control, defined endpoints for measuring changes in 
the intensity of transmission, and the associated reductions in malaria burden (Hay et al., 2008, 
Corran et al., 2007, Smith and Hay, 2009, Cohen et al., 2010, Steketee and Campbell, 2010), 
with a concurrent increase in funding directed towards improving capacity for monitoring and 
evaluation (Nahlen and Low-Beer, 2007, Cibulskis et al., 2007).  
 
Malaria transmission, defined herein as the process by which a malaria parasite completes its 
life-cycle, involves parasites being passed from a female anopheline mosquito through the skin, 
during a bloodmeal, and via the liver into human blood, and later from the blood back into the 
mosquito during a subsequent mosquito bloodmeal, leading to parasite development within a 
mosquito. The intensity of transmission, described by Macdonald (Macdonald, 1957, Smith et 
al., 2012), is a general concept describing the potential frequency of transmission, but it may 
also be defined as the number of times each day that a parasite infection is initiated in a 
human, or the number of times a pathogen infection is initiated in a mosquito. Transmission 
intensity varies enormously within malaria endemic areas and is determined not only by the 
vectorial capacity of local mosquito populations but also by other factors, including human 
immunity and the interventions in place (Smith et al., 2010). Transmission is intrinsically ‘noisy’ 
due to fluctuations in underlying mosquito populations, temperature-induced changes in 
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mosquito interactions with the parasite, immunological changes affecting human-parasite 
interactions and the spatial heterogeneity over which these occur. There is also variation in the 
efficiency of transmission, the number of uniquely identifiable infections caused by each 
infectious bite, which is affected by heterogeneous biting, multiple infections and acquired 
immunity (Smith et al., 2010). Spatio-temporal variability in the quantities of interest raise 
questions about the precision and accuracy of these metrics that must be understood to 
interpret these parameters properly and to measure changes over time.   
 
Malaria control interventions slow transmission at specific points during the complex parasite 
life cycle, and likewise there are several points during this cycle at which the intensity of 
transmission may be measured, using various metrics pertaining to the three players: 
mosquitoes, parasites, and humans (Carter and Mendis, 2006, Hay et al., 2008). Each metric 
represents a quantity that is an important step in the transmission process, as illustrated in 
Figure 1.  
 

[Figure 1] 
 

Metrics of malaria transmission change on different temporal scales, reflecting the dynamics of 
mosquito populations, parasite infections in humans, the kinetics of changing human immunity 
and human demographics. The metrics are causally inter-related (Figure 1), but based on both a 
priori arguments and a posteriori examinations of patterns, some of these relationships are 
non-linear when considered across the spectrum of transmission intensity (Smith et al., 2010). 
These non-linearities, together with variability in transmission and measurement errors, 
weaken the associations between those metrics separated by a greater number of steps in the 
transmission cycle. The most substantiated and relevant effects on transmission are found by 
examining the metric that is most directly affected by an intervention, for example, the 
biological efficacy of a transmission-blocking vaccine is best assessed directly by measuring κ 
(Figure 1). However, when it is not possible to measure an effect directly, the study should 
follow the chain of causation and examine the nearest attainable downstream metric. Generally 
the endpoints of greatest interest are the direct outcomes of human infections: infection per 
se, clinical malaria, hospitalization, and death. However the relationships between these clinical 
metrics and transmission are complex and are among the most difficult to measure (Ghani et 
al., 2009, Trape and Rogier, 1996).  
 
The future need to approve new interventions and to evaluate existing strategies aimed at 
reducing transmission highlights the specific requirement for robust methods to measure a 
change in transmission (invariably a decrease) and the need to account for non-linear patterns 
and expectations between metrics when interpreting data from intervention studies. To help 
guide the appropriate design of future trials seeking to evaluate transmission-reducing 
interventions, we first critically evaluate the precision, accuracy and costs of the metrics that 
have been developed to measure the transmission of falciparum malaria. To our knowledge this 
is the first comprehensive review of these attributes. Second, we review the non-linear scaling 
relationships between five major metrics of malaria transmission: the entomological 



4 
 

inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive 
number, R0. 
 
 
2.  ACCURACY, PRECISION AND COSTS OF MALARIA METRICS 
 
The suitability of malaria transmission metrics as endpoints for measuring changes in 
transmission is determined by costs, precision, accuracy, the need for and availability of 
experts, the intrinsic variability of the metric across space and time, and overall familiarity with 
the metric because of common use. In this paper we review eleven metrics of transmission: (1) 
net infectiousness of humans, (2) parasite rate in humans, (3) entomological inoculation rate, 
(4) force of infection and molecular force of infection, (5) multiplicity of infection, (6) 
seroconversion rate, (7) slide or clinical positivity rate, (8) incidence of clinical malaria or annual 
parasite index, (9) proportion of fevers with P. falciparum parasitaemia, (10) vectorial capacity 
and (11) basic reproduction number. In addition to giving a general description of each metric, 
we also assess (a) methods for collection, (b) accuracy, (c) precision and (d) costs of collection 
and (e) give an overall critique. The findings of the review are summarised in Table 1. 
 
Accuracy is defined as the closeness of measurements of a quantity to the true value of that 
quantity, while precision is the degree to which repeat measurements under the same 
conditions give the same results. When metrics are used to measure changes in some metric, 
practical consideration must be given to statistical power – the sample sizes required to obtain 
the required degree of precision. Precision can be improved by increasing sampling effort, and 
the sample sizes must be sufficiently intense to determine whether a change is statistically 
significant. This remains true even if the parameter is inaccurate. Further thought is required to 
determine what a change in the value of a metric means. Many factors can affect the accuracy 
of these metrics independently of their precision, such that the validity of any measured change 
must be scrutinized as it may or may not reflect a true change. A persistent issue for 
interpreting a change in the value of a malaria metric is the source of bias and whether that 
bias affects the estimates of the metric in the same way in, for example, pre- and post-
intervention estimates. To put it in other terms, a biased metric may be useful if is consistent, 
even if it is inaccurate. Because most metrics are intrinsically biased, as we discuss below, it 
may be appropriate to utilize consistent and precise metrics as a way of measuring the 
magnitude of change. Both accuracy and precision are therefore critical considerations when 
choosing outcomes for the evaluation of interventions and when drawing inferences about 
changes in malaria transmission using a given metric. 
 
2.1. Net infectiousness of humans to mosquitoes (κ)  
 
The most direct assessments of malaria interventions that aim to reduce malaria transmission 
measure a change in the net infectiousness of humans to mosquitoes, known as κ and defined 
as the proportion of mosquitoes that become infected after feeding on humans. The net 
infectiousness of humans to mosquitoes is affected by processes acting in both humans and 
mosquitoes. In humans, fluctuations in gametocyte density, naturally acquired transmission 
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blocking immunity and the efficiency with which the gametocytes are taken up by mosquitoes 
in a blood meal relative to their measured density in blood play a role in determining κ. In 
mosquitoes, the effective contact rate with humans and factors influencing the susceptibility of 
mosquitoes to malaria infection determine κ. The susceptibility of anophelines to malaria 
infection differs between mosquito strains as a result of differences in mosquito innate 
immunity (Blandin et al., 2004, Molina-Cruz et al., 2012, Smith et al., 2004, Trape et al., 1987).  
and midgut microbiota (Cirimotich et al., 2011). There may also be differences in malaria 
susceptibility of different molecular forms of Anopheles gambiae and An. arabiensis. Until the 
importance of these phenomena in determining transmission efficiency is established, a general 
estimate of κ is deemed appropriate.  
 
The infectiousness of individual humans can be measured directly using mosquito-feeding 
assays, but net infectiousness of a human population must be estimated from field data 
because it is mediated by the complex biting patterns of mosquitoes on humans. This involves 
entomological sampling since field measures are based on the prevalence of infections in 
mosquitoes. κ has been collected relatively infrequently, with approximately 37 estimates 
between 1955 and 2005 (0.7 estimates per year) (Killeen et al., 2006).  
   

a. How to collect 
The contributions of individual humans to κ is most commonly measured using direct skin 
feeding assays, standard membrane feeding assays or using infection rates in natural vector 
populations.  
 
Skin feeding assay (SFA): In theory, one of the most reliable ways to measure the individual 
humans contributions to κ is using a direct skin feeding assay (SFA), where laboratory-reared 
mosquitoes are directly fed on infected humans to observe the fraction that become infected 
(Killeen et al., 2006). Human subjects may be either a randomly-selected sample of the whole 
population (Graves et al., 1988, Burkot et al., 1988, Boudin et al., 1993, Muirhead-Thomson, 
1957, Bonnet et al., 2003) or purposely-chosen gametocyte carriers (Bousema et al., 2012). 
 
Membrane feeding assay (MFA): An alternative and more ethically acceptable method is a 
membrane feeding assay (MFA) with blood from naturally infected humans. MFAs and SFAs can 
use both oocyst prevalence and density as outcome measures. This is particularly relevant in 
the evaluation of transmission-blocking interventions where the transmission-blocking effects 
may be dependent on parasite exposure (Churcher et al., 2012).  
 
Evidence from a recent meta-analysis of 930 transmission experiments from Cameroon, The 
Gambia, Mali and Senegal indicates strong correlation between estimates from direct skin 
feeding and standard membrane-feeding assays (p<0.0001), although direct skin feeding assays 
generally produced higher mosquito infection rates than membrane feeding assays (OR 2.39, 
95%CI 1.94-2.95) (Bousema et al., 2012). In practice, direct skin feeding and standard 
membrane feeding assays can be difficult and lengthy. Since membrane feeds use mosquitoes 
of a fixed age (normally 3-5 days) that are kept in optimum conditions, survival rates after 
feeding are artificially increased. The number of mosquitoes used is also often unrealistically 
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high for a natural setting (i.e. it is unlikely that in reality an individual human would receive 50-
75 bites per night). This means that estimates of κ derived from infectiousness in MFAs and 
SFAs, though accurate, may not be representative in the context of natural mosquito exposure.  
However, even if the estimates of κ are not representative, these assays may be used to give an 
accurate assessment of a change in κ. 
 
Infection rates in the natural vector population: To determine net κ, infection rates in the 
natural vector population can be measured. Mosquitoes are caught and examined for parasites, 
either in the mid-gut examining for the presence of the oocyst stage, or in the salivary glands 
for detection of sporozoites. κ is then calculated using biodemographic models of the vector 
population (Burkot et al., 1990, Charlwood et al., 1997, Saul et al., 1990, Graves et al., 1990). 
Killeen and colleagues recently added human blood index into the previous model (Charlwood 
et al., 1997) to allow estimation of κ using oocyst (y) or sporozoite prevalence (z) (Killeen et al., 
2006). A simple, but useful rule for approximating these rates is y ≈ Sκpo, and z ≈ Sκpn, where S 
is the expected number of human bites a mosquito will give over its lifetime, p is the probability 
of surviving one day, o is the day after infection on which oocysts appear, and n is the day on 
which sporozoites appear (Killeen et al., 2006). This approximation is in accurate in two ways: 
first, it assumes that mosquito populations have a stable age distribution, which is violated in 
populations that are fluctuating; and second, it overestimates by a small amount that is 
accounted for by reinfection of mosquitoes that were already infected earlier in life, but for 
realistic values of κ, this effect is very small.  
  
Other methods: If the data for the above parameters is unavailable, alternative approaches to 
calculating κ are to use oocyst infection rates, sporozoite accumulation rates in aging 
populations of mosquitoes or age-specific sporozoite prevalence curves (Killeen et al., 2006). κ 
has also been predicted using stochastic individual-based models, using data from neurosyphilis 
patients given malariatherapy to predict the probability that a mosquito feeding on an infected 
patient becomes infected, as a function of recent history of asexual parasite density, together 
with data on EIR to predict the parasite density distributions for populations exposed since 
birth to seasonal transmission (Killeen et al., 2006). 
 

b. Accuracy 
Values of κ simulated using EIR and data from neurosyphilis patients given malariatherapy have 
been shown to correlate well with EIR at relatively low transmission intensities (EIR<10), yet a 
paucity of field estimates of κ from areas with EIR<10 has precluded evaluations of this 
relationship at low transmission intensities using field data (Killeen et al., 2006). Where EIR >10, 
empirical data from 37 sites across Papua New Guinea and Africa indicates little relationship 
between field estimates of κ and EIR (Killeen et al., 2006). This suggests little association 
between the infectiousness of humans to mosquitoes and mosquito-to-human transmission 
intensity at higher transmission intensities. It is unlikely that this is explained by the acquisition 
of transmission-blocking immunity since there is little evidence that this type of immunity 
varies with cumulative exposure (Killeen et al., 2006, Boudin et al., 2004, Sauerwein et al., 
2011). Therefore κ is currently not thought to be an accurate assay of malaria transmission 
intensity, although more data is required to substantiate this. Furthermore, estimates of κ that 
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are based on mosquito feeding assays need to take into account natural mosquito exposure 
and possible differences between membrane feeding and skin feeding mosquito infection rates 
to be accurate. 
 

c. Precision 
The limited number of observations make an assessment of the precision of κ difficult. It will be 
influenced by seasonality and both the frequency and intensity of mosquito sampling. The 
number of estimates may increase with the use of more frequent mosquito sampling 
techniques (Chaki et al., 2012) and that κ may a potential endpoint for transmission blocking 
interventions.  
 

d. Costs 
The cost of measuring κ depends on the method used. If SFAs or MFAs are used, laboratory 
rearing of mosquitoes is required, along with associated laboratory equipment for the assay. 
These assays have proven difficult to establish and only a handful of laboratories are routinely 
measuring human infectiousness to mosquitoes (Bousema et al., 2012).  If κ is indirectly 
measured using data on sporozoite or oocyst prevalence in mosquitoes, costs may be 
comparable to and usually associated with an estimation of EIR (see below). 
  

e. Critique 
Some transmission-reducing interventions are likely to have a direct effect on κ, such as 
transmission-blocking vaccines or gametocyte-reducing chemotherapy. However, due to its 
relatively low precision and accuracy, κ is not considered a robust metric for detecting a change 
in malaria transmission intensity. SFAs or MFAs will probably play a role in assessing the 
biological efficacy of a transmission blocking vaccine. However most interventions including 
LLINs, IRS and other methods of vector control will have an indirect effect on κ, and such assays 
have limited value in community assessments of transmission .   
 
2.2. Parasite rate in humans (PR) 
 
Parasite prevalence in humans is the proportion of individuals with parasitaemia at a given 
point in time. The parasite rate (PR), the metric that was designed to estimate prevalence, 
measures the proportion of individuals who are found to be carrying parasites in their blood, 
which varies by the method used. The PR is intrinsically inaccurate because parasite densities 
fluctuate over the course of an infection, and because there are methodological limits on the 
ability to find parasites in a sample of blood when they are present at low densities .  PR has 
been the traditional metric for classifying malaria endemicity and was used to measure malaria 
transmission during the era of the Global Malaria Eradication Programme, wherever PR 
exceeded 1-3% (Hay et al., 2008, Macdonald and Gockel, 1964). PR has been widely collected, 
with 22,212 estimates between 1985 and 2010 (888.5 estimates per year) (Gething et al., 
2011). 
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a. How to collect 
PR can be rapidly measured by examining blood from a cross-sectional survey of a 
representative sample of the population; e.g the whole community or school survey. Light 
microscopy is considered the gold standard assay for clinical diagnosis, but RDTs or PCR are 
alternate assays with advantages over light microscopy in some contexts. These assays should 
ideally be double-read to improve accuracy. PCR and microscopy both distinguish between 
malaria species and RDTs to detect both P. falciparum and P. vivax have also now been 
developed (WHO-GMP, 2012).  
 

b. Accuracy 
The accuracy of PR is affected by 1) the distribution of parasite densities in a population at 
some point in time; 2) the method used for parasite detection; and 3) human factors of the 
blood donor. Parasite densities are observed to vary over the course of a simple infection (Eyles 
and Young, 1951 ), and they vary in some unknown way in populations where humans of 
various ages are being exposed to mosquitoes at different points in time. Parasite densities in 
an infection can vary from a single parasite to more than 1011 parasites in hyper-parasitaemic 
patients.  A parasite must be present in a blood sample to be counted by light microscopy, but 
field methods (typically a thick blood film) take approximately 5 microliter of blood and then 
examine only a fraction of this blood volume. The ability to detect a parasite is thus linked to 
the number of parasites per microliter, with the probability of detecting a parasite increasing 
with the number of parasites in the sample. With such a small amount of blood examined, 
many active infections will inevitably be missed, and these are called sub-patent. While this is 
not the only factor, it is one of the most important factors, so PR patterns must be interpreted 
in light of other facts that are known about parasites infections.  
 
