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Abstract

Background: Zoonotic visceral leishmaniasis is endemic in the Mediterranean Basin, where the dog is the main reservoir
host. The disease’s causative agent, Leishmania infantum, is transmitted by blood-feeding female sandflies. This paper
reports an integrative study of canine leishmaniasis in a region of France spanning the southwest Massif Central and the
northeast Pyrenees, where the vectors are the sandflies Phlebotomus ariasi and P. perniciosus.

Methods: Sandflies were sampled in 2005 using sticky traps placed uniformly over an area of approximately 100 by 150 km.
High- and low-resolution satellite data for the area were combined to construct a model of the sandfly data, which was then
used to predict sandfly abundance throughout the area on a pixel by pixel basis (resolution of c. 1 km). Using literature- and
expert-derived estimates of other variables and parameters, a spatially explicit R0 map for leishmaniasis was constructed
within a Geographical Information System. R0 is a measure of the risk of establishment of a disease in an area, and it also
correlates with the amount of control needed to stop transmission.

Conclusions: To our knowledge, this is the first analysis that combines a vector abundance prediction model, based on
remotely-sensed variables measured at different levels of spatial resolution, with a fully mechanistic process-based
temperature-dependent R0 model. The resulting maps should be considered as proofs-of-principle rather than as ready-to-
use risk maps, since validation is currently not possible. The described approach, based on integrating several modeling
methods, provides a useful new set of tools for the study of the risk of outbreaks of vector-borne diseases.
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Introduction

Zoonotic visceral leishmaniasis (ZVL) is a parasitic disease of

humans, caused by the protozoan Leishmania infantum. In Southern

Europe, this parasite is transmitted by female sandflies (Diptera:

Phlebotominae) of the subgenus Larroussius [1–5] and primarily

causes disease in dogs and other canids. Due to the high

prevalence in domestic dogs in many areas in the Mediterranean

region (prevalences up to 34% have been reported in Spain and up

to 20% in France [6]) and the high case fatality ratio ([7]), canine

leishmaniasis constitutes a considerable veterinary problem [6].

Infected dogs also act as a reservoir host for the human disease;

sandflies infected by dogs may, during a later blood meal, infect

humans. Healthy humans are dead-end hosts for ZVL and do not

usually develop any symptoms, but children and immuno-

suppressed people may develop serious symptoms when infected,

especially if malnourished [3] or co-infected with HIV [8].

Changes in climate and other environmental factors, such as land

use, could lead to further expansion of the areas where canine

leishmaniasis can be sustained, by increasing the range or seasonal

abundance of the sandfly vectors, or by influencing other aspects

of the transmission cycle [5]. Presence of the vector is not the only

factor determining whether or not a pathogen can establish. Even

if the vector is abundant, the values of other factors may result in a

situation where introduction of the pathogen does not lead to a

large outbreak. Such factors are often environmentally deter-

mined, and include the replication rate of the pathogen, the vector

biting rate, host availability, or the infectious life span of either
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vectors or hosts. We therefore need a tool to predict whether or

not canine leishmaniasis can establish after introduction in a

certain area and under certain climatic and environmental

conditions. Such a tool is available in the form of the basic

reproduction number (R0) of the disease, defined as the expected

average number of secondary cases caused by one infectious

individual placed in a naı̈ve population. The value of R0 is a

measure of the likely success of invasion into a population. If it is

higher than 1, an outbreak of the disease is possible; if it is smaller

than 1, the disease will die out [9,10]. R0 can be seen as a quantity

integrating, in a properly weighted way, all factors determining

whether or not a pathogen can establish in a given area. Previous

studies have presented approximations of R0 for canine leishman-

iasis for endemic situations; the approximations are based on

epidemic data such as prevalence [11] and age at which dogs

acquire the disease [12]. However, such approximations can only

be used in endemic areas, and are therefore not suitable for

studying whether or not the disease can establish in a new area.

Also, such approximations do not allow for scenario studies, since

the influence that climatic or land use factors may have on

essential aspects of the transmission process (vector and host

populations, transmission parameters and the temperature-depen-

dency of vector activity and survival) are not taken into account.

In this paper, we develop a method to predict the risk of

establishment of canine leishmaniasis in new geographic locations

and present a map that depicts the spatially varying values of R0

over part of southwest France. Extensive field work was carried out

in this area on the two regional sandfly vectors of canine

leishmaniasis: Phlebotomus (Larroussius) ariasi Tonnoir, 1921 and P.

