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Abstract

Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E) lesions. It shares a common
virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC) and enterohaemor-
rhagic E. coli (EHEC) and is widely used to model this route of pathogenesis. We previously reported the complete genome
sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved
pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and
examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C.
rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition
of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the
reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both
isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other
bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the
development of inbred mice as a model for human disease.
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Introduction

The genomes of enteric bacteria have been shown to be

dynamic entities through gene acquisition and loss. It is clear that

these genomes consist of a highly conserved core inter-dispersed

with a continually evolving accessory genome. Genome flux can

have a profound effect on a particular organism, in many instances

it is associated with adaptation to different niches and may

eventually come to define different isolates, pathotypes or even

species. Genome flux can occur by Horizontal Gene Transfer

(HGT) through processes such as transformation, bacteriophage

mediated transduction and conjugation. In addition to gene gain,

gene loss through deletions, rearrangements and the accumulation

of point mutations are also major inputs to genome flux and have

been linked to host adaptation, for example in Salmonella Typhi

and Yersinia pestis [1,2] whereby functions important for the

previous lifestyle are no longer preserved through selection and so

accumulate random mutations.

The non-motile, Gram-negative enteric bacterium Citrobacter

rodentium is a natural mouse pathogen. It is the causative agent of

transmissible murine colonic hyperplasia, and is responsible for

high mortality in suckling mice [3–5]. C. rodentium is a member of a

family of bacterial pathogens that induce intestinal attaching and

effacing (A/E) lesions, which are characterised by intimate

bacterial adherence to host intestinal epithelial cells, effacement

of microvilli, and reorganisation of the host actin cytoskeleton to

form pedestal-like extensions of epithelial cells beneath the

adherent bacteria [6]. Gastrointestinal colonisation and formation

of A/E lesions are mediated by a pathogenicity island called the

locus of enterocyte effacement (LEE), which is conserved among

A/E bacteria [6,7]. As the only known A/E pathogen to naturally

infect mice, C. rodentium is a valuable model organism for studying

colonisation, virulence factors and modes of pathogenesis of the

clinically significant human A/E pathogens enteropathogenic E.

coli (EPEC) and enterohaemorrhagic E. coli (EHEC) [6,8,9].

Different C. rodentium isolates from mouse and hamster colony

disease outbreaks in Japan and the USA in the 1960s, 70s and 80s

were originally classified as either atypical mouse-pathogenic E.

coli (MPEC) [10–12] or atypical Citrobacter freundii (later reclassified

as Citrobacter genomospecies 9) [13–16]. However, subsequent
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genetic and biochemical analyses of these independently isolated

strains suggested they were of clonal origin and they were all

reclassified as Citrobacter rodentium [17,18].

We previously determined the whole genome sequence of C.

rodentium strain ICC168, a derivative of a strain isolated from a

disease outbreak in Swiss-Webster mice at Yale University School

of Medicine, USA, in 1972, originally designated Citrobacter freundii

biotype 4280 (ATCC 51459) [13,19]. ICC168, together with

strain DBS100 which originates from the same source [5,9], are

the most widely studied C. rodentium isolates. We showed that the

genome of ICC168 displayed features associated with bacteria that

have recently passed through an evolutionary bottleneck, includ-

ing a large number of pseudogenes and IS elements [20]. Here, we

present the detailed investigation of genomic flux in C. rodentium

with a focus on the impact that mobile genetic elements have had

on the genome evolution of C. rodentium and demonstrate that the

genome of this pathogen is unstable. To show that this is a

consistent feature of the species, we determined the genome

sequence of an additional C. rodentium strain, EX-33 (originally

classified as MPEC [11]), which was isolated from a spontaneous

outbreak of disease in a CF-1 mouse colony at the Institute of

Medical Science, University of Tokyo, Japan in 1981 (K. Itoh,

personal communication) and showed differences in levels of

colonisation and disease pathology compared to DBS100 [17]. We

describe the effect the observed genome rearrangements have on

the ability of C. rodentium to infect the murine host and relate these

findings to the evolution of this important model pathogen.