Evidence suggests that parasite densities vary systematically by the age of the infection, and 
thus vary seasonally (i.e., because “older” infections are less likely to have high parasite 
densities). Parasite densities also tend to be lower in those with well-developed immunity, so 
they are lower in older patients (Smith et al., 2007b). Finally, parasite densities are strongly 
affected by the recent history of antimalarial drug use and parasite resistance to those drugs. 
To accurately capture PR, sampling must be frequent since patent parasitaemia is dynamic and 
can be short-lived. Single cross-sectional surveys may therefore not accurately capture PR 
(O'Meara et al., 2007, Corran et al., 2007). O’Meara and colleagues enrolled 51 individuals 
known to have a primary infection of malaria (i.e. with a true overall infection prevalence of 
100%) and sampled these individuals 400 times on random days. Observed prevalence by light 
microscopy was 80% (95% CI 64-92%) in this particular set of infected patients, a 20% 
underestimation of true PR, produced by fluctuations in parasite density (O'Meara et al., 2007).  
 
The accuracy of PR estimates is also affected by the age group sampled. PR in children aged 2-
10 years has been widely used as a metric of transmission intensity since PR remains fairly 
constant in this age group regardless of endemicity (Smith et al., 2007b). PR can follow 
alternative age-patterns if the epidemiology of malaria diverges from the standard model of 
household biting, for example where certain occupations such as gold miners or forest or 
agricultural workers are at greater risk of malaria. Highly seasonal transmission also produces 
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variation in age-specific PR patterns (Carneiro, 2010). Given the a priori relationship between 
parasite densities and the sensitivity of a test, and given the relationship between transmission 
intensity and parasite densities, it is likely that PR is more accurate during periods of high 
exposure than low exposure (McElroy et al., 1994).   
 
The accuracy of PCR and RDTs are related to the accuracy of the PR, but with certain caveats. 
PCR measures the prevalence of parasite DNA in a sample, and it may be much more sensitive 
than light microscopy. While DNA will always be present when there are viable parasites 
present, DNA might also be present when there are no viable parasites present. It is currently 
unclear whether this is affecting the accuracy of PR determined by PCR, studies in rodent 
malaria suggest that non-viable parasites are rapidly removed from the circulation and false-
positive PCR results are unlikely 48 hours after injection with dead parasites. RDTs that are 
based on the detection of histidine-rich protein 2 (HRP-2), currently the most commonly used 
RDTs, detect a parasite antigen that is secreted by the parasite into the bloodstream and may 
persist for several weeks after parasite clearance. This persistence of antigen after viable 
parasites have been cleared affects the accuracy of RDTs in measuring PR. This explains 
differences in PR estimates between microscopy and RDT  (Batwala et al., 2010). The sensitivity 
of light microscopy, RDT and PCR are related to the number of parasites. While microscopy and 
RDT can miss sub-microscopic infections at all transmission settings but particularly at low 
transmission intensity, PCR is more sensitive and will detect sub-patent infections. A recent 
review found that in 106 studies, PR measured by microscopy was 54.1% (95% CI 50.3%–58.2%) 
that of PR measured by PCR, but the proportional differences were larger when the PR was 
smaller (Okell et al., 2012).  
 

c. Precision 
All of the factors affecting accuracy of the PR will also affect its precision, but depending on the 
sampling design.  Since PR varies with seasonality, the precision of estimates can be improved 
by measuring PR at the same time of the year, such as at the peak of the transmission season, 
or by conducting repeat surveys year-round. At small spatial scales, intensive sampling is 
needed to provide robust estimates, as a result of heterogeneity in PR within small areas 
(Stewart et al., 2009). Most cross-sectional surveys deploy a cluster-randomized design, but this 
can substantially reduce the precision of the estimates when the distribution of malaria is itself 
clustered.  
 
Uncertainty around PR estimates relative to other metrics increases at high transmission levels 
(where EIR>10) (O'Meara et al., 2007, Smith et al., 2005). This is because the relationship 
between transmission intensity and PR is mediated by acquired immunity, antimalarial drug 
use, multiple infections and heterogeneous biting. Another constraint to the accuracy of PR is 
the sensitivity and specificity of the assay used. PR measured through school-based surveys 
may be subject to certain biases, for example the relative prevalence of parasitaemia in school 
age children will be higher at lower transmission intensities, due to the peak age shift (Okiro et 
al., 2009 ).  
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Despite these concerns about accuracy and precision, it is worth noting that the PR can have 
sufficient precision to be useful. If repeated surveys use the same methodology, the same 
population and the same time of the season, estimates are likely to have sufficient precision for 
valid comparisons between surveys.  It was used during the GMEP to monitor progress towards 
elimination, and it may be highly useful, even if it is biased (Macdonald and Gockel, 1964).  
 

d. Costs 
The costs of measuring PR vary from setting to setting and according to the size of the sample 
and the assay used (Table 2). The cost of each RDT varies from $1-10 USD. In some settings PCR 
will be the more expensive assay, however the cost per sample will be relatively inexpensive 
when a large number of samples are processed and where labour costs are relatively high. 
Microscopy in some settings is relatively expensive, however costs for all assays are laboratory- 
and country-specific, and in a hospital setting, good microscopists are needed for other 
reasons. Overall, PR may be a relatively inexpensive metric for making a rapid assessment of 
transmission intensity where nothing is known about endemicity. However baseline PR should 
be carefully established if PR is to be used to rigorously measure a change in transmission.  
  

[Table 2] 
e. Critique 

PR is the most frequently actively collected metric (Hay and Snow, 2006) and therefore is easily 
interpreted by malaria control programme managers. It is the only metric sufficiently 
ubiquitous for large-scale mapping of malaria transmission (Gething et al., 2011). However, the 
suitability of PR for assessing changes in transmission intensity varies with the endemicity. 
While PR is useful for obtaining rapid initial estimates of endemicity, PR is not a direct indicator 
of transmission intensity and becomes saturated at higher transmission intensities (wherever 
EIR>10), due to heterogeneous biting, multiple infections and acquired immunity. In other 
words, large changes in the EIR can lead to reasonably small changes in the PR.  The utility of PR 
for measuring changes in transmission is also limited at very low endemicity due to the sample 
sizes required to achieve the appropriate degree of statistical power. In addition, at very low 
transmission intensity, microscopy will also have low discriminative value. Specifically, below a 
PR of 1-5% it will be very difficult to use PR to detect an impact of interventions (Hay et al., 
2008). This limits its utility for accurately measuring the efficacy of transmission-reducing 
interventions. 
 
2.3 Entomological Inoculation Rate (EIR) 
 
The annual entomological inoculation rate (EIR) is the number of infectious bites received per 
person per period of time (typically year) (Onori and Grab, 1980a, Davey and Gordon, 1933). It 
is the product of the human biting rate (Ma, the number of bites per person per year) and the 
sporozoite rate (SR, the proportion of mosquitoes with sporozoites in their salivary glands). 
Human biting rates are estimated by catching and counting the number of mosquitoes that 
attempt to feed on a human, and the SR is found by examining those mosquitoes for the 
presence of sporozoites. It is widely considered the gold standard metric of malaria 
transmission, though this is usually an a priori assertion made without regard to precision and 
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accuracy. It has been relatively frequently collected, with 233 estimates between 1980 and 
2000 (11.7 estimates per year) (Hay et al., 2000). 
 

a. How to collect 
EIR can be measured using direct field measurements of SR and Ma, supplemented by models 
of mosquito populations. Standard methods for measuring Ma are indoor or outdoor human 
landing catches, pyrethroid spray catches, exit traps, and CDC light traps (Table 3). The SR is 
then calculated by examining the caught mosquitoes for sporozoites. It is also possible to 
separately estimate many of the elements of EIR using mark-release-recapture methodology, 
such as the population density of the mosquito population and the interval between 
consecutive bloodmeals.  
 
Direct field measurements of SR and Ma: The gold standard method for estimating EIR is to 
directly measure SR and Ma, and to calculate the product of their values: 
 

EIR = 𝑆𝑅Ma =  
total sporozoite positive ELISA tests

total mosquitoes tested
x 

total mosquitoes collected 

total catches
 

 
Using this method, it is reasonably difficult to calculate appropriate confidence intervals since 
Ma and SR are not independent of each other (i.e., In seasonal areas there is an inverse 
association over time between SR and changes in population density), and an estimation of the 
covariance of these is required in order to carry out the calculation (Charlwood et al., 1995). An 
alternative method has been proposed, in which it is possible to calculate confidence intervals 
(Drakeley et al., 2003). This method assumes that sporozoite data are available for all 
mosquitoes caught: 
  

EIR =
total sporozoite positive mosquitoes 

total catches
 

 
Often, mosquito catch data conform to negative binomial distributions, suggesting an 
alternative method can be developed to assess the confidence intervals  (Shilane et al., 2010, 
Nedelman, 1983).  
 
Methods for collecting data on SR and Ma have not been standardised and improved 
biostatistics are needed to establish the appropriate intensity of sampling (Nedelman, 1983, 
Hay et al., 2000). A recent review of 230 geo-referenced EIR estimates in Africa between 1980 
and 2004 found a total of 11 different methods of measuring EIR (Table 3) (Kelly-Hope and 
McKenzie, 2009, Hay et al., 2000). Ma had been estimated most frequently using human 
landing catch or pyrethrum spray catch, although light traps and window exit traps had also 
been used. While human landing catches are deemed the gold standard, measurements may be 
not accurately reflect exposure when personal protection is in place and there are ethical issues 
surrounding the risk to those conducting catches.  
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In the same review, SR was most commonly estimated through dissection of mosquito salivary 
glands or by ELISA, however polymerase chain reaction (PCR) has also been used (Kelly-Hope 
and McKenzie, 2009). Of these methods, PCR is the most sensitive yet is also most prone to 
contamination, resulting in false-positives. False-positivity in the ELISA may also affect the 
validity of EIR estimates (Durnez et al., 2011). Dissection is a visual method and is therefore 
subjective. All three approaches for assessing sporozoites rates therefore have their 
shortcomings. Some studies have attempted to quantify the relationship between different 
methods of measuring Ma (Mbogo et al., 1993, Lines et al., 1991) and SR (Adungo et al., 1991, 
Boudin et al., 1991) however there remains uncertainty over how measures compare. Site-
specific validation of alternative methods may be increasingly recommended.  
  
Modelling of mosquito populations: EIR can be estimated through a detailed study of the 
mosquito population and through the formulation of models incorporating the reproductive 
age of the mosquito. For example Killeen and colleagues adapted an existing cyclical model 
(Saul et al., 1990) to allow calculation of EIR as a product of (1) the potential of individual 
vectors to transmit malaria over their lifetime, (2) vector emergence rate in relation to the size 
of the human population size and (3) the infectiousness of humans to vectors (Killeen et al., 
2000). This model of EIR gave predicted values in the same range as those observed in the field 
at four sites in Papua New Guinea, Tanzania and Nigeria (Killeen et al., 2000). However, 
although such models may have a use in predicting the effect of interventions, the gold 
standard for EIR remains direct field measurement. 
 

b. Accuracy 
One of the most important questions about the accuracy of the EIR concerns the relationship 
between the methods used to catch mosquitoes and the actual number of bites received by a 
person over any given interval of time. A major concern is that different methods for catching 
mosquitoes have different and poorly characterized biases in their ability to sample different 
mosquito populations and different mosquito species in different places (Silver, 2008). The 
number of mosquitoes that are caught differs considerably between different mosquito 
trapping approaches and sampling efficiency may differ between mosquito species (Wong et 
al., 2013). If traps are used to sample mosquitoes, the placement of trap – whether inside or 
outside – and the properties of the trap itself have been shown to differ in the number of 
vectors species that are being caught (Jawara et al., 2011, Wong et al., 2013)). Inter-individual 
differences in attractiveness to mosquitoes (Knols et al., 1995) may in turn affect the accuracy 
of human landing catches. Another concern about the accuracy of mosquito sampling methods 
is the poor understanding of outdoor biting patterns and if these capture all the relevant vector 
species (Stevenson et al., 2012). Most methods have been developed and standardized for 
indoor sampling and might miss outdoor biting, whether outdoor biting comprises a proportion 
of the biting by a single vector species or type or many types. This will also influence the 
precision of any estimate.  
  

c. Precision 
Without precise measurements of Ma and SR, the uncertainty in EIR can be so large that it is 
difficult to measure a change in EIR, particularly at low transmission levels. Ma is difficult to 
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measure precisely due to spatial, temporal and seasonal variability in vector density, which 
necessitates intensive sampling. Sampling methods have yet to be standardised, so it remains 
unclear what spatial and temporal schemes would give the most precise measures of Ma. SR is 
also difficult to measure precisely, since it is dependent on the initial infectiousness and 
average age or survival times of adult mosquitoes in a population. It may also necessary to 
measure mosquito species-specific S. Unless all mosquitoes caught are examined for 
sporozoites, calculation of confidence intervals around the EIR is difficult, with several 
implications: i) it is not possible to extrapolate to other sites, ii) sample size calculations for 
entomological studies are difficult to carry out and iii) in any study it is unlikely that the number 
of catches used to calculate EIR will fully represent the total number of person nights within a 
village. It is therefore difficult to put results in context without confidence intervals. Another 
concern related to accuracy is the sampling approach. To improve yields, entomological 
sampling may purposefully select household where a high mosquito density is expected. This 
affects the extent to which findings can be extrapolated to other households. 
 

d. Costs 
Costs for measuring EIR are difficult to generalise since they are heavily dependent on the 
intensity of entomological sampling, the setting and the methods used. Table 3 summarizes the 
number of times each sampling method for computing the Ma has been used to estimate the 
EIR. Table 4 shows the costs of different methods of determining SR, which do not account for 
manpower. Though exact costs are laboratory-specific, ELISA is the least expensive assay when 
manpower is taken into account, since salivary gland dissections are laborious and PCR requires 
extensive training and rigour. 
 

[Table 3] 
[Table 4] 

 
e. Critique 

Traditionally considered the gold standard, estimates of EIR are relatively commonplace and 
considered easily interpreted by policy makers and national malaria control programme 
managers alike. However EIR is not suited to obtaining rapid estimates of transmission 
intensity. The large uncertainty inherent in measuring Ma and the need for standardised 
methods for measuring both Ma and SR (Kelly-Hope and McKenzie, 2009, Hay et al., 2000) limit 
the precision and accuracy of EIR and its potential for measuring a change in transmission. This 
is especially so at low transmission intensities, where it is difficult to catch sufficient 
mosquitoes. Furthermore, methods that do not require humans are not well developed for 
exophagic vectors. There is also small-scale spatial variability in vector abundance and EIR 
(Mbogo et al., 2003). Despite its limitations, EIR may be necessary in certain settings where 
serological age profiles or parasitological or clinical measures become insensitive to changes in 
transmission, for example at very high levels of transmission. 
 