(L.) perniciosus Newstead, 1911. The area shows variation in the

prevalence of canine leishmaniasis, the eastern part having more

cases than the western part [13].

In order to construct such an R0 map, we need to derive an

expression for R0 and parameterize this expression for each pixel

in the map. Sandfly densities have to be estimated for all pixels,

based on results from intensive sampling in the target area. To do

this, we used a statistical model based on a combination of high-

and low-resolution remotely sensed data. The high resolution

imagery provided important details of land-scape features (such as

land use and habitat fragmentation) that were not detected by the

low resolution imagery which recorded habitat seasonality and

climate. Previously, low-resolution analysis had been combined

with process-based models in a study of bluetongue virus in the

Netherlands [14] but, to our knowledge, the combination of high-

and low-resolution satellite data is novel. The resulting vector

abundance predictions were, together with a dog density map and

several literature-based parameter estimates, used as inputs for a

process-based temperature-dependent R0 model. This model is

used to create an R0 map for canine leishmaniasis by using a

geographic information system (GIS) to combine all the informa-

tion.

Materials and Methods

Terminology
The terms ‘‘sandfly’’ and ‘‘sandflies’’ will be used for statements

that apply to both of the regional vectors, P. perniciosus and P. ariasi.

Species names will be mentioned only if a statement refers

specifically to them.

Expression for R0

First, we derived an expression for R0 for canine leishmaniasis,

using the next-generation matrix (NGM) [10] approach. The

NGM method provides a framework for derivation of R0 for

disease systems that involve more than one type of infected

individual (referred to as type-at-infection [15]). For vector-borne

diseases, there are at least two types-at-infection, the vector and

the host, but the principle can also be applied to more complex

disease systems [16]. The elements of this matrix, kij, represent the

expected number of cases of type-at-infection i caused by one

individual of type-at-infection j. For canine leishmaniasis, we

define two types-at-infection - the sandfly (type 1) and the dog

(type 2) - resulting in the following NGM:

K~
k11 k12

k21 k22

� �

where

k11=mean number of sandflies infected by one infected

sandfly

k12=mean number of sandflies infected by one infected

dog

k21=mean number of dogs infected by one infected

sandfly

k22=mean number of dogs infected by one infected dog

The dominant eigenvalue of the NGM has been shown to equal

R0 [10,17]. Assuming no direct transmission between dogs or

between sandflies (i.e., k11 and k22 are zero) we only have to derive

expressions for element k12 (the mean number of sandflies infected

by one infected dog) and element k21 (the mean number of dogs

infected by one infected sandfly). First, we will derive an expression

for element k12, the mean number of sandflies infected by one

infected dog. A newly infected dog will develop infection (become

infectious) with probability p, and it will infect sandflies with a

probability c per bite for as long as it stays infectious. The duration

of the infectious period, which might end either due to recovery

(spontaneous or as a result of treatment) or due to the death of the

dog, is denoted as 1/md, the reciprocal of a combined ‘death or

recovery’ rate. The biting rate is denoted by a (the reciprocal of the

length of the gonotrophic cycle, as sandflies normally take one

blood meal per oviposition cycle [18]). The regional vectors are

opportunistic feeders, with host choice being related to the

availability of individual host species [19,20], rather than to their

specific attractiveness. Sandflies are known to feed on humans,

canids, equines, bovids (cattle/sheep) and birds [19–22], many of

which are dead-end hosts for leishmaniasis. The sandfly density is

denoted by v, the dog density by h and the alternative host density

by x. Assuming that the ‘burden’ of biting sandflies (av) is spread

evenly over the entire population of hosts, the number of bites per

night for a dog will be av/(h+x). The number of sandflies infected

by one newly infected dog will then equal:

k12~
pnac

(hzx)md

The average number of dogs infected by one infected sandfly, k21,

is derived as follows. In order to become infective, each newly

infected sandfly has to survive the extrinsic incubation period (or

EIP, the interval between the acquisition of an infectious agent by

a vector and the vector’s ability to transmit the agent to other

susceptible vertebrate hosts), the proportion doing so being

exp(2msf EIP). Each infected sandfly bites at rate a, and transmits

the infection with probability b per bite for the rest of its lifespan

(determined by the sandfly mortality msf). We assume that a

fraction h/(h+x) of the blood meals is taken from dogs. The
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average number of dogs infected by one infected sandfly will then

equal:

k21~
h

hzx

e{msf EIP
ab

msf

The NGM will therefore equal:

K~

0
pnac

(hzx)md

h

hzx
e{

msf EIP
ab

msf
0

2
664

3
775

The dominant eigenvalue of this NGM is the expression for R0:

R0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

hzx

e{msf EIP
ab

msf

pnac

(hzx)md

s

The next step in constructing the R0 map is to parameterize this

expression. A schematic overview of the approach is given in

Figure 1. For four parameters (transmission efficiencies, b and c, the

probability of a dog becoming infectious, p, and the rate of losing

infectiousness, md), the values were assumed to be constant over space

and we used point values and ranges obtained from the literature (see

Table 1). For parameters known to vary with temperature, such as

the biting rate a, sandfly mortality msf and duration of the EIP, we

used simple, linear models to describe them (see Table 1 and

Supporting Information S1). Using 1 km resolution average July

daytime temperatures (for the period 2000–2005) from the

WorldClim website (www.worldclim.org, assessed April 2009), the

value of each of the temperature-dependent parameters was

calculated for each pixel (Figure 2 and 3). In the absence of

information indicating otherwise, all vector-related parameter

estimates were taken to be identical for the two vector species.

Dog density and the sandfly density both vary over space in a

complex manner, because they depend on many different factors.

In the following sections, we explain in some detail how we

estimated the values for each of these parameters for each pixel.

Predicting dog density
The dog density map, with values of h for each pixel, was

constructed by the data management team of the EDEN project.

The basic principle underpinning the approach is that known dog

population data obtained from the Facco website (http://www.

facco.fr, asssessed in 2003) are related to 1 km resolution human

population densities obtained from the SEDAC website (http://

beta.sedac.ciesin.columbia.edu/gpw/, assessed in 2003) that have

been summarised at a (sub-) national level, using information on

dog-ownership in different categories of agglomerations. This

relationship is then used to predict dog density at 1 km resolution

using a high spatial resolution grid of human population density.

The estimated dog density ranges from 0 to 778 dogs per km2 in

the study area, with a mean density of 7.6 dogs per km2.

Predicting sandfly abundance
Sandfly abundance predictions were based on surveys of the

study area carried out by the joint NHM and Strasbourg team in

July 2005. July was chosen because it was found to be the summer

month when both vectors were abundant. The study area, situated

between latitude 42u209N and 43u409N and between longitude

0uE and 3uE, encompassed the forested southwest foothills of the

Massif Central (the Montagne Noire), the forested northeast

foothills of the eastern Pyrenees mountains and the intervening

lower ground that has a land cover containing more settlements

and arable crops [23]. The altitude of collection sites ranged from

96.8 to 811 metres above sea level as measured by GPS. Sandflies

were sampled at 169 sites, at each of which a single sticky trap (an

A4 paper soaked in castor oil) was placed in each of 5–20 drainage

holes of a roadside retaining wall. Sampling was synchronised,

with papers put out over 4 days (10–13th July) and collected in the

same order 4 days later (14–17th July). There were no extreme

weather events in this period. The mean numbers of males of each

vector species per paper (the sample unit) were the model input

data. Some trap sites recorded zero catches, and these were used in

the models to represent sandfly absence. Sites were excluded from

the analysis if less than 5 traps were recovered.

The statistical model developed to predict sandfly abundances

used two sorts of satellite data; high resolution (30 m pixels)

LANDSAT TM data and low resolution (1 km pixels) Terra

MODIS and other data. The LANDSAT data were those

previously described and used by Martı́nez et al. [23] and the

MODIS data and their processing are described by Scharlemann

et al. [24]. The high resolution imagery, which had previously been

classified into land-cover classes (see Table 1 in Martinez et al. [23]),

was used to provide several predictor variables reflecting land-cover

and composition that were thought to be important for sandflies.

These derived variables included shape (as documented by the

Shape Index in FRAGSTATS [25]) and size of forest patches and

crop patches (aggregated crop classes), the distance between forest

patches (‘proximity’), the proportion of the surrounding area

occupied by urban areas, several crops, pasture, coniferous,

deciduous and sclerophylous forests and other types of vegetation,

and the Shannon’s diversity index as defined by Forman [26].