Results and Discussion

C. rodentium ICC168 is representative of the species
To ensure that the genome of ICC168 was representative of the

C. rodentium species we determined the whole genome draft

sequence of the independently isolated strain EX-33 using 454 and

Illumina sequence data to construct a combined de novo assembly

(see methods). The genome of EX-33 was found to be remarkably

similar to ICC168. Despite being merely a draft sequence, the

genome of EX-33 differed from ICC168 by just 177 single

nucleotide polymorphisms (SNPs), only 43 of which were

high-quality validated SNPs, and two deletions (details of all the

differences between ICC168 and EX-33 are listed in Tables 1 and

S1).

The high conservation also included all of the mobile genetic

elements, including prophages, insertion sequence (IS) elements

and genomic islands (GI), all of which are present and found at

exactly the same sites in both genomes, the one exception being

IS102 which is absent from EX-33 but expanded to 13 copies in

ICC168.

The insertions of IS102 elements have disrupted nine single

genes and a fimbrial operon in ICC168, each of which are found

intact in EX-33 (Table 1). Conversely, there are two deletions in

EX-33 compared to ICC168 (Table 1). The first is a 932 bp

deletion, which has resulted in the truncation of ROD_15301

encoding a hypothetical protein. The second is a 4392 bp deletion

in EX-33 that has deleted two genes (ROD_48251 and

ROD_48261) and truncated two other genes (ROD_48241 and

ROD_48271) of unknown function. In ICC168, the sequences

corresponding to both of these EX-33 deletions are flanked by

2 bp and 6 bp direct repeats respectively. Although these repeats

are short sequences, the data suggests that in both cases the

deletions were due to site-specific recombination.

The data presented here is consistent with there being a clonal

origin for this species and provides evidence of continued

functional gene loss in both of these C. rodentium strains.

Evidence of large-scale genomic rearrangements
The genomic architecture of C. rodentium contains a large intra-

replichore inversion of approximately 0.5 Mb in the genome of

ICC168, resulting in a switch in GC deviation (Figure 1). We used

PCR to show that the same inversion is also present in EX-33. GC

deviation switches are usually only seen at the origin and terminus

of replication in bacteria [21] as can be seen in the GC deviation

plots for the genomes of both E. coli K-12 and Salmonella

Typhimurium LT2 [22,23] (Figure 1). In addition, it was evident

from whole genome comparisons that whilst C. rodentium ICC168

shares significant conservation in genome synteny with E. coli and

Salmonella, there are many chromosomal inversions and rearrange-

ments in the genome including two large inversions spanning the

origin and terminus of replication, the latter being identical to an

inversion found in S. Typhimurium LT2 (Figure 1). Inversions

over the terminus are the most common form of large genomic

rearrangement detected in enteric bacteria, and homologous

recombination between rRNA operons resulting in such rear-

rangements have previously been observed in host-specific

Salmonella species [24]. However, unlike in Salmonella, recombina-

tion between rRNAs did not explain the genome rearrangements

found in C. rodentium, which were largely flanked by IS elements

(Figure 1).

The IS elements found in ICC168 belong to a diverse range of

IS families. However, only 8 types of IS element comprise 66% of

the 113 insertions, indicating extensive IS expansion, particularly

for ISCro1 (Table 2). Interestingly, IS elements or IS element-

related inverted repeats also flank 6 of the 17 GIs identified in the

ICC168 genome [20] and over half of the IS elements in the

ICC168 genome are located on other mobile genetic elements

rather than on the chromosomal backbone (Table 2). This highly

biased distribution of IS elements is similar to that observed in

EHEC O157 genomes [25]. These data, taken together with

previous findings [20,26], suggest that IS elements are associated

with chromosomal rearrangements, and horizontal gene transfer

facilitating the incorporation of novel gene functions into the C.

rodentium genome.