EIR estimates the rate of human exposure to infectious bites, which does not directly translate 
into population measures of either incidence or clinical disease, nor does it accurately 
represent exposure when interventions are in place. There are also species- and site-specific 
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discrepancies between the different methods of measuring Ma, including human landing 
catches, light trap catches and pyrethrum spray catches (Lines et al., 1991). While the Ross-
Macdonald model assumed a linear relationship between the force of infection and EIR, the 
efficiency of transmission (force of infection/EIR or SCR/EIR) actually declines in high 
transmission settings (Najera, 1974, Smith et al., 2010). There are three main hypotheses to 
explain the lower transmission efficiency at high intensity: (1) immunity, (2) heterogeneous 
biting and (3) systematic bias in estimation of the EIR (Smith et al., 2006). Long-lasting immunity 
is unlikely to be able to account for short-term variation in transmission efficiency however, 
while bias could explain the nonlinear patterns in transmission efficiency only if the magnitude 
of the bias increased sharply with EIR. Heterogeneous biting may therefore be the most 
plausible explanation; if 20% of the population receives 80% of bites, this is consistent with 
temporal variation in transmission efficiency correlated with EIR, observed at several sites, for 
example Saradidi in  Kenya (Beier et al., 1999, Smith et al., 2010). The loss of transmission 
efficiency, in addition to the above described concerns about accuracy and precision, raises 
concern that entomological measures may not be the most appropriate method for measuring 
malaria transmission. 
 
2.4. Force of Infection (FOI) / Molecular force of infection (mFOI) 

 
The force of infection (FOI) is the number of infections per person per unit time. mFOI is the 
molecular FOI, the number of new parasite clones acquired per unit time (Mueller et al., 2012). 
FOI counts all patent incident human malaria infections (symptomatic or asymptomatic) during 
a given time period and also takes into account whether or not a person is already infected. 
  

a. How to collect 
FOI can be measured using cohort studies or repeat cross-sectional surveys.  
 
Cohort studies: FOI can be measured in a naturally uninfected cohort (e.g. uninfected 
immigrants or infants) or by artificially creating a cohort of uninfected individuals through 
treatment with antimalarial drugs and following up the cohort to measure the attack rate over 
some time period (the proportion becoming infected) (Smith et al., 2010), as has been done in 
Kenya, Ghana, and Senegal (Beier et al., 1994, Owusu-Agyei et al., 2001, Baird et al., 2002, 
Rogier et al., 1999). A few studies have estimated the FOI by observing the patterns of parasite 
positives and negatives over time, but some of these transitions may represent natural 
fluctuations in existing populations, rather than new infections (Bekessy et al., 1976, Charlwood 
et al., 1998). To resolve some of these questions, new methods have been developed to 
examine the FOI using genetic methods (see below) to type new infections, called the mFOI. 
Since the number of newly acquired infections can be measured in the presence of previously 
acquired infections, there is no need to clear infections prior to longitudinal measurements 
(Mueller et al., 2012, Felger et al., 2012). 
 
Cross-sectional surveys: Cross-sectional surveys can be conducted and FOI estimated by fitting 
reverse catalytic models to the increase in PR with age, controlling for infections that have been 
cleared (Smith et al., 2010, Davey and Gordon, 1933, Davidson and Draper, 1953, Pull and Grab, 



15 
 

1974). For mFOI these models can allow for the imperfect detection of all circulating parasite 
clones (Felger et al., 2012). 
 

b. Accuracy  
Since the density of parasites fluctuates within an infected individual, the sensitivity and 
specificity of microscopy in detecting infections varies. Sampling on one day only will lead to a 
small proportion of infections remaining undetected and imprecision in FOI (Koepfli et al., 
2011). This may be less problematic for mFOI, since PCR methods involved have greater 
sensitivity than microscopy (Mueller et al., 2012, Felger et al., 2003). Estimates of mFOI may be 
biased if certain parasite clones are not detected when fluctuating below the PCR detection 
threshold (Koepfli et al., 2011, Mueller et al., 2012, Felger et al., 2012) and will also affected by 
seasonality, age, ITN use and chemotherapy (Mueller et al., 2012).  
  

c. Precision 
Estimates from several different studies suggests that FOI is relatively consistent (Smith et al., 
2010, Bekessy et al., 1976, Charlwood et al., 1998, Rogier and Trape, 1993). The efficiency of 
transmission declines as transmission intensity increases, partly due to heterogeneous biting. 
Therefore FOI saturates above an EIR of around 10 (Smith et al., 2010). Where the FOI is very 
high, the frequency of sampling limits the maximum value of estimates. The strong association 
between mFOI seasonality, age and ITN use indicates that it is a reasonable measure of 
exposure to infection. Significant variation in mFOI between villages also reflects small-scale 
heterogeneity in transmission (Mueller et al., 2012). mFOI is a more realistic estimate of FOI, 
since it is possible to monitor natural superinfections in asymptomatic individuals and will also 
have higher discriminative power at higher transmission intensity.  
 

d. Costs 
Costs for FOI and mFOI depend on whether a cohort or cross-sectional survey is used. PCR, 
required for mFOI, is more expensive than microscopy and requires a higher level of training 
and/or technical capacity (Table 2). 
  

e. Critique 
mFOI has greater sensitivity and specificity than FOI and overall a relatively high precision and 
accuracy in areas of low transmission. Due to the decline in transmission efficiency at high 
transmission levels, FOI plateaus above a certain transmission intensity, and is therefore not 
useful for measuring a change in transmission in highly endemic areas. mFOI is likely to reach a 
plateau later than FOI. A plateau in mFOI may not be reached if this metric is interpreted as a 
dynamic multiplicity of infection (MOI), at least in age groups where infections reach blood 
stage and if the method of detection is highly inclusive.  
  
2.5. Multiplicity of Infection (MOI) 

 
MOI is the number of concurrent parasite clones per P. falciparum-positive host. It has only 
relatively recently been pioneered as a metric of malaria transmission (Beck et al., 1999, 
Kolakovich et al., 1996, Mbugi et al., 2006, Arnot, 1998, Schleiermacher et al., 2001). 
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Mathematical theory suggests that, in a cohort of uninfected people acquiring infections and 
clearing infections independently and naturally, that MOI would reach a Poisson distribution 
with mean given by the FOI divided by the clearance rates (Dietz, 1988). With heterogeneous 
biting, this would become a negative binomial distribution. All of these distributions would be 
affected by within-host competition among parasites (Dietz, 1988) and by sporadic treatment 
with anti-malarial drugs. The general pattern expected is a higher MOI with local transmission 
intensity and with time since parasites were last cleared with antimalarial drugs.  
 

a. How to collect 
MOI can be measured by genotyping infections using polymorphic markers such as the 
merozoite surface protein-1 (MSP-1) (Atroosh et al., 2011), MSP-2 (Mueller et al., 2012, Vafa et 
al., 2008), Glutamate-Rich Protein (GLURP) (Akter et al., 2012) or microsatellite markers 
(Guitard et al., 2010). MOI has been measured in cross-sectional or longitudinal samples.  
 

b. Accuracy 
Accurate molecular typing is essential for measuring MOI and the number of molecular markers 
and the number of sampling days that are needed for this depend on transmission setting. The 
more rounds of sampling conducted, the more clones collected and the more precise the MOI 
estimate (Koepfli et al., 2011). Sampling parasites from the same individual repeatedly will 
improve the accuracy of the MOI estimate, but as sampling frame grows longer, new infections 
may decrease the accuracy of MOI. The capacity of MOI to accurately reflect transmission is 
also likely to be dependent on the diversity of malaria clones in a particular setting, however 
the relationship between this genetic diversity and transmission intensity is not yet well 
quantified. Where parasite populations are less diverse, estimates of transmission may be 
underestimated due to a saturation effect where multiple clones are not distinguished by the 
molecular markers used (Mueller et al., 2012). In addition, although methods for estimating 
haplotype frequencies have been developed (Li et al., 2009), haplotypes are not typically 
considered. This may lead to underestimation of the true MOI, a bias that will change with 
transmission intensity. 
 

c. Precision 
MOI will be affected by interventions such as chemotherapy or chemoprophylaxis that 
influence susceptibility to infection. In malaria-endemic regions, multiple infections are 
common, and MOI closely correlates with endemicity (Arnot et al., 1985, Beck et al., 1997, 
Ntoumi et al., 1995, Paul et al., 1995, Mueller et al., 2012). Reduced MOI has also been 
observed to be associated with increased ITN use, indicating that it is a reasonable indicator of 
transmission intensity (Mueller et al., 2012). In a study in children aged 0.9-3.2 years in Papua 
New Guinea, variation in average MOI over time and between and within villages was not 
statistically significant. Parasite densities show seasonal fluctuations and the detectability of 
parasite clones may therefore also depend on season. This will affect the precision of MOI 
estimates. If this is taken into account and if the extraction of nucleotides and efficiency of PCR 
amplification remain constant over time, MOI estimates are expected to be relatively precise. 
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d. Costs 
Whilst information can be obtained from single time point surveys, in general repeat sampling 
is required for accurate estimates of MOI, together with sophisticated procedures including 
genotyping, which makes it a relatively expensive measure. Costs are also laboratory-specific. 
  

e. Critique 
MOI has been developed as a metric of malaria transmission only recently as tools for 
disentangling the molecular complexity of natural parasite infections emerge, as such methods 
for validation require development. Two limiting factors on the maximum value of MOI are (1) 
the frequency of sampling and (2) the local diversity of parasite populations. In the absence of 
these constraints, MOI shows promise as a robust measure of changing malaria transmission.  
 
2.6. Seroconversion Rate (SCR) 

 
The seroconversion rate is a function of antimalarial antibodies in the population and indicates 
exposure to infection. It is calculated by fitting a reversible catalytic model to age-specific 
malarial antibody prevalence (seroprevalence) data (Drakeley et al., 2005b, Grab and Pull, 
1974). SCR takes into account malaria exposure (infection) over time (Corran et al., 2007), 
allowing temporal patterns in transmission to be studied (Stewart et al., 2009, Cook et al., 
2011). 
  

a. How to collect 
Methods for ascertaining seroconversion rates have been described in detail (Stewart et al., 
2009, Corran et al., 2007). In brief, data on seroprevalence to malaria parasite specific antigens 
(e.g. AMA-1, MSP-119, P. falciparum schizont extract (PfSE)) is collected across all age groups 
and converted to SCR by fitting a simple reversible catalytic model to the seroprevalence data, 
stratified into yearly age groups, using maximum likelihood methods (Pull and Grab, 1974). 
Exclusion of individuals aged <1 year from estimates of SCR minimises the effect of maternally-
derived antibodies.  
 
Types of assay: The antibody assay can be adapted to different transmission settings using 
different antigens (Corran et al., 2007). Historical methods for measuring seroprevalence 
include the complement fixation test (CFT), indirect haemagglutination assay (IHA) and 
immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA) and 
most recently, protein micro-array (Drakeley et al., 2005b). ELISA is simple, easily standardised 
and has been used in many recent sero-epidemiological studies of malaria (Cook et al., 2011, 
Drakeley et al., 2005b). 
  
Types of survey: Blood samples for generating seroprevalence data can be collected in cross-
sectional surveys (Cook et al., 2010), school surveys or in health facilities (which necessitates 
sampling all individuals attending a facility over a fixed period of time, or until sufficient 
samples have been obtained). In a comparison of the relative advantages of cross-sectional 
survey and health facility data in north eastern Tanzania, a lower PR was recorded in cross-
sectional surveys than health facility data (4.7% vs 2.%, p<0.001), a lower seroprevalence for 
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MSP-119 recorded in the health facility (29.1% vs 40.5%, p=0.005) and similar AMA-1 antibody 
prevalence found between the two (46.9% vs 47.9%, p=8) (Drakeley et al., 2005a)..  
  
There are three major limitations to the use of health facility seroprevalence data that are 
relevant to other measures. First, children aged <5 years and women of child-bearing age may 
be over-represented (which can be partly compensated for by sampling accompanying family 
members). Second, most health centre attendees are ill, therefore a substantial proportion will 
have active malaria infections which could influence seroprevalence rates (Stewart et al., 2009). 
Third, unless the village of residence is recorded, estimates may be skewed by the recruitment 
of individuals from outside the catchment area, especially at referral facilities. The advantages 
of using health facility data are its speed of collection and low cost (Drakeley et al., 2005a). 
 

b. Accuracy  
Seroprevalence represents cumulative exposure to infection. The accuracy of serology must be 
addressed on both the individual level and at the level of a population. While the accuracy of 
serology for one antigen in one individual is probably not a highly accurate measure of previous 
infection, SCR may become a very useful and accurate measure of transmission in a population 
when it is taken on many individuals of different ages, and using multiple antigens. Indeed, one 
of the advantages of serology is the potential to measure seropositivity in humans of different 
ages, to multiple different responses to the parasite, all lasting different periods of time, to 
paint a fairly detailed profile of transmission in a population in the present and at various points 
in the past. One strong advantage of serology is that, due to the long duration of specific 
antibody responses, seroprevalence can be less affected by seasonality and short-term 
fluctuations in transmission than other measures (Cook et al., 2010).  The long duration of 
antibody responses has important consequences for areas with changing transmission intensity 
where seroprevalence in older age groups may reflect historical rather than current 
transmission intensity. 
  

c. Precision  
At low transmission intensities, SCR has high sensitivity since the longevity of the antibody 
response generates higher seroprevalence rates than equivalent PR (Stewart et al., 2009). At 
very high transmission intensities, SCR is less sensitive due to saturation of infection in the 
population. Heterogeneous immunity (not all individuals respond to all antigens) produces a 
lower estimate of SCR, hence higher SCR estimates (that are closer to FOI) are observed when 
two or more markers are combined (Smith et al., 2010). The use of antibody titres rather than 
prevalence data may increase the sensitivity of estimates to changes in transmission intensity 
(Stewart et al., 2009). 
  

d. Costs 
Health facility data is cheaper to collect than cross-sectional survey data (in Tanzania, health 
facility data was 5-10-fold cheaper than cross-sectional data (Drakeley et al., 2005a)). Collecting 
blood samples to generate seroprevalence data is relatively simple since antibodies can be 
eluted from filter paper, making sample collection and storage straightforward (Stewart et al., 
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2009)). Using an ELISA-based antibody assay is relatively simple, cheap and quick (Table 2) 
(Corran et al., 2007). 
  

e. Critique 
SCR has high precision and accuracy, although its accuracy may decline at very low or high 
transmission levels. A strong advantage of SCR is the ability to reconstruct the history of 
exposure, which is especially useful in the common situation of missing baseline data (Corran et 
al., 2007). With regard to measuring a change in transmission, it has not been established 
whether SCR can measure less than log-fold differences in transmission (Drakeley et al., 2005b). 
Currently SCR is not sensitive to short term changes in transmission since antibodies can persist 
for years after the period of exposure, so it is necessary to wait for the population to age 
(Corran et al., 2007). However some studies have reported SCR in the youngest children (<5 
years) (Ceesay et al., 2010) and this is a method for making SCR estimates more useful for 
determining recent yearly reductions in transmission intensity. Antigens that prove useful 
components of malaria vaccines may become redundant in SCR assays if such a vaccine 
becomes widely used (Corran et al., 2007). Fluctuations in recent exposure can also be 
determined by examining antibody titres, since seropositivity can last for many years, with 
currently infected individuals having the highest antibody responses, and levels slowly declining 
as parasites are reduced. The frequency distribution of antibody titres can therefore be used to 
describe endemicity if titres are drawn from an age-representative cross-sectional survey 
(Kagan et al., 1969, Lobel et al., 1973, Cook and Drakeley, 2009). Compared to antibody 
prevalence, antibody titres will have greater discriminatory power where transmission is high 
and when a very sensitive assay is used (Cook and Drakeley, 2009). 
 
2.7. Clinical surveillance 

 
Metrics for clinical surveillance include the slide positivity rate (SPR) (also known as the clinical 
positivity rate (CPR) or test positivity rate (TPR)), which is the proportion of those examined 
who test positive for parasitaemia. The annual parasite index (API) is a proxy measure of 
incidence that is derived from SPR takes into account the total population at risk of malaria and 
the rate at which that population is examined. This differs from incidence of clinical malaria, the 
rate at which new cases of clinical malaria arise in a population over time, directly measured by 
active or passive case detection. Finally, the proportion of fevers with P. falciparum 
parasitaemia (PFPf) represents the total number of febrile malaria cases as a proportion of all 
febrile cases.  
 