Spatial variables (i.e. those referring to a spatial rather than point

measure of landscape features) were calculated within a 1000 m

buffer zone centred on each sandfly sampling site. Hence, such

spatial variables, that essentially recorded sub-1 km pixel resolution

details of land-cover, were finally consolidated into 1 km resolution

pixels that coincided in size with those of the coarser MODIS sensor

pixels. MODIS data, through temporal Fourier processing, [27,28]

capture elements of habitat seasonality (not available from the

LANDSAT imagery) that are also felt to be important in sandfly

seasonal dynamics. The MODIS imagery included ‘middle infra-

red’ (MIR), daytime Land Surface Temperature (LST), night-time

LST, Normalised Difference Vegetation Index (NDVI) and

Enhanced Vegetation Index (EVI). Additional low resolution data

used in the models were CMORPH data from the CPC website

(http://www.cpc.noaa.gov/products/janowiak/cmorph_description.

html, assessed May 2009) and WORLDCLIM rainfall data from

the WorldClim website (http://www.worldclim.org, assessed May

2009), also temporal Fourier processed, and the digital elevation

layer (DEM) distributed with MODIS v5 data. Thus the

combination of high- and low- resolution imagery provided a wide

range of both spatial and seasonal details of habitat characteristics,

for use in the statistical models describing the spatial variation in

sandfly abundance across the study area. In total, the models had

available to them 27 variables derived from LANDSAT and 71

MODIS and other low-resolution image variables (ten Fourier

variables for each of the seven sensor or other multi-temporal data,

and one for the DEM).

The suite of predictor variables was used in a non-linear

discriminant analysis (NLDA) framework where the predicted

variable was the mean recorded sandfly abundance at each site

[27,28]. NLDA works on categorical rather than continuous

variables, so the full range of sandfly abundance for each species

was divided up into three abundance classes (boundaries

An R0 Map for Canine Leishmaniasis
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determined to give approximately equal numbers of observations

in each category); for each species there were also two absence

classes (determined by clustering some of the environmental data

for the absence sites, using the k-means clustering algorithm).

There was therefore a total of five classes to be described and

distinguished by each model.

Figure 1. Schematic overview of the approach.
doi:10.1371/journal.pone.0020817.g001

Table 1. Parameters: point estimates and ranges.

Description Point estimate
Ranges used for
sensitivity analysis Sources

c Transmission efficiency from dog to sandfly 0.7 0.5–0.9 [37–42]

b Transmission efficiency from sandfly to dog 0.01 0.005–0.05 None

p Probability of a dog becoming infectious 0.5 0.2–0.8 [7,12,39,43–45]

md Rate of a dog losing infectiousness, either because of
treatment, self-cure or death

0.02 0.01–0.04 Average lifespan of infected dogs is two years
[7,41], but only part of that period overlaps the
sandfly season

x Alternative host (not dog) density 5 1–10 x is estimated so that h/(h+x) varies between K

[19] in low dog density areas and almost 1 in high
dog density areas (settlements), where most bites
are on dogs

a Sandfly biting rate (T-14)/100+0.03 0.03–0.16 [34,46]*

EIP Extrinsic incubation period 100/(T-5) 3–20 [42,47,48]*

msf Sandfly mortality 0.0035 (T-5) 0.017–0.07 [39,49]*

Estimates are based on experiments/observations on P. ariasi [34,39,49], P. perniciosus [37,38,40,42], or both [46].
*For information on the derivation of these values see the Supporting Information S1.
doi:10.1371/journal.pone.0020817.t001
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In the NLDA modeling, predictor variables were selected in a

step-wise inclusive manner to minimize Akaike’s Information

Criterion corrected for the number of variables used in the model

(AICc) [29]. No more than ten predictors were selected, and all

were used in the models for each species since the AICc values

were lowest with ten variables (indicating that more variables

could have been included to improve the models further). Stepwise

inclusive methods tend to select variables in sequence that are un-

correlated with the variables already in the analysis, because

variables that are highly correlated with those already in the

predictor variable set are less likely to improve model fit than those

that are not. The end result is a set of predictor variables that tends

to be the least inter-correlated. We emphasize that this methods

selects a set of variables that together predict the data best, not a

set of ten best predicting individual parameters. The variables

selected for each species are listed in Table 2.