Author Summary

The pathogenic bacterium Citrobacter rodentium naturally
infects mice using a mechanism similar to those employed
by certain strains of E. coli that cause severe gastro-
intestinal infections in humans. As such it is an important
model organism for human disease research. We previ-
ously sequenced the genome of C. rodentium strain ICC168
and found that it had many features in common with other
bacterial pathogens that have recently adapted to live in a
new environment and colonise new hosts. In this study, we
sequenced the genome of an additional strain of C.
rodentium that was independently isolated on a different
continent, and found that the two strains were remarkably
similar. In addition, we investigated several C. rodentium
isolates and showed that the genome is unstable, existing
in multiple conformations within a single population due
to genomic inversions, recombination between repetitive
sequences, and horizontally acquired DNA that is mobile
within the genome. We conclude that C. rodentium
recently evolved to become a pathogen of mice, possibly
concurrently with the development of mouse models for
human diseases, and that it is still adapting to its new
environment.

C. rodentium: A Pathogen in Flux
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Evidence for ongoing genome instability in C. rodentium
To investigate if the observed genomic architecture of C. rodentium

was stable, we analysed the PFGE profiles for C. rodentium strain

ICC168 and derivatives of that strain representing the majority of C.

rodentium isolates used in our laboratories (Table 3). This analysis

revealed that ICC168 exhibited the same PFGE pattern as ICC169,

ICC169-474, ICC169-335 and ICC169-476. However, isolates

ICC169-407 and ICC169-496 displayed significant differences in

their PFGE profiles, compared to ICC168 (Figure 2).

With the aim of pinpointing the rearrangement ‘break points’ we

sequenced the genomes of two of the recombinant C. rodentium

isolates, ICC169-407 and ICC169-496. By mapping 454 paired end

sequences for these two isolates to the genome of the reference, wild-

type strain ICC168, we identified positions where the 454 sequence

pairs mapped to sequences either in the wrong orientation with

respect to each other, or mapped to distant sites on the reference

genome. These data highlighted four rearrangements within the

sequenced genomes of ICC169-407 and ICC169-496 (Figures 3B–

E). Three of these were large independent genomic inversions

mediated by homologous recombination between two copies of

different identical repeat sequences: i) ISCro4 (Figure 3B); ii) genes

encoding Elongation factor Tu (Figure 3C); and iii) the T3SS

effector NleD and the adjacent transposase (Figure 3D). It is of

particular note that the ISCro4-mediated 0.59 Mb inversion

(Figure 3B) largely corrects the switch in GC deviation caused by

the inversion identified in the ICC168 genome sequence (see above

and Figure 3A). The fourth rearrangement in ICC169-407 and

ICC169-496 can be explained by a double cross-over recombina-

tion event between two almost identical rearrangement hot spot (rhs)

elements which could result in the translocation shown in Figure 3E.

This provides biological evidence that rhs can diversify through

intra-specific recombination, as previously speculated [27].

To confirm the nature of the rearrangements in ICC169-407

and ICC169-496 we used PCR to amplify sequences spanning the

recombination points. Using different combinations of the primers

NKP135-NKP150 (Table S2), we confirmed that all of the

identified genome configurations (shown in Figures 3A–E) were

present in genomic DNA preparations from a single culture of

Table 1. Gene differences between C. rodentium strains EX-33 and ICC168.

CDS ID* Product EX-33 ICC168 Comment

ROD_02831 IS102 transposase absent present IS102 insertion in ICC168

ROD_02841 Hypothetical prophage protein (CRP28) intact pseudo Disrupted by IS102 insertion in ICC168

ROD_05221 IS102 transposase absent present IS102 insertion in ICC168

ROD_05231 Putative transposase intact pseudo Disrupted by IS102 insertion in ICC168

ROD_15301 Hypothetical protein pseudo intact N-terminal truncated by 932 bp deletion in EX-33

ROD_20681 IS102 transposase absent present IS102 insertion in ICC168

ROD_28451 IS102 transposase absent present IS102 insertion in ICC168

ROD_28951 IS102 transposase absent present IS102 insertion in ICC168

ROD_28941 Putative exported protein intact pseudo Disrupted by IS102 insertion in ICC168

ROD_29281 IS102 transposase absent present IS102 insertion in ICC168

ROD_29471 IS102 transposase absent present IS102 insertion in ICC168

ROD_29461/81 Hypothetical protein intact pseudo Disrupted by IS102 insertion in ICC168

ROD_31511 IS102 transposase absent present IS102 insertion in ICC168

ROD_31521 Hypothetical protein intact pseudo Disrupted by IS102 insertion in ICC168