SPR: SPR is the proportion of those examined by microscopy or RDT with parasitaemia. This 
differs from the annual blood examination rate (ABER), which is the proportion of the total 
population examined for parasitaemia.  
 
Incidence of clinical malaria: Incidence of clinical malaria is the rate at which new cases of 
clinical malaria (fever plus parasitaemia) occur in a population (e.g., total number of cases per 
1000 person years at risk) and it is therefore a direct measure of disease burden. The annual 
parasite incidence (API) is the product of the SPR and ABER: API = (ABER*SPR)/10. Division by 
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10 is necessary because SPR and ABER are expressed per 100 and API per 1000. Incidence of 
clinical malaria has been relatively frequently collected; a recent review documented 83 
estimates between 1985 and 2005 (4.2 estimates per year) (Snow et al., 2005). 
 
PFPf: PFPf is the number of parasitologically-confirmed cases divided by the total number of 
presumptive malaria (febrile) cases. This differs from the malaria-attributable fraction (AF, or 
proportion of febrile cases attributable to malaria), which is the proportion of fever morbidity 
that would be removed if malaria were eliminated. AF is defined as p(fp - fp0)/fp, where p is the 
proportion of febrile individuals with parasites, fp is the proportion of parasitaemic individuals 
with fever, and fp0 is the proportion of aparasitaemic individuals with fever (Smith et al., 1994). 
There are relatively few estimates of PFPf; a recent review documented 39 studies measuring 
PFPf between 1986 and 2007 (1.9 estimates per year) in sub-Saharan Africa (D'Acremont et al., 
2010), while another study identified 67 estimates between 2000 and 2009 (7.4 estimates per 
year) (Gething et al., 2010). Differences between the two estimates may have arisen due to 
different review inclusion; in the in the first review the PFPf denominator was the total number 
of presumptive malaria cases (D'Acremont et al., 2010), while in the second the PFPf 
denominator was the selection criteria for detailed microscopy, which varied from definitions 
of fever to unspecified criteria such as ‘suspected’ or ‘presumed malaria’ (Gething et al., 2010). 
 

a. How to collect 
SPR: SPR is collected through routine health facility data, using RDTs or blood slides, which 
ideally should be double-read. The total number of positive slides or RDTs is divided by the total 
number of slides or RDTs (assuming one test per person).  
 
Incidence of clinical malaria: Incidence can be measured by active or passive case detection, or 
indirectly estimated using mortality data or spatial techniques.  
 
Active case detection: Incidence can be measured by active case detection by following up a 
cohort of children artificially cleared of infection and recording new incident infections (Beier et 
al., 1994). Active case detection captures more cases than passive case detection (Utarini et al., 
2007). However it is much more expensive, requires many staff and is time-consuming. 
 
Passive case detection: Incidence can also be measured by passive case detection where new 
incident infections are recorded once they present at (health) facilities. Measuring incidence 
through passive case detection makes three assumptions: (1) complete spatial coverage (every 
health facility reports and every incident infection has access to a facility), (2) complete 
temporal coverage (every month is reported by a health facility), (3) all disease events present 
to/are reported by the health facilities (Snow et al., 2005). Hospital admissions data can be 
used to measure incidence however this does not always reflect malaria incidence in the wider 
community (Okiro et al., 2009). 
 
Indirect estimation: Malaria incidence has been estimated at the country level using reported 
malaria mortality data as raw starting data, and extrapolating this to incidence using (1) an 
adjustment for under-reporting of mortality, (2) an estimate of the likely P. falciparum case 
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fatality rate and (3) the proportion of cases attributable to P. falciparum (to which nearly all 
mortality is attributed) for each set of national data (Carter and Mendis, 2006, Mendis et al., 
2001). However this method is likely to underestimate incidence (Snow et al., 2005). In this 
study the global clinical malaria burden was estimated using evidence of the epidemiological 
risks of disease outcome from active case-detection studies together with estimates of 
populations at risk of various P. falciparum transmission conditions. 
 
There has been debate over the relative merits of estimating incidence directly and indirectly 
(Cibulskis et al., 2011). Routine data has the dual advantages of being more immediately 
sensitive to changes in incidence, and since it is collected as part of malaria control programmes 
it can be easily integrated with other types of data to help evaluate and improve programmes. 
However, its reliability depends on the coverage and quality of the surveillance system. Strong 
mandates for the notification of all malaria cases in both public and private sectors may 
improve reliability (malERA, 2011). Model-based approaches provide estimates for areas with 
poor or no surveillance and can be used to examine trends over wide areas and over time. 
However extrapolation in areas of limited data may not be reliable. Combining both approaches 
may give stronger estimates overall (Mueller et al., 2011  ). 
 
PFPf: PFPf can be directly calculated from routine health facility or cross-sectional survey data. 
The total number of cases with confirmed parasitaemia should then be divided by the total 
number of presumptive malaria cases. Indirectly, PFPf has also been estimated by combining 
estimates of childhood fevers and treatment-seeking rates from MIS or other survey data with 
estimates of the risk of febrile children being infected when reporting to clinics within three 
classes of endemicity. Using this method it was estimated that of 656 million fevers in children 
aged 0-4 years in Africa in 2007, 182 million presented to public health facilities of which 78 
million (42.9%) had parasitaemia (Gething et al., 2010). 
 

b. Accuracy 
SPR: Although SPR applies a consistent case definition of malaria, it is calculated from routine 
health facility data and therefore estimates will be affected by any seasonal or other changes in 
the incidence of non-malaria fever which influence the presentation of febrile cases (Jensen et 
al., 2009). As such there is likely to be variation in repeat estimates over time, limiting the value 
of SPR as a robust assay for measuring changes in transmission. Consistency in diagnostic 
practices, e.g. the likelihood that a febrile individual is referred for laboratory diagnosis, is 
essential for accurate and precise estimates. High quality and consistency in microscopy or the 
use of RDTs is also necessary for accurate data. 
 
Incidence of clinical malaria: The incidence of clinical malaria increases rapidly with 
transmission intensity. However at high transmission levels, incidence does not exceed that 
observed at intermediate transmission levels, partly due to acquired immunity and multiple 
infections (Ghani et al., 2009, Trape and Rogier, 1996). Therefore as transmission falls, a 
threshold must be crossed before a significant reduction in cases and hospital admissions is 
observed (Smith et al., 2004, Trape et al., 1987). Incidence estimated using hospital admissions 
will be unreliable if over-diagnosis leads to an overestimation of the number of cases 
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presenting to health facilities, and cases in the community are missed. Incidence varies with 
immunity; some individuals may be infected yet asymptomatic and this proportion will differ 
according to endemicity. Especially at low transmission levels, there is considerable 
heterogeneity in incidence that results from heterogeneity in transmission between households 
and may also be affected be human genetic factors that influence the progression of infections 
to symptomatic disease (Mackinnon et al., 2005). 
 
PFPf: There is likely to be large variation in estimates of PFPf since the causes of fever differ 
between populations and over time. Furthermore, if health facility data is used, then inaccuracy 
is introduced into PFPf since a varying proportion of febrile individuals within a population will 
present at clinics. In areas of very high transmission intensity, estimates may be inaccurate 
since nearly all individuals have parasitaemia. In addition, non-malaria fevers may suppress 
malaria parasitaemia, resulting in biased estimates (Smith et al., 1994 ). 
 

c. Precision 
SPR: Changes in SPR have been used as evidence of a decline in malaria in parts of Africa 
(Ceesay et al., 2008), yet the accuracy of SPR as a metric of transmission is less well established 
than for other metrics. SPR can explain variation in incidence of malaria (Bi et al., 2012) and has 
been found to be directly associated with the relative change in malaria incidence, assuming 
that there is no sampling bias in the subgroup of suspected malaria cases undergoing 
laboratory testing, and that the incidence of non-malaria fevers is constant over time. Since SPR 
incorporates only laboratory-confirmed cases, the denominator very clearly represents the 
number of laboratory tests (Francis et al., 2012). The decision making by which laboratory 
confirmation is requested should remain consistent over time to allow precise and comparable 
estimates to be made. SPR cannot be used to estimate the incidence of clinical malaria (Jensen 
et al., 2009) since health facility data may not accurately represent the entire population, 
especially if the health facilities are chosen because they have laboratories with trained staff 
and high standards. 
 
Incidence of clinical malaria:  At low transmission levels, a very large sample size is required to 
precisely measure incidence. Similar to SPR, the precision of estimates of clinical malaria 
depends on the consistency in diagnostic practices. In addition, if there are substantial 
variations in health-seeking behaviour over time, estimates of clinical malaria that depend on 
passive case detection will be imprecise.  
 
PFPf: In a review of 39 studies measuring PFPf in sub-Saharan Africa, a 50% reduction in PFPf 
was observed in the periods pre- and post-2000 (22% versus 44%) (D'Acremont et al., 2010). 
This mirrors the recent decline in malaria across sub-Saharan Africa (O'Meara et al., 2010), 
indicating that PFPf may be useful as a rough indicator of transmission intensity. However, in a 
review of 67 independent estimates of the proportion of febrile children attending clinics with 
parasitaemia, the ranges of PFPf overlapped in medium (5-40% PR2-10 years) and high (>40% 
PR2-10 years) classes of endemicity, indicating low precision of PFPf as an indicator of malaria 
transmission. Furthermore, the pattern of causes of fever in malaria patients is not uniform 
within populations and between areas (D'Acremont et al., 2010, Gething et al., 2010). 
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Additionally, fever will not be caused by malaria infection in a certain proportion of 
parasitaemic fever cases. Like the PR, the PFPf likely saturates at high transmission.  
  

d. Costs 
SPR: Measurement of SPR is relatively cheap since data is obtained from health facility records 
and routine diagnostic procedure. Table 2 summarises the comparative costs of RDTs and 
microscopy. 
  
Incidence of clinical malaria: Indirect estimation of incidence using previously collected data is 
relatively inexpensive, apart from staff costs. Direct estimation through passive case detection 
is cheaper than direct estimation through active case detection. Both active and passive 
detection have the same costs per individual tested (i.e. cost of RDT and cost of ACT) however 
active detection involves more frequent testing, which requires more RDTs or slides (Utarini et 
al., 2007), and is logistically more challenging since it will involve repeated scheduled visits of 
cohort members. 
 
PFPf: The cost of measuring PFPf directly is dependent on whether it is collected via health 
facility or survey data. Costs for microscopy and RDTs are given in Table 2. Surveys are more 
expensive to conduct. 
 

e. Critique 
SPR: SPR has the advantage that it can be calculated from routine health data and for this 
reason it is used by WHO as an indicator of reduced transmission at the country level (WHO, 
2011). SPR is therefore useful as a rapid indicator broad trends in malaria transmission within a 
site. However trends in SPR may be affected by confounding factors such as age, area of 
residence, testing frequency, access to healthcare and type of diagnostic tests used (Francis et 
al., 2012), so that it is much more difficult to interpret the SPR across sites. Overall, the 
relatively low accuracy and precision of SPR negate its use as a robust metric of changes in 
malaria transmission. 
  
Incidence of clinical malaria: At high transmission intensities, acquired immunity limits the 
accuracy of incidence as a measure of transmission intensity. Therefore, incidence may not be 
appropriate for accurately recording a decline in incidence from high to medium endemicity. In 
the context of a trial of a transmission-reducing intervention, clearing baseline and incident 
infections with drugs at the beginning of a study will affect the subsequent susceptibility of an 
individual to infection and disease, complicating the measurement of incidence. The clinical 
presentation of malaria is independently influenced by age (Marsh, 1999, Reyburn et al., 2005) 
and it has not yet been established which age groups should be monitored for measuring the 
efficacy of different transmission-reducing interventions. 
 
PFPf: The costs of measuring PFPf are low since it can be readily incorporated into existing 
routine data collection, therefore PFPf may be useful as a rough indicator of changes in 
transmission for malaria control programmes. However it has low precision and accuracy 
therefore should not be relied upon as a reliable assay of changing transmission. 
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2.8. Vectorial capacity (C) and the Basic Reproduction Number (R0) 

 
Vectorial capacity: Vectorial capacity (C) was developed as part of the early work done by 
Macdonald to identify the entomological factors responsible for transmission (Macdonald, 
1952). A few years later, it was modified slightly to include the human blood index, the 
methods for measuring it were described, and it was then named (Garrett-Jones, 1964). The 
quantity describes the potential intensity of transmission by malaria vectors and it is defined as 
the ‘daily reproductive rate’ or more precisely, the expected number of infectious bites that 
could eventually arise (i.e., assuming perfect efficiency of transmission) from all the mosquitoes 
that bite a single human on a single day (Garrett-Jones, 1964). It is calculated as:  
 

𝐶 =
𝑀𝑎2𝑝𝑛

− ln 𝑝
 . 

 
Where M is the density of adult mosquitoes, a is their feeding frequency on humans, p is their 
daily survival rate and n is the duration of parasite development in humans. It can also be 
understood as the product of the human biting rate (Ma is the human biting rate), the 
probability a mosquito survives through sporogony (𝑝𝑛), and the expected number of human 
bloodmeals that would be given by a mosquito after it has become infectious (𝑆 = 𝑎/− ln 𝑝). 
approximate  
 
When more than one vector species present, the total vectorial capacity is the sum of vectorial 
capacity of each vector: 𝐶 = 𝐶1 + 𝐶2 + ⋯. 
 
R0: The malaria basic case reproduction number (R0) is the ‘expected number of hosts who 
would be infected after one generation of the parasite by a single infectious person who had 
been introduced into an otherwise naïve population’. It is found by multiplying vectorial 
capacity by the net efficiency of transmission, and by the duration of an infection: R0=bcCD, 
where D describes the average infectiousness of a human infection expressed in the equivalent 
number of fully infectious days (Johnston et al., 2013)  Where transmission is stable the value of 
R0 is high, exceeding the value (R0 = 1) needed to sustain transmission. Vectorial capacity-based 
estimates of R0 range from 1 to 3000 in 121 African populations (Smith et al., 2007a, Gething et 
al., 2011). 
 

a. How to collect 
Vectorial capacity: All of the components of vectorial capacity can, in theory, be collected 
through studies of mosquito populations, usually through studies that capture, mark, release 
and recapture mosquitoes. Vectorial capacity has been estimated in this way by collecting data 
on its individual components together with cyclical feeding models of transmission (Saul et al., 
1990, Graves et al., 1990, Charlwood et al., 1997). However, measuring all the entomological 
components to calculate vectorial capacity is technically difficult, and the measurement of each 
term introduces error that is compounded by taking the product. An alternative method has 
been proposed, where the dominant entomological variables only are included to be used as a 
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comparative index (Dye, 1986). For example, the Garki project human biting rate data were 
combined with an amalgamation of the remaining components of vectorial capacity to create a 
comparative index of vectorial capacity in different Garki villages (Dye, 1986). However this 
method produces estimates with a comparative use only. 
 
R0: R0 can be estimated directly by taking the product of estimates of each parameter in the 
formula for vectorial capacity. Under the classical assumptions (that human populations are 
infinite and the human biting rate is constant), R0 = bVD, where b is the probability that a 
human becomes infected after being bitten by an infectious mosquito, V is the vectorial 
capacity (the number of infectious bites by mosquitoes arising from all mosquitoes infected by 
one person during one day), and D is the mean duration of infectiousness of a single human. 
 

 One estimate of b has been made using the control arms of experimental challenge studies 
(Smith et al., 2010). Since transmission from infectious humans to mosquitoes is often 
inefficient, depending inter alia on the fluctuating density of gametocytes, it may be best 
expressed as the number of days an untreated person would be fully infectious; analysis of data 
from malariatherapy patients and from models of it suggest that a person is infectious, on 
average, for a period that amounts to approximately 36 infectious days (Johnston et al., 2013). 
The first estimates were done this way (Davidson and Draper, 1953, Davidson, 1955), but it is 
technically difficult and expensive (Smith et al., 2007a).  
 