The resulting models were then applied throughout the study

area to make predictions of the sandfly abundance category for

each pixel, dependent upon values of the key predictor variables

for that pixel; the result is therefore a ‘risk map’ for the abundance

of sand-flies. Some pixels had conditions more extreme than any in

the data used to create the models in the first place (the ‘training

set’); such pixels were classified as ‘no prediction possible’ in the

output imagery and could not therefore be used further. For all the

remaining pixels the predictions were used to estimate the mean

total abundance of sandflies per km2. This was done by

multiplying the predicted mean abundance (the average of the

upper and lower limit of each abundance category) by a factor f,

where f was given values of 500, 1000 and 5000 in different output

R0 maps, to acknowledge the great uncertainty of this factor and

to quantify its influence. More details of how these values have

been estimated can be found in the Supporting Information S2.

Construction of R0 maps
The actual R0 map was constructed by combining all the vector

abundance prediction maps, the dog density map and all the

Figure 3. Relationship between temperature and known temperature-dependent parameters.
doi:10.1371/journal.pone.0020817.g003

Figure 2. Temperature map of the study region: average temperature in July.
doi:10.1371/journal.pone.0020817.g002
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relevant parameters in a Geographic Information System. The

dog density map, the predicted vector abundance maps and the

temperature maps were overlaid in ArcGIS 9.3, and the values at

set 1 km pixel intervals were retrieved by using an Intersect Point

Tool (part of Hawth’s Analysis Tools, downloaded from http://

www.spatialecology.com/htools/isect.php on 28 May 2009). The

intersect point tool was used because the raster pixels did not

always exactly coincide in the different sorts of imagery used,

hence precluding the use of more direct, raster-based calculations.

The extracted data were processed using the R0 expression

derived above and the parameter estimates given in Table 1.

Using a feature-to-raster conversion, the values of R0 were then

converted to a raster layer. Obviously, the R0 value could be

calculated only for pixels for which a prediction for the sandfly

species had been made. Pixels with ‘no prediction’ for either

sandfly species obtained a ‘no prediction’ value in the R0 maps.

Sensitivity analysis
Unavoidably, there is a large amount of uncertainty in most

parameter estimates. The effect of this uncertainty on the outcome

was assessed, using Latin Hypercube sampling. Instead of using

point estimates, we sampled from a prescribed range of possible

values for each parameter. For the parameters in Table 1, we used

the ranges noted in the table, whereas for the sandfly abundance

prediction map, the value of each pixel was allowed to be one

category higher or lower than predicted. As stated above, the

multiplication factor f was allowed to vary between 500 and 5000.

The dog density (h) was allowed to vary from two times lower up

to two times higher than the original prediction. For each

parameter, 1000 values were sampled, using Latin Hypercube

sampling. The value of R0 was calculated for each of the 1000 sets

of parameter values, yielding 1000 values of R0 for each pixel. The

analysis was performed using the statistical package R with an

additional lhs package available on the R website (www.cran.

r-project.org, assessed in April 2009). For each pixel, the mean and

the 5% and 95% percentiles of the 1000 values were calculated

and exported to ArcGIS.

Results

Sandfly abundance prediction maps
The final NLDA model was used to predict the abundance of

each species for each pixel (Figure 4). We also compared the

performance of this model with other NLDA models produced

using only the LANDSAT-derived variables or only the low-

resolution MODIS and other variables. The sensitivity and

specificity of the final model were slightly better than the model

based only on low resolution variables for P. ariasi, the

predominant species. Both the final and low resolution variable

models outperformed the high resolution variable model for each

species according to three measures (Cohen’s Kappa, sensitivity

and specificity), except for the specificity of the P. perniciosus model

(see Supporting Information S3 for more details).

For P. ariasi, the final model selected three landscape (high

resolution) variables and seven low resolution variables (see Table 2).

The predicted abundance categories were 0.04–0.146, 0.146–0.422

and 0.422–10.0. The accuracy, as judged by Cohen’s Kappa

(0.811060.0732) was ‘excellent’ according to Congalton’s classifica-

tion of kappa values (k,0.4, poor; 0.4,k,0.75, good; and k.0.75,

excellent). Final model sensitivity and specificity both exceeded 0.90.

For P. perniciosus the final model selected two landscape variables

(proportion of vineyards and of complex cultivation pattern) and

eight low resolution variables (including daytime temperature,

vegetation indexes and precipitation, see also Table 2). The

predicted abundance categories for this species were 0.038–0.1,

0.1–0.254 and 0.254–2.55. The accuracy was again excellent

(Cohen’s kappa of 0.774960.0790), and, once again, model

sensitivity and specificity both exceeded 0.9 (better for sensitivity

but worse for specificity compared with the P. ariasi model).