ROD_33401 IS102 transposase absent present IS102 insertion in ICC168

ROD_33391 Hypothetical protein intact pseudo Disrupted by IS102 insertion in ICC168

ROD_35171 IS102 transposase absent present IS102 insertion in ICC168

ROD_42661 ATP-binding protein of dipeptide ABC transporter pseudo intact Truncated by premature stop codon due to SNP in EX-33

ROD_45501 IS102 transposase absent present IS102 insertion in ICC168

ROD_48241 Hypothetical protein pseudo intact C-terminal truncated by 4392 bp deletion in EX-33

ROD_48251 Putative membrane protein absent present 4392 bp deletion in EX-33

ROD_48261 Putative LysR-family transcriptional regulator absent present 4392 bp deletion in EX-33

ROD_48271 Putative transport protein pseudo intact N-terminal truncated by 4392 bp deletion in EX-33

ROD_50641 IS102 transposase absent present IS102 insertion in ICC168

ROD_50631 Putative fimbrial usher protein intact pseudo C-terminal truncated by IS102 insertion in ICC168, intact in Ex33

ROD_50632 Putative fimbrial protein present absent Deletion in ICC168 due to IS102 insertion

ROD_50633 Putative fimbrial protein present absent Deletion in ICC168 due to IS102 insertion

ROD_50651 Putative fimbrial adhesin intact pseudo N-terminal truncated by IS102 insertion in ICC168

ROD_p2_471 IS102 transposase absent present IS102 insertion in ICC168

ROD_p2_461 Putative conjugal transfer protein TriD intact pseudo Disrupted by IS102 insertion in ICC168

ROD_p4_51 Hypothetical protein pseudo intact Truncated by frameshift mutation due to SNP in EX-33

*Names used are those in the ICC168 genome.
doi:10.1371/journal.ppat.1002018.t001

C. rodentium: A Pathogen in Flux
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each isolate. These data indicate that the genome rearrangements

observed are reversible and actively ‘flipping’ between one genome

orientation and another, which suggests that the genome of C.

rodentium is in a constant state of flux.

Evidence for functional gene loss through disruption by
mobile genetic elements and pseudogenisation

Our analyses showed that collectively, IS elements and

prophages were responsible for 22% of the pseudogenes in the

C. rodentium ICC168 genome, with the insertion of five out of the

ten prophages disrupting accessory and core genes [20].

Additional analysis of the mobile genetic element insertions,

indicated that several of them may have resulted in phenotypic

alterations crucial to the evolution of C. rodentium which led us to

investigate further. Of particular note are the prophages CRP28

and CRPr20, the insertions of which have disrupted gene clusters

for the biosynthesis of two distinct flagellar systems in C. rodentium.

CRPr20 has inserted into one of the gene clusters that encode the

conventional Flag-1 flagellar system found in most members of the

enterobacteriaceae whereas CRP28 has inserted into the Flag-2

ancestral flagellar cluster, which is found in some E. coli strains but

is absent from Salmonella and most other enteric bacteria [28,29].

The insertion by CRP28 has resulted in the deletion of the Flag-

2 lfiH gene, encoding a putative flagellar assembly protein, and

truncation of the two flanking genes, lfiG and lfiI encoding

predicted flagellar switch (C-ring), and flagellar export and

assembly proteins respectively [29]. The remainder of the Flag-2

cluster genes remain largely intact, although lfgF (encoding a

flagellar rod protein) and another gene within this cluster carry

point mutations generating premature stop codons.

CRPr20 has inserted into the 39 end of fliC, deleting the last six

codons of the flagellin gene of Flag-1. Our analysis indicated that

the truncated fliC may encode a protein with an altered C-

terminus which could mean that flagellin was still synthesised and

secreted, but not polymerised. However, as in Flag-2, in addition

to the prophage insertion there are other significant disruptions in

the Flag-1 flagellar biogenesis genes in the form of a deletion event

which has removed flgD,E,F,G,H and I, and truncated flgC and flgJ,

genes required for rod and hook formation and assembly [28].

There is also an IS element insertion in the gene encoding the

flagellar assembly regulator and chaperone, FlgN [30]. The

remaining Flag-1 genes appear intact.