There are, however, several other methods available for estimating R0 (Dietz, 1993 ), based on a 
data describing 1) the EIR; 2) the FOI (Najera, 1974); 3) the average age at which infection with 
malaria occurs; and 4) the ratio of malaria infections during successive generations (Freeman et 
al., 1999). Most estimates of R0 for malaria have been derived from estimates of the EIR, but 
the other methods have also been used.  
 
A simple method for estimating vectorial capacity from EIR is based on a model of mosquito 
infections that is consistent with the Ross-Macdonald model. By the formulas, vectorial capacity 

is closely related to the EIR: 𝐸 ≈ 𝐶𝜅, so 
𝐸

𝜅
≈ 𝐶, or more precisely:  

𝐶 =
𝐸 (1 + 𝑆𝜅)

𝜅
. 

Transmission is slightly more efficient when humans who are more frequently bitten are at 
increased risk of infection and consequently infect more mosquitoes. This increases R0 by a 
factor proportional to the squared coefficient of variation of biting rates (1+∝). Making the 
assumption that net infectiousness is proportional to the PR (i.e. 𝜅 ≈ 𝑐𝑋), and that the duration 
of a simple human infection is (1/r), estimates of the EIR and the PR were used to estimate R0 in 
121 African populations (Smith et al., 2007a), based on the formula:  
 

𝑅0 = 𝑏𝐶𝐷(1 + ∝) = 𝐸 
𝑏

𝑟

(1 + cSX)

𝑋
(1 + ∝). 

 
The underlying model provides a good fit to the observed empirical relationship between the 
EIR and the PR as well as the empirical relationship between the EIR and the FOI (Smith et al., 



26 
 

2010, Smith et al., 2005). This relationship has now been updated to use empirical estimates of 
𝜅 and the revised method was used to produce a global map of the reproductive numbers for P. 
falciparum that reflects current levels of control (Gething, et al. 2011).  
  
R0 may also be estimated using the initial growth-rate of an epidemic in a previously unexposed 
population (Macdonald, 1956), this is not feasible in malaria-endemic regions  (Smith et al., 
2007a), but it has been applied to measure R0 in at least one epidemic situation (Freeman). 
More generally, R0 has also been estimated from equilibrium situations, using age-independent 
and age-specific prevalence data (Dietz, 1993). 
 

b. Accuracy 
Vectorial capacity: The formula for vectorial capacity makes a number of assumptions: (1) each 
parasite species has one type of invertebrate vector and one type of vertebrate host, (2) the 
vector daily survival rate is constant over time and with age, (3) mosquitoes randomly take 
blood meals, (4) mosquitoes take a fixed number of blood meals per unit time, (5) an infective 
bite always leads to infection in a susceptible host. However these assumptions frequently fail, 
for example mosquitoes do not feed at random (Dye, 1986). Vectorial capacity is only as 
accurate as its constituent parameters. Methods for estimating all parameters for vectorial 
capacity have not been validated and any errors in collection are subsequently compounded 
during the final calculation, giving large sampling error (Dye, 1986). Mosquito survival through a 
day, or p,  in particular must be carefully measured since vectorial capacity is sensitive to 
changes in adult survival, and other factors such as the distribution of bites on humans are not 
well understood. An alternative method for calculating vectorial capacity that attempts to 
address these issues has been developed (Dye, 1986). 
 
R0: Like vectorial capacity, R0 is only as accurate as the individual parameters used in its 
calculation, for which there are practical difficulties in obtaining reliable measurements. In 
particular, it is difficult to acquire an accurate value for the human biting rate. Any errors in the 
measurement of individual components of R0 will be compounded. 
  

c. Precision 
Vectorial capacity: Vectorial capacity is closely related to EIR; vectorial capacity multiplied by 
the transmission efficiency gives the gradient of the relationship between EIR and PR at low 
transmission levels. Unlike EIR, vectorial capacity is not a function of the proportion of humans 
who are infectious or of the sporozoite rate. Therefore vectorial capacity gives an independent 
indication of human infection prevalence because its calculation does not use information on 
the proportion of humans infectious (Smith and McKenzie, 2004). The concerns about precision 
that are listed under EIR and PR are also concerns for the precision of estimates of vectorial 
capacity. Natural fluctuations in vector densities, biting patterns and variation in performance 
of trapping methods affect the precision of estimates of vectorial capacity. Similarly, the 
precision of PR in humans is affected by the chosen methodology, sampling population and 
timing of sampling. 
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R0: R0 is the gold standard, theoretical measure of malaria transmission, which all other metrics 
of transmission aim to reflect. When obtaining direct field measurements of R0, systematic 
sampling bias is introduced if PR is used as a measure of the probability that a mosquito 
becomes infected after biting a human. This is due to heterogeneous biting and immunity, 
which reduces the infectivity of both mosquitoes to humans, and humans to mosquitoes. 
Initially, at low transmission levels, the proportion of mosquitoes that become infected after 
biting a human is higher than PR, due to heterogeneous biting, however at high EIR, while PR 
continues to rise, transmission-blocking immunity causes the proportion of mosquitoes 
becoming infected to decline. Smith et al. therefore proposed a revision to the classic formula 
for R0 which takes into account this variation in the infectivity of humans and mosquitoes with 
variation in EIR (Smith et al., 2007a).  
 

d. Costs 
The costs of collecting vectorial capacity and R0 constitute the cost of measuring its individual 
components and since this involves detailed clinical and entomological surveys to measure EIR 
and PR, these are high. 
  

e. Critique 
Vectorial capacity: Vectorial capacity is not as useful a measure as EIR for predicting malaria 
transmission intensity, since it is less meaningful epidemiologically and is not testable by direct 
field measurement (Killeen et al., 2000). It is also difficult to obtain precise field measurements 
of vectorial capacity.  
 
R0: While R0 remains the gold standard, idealised measure of malaria transmission, it is difficult 
to measure accurately and precisely in the field, and the relatively small number of studies 
(Davidson and Draper, 1953, Davidson, 1955, Burkot et al., 1988, Hagmann et al., 2003) that 
have attempted to measure R0 is testament to this. In particular the percentage of infected 
humans that infect a mosquito, c, and the duration of human infections in populations with 
some level of immunity remain poorly parameterised. Since R0 is derived from other metrics, it 
is not suitable for measuring changes in transmission, but it is more useful as a way of 
interpreting those metrics within a common framework for control.  
 
 
3. SCALING RELATIONSHIPS BETWEEN MALARIA METRICS  
 
The metrics of transmission are all causally interrelated: infectious mosquitoes transmit 
parasites to humans causing new infections, and infectious humans transmit the parasite back 
to parasites that eventually appear as sporozoites in the mosquito. The potential rate at which 
these events occur increases with vectorial capacity or R0. The ease of measuring these metrics 
varies from place to place, depending in part, on the value of these parameters.  
 
In order to understand which metrics are generally more useful in which settings, and to 
correctly interpret the results of trials or programmes aimed at reducing malaria transmission, 
it is necessary to understand the underlying scaling relationships between metrics; for example, 
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does a 50% change in one variable correspond with a 50% change in another, and if so, does a 
second 50% change in one also correspond with a 50% change in the other? The expectations 
of these relationships derive from three sources: first, from well-designed epidemiological 
studies or large-scale controlled trials; second, from the examination of studies where two or 
more of these metrics have been measured in the same place; and third, from the output of 
malaria transmission models that are consistent with these changes and that provide a priori 
expectations about the shapes of those curves. Using previously published work, the 
relationships between five major metrics of malaria transmission: the entomological 
inoculation rate (EIR), force of infection (FOI), parasite rate (PR), sporozoite rate (SR), and the 
basic reproductive number (R0) are modeled in Figure 2 (Smith et al., 2006). Additionally, it is 
useful to visualise what metric(s) might be most appropriate in terms of accuracy and precision 
in measuring and detecting changes transmission at different levels of endemicity.  To this end, 
the relative utility of PR, EIR, R0 and SCR at different levels of transmission are modelled in 
Figure 3a,b and c. This model does not explicitly incorporate any sampling variation around 
each particular measures nor the associated precision and accuracy. However, by expressing 
the measures on the same scales, it does illustrate the range of transmission over which 
different measures might be used and the likely optimal combination of these measures. The 
limitations pertinent to each measure are described in the respective sections above but the 
figures show that at all but the highest settings EIR and PR can be used whilst at lower 
transmission levels molecular and serological endpoints are likely to be most informative. 
 
 [Figure 2]  

[Figure 3] 
 
3.1. EIR, FOI, PR, and the SR 

 
The bites of infectious mosquitoes give rise to new infections, and if not treated properly, these 
can resolve into a chronic infection. Given these causal relationships, the EIR must be related to 
both the FOI and to the PR.  Ross developed the first model relating EIR and prevalence (Ross, 
1911), and he also described the mathematical basis for the relationship between the EIR and 
the FOI (Ross, 1916). Ross’s work motivated the first studies to examine these relationships 
(Davey, 1933). In 1950 Macdonald assembled these data and examined the relationships. In 
theory, the FOI could increase linearly with the EIR, but Macdonald’s analysis provided the first 
quantitative evidence they did not (Macdonald, 1950).  The preponderance of evidence 
assembled since then suggests that there is a highly non-linear relationship between the EIR 
and the FOI that holds regardless of the method used to measure the FOI (Najera, 1974; Smith 
2010).  
 
Several mechanisms and models (Smith et al., 2010, Smith et al., 2006, Filipe et al., 2007) have 
been proposed to explain this relationship,  including immunity, heterogeneous biting (Smith et 
al., 2010, Smith et al., 2005), and a reduction in the proportion of entomologically assessed 
inoculations leading to an infection (Smith et al., 2006). There is evidence, meanwhile, that 
biting frequency increases with age; that the proportion of infections becoming patent declines 
somewhat with age and exposure, possibly due to greater immunity in older children; and that 
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there may be additional reasons why mosquitoes fail to feed at very high transmission 
intensity. Weighing the relative effects of these different putative causes is difficult because the 
associated models tend to give similar predictions.  
 
As part of baseline measurements for a malaria vaccine trial, Beier and colleagues conducted a 
cohort study in Saradidi, Kenya, in which 44 cohorts of children were cleared of infection before 
being followed up for two weeks. A linear model was fit to the relationship between EIR and 
FOI however, this model made false assumptions about that rate of transmission when EIR 
equals zero (Beier et al., 1994). Smith and colleagues re-analysed this data from Saradidi, 
introducing heterogeneous biting (Gamma-distributed biting rates) to refine the model:  
 

FOI =
(log(1 + bE∝t)

E∝t
. 

 
Where b= the proportion of infectious bites that cause a patent infection in a population 
previously unexposed to malaria, E= EIR , α= index of heterogeneous biting , t= number of days. 
Although the fit of this model was not as good as the unrooted linear relationship, it is not 
plausible that the relationship between EIR and FOI is linear, therefore the model with 
heterogeneous biting is the most pragmatic (Smith et al., 2010) (Figure 2c). More importantly, 
the non-linear patterns showed up in cohorts drawn from the same population and changed 
with the EIR, a pattern that is broadly inconsistent with the hypothesis of immunity.  
 
The model by Ross had been shown to work poorly in the African Savannah (Najera, 1974, 
Smith et al., 2005), and an analysis from 31 sites in Africa found that the relationship between 
the EIR and the PR was approximately log-linear. An immediate consequence of this formula is 
that the PR is not likely to fall until EIR is less than 1 per person per year (Beier et al., 1999). 
Smith and colleagues found that a simple model with heterogeneous biting fit the patterns of 
an expanded dataset at least as well as the log-linear model (Smith et al., 2005). 119 estimates 
of EIR matched to PR in African children aged 0-15 years were identified. The best overall model 
was a simple extension of the Ross-Macdonald model, with heterogeneous biting: 
 

PR = 1 − (1 +  
𝑏𝜀

𝑟𝑘
) -k 

 
Where b=transmission efficiency, k=variance of infection rate distribution, ε=annual EIR, 
1/r=expected time to infection clearance. The dataset of paired EIR-PfPR estimates was recently 
update and a log-linear model of EIR versus PR fitted (Figure 2d) (Gething et al., 2011).  
 
 Since gametocytes arise from asexual parasites and give rise to infections in mosquitoes, there 
should be a causal relationship between the PR and κ, and 𝜅 and the SR. Far more often, 
studies have focused instead on the relationship between the EIR and the SR, which is also of 
interest, but also partially confusing since the EIR is the product of the SR and the HBR.  Studies 
of the EIR and the SR have not found any statistically significant relationship. There is, however, 
a statistically significant relationship between the PR and the SR.  
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3.2         SCR and other metrics 
 
Much of the attraction of measuring PR and SCR is that they can be ascertained as part of the 
same sample collection process and measured using the same blood sample. However, while 
measures of current infection and past exposure can be derived concurrently, the relationship 
between the two parameters has to date not been examined in a systematic manner. In two 
cross-sectional surveys of 250 people conducted in each of 12 villages in Tanzania, the 
correlation between seroprevalence to merozoite antigens and PR was found to be highly 
correlated in children aged 4 years or less but decreased with increasing age (MSP-119, r=0.41, 
0.29 and 0.17; MSP-2, r=0.24, 0.20 and 0.13; AMA-1, r=0.28, 0.19 and 0.05 in individuals aged 0-
4, 5-14 and 15-45 years respectively) (Drakeley et al., 2005a).  This is to be expected, since 
although the antibody responses measured may not be directly linked to immune protection, 
they will likely reflect increased immunity in older individuals, who have a lower parasite 
burden. Indeed, where both parasitological and serological measures are age-adjusted, there is 
good correlation between the two (Figure 3b). For example, in a cross-sectional survey of 7387 
people across 18 sentinel sites across Bioko, Equatorial Guinea, site-specific PfPR2-10 was 
positively correlated with SCR (r=0.85) (Cook et al., 2011). The absence of parasitaemia 
observed in Tanzania in individuals with merozoite antigens may also be due to seasonality, 
since a correlation between SCR and incidence of infection was observed at the same site (MSP-
119 r= 0.78, AMA-1 r=0.91) (Stewart et al., 2009). Similarly, in Bioko there was good correlation 
between the reduction in SCR, PR and incidence pre- and post-intervention (Cook et al., 2011).  
 
 
4. DISCUSSION 
 
The goal of measuring malaria transmission and changes in its intensity has many challenges. To 
critically compare the most commonly used methods for measuring malaria transmission, this 
paper evaluates the (a) methods of collection, (b) accuracy, (c) precision and (d) costs of 
collection of eleven major metrics of transmission. The review highlights some of the most 
important questions about the accuracy and precision of each metric of transmission and 
discusses differences in the utility of these metrics in light of these shortcomings. On one hand, 
there are open questions about the accuracy and precision of all these metrics; specifically, how 
well do these metrics measure the true value and with what fidelity?  On the other hand, there 
is another and closely related question about how well these metrics can be used as measures 
of transmission.  Each metric has some utility, but to be useful as a measure of the current level 
of or a change in transmission, a metric must be sufficiently precise. When all else is equal, 
precision can usually be increased by increasing the sampling effort. Yet this becomes a 
challenge for measuring some of the metrics at low intensities when the number of events 
(infected people or mosquitoes) is low and when the inherent heterogeneity in transmission is 
likely to be most pronounced.  With regard to accuracy, however, there are many open 
questions about the biases contributing to each one of these metrics at every level of 
transmission. The importance of these biases across the spectrum remains to be evaluated 
robustly. This review does not make any attempt to quantify the accuracy or precision for each 
metric, and while these have to some extent been characterized for PR (Smith et al., 2007b, 
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Gething et al., 2012), there is a need for future work to address this for other metrics. A 
pragmatic approach is to continue to measure transmission, subject to the relative costs of 
different metrics, while being cognizant of the possibility that bias can also change and 
undermine the findings of a study.  
 