R0 maps
R0 maps were constructed based on the parameter estimates in

Table 1, the temperature map and the predicted vector abundance

maps and dog density maps. The R0 value was calculated for

different values of the multiplication factor used to translate

predicted numbers of sandflies per paper into vector densities per

km2 (Figure 5). The overall pattern in the R0 maps shows

comparatively high values in the northeast and the southeast of the

study area, lower values in between and very low values (often

zero) in the northwestern part, and this is clearly dictated by the

pattern of the sandfly abundance predictions, especially that of the

P. ariasi distribution, which was captured in higher numbers than

P. perniciosus, and thus is most important in determining the

variation in the value of v. Different values for the multiplication

factor change the values for R0 but not the pattern.

Sensitivity analysis
The sensitivity analysis yielded a range of 1000 R0 values for

each pixel. One map was constructed based on the mean values

(Figure 6b), and two other maps reflect the 5 percentile (Figure 6a)

or the 95 percentile (Figure 6c) predicted limits of R0. Given the

range of parameter values therefore, the value of R0 is likely to be

higher than the value in Figure 6a and lower than the value in

Figure 6c.

Table 2. Predicting variables that performed best in the final
model.

Rank 1/AICc AICc Description of variable

P. ariasi 1 0.006 179.5 Mean shape index of Crops

2 0.006 166.28 DEM

3 0.006 153.9 Nighttime LST phase 1

4 0.007 144.86 Nighttime LST amplitude 3

5 0.008 126.6 NDVI phase 2

6 0.008 117.75 Proportion of crops: sparsely
vegetated

7 0.010 104.96 EVI phase 1

8 0.010 96.92 Daytime LST amplitude 3

9 0.012 83.01 WORLDCLIM precipitation phase 3

10 0.015 68.01 Proportion of pasture

P. perniciosus 1 0.005 192.42 Proportion of crops: vineyards

2 0.006 180.57 Daytime LST phase 2

3 0.006 174.13 EVI amplitude 1

4 0.006 166.72 NDVI amplitude 2

5 0.006 159.45 Proportion of complex cultivation
pattern

6 0.007 143.15 NDVI amplitude 3

7 0.008 129.46 EVI phase 3

8 0.009 109.16 EVI variance

9 0.010 98.42 WORLDCLIM precipitation minimum

10 0.012 83.76 CMORPH precipitation phase 1

doi:10.1371/journal.pone.0020817.t002
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Figure 4. Predicted.abundance of P. perniciosus (upper panel) and of P. ariasi (lower panel), based on the integrated model.
doi:10.1371/journal.pone.0020817.g004
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Figure 5. R0 maps based on the predicted vector abundance maps, the dog density map, and the parameter point estimates in
Table 1. R0 maps are depicted for different values of the multiplication factor: f=500 (a), f=1000 (b), and f=5000 (c). Resolution is 1 km2.
doi:10.1371/journal.pone.0020817.g005
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Figure 6. R0 maps resulting from sampling from parameter ranges with the Latin Hypercube sampling method. Uniform sampling
from the ranges in Table 1 yielded 1000 different sets of parameter values and hence 1000 values of R0 per pixel. The 5% percentile of the 1000 values
is depicted in a map (a), as well as the mean values (b) and the 95% percentile, (c). Resolution is 1 km2.
doi:10.1371/journal.pone.0020817.g006
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Discussion

This paper presents a detailed description of the construction of

an R0 map for canine leishmaniasis. Its novelty lies in the

combination of a variety of low and high resolution satellite data to

reflect different aspects of the natural environment of sandflies in

the study area. Land cover type and details of landscape features,

such as the size and shape of different vegetation patches are best

captured by LANDSAT imagery. Seasonality can only be

captured by multi-temporal data of the sort represented by

MODIS and the other seasonal data used. A single algorithm then

selected the appropriate combinations of low- and high-resolution

data to make predictions of the abundance classes of the two

sandfly species present in the study area. These predictions then

fed into a biological model predicting R0 values throughout the

area. Other recent studies have used similar approaches to study

the risk of malaria re-emergence in Lower Saxony in Germany

[30] and the risk of bluetongue outbreaks in Switzerland [31] and

the Netherlands [14]. However, these studies were not based on

variables measured at different spatial scales.