In transmission electron microscopy (TEM) studies of C. rodentium

ICC169 we saw no evidence of basal bodies, and there was no

evidence of flagella in culture supernatants or lysates (data not

shown). This is consistent with previous reports showing that there

was no detectable flagellin in C. rodentium DBS100 and that the

organism is non-motile [31]. Flagella are targeted by the TLR5

receptor of the innate immune system and the lack of flagella in C.

rodentium could facilitate escape or modulation of any inflammatory

response following infection. Most other bacteria belonging to the

family Enterobacteriacae express functional flagella. Notable

exceptions are Shigella, Salmonella Gallinarum and Salmonella Pull-

orum [32], which are all host adapted. Flagella may play a key role

in environmental survival and the ability to survive without motility

can be considered further evidence of host restriction.

Prophages CRP38, CRP99 and CRP49 were also found to have

inserted within genes. CRP38 has inserted into a gene of unknown

function, whilst the insertion of CRP99 has disrupted

ROD_08971 that is predicted to encode a putative large repetitive

protein showing significant homology to a Type I secreted large

repetitive protein in S. Typhi, and a putative haemagglutinin/

haemolysin-related protein in Ralstonia solanacearum [20]. CRP49

has inserted into gatD (encoding galactitol-1-phosphate dehydro-

genase), which is essential for the metabolism of galactitol by E. coli

[33], and found within the otherwise intact galactitol utilisation

operon. Consistent with this, we found that C. rodentium is unable to

grow in minimal medium with 0.5% galactitol as its sole carbon

source (data not shown).

Since the same patterns of prophage-mediated insertional inacti-

vation are seen in EX-33 it is clear that prophages either contribute to,

or are driving the degenerative genome evolution of C. rodentium.

Figure 1. Comparison of the genome of C. rodentium with related bacteria. Genome comparison of the DNA sequences of C. rodentium
ICC168 (middle) with E. coli K12 MG1655 (U00096, top) and Salmonella Typhimurium LT2 (AE006468, bottom). Grey shading between two genomes
indicates regions of nucleotide similarity (BLASTN matches with a minimum length of 1000 bp) between sequences on the same strand, green
shading highlights where the matching sequences are inverted with respect to each other (percentage identity is indicated). The locations of IS
elements in the C. rodentium genome are shown as blue bars. An orange pointer indicates the origin of replication (oriC) in the E. coli genome. The GC
Deviation (G2C)/(G+C) plot is shown above each genome (window size 1000 bp) with the switch in GC deviation in C. rodentium highlighted by red
shading. The scale bar indicates genome length. This figure was produced using Easyfig [67].
doi:10.1371/journal.ppat.1002018.g001

C. rodentium: A Pathogen in Flux
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Plasmid pCROD1 is lost at high frequency
To investigate the stability of the plasmids, we determined the

plasmid profiles of a range of C. rodentium ICC168 derivatives. C.

rodentium strain ICC168 carries four plasmids, pCROD1-3 and

pCRP3 [20]. However, our profiling showed that whilst plasmids

pCROD2 (39 kb), pCROD3 (4 kb) and pCRP3 (3 kb) were

present in all isolates, the largest plasmid, pCROD1 (54 kb), was

present in only five out of the nine isolates tested (Table 3). The

plasmid profiling gels also showed that the relative intensities of the

bands corresponding to each plasmid were equivalent across the

isolates, with the exception of the 54 kb pCROD1 band for

ICC168-474 where the intensity was greatly reduced (Figure S1),

suggesting that pCROD1 is either present in a lower copy number

in ICC169-474 or, considered more likely, has been lost from a

proportion of the cells in that population. This was confirmed by

PCR data, which showed that the large plasmid is only present in

50% of the population of ICC169-474 (two out of four gDNA

extractions from cultures originating from individual colonies of

the same generation), indicating that pCROD1 is lost at high

frequency. This is perhaps surprising given that all four plasmids

are retained by EX-33.

Plasmid pCROD1 is predicted to encode several potential

virulence factors, including three putative autotransporters and a

fimbrial operon [20], therefore its high frequency loss is a further

indicator of ongoing genome evolution and adaptation to a new

environment.