With respect to the interpretation of these metrics, other issues become more important, most 
notably the non-linear relations of these metrics across the spectrum of transmission. Because 
of these issues, together with concerns about accuracy and precision, it is prudent and 
necessary to measure malaria transmission in several different ways to paint a robust picture of 
transmission, and to compare these with mechanistic models of transmission. We have 
illustrated the patterns for EIR, FOI, SR, PR and R0, in order to understand how these 
relationships scale across the spectrum of transmission intensity.                           
 
Traditionally, the EIR has been considered the gold standard measure of transmission intensity 
(Hay et al., 2000). While the precision and accuracy of EIR have not been well-quantified, these 
are likely to be low because there are intrinsic difficulties in obtaining precise measurements of 
the human biting rate (Ma) and the sporozoite rate (SR), due in large part to the highly variable 
nature of mosquito populations  (Mbogo et al., 2003), together with the lack of standardised 
sampling methods (Kelly-Hope and McKenzie, 2009, Hay et al., 2000). In addition, the accuracy 
of EIR is mediated by transmission efficiency, which declines as transmission increases (Figure 
2).  
 
Another widely collected metric is PR, with over 22,000 estimates documented to date (Gething 
et al., 2011). PR is useful for obtaining a rapid initial estimate of transmission, however has 
limited precision and accuracy at higher transmission intensities and its accuracy is determined 
by the sensitivity of the assay used. At low endemicity, PR is likely to lose accuracy where 
EIR<0.5, since malaria becomes more focal and population sampling may miss infections 
(Guerra et al., 2008) (Figure 3). PCR-PR estimates, once they become more widely available, 
may improve sensitivity at very low endemicity but are unlikely to improve the value of PR at 
high endemicity (Okell et al., 2012). Genotyping approaches can also be used to make cross-
sectional and longitudinal surveys more informative by determining the multiplicity of infection 
(MOI) and the molecular force of infection (mFOI). mFOI and MOI show great promise for 
assessing changes in malaria transmission. MOI is a single time-point quantification of the 
complexity of infections and increases the dynamic range over which infection estimates are 
informative: MOI saturates at a higher transmission intensity than PR. Similarly, mFOI has 
greater precision and accuracy than FOI. FOI can be seen as a dynamic PR where newly 
acquired infections are measured over time; mFOI can interpreted as a dynamic MOI. mFOI 
may not lose accuracy when transmission efficiency declines with increasing transmission 
intensity (Koepfli et al., 2011, Mueller et al., 2012). While methods for validation of MOI and 
mFOI need developing, this metric could prove a robust measure of changing malaria 
transmission in the absence of limits on sampling frequency and the local diversity of parasite 
populations (Mueller et al., 2012). 
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Metrics derived from clinical surveillance, including SPR, incidence of clinical malaria and PFPf 
have the advantage of being estimable by routine health facility data, which keeps costs low 
and is useful for obtaining rapid or routine measures of transmission intensity (D'Acremont et 
al., 2010). Yet the precision and accuracy of both SPR and PFPf is affected by factors such as 
access to and frequency of testing and in the case of PFPf, the incidence of other febrile illness. 
Incidence of clinical malaria remains the gold standard outcome for clinical trials of malaria 
control interventions, however it may have limited accuracy at higher transmission intensities 
for assessing changes in transmission, due to acquired immunity and superinfection which limit 
the efficiency of transmission.  
 
SCR has high precision and accuracy at all but the extremes of the transmission spectrum 
(Figure 3) and is useful for assessing long-term changes in transmission. In its current form SCR 
has limited use for assessing the short term effects of an intervention (Cook et al., 2011, 
Drakeley et al., 2005b), however estimating SCR in children aged less than five years or 
measuring antibody levels rather than prevalence may allow these short-term changes to be 
measured (Corran et al., 2007, Cook et al., 2011). 
 
For interventions that directly reduce the infectiousness of humans to mosquitoes, including 
transmission-blocking vaccines or gametocyte-reducing chemotherapy, κ may have the most 
relevance. However, within the context of a Phase III trial, this must be measured from field 
data in order to take into account the effect of mosquito densities and biting rates. Field 
measurements of κ will have low precision due to natural variation and measurement error, yet 
methods to address this have not been overcome. Increased vector sampling will go some way 
to improving these limitations (Chaki et al., 2012) but these approaches have yet to be 
validated in different settings. Lastly, while it is important to consider the theoretical effects of 
a transmission-reducing intervention on vectorial capacity and R0, neither metric has practical 
utility due the difficulties inherent in achieving precise and accurate field measurements 
(Killeen et al., 2000, Davidson and Draper, 1953, Davidson, 1955, Burkot et al., 1988, Hagmann 
et al., 2003). 
 
This review highlights the considerable variation in both the costs and ease of collection of 
different metrics, which are setting-specific and difficult to generalise. Although expertise, 
equipment and materials required drive costs, the scale and frequency of sampling is also 
important. For example, although MOI requires sophisticated procedures including genotyping, 
single time-point measurements may be taken, meaning it is cheaper overall than FOI. Similarly, 
since EIR requires intensive sampling, it is likely the most expensive metric overall. The mode of 
sampling also affects costs; health system data likely to be less expensive than cohort or survey 
data since the majority of costs are already covered. The costs of survey-based metrics, such as 
PR and SCR, are roughly comparable, with some variation arising from the differing expense of 
the assays required (Hsiang et al., 2012). The fact that these metrics can be collected from the 
same sampling procedure is an additional advantage. The relative costs of metrics are an 
important consideration for routine monitoring by malaria control programmes, although may 
be less relevant to the design of internationally-funded intervention trials. It is also important 
to consider that ancillary information not directly relevant to measures of transmission may be 
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collected for most measures such as speciation of both mosquito and parasite, molecular 
characterisation of insecticide and drug resistance etc. 
  
Understanding how metrics vary across the transmission spectrum, and how they relate, can 
also help pinpoint which metrics are useful for measuring transmission in different settings. 
This review illustrates that two basic kind of non-linearity arises from the simple dynamics in 
the Ross-Macdonald model: thresholds and saturating responses. Other kinds of non-linearities 
are introduced by heterogeneous biting and by human immunity (Figure 2) (Smith et al., 2010, 
Smith et al., 2005). These four basic kinds of non-linearities play out differently in different 
transmission contexts, and the design of large-scale interventions should be cognizant of them. 
For example, the relationship between EIR and prevalence is fairly linear below a threshold 
value of EIR (typically where EIR is less than 10, where transmission is ‘unstable’ or ‘low to 
moderate’), therefore malaria control results in an almost proportionate reduction in 
prevalence. When EIR exceeds this threshold, the relationship between EIR and prevalence is 
non-linear and a reduction in EIR will not reduce prevalence (Smith et al., 2005, Beier et al., 
1999, Griffin et al., 2010).   
 
Based on the findings of the review, we advocate that at low transmission levels, appropriate 
metrics for measuring a change in transmission will generally include PR, although where 
EIR<0.5, where PR by microscopy becomes very low, molecular methods such as PR by PCR or 
mFOI may have greater precision and accuracy.  SCR also becomes increasingly suitable at 
lower transmission intensities. At very high levels of transmission, EIR may be necessary since 
serological age profiles or parasitological or clinical measures can become insensitive to 
changes in transmission, although it is important to recognise its low precision and accuracy 
and the need to standardise methods for sampling variable mosquito populations. However 
when assessing a specific intervention, the most relevant effects may be detected by also 
examining those metrics most directly affected by an intervention and/or tailoring these to 
focus on age groups likely to have benefitted most from the intervention (e.g. reduction of 
exposure to infection defined by antibody levels in children aged less than 5 years).  
 
In conclusion, the precision and accuracy of malaria metrics has not been well quantified, nor 
have robust sampling methods to address low precision and accuracy been developed. This has 
important ramifications for both ongoing malaria surveillance and for the evaluation of malaria 
intervention and control programmes, especially given that the lack of consensus on precision 
and accuracy extends to some of the most widely used metrics, including EIR, PR and incidence 
of clinical malaria. Generic issues affecting the precision and accuracy of all malaria metrics 
include measurement issues, bias (especially for processes that are observed passively) and 
seasonality or inter-annual variability in the values of these parameters, including trends that 
are attributable to other factors. In order to measure a change in transmission, a baseline must 
first be established, which is problematic against a background of seasonal, trending and 
otherwise variable signals and this complicates the attribution of effects. Further work is 
required to establish which metrics are most appropriate in which settings, and the most robust 
and inexpensive methods for their collection. 
 



34 
 

ACKNOWLEDGEMENTS 
 
The authors acknowledge the financial support of the PATH Malaria Vaccine Initiative. The work 
of TB and CJD is supported by the European FP7 project REDMAL (#242079). 
 
 
 
REFERENCES  
 

 Adungo, P., et al., 1991. Comparative determination of Plasmodium falciparum sporozoite 
rates in Afrotropical Anopheles from Kenya by dissection and ELISA. Ann. Trop. Med. 
Parasitol. 85, 387–94. 

Akter, J., et al., 2012. Genotyping of Plasmodium falciparum using antigenic polymorphic 
markers and to study anti-malarial drug resistance markers in malaria endemic areas of 
Bangladesh. Malar J. 11, 386. 

Arnot, D., 1998. Unstable malaria in Sudan: the influence of the dry season. Clone multiplicity of 
Plasmodium falciparum infections in individuals exposed to variable levels of disease 
transmission. Trans. R. Soc. Trop. Med. Hyg. 92, 580–585. 

Arnot, D., et al., 1985. Circumsporozoite protein of Plasmodium vivax: gene cloning and 
characterization of the immunodominant epitope. Science 230, 815–8. 

Atroosh, W., et al., 2011. Genetic diversity of Plasmodium falciparum isolates from Pahang, 
Malaysia based on MSP-1 and MSP-2 genes. Parasit. Vectors 13, 233. 

Baidjoe, A., et al., In press. Combined DNA extraction and antibody elution from filter papers for 
the assessment of malaria transmission intensity in epidemiological studies. Malaria J. 

Baird, J.K., et al., 2002. Seasonal malaria attack rates in infants and young children in northern 
Ghana. Am. J. Trop. Med. Hyg. 66, 28–06. 

Bastiens, G., et al., 2011. Malaria diagnostic testing and treatment practices in three different 
Plasmodium falciparum transmission settings in Tanzania: before and after a 
government policy change. Malar J. 10, 76. 

Batwala, V., Magnussen, P., Nuwaha., 2010. Are rapid diagnostic tests more accurate in 
diagnosis of plasmodium falciparum malaria compared to microscopy at rural health 
centres? Malar J. 9, 349. 

Beck, H.P., et al., 1997. Analysis of Multiple Plasmodium falciparum Infections in Tanzanian 
children during the Phase III Trial of the Malaria Vaccine SPf66. J. Infect. Dis. 175, 921–
926. 

Beck, H.P., et al., 1999. 8. Effect of iron supplementation and malaria prophylaxis in infants on 
Plasmodium falciparum genotypes and multiplicity of infection. Trans. R. Soc. Trop. 
Med. Hyg. 93, Supplement 1, 41–45. 

Beier, J.C., Killeen, G.F., Githure, J.I. 1999. Short report: entomologic inoculation rates and 
Plasmodium falciparum malaria prevalence in Africa. Am. J. Trop. Med. Hyg. 61, 109–
113. 

Beier, J.C., et al., 1994. Plasmodium falciparum incidence relative to entomologic inoculation 
rates at a site proposed for testing malaria vaccines in western Kenya. Am. J. Trop. Med. 
Hyg. 50, 529–36. 



35 
 

Bekessy, A., Molineaux, L., Storey, J., 1976. Estimation of incidence and recovery rates of 
Plasmodium falciparum parasitaemia from longitudinal data. Bull. World Health Organ. 
54, 685–93. 

Bi, Y., et al., 2012. Can slide positivity rates predict malaria transmission? Malar J. 11, 117. 
Blandin, S., et al., 2004. Complement-like protein TEP1 is a determinant of vectorial capacity in 

the malaria vector Anopheles gambiae. Cell, 116, 661–670. 
Bonnet, S., et al., 2003. Estimation of malaria transmission from humans to mosquitoes in two 

neighbouring villages in south Cameroon: evaluation and comparison of several indices. 
Trans R. Soc. Trop. Med. Hyg. 97, 53–59. 

Boudin, C., et al., 1991. Epidemiology of Plasmodium falciparum in a rice field and a savanna 
area in Burkina Faso: seasonal fluctuations of gametocytaemia and malarial infectivity. 
Ann. Trop. Med. Parasitol. 85, 377–85. 

Boudin, C., et al., 1993. High human malarial infectivity to laboratory-bred Anopheles gambiae 
in a village in Burkina Faso. Am. J. Trop. Med. Hyg. 48, 700–706. 

Boudin, C., et al., 2004. Plasmodium falciparum transmission blocking immunity under 
conditions of low and high endemicity in Cameroon. Parasite Immunol., 26, 105–110. 

Bousema, T., et al., 2012. Mosquito feeding assays to determine the infectiousness of naturally 
infected Plasmodium falciparum gametocyte carriers. PLoS One, 7, e42821. 

Burkot, T. R., et al., 1990. Variations in malaria transmission rates are not related to Anopheline 
survivorship per feeding cycle. Am. J. Trop. Med. Hyg. 43, 321–327. 

Burkot, T.R., et al., 1988. Human malaria transmission studies in the Anopheles punctulatus 
complex in Papua New Guinea: sporozoite rates, inoculation rates, and sporozoite 
densities. Am. J. Trop. Med. Hyg. 39, 135–44. 

Carneiro, I., et al., 2010. Age-patterns of malaria vary with severity, transmission intensity and 
seasonality in Sub-Saharan Africa: a systematic review and pooled analysis. PLoS One, 5. 

Carter, R., Mendis, K. 2006. Measuring malaria. Am. J. Trop. Med. Hyg. 74, 187–188. 
Ceesay, S., et al., 2008. Changes in malaria indices between 1999 and 2007 in The Gambia: a 

retrospective analysis. Lancet, 372, 1545–54. 
Ceesay, S., et al., 2010. Continued decline of malaria in The Gambia with implications for 

elimination. PLoS One 5, e12242. 
Chaki, P., et al., 2012. An affordable, quality-assured community-based system for high 

resolution entomological surveillance of vector mosquitoes that reflects human malaria 
infection risk patterns. Malar J. 11, 172. 

Charlwood, J. D., et al., 1997. Survival and infection probabilities of anthropophagic anophelines 
from an area of high prevalence of Plasmodium falciparum in humans. Bull. Ent. Res. 87, 
445–453. 

Charlwood, J.D., et al., 1995. Density independent feeding success of malaria vectors (Diptera: 
Culicidae) in Tanzania. Bull. Ent. Res. 85, 29–35. 

Charlwood, J.D., et al., 1998. Incidence of Plasmodium falciparum infection in infants in relation 
to exposure to sporozoite-infected anophelines. Am. J. Trop. Med. Hyg. 59, 243–251. 

Churcher, T. A., et al., 2012. Measuring the blockade of malaria transmission – An analysis of 
the Standard Membrane Feeding Assay. Int. J. Parasitol. 42, 1037–1044. 

Cibulskis, E. R., et al., 2011. Worldwide incidence of malaria in 2009: Estimates, time trends, 
and a critique of methods. PLoS Med 8, e1001142. 



36 
 

Cibulskis, R. E., et al., 2007. Estimating trends in the burden of malaria at country level. Am. J. 
Trop. Med. Hyg. 77, 133–137. 

Cirimotich, C., et al., 2011. Natural microbe-mediated refractoriness to Plasmodium infection in 
Anopheles gambiae. Science 332, 855–8. 

Cohen, J.M., et al., 2010. How absolute is zero? An evaluation of historical and current 
definitions of malaria elimination. Malar J. 9, 213. 

Cook, J., Drakeley, C., 2009. Potential contribution of sero-epidemiological analysis for 
monitoring malaria control and elimination: historical and current perspectives. Adv. 
Parasitol. 69, 299–352. 