Concerning the results of the integrated prediction model,

several conclusions can be drawn from this study. P. ariasi appears

to predominate in the northeast and southeast of the study area in

the forested foothills, whereas P. perniciosus is predicted to be more

abundant in the intervening areas at lower altitudes (Figure 4).

This is consistent with previous observations [32]. It seems that

P. ariasi can survive in colder habitats than P. perniciosus [33]

(temperature is closely linked to altitude).

The field data were collected using a standardized sampling

method in a short period of time encompassing no extreme weather

events. The number of sandflies collected and the fraction of females

depend heavily on local circumstances, including the weather,

and sandfly trapping results are known to show considerable

variation seasonally and between years [18,22,32,34]. Addition-

al data from the same location for a number of years would help

quantify such variability, but the larger the area the greater will

be the environmental variation and the more difficult it will be

to synchronise catches throughout it. Models of the sort used

here can allow for greater environmental variability (captured

by the satellite imagery) but not yet for the seasonal variation of

catches at any one site. The fact that the field work was

performed in one month only, also implicates that the risk map

applies primarily to the situation in July. Since sandflies are not

known to fly for long distances, it is unlikely that the distribution

in July is very different from distributions in less favorable

months, a notion supported by the fact that the two vectors had

such distinct altitudinal patterns of abundance. It is however

quite likely that the abundance is higher than in other months.

This would mean that the presented maps may tend to

overestimate the risk, but given the long infectious period in

the dog, one favorable period in the year could be sufficient to

let a transmission cycle persist. Methods to more accurately

estimate persistence would need input for vector-abundance

throughout the year.

In the R0 model, a number of simplifying assumptions had to

be made. Firstly, direct transmission between dogs, that might

happen occasionally [5], was not considered in the model. We

can assess the effect of this simplification by including a

hypothetical dog-to-dog reproduction number of 0.1 in

element k22 (i.e. assuming a ten percent probability that a

dog infects another dog, which is much higher than expected

in the field), revealing that this has little effect on R0. We can

then consider two extreme cases: areas with no sandflies, and

areas with high sandfly abundance. In the first case, the system

is reduced to a one-host system and the R0 value is 0.1, hence

well below unity. In areas of high sandfly abundances, R0 is

high and the relative increase of R0 due to dog-to-dog

transmission is small. Only where R0 is just below unity, does

dog-to-dog transmission make any real difference to disease

persistence.

Another simplification arose from the fact that the number of

alternative sources of blood meals for the sandflies was unknown.

Hence, we had to assume a fixed density of alternative hosts

throughout the area. In reality, the abundance of alternative hosts

will depend on the feeding habits of the sandfly species concerned,

and its habitat characteristics. Even though foxes, badgers and cats

have been suggested to play a role in the transmission cycle in

France, Portugal and Spain [5,32,35], there is insufficient

information on their role in the spread of leishmaniasis to include

them in the present model.

The biting rate (a) is assumed to equal the reciprocal of the

gonotrophic cycle, but infected sandflies may actually bite more

frequently, because a Leishmania parasite-induced ‘plug’ in their

midgut [36] may prevent them from feeding fully.

More generally, the parameter estimates are best guesses,

especially for the temperature-dependency relationships and for

the transmission efficiency from sandfly to dog; more field and

laboratory research is therefore needed in these areas. Also, the

method of translating (predicted) numbers of male sandflies

sampled on a sticky paper into real biting densities for female

sandflies needs to be validated and improved.

The R0 maps presented here should be considered as proofs-of-

principle rather than as ready-to-use risk maps. The patterns of the

R0 values in the final model are largely determined by the vector

abundance predictions, because many parameters do not vary too

much over space. We would expect very low R0 values in the

colder regions to the northeast and south of our study area,

because the higher sandfly survival at low temperatures will be

counteracted by the lower biting rate and the longer EIP.

However, all these higher altitude regions (.800 m a.s.l.) had a

‘‘no prediction’’ result, because there were no high altitude sites in

the training set data used to create the models.

Validation of the maps presented here is currently not possible,

due to the lack of dog prevalence data at the resolution of the study

area. An attempt was made to extend the model to a much larger

area of France (where canine leishmaniasis prevalence data are

available, but only at département level), but was unsuccessful

because the environmental variation in the training set was limited

compared with that of the rest of France.