Transcriptomic data reveals evidence for recent niche
adaptation and prophage induction

To further investigate the impact of the C. rodentium mobile

genetic elements, we performed a whole genome transcriptome

analysis on C. rodentium strain ICC169-476, by RNA-seq using

Table 2. Classification and location of IS elements in C. rodentium.

Total number Genomic location

IS elementa (of which are remnants)
Chromosomal
backbone Genomic Island Prophage Plasmid

IS102b 13 9 2 1 1

IS200 family (IS200E-like) 1 (1) 1

IS200 family (IS200F-like) 2 (2) 1 1

IS200 family (IS200I-like) 3 (2) 2 1

IS21 family (IS100kyp-like) 1 (1) 1

IS21 family (ISSso4-like) 1 (1) 1

IS256 family (IS285-like) 1 (1) 1

IS256 family (IS1414-like) 1 (1) 1

IS3 1 1

IS3 family (IS3G-like) 1 (1) 1

IS3 family (IS911-like) 3 (3) 1 2

IS3 family (ISEam1-like) 1 (1) 1

IS3 family (ISEc11-like) 1 (1) 1

IS3 family (ISEhe3-like) 2 (2) 2

IS3 family (ISSen1-like) 2 (2) 2

IS4 1 (1) 1

IS4 family (ISSfl1-like) 1 (1) 1

IS66 family (ISEc23-like) 1 (1) 1

IS679 1 1

IS91 family IS91-like 1 (1) 1

ISCro1 24 (2) 14 7 2 1

ISCro2 3 3

ISCro3 14 (3) 9 3 2

ISCro4 13 13

ISCro5 5 5

ISCro6 6 (4) 6

ISEc14 6 2 3 1

ISEc23 1 (1) 1

Unclassified IS 2 (1) 1 1

Total = 29 IS elements 113 (34 remnantsc) 67 35 7 4

aIn addition to IS elements, there are 12 unclassified transposases (five are located on the chromosome and seven on GIs), nine of which are remnants.
bUnique to ICC168, not in EX-33 genome.
cThe number of remnants was previously reported incorrectly [20]. The correct number of IS element remnants is 34 (32 on the chromosome and 2 on plasmid
pCROD1).

doi:10.1371/journal.ppat.1002018.t002

C. rodentium: A Pathogen in Flux
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Illumina sequencing technology, to determine if the prophages or

the pseudogenes found within the genome were expressed. This

data revealed that 152 of the 182 pseudogenes in the ICC168

chromosome were transcriptionally active (Table S3; 73 have

RPKM (Reads mapped Per Kilobase per Million reads)

expression values of 1–9, 57 have values of 10 to 99, 12 have

values .100). The expressed genes include fliC (RPKM value of

9), however, the fact that flagellin has not been detected for C.

rodentium suggests that the transcript is not translated. The

continued transcription of the majority of the C. rodentium

pseudogenes, together with the low number of multiple mutations

in them, was taken to suggest that the disruption of these genes

were relatively recent events.

Surprisingly, our transcriptome data also revealed that the

majority of the genes encoded on each of the five intact prophages

(CRP28 55 out of 58 predicted CDSs, CRP99 52/55, WNP 65/65,

CRP38 36/44, and CRP49 54/56) and the prophage remnant

CRPr20 (21/29) were expressed under standard growth conditions

(Figure 4, Table S3). This is unusual since for most prophages the

structural and lysis genes are repressed in the lysogen [34,35]. In

addition to structural, lysis and regulatory genes, several of the

other prophage-encoded genes showed relatively high levels of

Table 3. Bacterial strains used in this study.