Cook, J., et al., 2011. Serological markers suggest heterogeneity of effectiveness of malaria 
control interventions on Bioko Island, Equatorial Guinea. PLoS One 6, e25137. 

Cook, J., et al., Using serological measures to monitor changes in malaria transmission in 
Vanuatu. Malar J. 9, 169. 

Corran, P., et al., 2007. Serology: a robust indicator of malaria transmission intensity? Trends 
Parasitol. 23, 575–82. 

D'Acremont, V., et al., 2010. Reduction in the proportion of fevers associated with Plasmodium 
falciparum parasitaemia in Africa: a systematic review. Malar J. 9, 240. 

Davey, T.H., Gordon, R.M., 1933. The estimation of the density of infective anophelines as a 
method of calculating the relative risk of inoculation with malaria from different species 
or in different localities. Ann. Trop. Med. Parasitol. 27, 27–52. 

Davidson, G., 1955. Further studies of the basic factors concerned in the transmission of 
malaria. Trans. R. Soc. Trop. Med. Hyg. 49, 339–350. 

Davidson, G., Draper, C., 1953. Field studies on some of the basic factors concerned in the 
transmission of malaria. Trans. R. Soc. Trop. Med. Hyg. 47, 522–535. 

Dietz, K., 1988. Mathematical models for transmission and control of malaria In: Wernsdorfer, 
W., McGregor, I., (eds) Principles and Practice of Malaria. Churchill Livingstone, 
Edinburgh. 

Dietz, K., 1993 The estimation of the basic reproduction number for infectious diseases Stat. 
Meth. Med. Res. 2, 23–41. 

Drakeley, C., et al., 2005a. Altitude-dependent and -independent variations in Plasmodium 
falciparum prevalence in northeastern Tanzania. J. Infect. Dis. 191, 1589–1598. 

Drakeley, C., et al., 2005b. Estimating medium- and long-term trends in malaria transmission by 
using serological markers of malaria exposure. Proc. Nat. Acad. Sci. 102, 5108–5113. 

Drakeley, C., et al., 2003. An estimation of the entomological inoculation rate for Ifakara: a 
semi-urban area in a region of intense malaria transmission in Tanzania. Trop. Med. Int. 
Health 8, 767–74. 

Durnez, L., et al., 2011. False positive circumsporozoite protein ELISA: a challenge for the 
estimation of the entomological inoculation rate of malaria and for vector incrimination. 
Malar J. 10, 195. 

Dye, C., 1986. Vectorial capacity: Must we measure all its components? Parasitol. Today 2, 203–
209. 

Eyles, D., Young, M., 1951. The duration of untreated or inadequately treated Plasmodium 
falciparum infections in the human host. J. Nat, Malaria Soc. 10, 327–336. 



37 
 

Felger, I., et al., 2003. Molecular monitoring in malaria vaccine trials. Trends Parasitol. 19, 60–
63. 

Felger, I., 2012. The dynamics of natural Plasmodium falciparum infections. PLoS One 7, 
e45542. 

Filipe, J.A.N., et al., 2007. Determination of the mechanisms driving the acquisition of immunity 
to malaria using a mathematical transmission model. PLoS Comp. Biol. 3, e255. 

Francis, D., et al., 2012. Health facility-based malaria surveillance: the effects of age, area of 
residence and diagnostics on test positivity rates. Malar J. 11, 229. 

Freeman, J., et al., 1999. Effect of chemotherapy on malaria transmission among Yanomami 
Amerindians: Simulated consequences of placebo treatment. Am. J. Trop. Med. Hyg.  60, 
774–780. 

Garrett-Jones, C., 1964. The human blood index of malaria vectors in relation to 
epidemiological assessment. Bull. World Health Organ. 30, 241–261. 

Gething, P. W., et al., 2012. A long neglected world malaria map: Plasmodium vivax endemicity 
in 2010. PLoS Negl. Trop. Dis. 6, e1814. 

Gething, P. W., et al., 2010. Estimating the number of paediatric fevers associated with malaria 
infection presenting to Africa's public health sector in 2007. PLoS Med. 7, e1000301. 

Gething, P. W., et al., 2011. A new world malaria map: Plasmodium falciparum endemicity in 
2010. Malar J. 10, 378. 

Ghani, A. C., et al., 2009. Loss of population levels of immunity to malaria as a result of 
exposure-reducing interventions: consequences for interpretation of disease trends. 
PLoS One, 4, e4383. 

Grab, B., Pull, J.H., 1974. Statistical considerations in serological surveys of population with 
particular reference to malaria. J. Trop. Med. Hyg. 77, 222–232. 

Graves, P. M., et al., 1988. Measurement of malarial infectivity of human populations to 
mosquitoes in the Madang area, Papua, New Guinea. Parasitol. 96, 251–63. 

Graves, P. M., et al., 1990. Estimation of Anopheline survival rate, vectorial capacity and 
mosquito infection probability from malaria vector infection rates in villages near 
Madang, Papua New Guinea. J. Appl. Ecol. 27, 134–147. 

Griffin, J.T., et al., 2010. Reducing Plasmodium falciparum malaria transmission in Africa: a 
model-based evaluation of intervention strategies. Plos Med. 7. 

Guerra, C. A., et al., 2008. The limits and intensity of Plasmodium falciparum transmission: 
implications for malaria control and elimination worldwide. PLoS Med. 5, 300–311. 

Guitard, J., et al., 2010. Plasmodium falciparum population dynamics in a cohort of pregnant 
women in Senegal. Malar J. 16, 165. 

Hagmann, R., et al., 2003. Malaria and its possible control on the island of Principe. Malar J. 2, 
15. 

Hay, S., et al., 2008. Measuring malaria endemicity from intense to interrupted transmission 
Lancet Infect. Dis. 8, 369–378. 

Hay, S., Snow, R.W., 2006. The Malaria Atlas Project: developing global maps of malaria risk. 
PLoS Med. 3, e473. 

Hay, S. I., et al., 2000. Annual Plasmodium falciparum entomological inoculation rates (EIR) 
across Africa: literature survey, internet access and review. Trans. R. Soc. Trop. Med. 
Hyg. 94, 113–126. 



38 
 

Hsiang, M. S., et al., 2012. Surveillance for malaria elimination in Swaziland: A national cross-
sectional study using pooled PCR and serology. PLoS One 7, e29550. 

Jawara, M., et al., 2011. Field testing of different chemical combinations as odour baits for 
trapping wild mosquitoes in The Gambia. PLoS One 6, e19676. 

Jensen, T. P., et al., 2009. Use of the slide positivity rate to estimate changes in malaria 
incidence in a cohort of Ugandan children. Malar J. 8, 213. 

Johnston, G. L., et al., 2013. Malaria's missing number: calculating the human component of R0 
by a within-host mechanistic model of Plasmodium falciparum infection and 
transmission. PLoS Comput. Biol. 9, e1003025. 

Kagan, I. G., et al., 1969. The serology of malaria: Recent applications. Bull. N. Y. Acad. Med. 45, 
1027–1042. 

Kelly-Hope, L. A., McKenzie, F. E., 2009. The multiplicity of malaria transmission: a review of 
entomological inoculation rate measurements and methods across sub-Saharan Africa. 
Malar  J. 8, 19. 

Killeen, G. F., et al., 2000. A simplified model for predicting malaria entomologic inoculation 
rates based on entomologic and parasitologic parameters relevant to control. Am. J. 
Trop. Med. Hyg. 62, 535–44. 

Killeen, G. F., et al., 2006. Infectiousness of malaria-endemic human populations to vectors. Am. 
J. Trop. Med. Hyg. 75, 38–45. 

Knols, B. G. J., et al. 1995. Differential attractiveness of isolated humans to mosquitoes in 
Tanzania. Trans. R. Soc. Trop. Med. Hyg. 89, 604–606. 

Koepfli, C., et al., 2011. How much remains undetected? Probability of molecular detection of 
human Plasmodia in the field. PLoS One 6, e19010. 

Kolakovich, K. A., et al., 1996. Plasmodium vivax: favored gene frequencies of the merozoite 
surface protein-1 and the multiplicity of infection in a malaria endemic region. Exp. 
Parasitol. 83, 11–19. 

Li, X., et al., 2009. Estimating and testing haplotype-trait association in non-diploid populations. 
Appl. Statist. 58, 663–678. 

Lines, J. D., et al., 1991. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania 
with light traps hung beside mosquito nets. Bull. Ent. Res. 81, 77–84. 

Lobel, H. O., et al., 1973. Interpretation of IHA titres for the study of malaria epidemiology. Bull. 
World Health Organ. 49, 485–492. 

Macdonald, G., 1952. The analysis of the sporozoite rate. Trop. Dis. Bull. 49, 569–585. 
Macdonald, G., 1956. Epidemiological basis of malaria control. Bull. World Health Organ. 15, 

613–626. 
Macdonald, G., 1957. The epidemiology and control of malaria, Oxford University Press, 

London. 
Macdonald, G., Gockel, G., 1964. The malaria parasite rate and interruption of transmission. 

Bull. World Health Organ. 31, 365–377. 
MacKinnon, M., et al., 2005. Heritability of malaria in Africa. PLoS Med. 2, 1253–1259. 
MALERA, 2011. A research agenda for malaria eradication: health systems and operational 

research. The Malaria Eradication Research Agenda (malERA) Consultative Group on 
Health Systems. PLoS Med. 8, e1000397. 

Marsh, K. 1999. Malaria transmission and morbidity. Parassitologia 41, 241–246. 



39 
 

Mbogo, C. M. et al., 2003. Spatial and temporal heterogeneity of Anopheles mosquitoes and 
Plasmodium falciparum transmission along the Kenyan Coast. Am. J. Trop. Med. Hyg. 68, 
734–742. 

Mbogo, C. N., et al., 1993. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, 
Kenya. J. Am. Mosq. Control. Assoc. 9, 260–3. 

Mbugi, E. V., et al., 2006. Multiplicity of infections and level of recrudescence in Plasmodium 
falciparum malaria in Mlimba, Tanzania. Afr. J. Biotech. 5, 1655–1662. 

McElroy, P. D., et al., 1994. Predicting outcome in malaria: correlation between rate of 
exposure to infected mosquitoes and level of Plasmodium falciparum parasitaemia. Am. 
J. Trop. Med. Hyg. 51, 523–532. 

Mendis, K., et al., 2001. The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. 
Hyg. 64, 97–106. 

Molina-Cruz, A., et al., 2012. Some strains of Plasmodium falciparum, a human malaria parasite, 
evade the complement-like system of Anopheles gambiae mosquitoes. Proc. Natl. Acad. 
Sci. 109, 1957–62. 

Mueller, I., et al., 2012. Force of infection is key to understanding the epidemiology of 
Plasmodium falciparum malaria in Papua New Guinean children. Proc. Nat. Acad. Sci. 
109, 10030–10035. 

Mueller, I., 2011. Estimating the burden of malaria: the need for improved surveillance. PLos 
Med. 8, e1001144. 

Muirhead-Thomson, R. C., 1957. The malarial infectivity of an African village population to 
mosquitoes (Anopheles gambiae). Am. J. Trop. Med. Hyg. 6, 971–979. 

Nahlen, B. L., Low-Beer, D., 2007. Building to collective impact: the Global Fund support for 
measuring reduction in the burden of malaria. Am. J. Trop. Med. Hyg. 77, 321–327. 

Najera, J. A., 1974. A critical review of the field application of a mathematical model of malaria 
eradication. Bull. World Health. Organ. 50, 449–457. 

Nedelman, J. 1983. A negative binomial model for sampling mosquitoes in a malaria survey. 
Biometrics 39, 1009–1020. 

Ntoumi, F., et al., 1995. Age-dependent carriage of multiple Plasmodium falciparum merozoite 
surface antigen-2 alleles in asymptomatic malaria infections. Am. J. Trop. Med. Hyg. 52, 
81–88. 

O'Meara, W., 2010. Changes in the burden of malaria in sub-Saharan Africa. Lancet Infect. Dis. 
10, 505–576. 

O'meara, W. P., et al., 2007. Parasite prevalence: a static measure of dynamic infections. Am. J. 
Trop. Med. Hyg.  77, 246–249. 

Okell, L. C., et al., 2012. Factors determining the occurrence of submicroscopic malaria 
infections and their relevance for control. Nature Comm. 3, 1237. 

Okiro, E., et al., 2009. Age patterns of severe paediatric malaria and their relationship to 
Plasmodium falciparum transmission intensity. Malar J. 8, 4. 

Okiro, E., et al., 2009. Malaria paediatric hospitalization between 1999 and 2008 across Kenya. 
BioMed Central Med. 7, 75. 

Onori, E., Grab., B., 1980a. Indicators for the forecasting of malaria epidemics. Bull. World 
Health Organ. 58, 91–98. 



40 
 

Onori, E., Grab., B., 1980b. Quantitative estimates of the evolution of a malaria epidemic in 
Turkey if remedial measures had not been applied. Bull. World Health Organ. 58, 32–16. 

Owusu-Agyei, S., et al., 2001. Incidence of symptomatic and asymptomatic Plasmodium 
falciparum infection following curative therapy in adult residents of northern Ghana. 
Am. J. Trop. Med. Hyg. 65, 197–203. 

Paul, R. E. L., et al., 1995. Mating patterns in malaria parasite populations of Papua New Guinea. 
Science  269, 1709–1711. 

Pull, J. H., Grab, B., 1974. A simple epidemiological model for evaluating the malaria inoculation 
rate and the risk of infection in infants. Bull. World Health Organ. 51, 507–516. 

Reyburn, H., et al., 2005. Association of transmission intensity and age with clinical 
manifestations and case fatality of severe Plasmodium falciparum malaria. J. Am. Med. 
Assoc. 293, 1461–1470. 

Rogier, C., et al., 1999. Plasmodium falciparum clinical malaria: lessons from longitudinal 
studies in Senegal. Parassitologia 41, 255–259. 

Rogier, C., Trape, J., 1993. Malaria attacks in children exposed to high transmission: who is 
protected? Trans. R. Soc.Trop. Med. Hyg. 87, 245–6. 

Ross, R., 1911. The prevention of malaria. E.P. Dutton & Company, New York. 
Sauerwein, R., et al., 2011. Experimental human challenge infections can accelerate clinical 

malaria vaccine development. Nat. Rev. Immunol. 11, 57–64. 
Saul, A. J., 1990. A cyclical feeding model for pathogen transmission and its application to 

determine vectorial capacity from vector infection rates. J. Appl. Ecol. 27, 123–133. 
Schleiermacher, D., et al., 2001. Increased multiplicity of Plasmodium falciparum infections and 

skewed distribution of individual msp1 and msp2 alleles during pregnancy in Ndiop, a 
Senegalese village with seasonal, mesoendemic malaria. Am. J. Trop. Med. Hyg. 64, 303–
9. 

Shilane, D., et al., 2010. Confidence intervals for negative binomial random variables of high 
dispersion. Int. J. Biostat. 6, 10. 

Silver J. B., 2008. Mosquito Ecology: Field Sampling Methods. Springer, New York. 
Smith, D., et al., 2012. Ross, Macdonald, and a theory for the dynamics and control of 

mosquito-transmitted pathogens. Plos Pathogens 8, e1002588. 
Smith, D., et al., 2005. The entomological inoculation rate and Plasmodium falciparum infection 

in African children. Nature 438, 492–495. 
Smith, D., Hay, S., 2009. Endemicity response timelines for Plasmodium falciparum elimination. 

Malar J. 8, e87. 
Smith, D., McKenzie, F. E., 2004. Static and dynamics of malaria infection in Anopheles 

mosquitoes. Malar J. 3, 1–14. 
Smith, D., et al., 2007a. Revisiting the basic reproductive number for malaria and its 

implications for malaria control. PLoS Biol. 5, e42. 
Smith, D. L., 2010. A quantitative analysis of transmission efficiency versus intensity for malaria. 