The biological R0 risk mapping approach has numerous

advantages over more statistically-based risk mapping ap-

proaches. First, both the quantity of R0 and the parameters

involved have clear biological and epidemiological interpreta-

tions. Second, the processes involved are modelled mechanis-

tically, which allows us to gauge the effect of changing values of

various biological determinants on the risk of an epidemic

following introduction of the pathogen. By using temperature

dependent parameters, the outcome of the oft-opposing effects

of temperature on transmission parameters can be studied. This

method, at least theoretically, is capable of identifying areas

where the vector can persist but the pathogen cannot establish.

A drawback of the method is the fact that it requires estimates

for many different parameters. When these parameters cannot

be estimated, only in endemic situations the R0 approximations

based on epidemiological data [11,12] can be a useful

alternative, but the latter do not have the advantages of our

approach. To our knowledge, this is the first analysis that

combines a vector abundance prediction model, based on
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remotely-sensed variables measured at different levels of spatial

resolution, with a fully mechanistic process-based temperature-

dependent R0 model. We therefore suggest that our approach

provides a useful new set of tools for the study of the risk of

outbreaks of vector-borne diseases.
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ariasi tonnoir, 1921 in the Cévennes by bloodmeal analyses. Annales de

Parasitologie Humaine et Comparee 59(5): 449–58.

20. De Colmenares MAR, Port SM, Botet J, Dobano C, et al. (1995) Identification

of blood meals of Phlebotomus perniciosus (Diptera: Psychodidae) in Spain by a

competitive enzyme-linked immunosorbent assay BiotinAvidin method. Journal

of Medical Entomology 32: 229–233. Available: http://www.ingentaconnect.

com/content/esa/jme/1995/00000032/00000003/art00003.

21. Bongiorno G, Habluetzel A, Khoury C, Maroli M (2003) Host preferences of

phlebotomine sand flies at a hypoendemic focus of canine leishmaniasis in

central Italy. Acta Tropica 88(2): 109–116. Available: http://www.sciencedirect.

com/science/article/B6T1R-49DN9PC-1/2/b77f28ec5cac55d5d6ac072549780

c63.

22. Rossi E, Bongiorno G, Ciolli E, Di Muccio T, Scalone A, et al. (2008) Seasonal

phenology, host-blood feeding preferences and natural Leishmania infection of

Phlebotomus perniciosus (Diptera, Psychodidae) in a high-endemic focus of canine

leishmaniasis in Rome province, Italy. Acta Tropica 105(2): 158–165. Available:

http://www.sciencedirect.com/science/article/B6T1R-4PXM6DS-2/2/

e29efd3371bed431e65a99689a8cf4a4.

23. Martı́nez S, Vanwambeke SO, Ready P (2007) Linking changes in landscape

composition and configuration with sand fly occurrence in southwest France.

Proceedings of the IEEE, Analysis of multi-temporal remote sensing images,

Multitemp 2007: 1–5.

24. Scharlemann JP, Benz D, Hay SI, Purse BV, Tatem AJ, et al. (2008) Global data

for ecology and epidemiology: A novel algorithm for temporal fourier processing

MODIS data. PLoS ONE 3(1): e1408.

25. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial

Pattern Analysis Program for Categorical Maps. Available: www.umass.edu/

landeco/research/fragstats/fragstats.html.

26. Forman RT (1995) Land mosaics. The ecology of landscapes and regions.

Cambridge: Cambridge University Press. 632 p.

27. Rogers DJ, Hay SI, Packer MJ (1996) Predicting the distribution of tsetse flies in

West Africa using temporal Fourier processed meteorological satellite data. Ann

Trop Med Parasitol 90(3): 225–41.

28. Rogers DJ (2000) Satellites, space, time and the African trypanosomiases. In: SI.

Hay, SE. Randolph, DJ. Rogers, eds. Advances in Parasitology Academic

Press. pp 129–171. DOI: 10.1016/S0065-308X(00)47008-9.

29. Rogers DJ (2006) Models for vectors and vector-borne diseases. In: Hay SI,

Graham A, Rogers DJ, eds. Global mapping of infectious diseases: methods,

examples and emerging applications Academic Press. pp 1–35. Available:

http://www.sciencedirect.com/science/article/B7CTH-4JTRTNN-6/2/

c32f9e3c7ca5ebbe2c20d3a7b35f1275.
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