Strain Description Comment Reference

Citrobacter rodentium

EX-33 Previously Escherichia coli O115a,c:K(B) strain EX-33 pCROD1+ [11]

ICC168 Previously Citrobacter freundii biotype 4280 (ATCC 51459) pCROD1+ [13]

ICC169 Spontaneous NalR derivative of ICC168, original stock PFGE profile same as for ICC168, pCROD1+ [66]

ICC169-335 Dougan laboratory isolate, previously ICC169 PFGE profile same as for ICC168, pCROD12 This study

ICC169-407 Dougan laboratory isolate, previously ICC169 Differences in PFGE profile compared to ICC168,
pCROD1+

This study

ICC169-474 Frankel laboratory isolate, previously ICC169 PFGE profile same as for ICC168, pCROD1+/2 This study

ICC169-476 Salmond laboratory isolate, previously ICC169 PFGE profile same as for ICC168, pCROD12 This study

ICC169-496 Dougan laboratory isolate, previously ICC169 Differences in PFGE profile compared to ICC168,
pCROD12

This study

ICC169c3 Isolated from ICC169 infected mouse ‘c’ faeces
3 days post infection

PFGE profile same as for ICC168 This study

ICC169c13 Isolated from ICC169 infected mouse ‘c’ faeces
13 days post infection

PFGE profile same as for ICC168 This study

ICC169c14cae Isolated from ICC169 infected mouse ‘c’ caecum
14 days post infection

PFGE profile same as for ICC168 This study

ICC169c14col Isolated from ICC169 infected mouse ‘c’ colon
14 days post infection

PFGE profile same as for ICC168 This study

ICC169a3 Isolated from ICC169 infected mouse ‘a’ faeces
3 days post infection

PFGE profile same as for ICC168 This study

ICC169a15 Isolated from ICC169 infected mouse ‘a’ faeces
15 days post infection

PFGE profile same as for ICC168 This study

ICC169-407b15 Isolated from ICC169-407 infected mouse ‘b’
faeces 15 days post infection

PFGE profile same as for ICC168 This study

ICC169-496c3 Isolated from ICC169-496 infected mouse ‘c’
faeces 3 days post infection

PFGE profile same as for ICC168 This study

ICC169-496c6 Isolated from ICC169-496 infected mouse ‘c’
faeces 6 days post infection

PFGE profile same as for ICC168 This study

ICC169-496c10 Isolated from ICC169-496 infected mouse ‘c’
faeces 10 days post infection

PFGE profile same as for ICC168 This study

ICC169-496c13 Isolated from ICC169-496 infected mouse ‘c’
faeces 13 days post infection

PFGE profile same as for ICC168 This study

ICC169-496c15 Isolated from ICC169-496 infected mouse ‘c’
faeces 15 days post infection

PFGE profile same as for ICC168 This study

ICC180 ICC168 derivative luxCDABEKm2, KmR pCROD12 [41]

ICC180-P10 Isolated from ICC180 infected mouse faeces
after passage through 10 mice

Differences in PFGE profile compared
to ICC180, pCROD12

This study

Escherichia coli

MG1655 K-12 wild type, non-pathogenic [22]

ER2507 K-12 derivative, F2, ara-14, leuB6, fhuA2,
D(argF-lac)U169, lacY1, glnV44, galK2, rpsL20(SmR),
xyl-5, mtl-5, D (malB), zjc::Tn5(KmR), D (mcrC-mrr)HB101

New England
BioLabs

ER2507 NPL WNP lysogen This study

doi:10.1371/journal.ppat.1002018.t003
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expression (Figure 4, Table S3). Bioinformatic analyses showed

that in most cases these genes were in regions of aberrant GC

content or they were encoded in regions that corresponded to

known ‘cargo holds’ for non-essential genes by comparison with

the genomes of well-characterised phages, such as Mu and P2. In

most cases, the function of the genes in these transcriptionally

highly active regions is unknown (Table 4), although putative

damage-inducible and host-toxic membrane proteins encoded on

WNP, CRPr20 and CRP38 were previously described, based on

similarity to DinI and HokA respectively [20]. Some genes could

be assigned putative products based on conserved protein domains

such as transmembrane regions and signal peptides (Table 4). It is

of note that the recently described effector NleK [36], encoded on

CRP99 (ROD_09131), was not highly transcribed under the

conditions tested. These data suggest that most of the C. rodentium

prophages carry genes that represent known or novel lysogenic

conversion functions.

C. rodentium prophages spontaneously excise and
transpose within the genome

To determine if any of the C. rodentium prophages were capable

of spontaneous excision, primers were designed to sequences at the

ends of the integrated prophage genomes, facing outwards towards

the prophage attachment sites (attL and attR). Using these primers

(Table S2), DNA would only be amplified by PCR if the prophage

excised from the host genome and circularised, bringing the

primer pairs into the correct orientation with respect to each other.