Nat. Commun. 1, 108. 
Smith, D. L., et al., 2007b. Standardising estimates of the Plasmodium falciparum parasite rate. 

Malar J. 6, 131. 
Smith, T., et al., 2004. Relationships between the outcome of Plasmodium falciparum infection 

and the intensity of transmission in Africa. Am. J. Trop. Med. Hyg. 71, 80–86. 



41 
 

Smith, T., et al., 2006. Relationship between the entomologic inoculation rate and the force of 
infection for Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 75, 11–18. 

Smith, T., et al., 1994. Attributable fraction estimates and case definitions for malaria in 
endemic areas. Stats. Med. 13, 2345–2358. 

Snow, R., et al., 2005. The global distribution of clinical episodes of Plasmodium falciparum 
malaria. Nature 434, 214–217. 

Steketee, R., et al., 2010. Impact of national malaria control scale-up programmes in Africa: 
magnitude and attribution of effects. Malar J. 9, 299. 

Stevenson, J., et al., 2012. Novel vectors of malaria parasites in the western highlands of Kenya 
[letter]. Emerg. Infect. Dis. 18, 154–79. 

Stewart, L. et al., 2009. Rapid assessment of malaria transmission using age-specific sero-
conversion rates. PLoS One 4, e6083. 

Trape, J. F., Rogier, C. 1996. Combating malaria morbidity and mortality by reducing 
transmission. Parasitol. Today 12, 236–240. 

Trape, J. F., et al., 1987. Malaria and urbanization in Central Africa: The example of Brazzaville. 
Part V: Pernicious attacks and mortality. Trans. Roy. Soc. Trop. Med. Hyg. 81, 34–42. 

Utarini, A., et al., 2007. Comparison of active and passive case cetection systems in Jepara 
District, Indonesia. Asia-Pacific J. Publ. Health 19, 14–17. 

Vafa, M., 2008. Multiplicity of Plasmodium falciparum infection in asymptomatic children in 
Senegal: relation to transmission, age and erythrocyte variants. Malar J. 7, 17. 

WHO-GMP, 2012. Information note on recommended selection criteria for procurement of 
malaria rapid diagnostic tests (RDTs). WHO Global Malaria Programme, Geneva. 

WHO, 2011. World Malaria Report. WHO, Geneva. 
Wong, J., et al., 2013. Standardizing operational vector sampling techniques for measuring 

malaria transmission intensity: evaluation of six mosquito collection methods in western 
Kenya. Malar J. 12, 143. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



42 
 

FIGURES AND TABLES 
 
Table 1. Summary of sampling issues, accuracy and precision of major malaria transmission 
metrics 
 Sampling issues Accuracy Precision 

Net infectiousness of 
humans to mosquitoes 
(κ) 
 

 Feeding assays: 
restriction to patent 
gametocyte carriers 
leads to different 
answers than 
xenodiagnostic studies 

 Wild-caught vector 
infection rates: 
Sampling mosquitoes 
will affected by natural 
variations in mosquito 
populations 

 Poor association with 
transmission intensity 

 Mosquito feeding assays 
need to take into account 
the likelihood of being 
bitten  

 Skin feeding assays may 
result in higher infection 
rates than membrane 
feeding assays1 

 Susceptibility of mosquito 
colony may differ from 
wild-caught mosquitoes  

 Affected by 
seasonality, natural 
variation in 
mosquito 
populations and 
frequency of 
sampling 

 Mosquito feeding 
assays have 
unknown precision  

 

Parasite rate in humans 
(PR) 
 

 Age groups for 
sampling affect 
estimates 

 Seasonal patterns affect 
outcomes 

 Convenience sampling 
leads to selection bias 
with plausibly more 
parasite-positive 
individuals (cluster 
sampling approach) 

 Substantial proportion of 
infections will be missed 
by microscopy and RDTs 

 PR depends on season 
and age-groups.  
 

 Standardized 
sampling approach 
in combination with 
high quality 
microscopy 
methodology will 
allow good precision 

 Consistency in 
methodology is 
required 

Entomological 
inoculation rate (EIR) 
 

 Seasonal variation 

 Convenience sampling 
(selecting high burden 
households) may bias 
estimates 
 

 Relative contribution of 
outdoor biting to 
transmission poorly 
characterised 

 Variation in procedures 
to sample mosquitoes 

 Inconsistencies in 
protocols for the same 
procedures 

 Heterogeneous biting 
limits accuracy at high 
transmission intensity 

 Ma difficult to 
measure precisely 
due to spatial, 
temporal and 
seasonal variability 
in vector density 

 SR affected by initial 
infectiousness and 
average age of adult 
mosquitoes  

Force of infection (FOI), 
molecular force of 
infection (mFOI) and  

 Age groups for 
sampling affect 
estimates 

 Seasonal patterns affect 
outcomes 

 Convenience sampling 
leads to selection bias 
with plausibly more 
parasite-positive 
individuals (cluster 

 FOI, but probably not 
mFOI will saturate at a 
certain transmission 
intensity 

 Strong association 
between mFOI and 
seasonality, age and ITN 
use indicates relatively 
high accuracy 

 Variation in sample 
quality and 
extraction efficiency 
may result in 
fluctuations 
between surveys2  

 Fluctuation in 
parasite densities 
below detection 
thresholds limits 
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sampling approach) precision 

Multiplicity of infection 
(MOI) 

 Age groups for 
sampling affect 
estimates 

 Seasonal patterns affect 
outcomes 
Convenience sampling 
leads to selection bias 
with plausibly more 
parasite-positive 
individuals (cluster 
sampling approach) 

 Substantial number of 
clones may be missed by 
PCR if sampling is 
restricted to one day3  

 Accuracy limited by 
diversity of parasite 
clones  

 Variation in sample 
quality/extraction 
efficiency that may 
result in fluctuations 
between surveys2 

 

Seroconversion rate (SCR) 
 

 Age groups for 
sampling affect 
estimates 

 Seasonal patterns affect 
outcomes 

 Convenience sampling 
leads to selection bias 
with plausibly more 
parasite-positive 
individuals (cluster 
sampling approach) 

 Short-lived and long-lived 
responses will affect 
accuracy 

 Limitations in detecting 
small changes in 
transmission intensity 

 Standardized 
procedures and 
positive controls 
make precision of 
estimates 
reasonably high 

Clinical surveillance: slide 
positivity rate (SPR), 
incidence of clinical 
malaria and proportion of 
fevers with P. falciparum 
parasitaemia (PFPf) 
 

 Attendance to health 
facilities varies 

 Clinical decision 
making4  
 

 Clinic attendance to 
health facilities may be 
suboptimal and vary 
between times and sites 

 Saturation of incidence at 
high transmission 
intensities 

 SPR and PFPf affected by 
incidence of other febrile 
illness  

 Depends on 
consistency in 
diagnostic practices 
and methodology 

Vectorial capacity (C) and 
the basic reproduction 
number (R0) 
 

 C and R0 difficult to 
measure directly 

 Convenience 
entomological  
sampling (selecting high 
burden households) 
may bias estimates of C 

 

 C and R0 only as accurate 
as their constituent 
components.  

 Relative contribution of 
outdoor biting to 
transmission poorly 
characterised 

 Variation in procedures 
to sample mosquitoes 

 Precision affected 
by natural 
fluctuations in 
vector densities, 
biting patterns and 
variation in 
performance of 
trapping methods 

 When measuring R0, 
heterogeneous 
biting must be 
accounted for 

1Bousema, T., et al., 2012. Mosquito feeding assays to determine the infectiousness of naturally infected 
Plasmodium falciparum gametocyte carriers. PLoS One, 7, e42821; 2Baidjoe, A., et al., In press. Combined DNA 
extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in 
epidemiological studies. Malar J; 3Koepfli, C., et al., 2011. How much remains undetected? Probability of molecular 
detection of human Plasmodia in the field. PLoS One 6, e19010; 4Bastiens, G., et al., 2011. Malaria diagnostic 
testing and treatment practices in three different Plasmodium falciparum transmission settings in Tanzania: before 
and after a government policy change. Malar J. 10, 76. 
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Table 2. Comparison of costs of survey-based metrics 
Cost Measures of infection Measures of exposure 

RDTa Microscopya PCRa Serologyb 
Cost per sample $1.50 $0.25 $2.00 $0.5 
Detection limit 100 to 

200 p/μL 
4 to 100 p/μL <4 p/μL  (individual PCR); 100 p/μL  

(pooled PCR) 
n/a 

Point-of-care 
test? 

Yes Yes, if basic 
laboratory 
services are 
available 

No n/a 

Capital 
equipment 
required 

None Microscope PCR machine, pipettes, gel tanks. Microplate reader  

Training and 
rigour 

Minimal Moderate Very extensive Extensive 

Turnaround 
time per sample 

15 
minutes 

30 minutes 2 days 3 days 

Turnaround 
time for 1000 
samples 

n/a Weeks Typically a week for individual PCR 
and days for pooled PCR, however the 
turnaround time depends on staff 
costs and the type of PCR conducted. 

 Week 

aHsiang et al., 2012; bUnpublished data. 
 
 
Table 3. Frequency of use of methods to measure annual P. falciparum EIR (1980-2004) 

Sporozoite detection and method of 
determining biting rate 

Year intervals  All 
years 1980- 

1984 
1985- 
1989 

1990-
1994 

1995-
1999 

2000-
2004 

Dissection + HLC 13 19 18 11  61 

Dissection + PSC 8     8 

Dissection + Exit Trap  2    2 

Dissection + ELISA + HLC    1  1 

ELISA + HLC  9 14 13 2 38 

ELISA + PSC   11 31  42 

ELISA + Light Trap  13 10 9  32 

ELISA + HLC + PSC   4   4 

ELISA + HLC + PSC + Light Trap    3  3 

ELISA + HLC + Exit Trap   5   5 

ELISA + PCR + HLC    3  3 

All methods 21 43 62 71 2 199 
HLC: Human Landing Catch; PSC: Pyrethrum Spray Catch; ELISA: enzyme-linked immuno-sorbent assays; PCR: 
polymerase chain reaction. Table reproduced from Kelly-Hope and McKenzie (2009) and originally published by 
BioMed Central, London. 
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 Table 4. Comparison of costs of methods for determining the sporozoite rate 
Cost Dissectiona ELISAb PCRa 
Cost per sample (approximate) $0.25 $0.50 $2.00 
Capital equipment required  Microscope  Microplate reader PCR machine 
Training and rigour Moderate  Extensive Very extensive 
Turnaround time per sample 30 minutes 3 days 2 days 
Turnaround time per 1000 samples Weeks  Weeks Week (individual PCR);  

Days (pooled PCR) 

 aHsiang et al., 2012; bUnpublished data. 
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Figure 1. Metrics of malaria transmission 
Metrics evaluated in this paper are in bold. Blue indicates entomological metrics; red indicates clinical 
metrics; dark red indicates asymptomatic and symptomatic infections identified in health facilities. κ: 
net infectiousness of humans; SR: sporozoite rate; C: vectorial capacity; Ma: human biting rate; EIR: 
entomological inoculation rate,; FOI: force of infection; mFOI: molecular force of infection; MOI: 
multiplicity of infection; SCR: sero-conversion rate ; PR: parasite rate; MOI: multiplicity of infection; G: 
gametocyte rate; SPR: slide positivity rate; PFPf: proportion of fevers parasitaemic. 
 
Parasite rate (PR) is the proportion of the proportion of people who are infected with parasites and the 
gametocyte prevalence is the proportion of people carrying gametocytes in their blood. The human 
biting rate is the number of bites by vector mosquitoes received per human per day, denoted Ma, and 
some portion of mosquitoes biting infectious humans become infected. Since gametocytes must be 
present for a mosquito to become infected, gametocyte rates give an index of the net infectiousness of 
the human populations to mosquitoes, which is defined as the probability that a mosquito becomes 
infected after biting a human, denoted κ. Thereafter, each mosquito gives some number of infectious 
bites.  The average number of human bloodmeals taken by a mosquito over a lifetime has been called 
the stability index, S, and the proportion of infected mosquitoes that survive long enough to transmit, P. 

The sporozoite rate, SR, in a stable population is related to κ by a formula 𝑆𝑅 =
𝑆𝑃𝜅

1+𝑆𝜅
≈ 𝑆𝑃𝜅. EIR is the 

expected number of infectious bites per person per day, a product of SR and Ma (Onori and Grab, 
1980b). Vectorial capacity, C, describes the relationship between κ and EIR and reflects the efficiency of 
the malaria vector, or ‘the expected number of humans infected per infected human, per day, assuming 
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perfect transmission efficiency’ (Smith and McKenzie, 2004). The t-day attack rate, denoted 𝐴(𝑡), is the 
proportion of people who become infected over some interval of time of length 𝑡. This is the typical 
metric used to count human infections. The annual force of infection (aFOI) is the number of infections 
per person per year. In a population with homogenous risk, the attack rate is related to the force of 

infection by the relationship 𝐴(𝑡) = 1 − 𝑒−ℎ𝑡. Two measures that are closely related to the AR and the 
FOI are the clinical attack rate (cAR), and the clinical force of infection (cFOI), which are defined in the 
same way as their respective clinical measures, but they are accompanied by clinical symptoms. The 
seroconversion rate describes the rate at which a population develops detectable malaria antibodies in 
the serum as a result of malaria infection. 
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Figure 2. Relationship between metrics of malaria transmission. 
(a) Annual FOI versus R0; Annual EIR versus R0: Derived from a malaria transmission model, with 
assumptions of heterogeneous biting and superinfection, of PfPR versus PfEIR (Smith et al., 2010). (b) SR 
versus R0: Derived from a malaria transmission model, with assumptions of heterogeneous biting and 
superinfection, of PfPR versus PfRc (Smith et al., 2010), assuming sporozoite rate is linearly proportional 
to PfPR. PR versus R0: Malaria transmission model, with assumptions of heterogeneous biting  and 
superinfection (Smith et al., 2010). (c) Annual FOI versus annual EIR: Model of heterogeneous biting 
fitted to synthetic cohort data from Saradidi, Kenya (Smith et al., 2010).  (d) SR versus annual EIR: 
Derived from a log-linear model of PfPR versus EIR (Gething et al., 2011), with the assumption that 
sporozoite rate is linearly proportional to PfPR; PR versus annual EIR: Log-linear model of PfPR versus 
EIR (Gething et al., 2011). (e) PR versus annual FOI: Derived from a log-linear model of PfPR versus EIR 
(Gething et al., 2011). (f) SR versus PR: Best-fit model for reported sporozoite rate-PfPR pairs (Smith et 
al., 2005). 
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Figure 3. Potential utility of metrics at different levels of endemicity.  
Figure 3a: A plot of the logarithm of the annual PfEIR against itself (red), the logarithm of the PfSCR 
(orange), the PfPR2-10 (blue), and the logarithm of the PfR0 (purple). These relationships are based on 
one particular model for the steady state relationships. The annual EIR is difficult to measure when the 
annual EIR is less than one because of the large sample sizes required to catch sufficient vectors both 
infected and non infected.  Similarly, the PR is difficult to measure when it is less than about 1% because 
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of the large sample population sizes that need to be screened. For both measures the solid line indicates 
those values where it can be measured accurately with reasonable effort, while the dashed line 
illustrates where the accuracy will wane.  The cut-offs for "reasonable effort" could vary depend on 
costs and priorities.  The SCR has some advantages because it can be measured across the spectrum. 
Nothing is implied about the effort required to measure R0, since it is generally inferred from the other 
metrics, based on some transmission model.  The shapes of the curves have all been standardized to 
have the same minimum and maximum over the observed range of values to illustrate how the shapes 
of these curves affect the relative amount of information about transmission at different points along 
the spectrum. The steeper the curve, the more information that is conveyed about one metric relative 
to another. Figure 3b and 3c are the same curves with the PfPR2-10 and the logarithm of the R0 on the x-
axis respectively. We have not attempted to incorporate any estimates of error in to these plots. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  