PCR products were obtained for all the intact prophages

CRP28, CRP99, WNP, CRP38, and CRP49, but not for the

partial prophage CRPr20 (data not shown). Only a single sized

PCR product was obtained for each of WNP and CRP38, which,

on sequencing, showed that these phages precisely excised from

the host genome. However, multiple PCR products of different

sizes were amplified for CRP28, CRP99 and CRP49. These three

prophages are all Mu-like [20] and, characteristically, carry phage

transposition proteins, which can facilitate random transposition in

the same way as for Mu and other transposable elements [37,38].

The amplified PCR products obtained for each of CRP28, CRP99

and CRP49 were sequenced, revealing the terminal prophage

sequences as well as a range of different intervening host genomic

sequences. This is evidence of illegitimate excision, indicating that

these phages are capable of random transposition and, if

packaged, could be capable of specialised transduction.

We cloned and sequenced 235 of the intervening host genomic

inserts for CRP99. The sequences for 133 of the inserts mapped to

different chromosomal locations in the ICC168 genome sequence,

70 sequences mapped to regions in plasmid pCROD3 and 32

sequences mapped to plasmid pCRP3 (Figure S2), confirming that

CRP99 was randomly transposing around the bacterial genome and

taking adjacent bacterial DNA with it on excision from each

genomic location. pCROD1 had been lost from the strain used as a

template for this PCR, strain ICC169-476 (Table 3), however no

sequences mapped to the 39 kb plasmid pCROD2, which was

present in this strain (see above). The reason for this is not clear

considering the depth at which we sampled independent insertions.

The size of the host chromosomal DNA inserts incorporated

into the excised and circularised CRP99 genome varied from

16 bp to 3334 bp. This is comparable with the genome of phage

Mu, which is found flanked by variable sequences of up to 150 bp

of host DNA at the left hand end and up to 3 kb at the right hand

end when packaged [38]. Significantly, of the plasmid derived

sequences incorporated into CRP99, we were able to show that for

22 inserts in pCROD3 and 24 inserts in pCRP3 the whole plasmid

had been incorporated into the circularised phage genome

(3910 bp and 3172 bp respectively).

To our knowledge, this is the first description of entire plasmids

being incorporated into a phage genome and provides intriguing

evidence for the possibility of plasmid dissemination between

bacteria via specialised transduction. Since neither of these

plasmids have recognisable mobility markers of their own this

may explain how they entered C. rodentium. It may also explain why

plasmids similar in size to pCROD3 and pCRP3 are so successful

and found in a wide range of different bacteria.

Analysis of the paired sequencing reads of EX-33 confirmed

that WNP is spontaneously excising and circularising in both C.

rodentium strains and showed evidence that the three Mu-like

phages are also randomly transposing in the EX-33 genome.

WNP produces virions capable of infecting and
lysogenising E. coli

Considering the transcriptional activity of the C. rodentium

prophage structural genes, TEM was used to examine culture

supernatant to identify if functional virions were formed. Even in

uninduced overnight cultures of strain C. rodentium ICC169-476,

virions with an icosahedral head 70 nm in diameter, a 10 nm long

neck and a contractile tail 115 nm long were visible. Although the

majority of the virion tails observed were contracted, some with

extended tails showed evidence of a base plate and tail fibres. This

Figure 2. PFGE profile of different C. rodentium isolates. PFGE
generated after XbaI cleavage of genomic DNA isolated from different
strains and isolates of C. rodentium. Strain ICC168 shows the same PFGE
pattern as for ICC169, ICC169-474, ICC169-335 and ICC169-476. Two
isolates displayed significant differences in their PFGE profiles (indicated
by red arrows); ICC169-407 has a band missing at approximately 340 kb
and additional bands of approximately 280 kb and 420 kb; ICC169-496
is also missing the 340 kb band and has two extra bands between 145
and 200 kb. Markers are from New England BioLabs. Band sizes are
indicated in kb.
doi:10.1371/journal.ppat.1002018.g002
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was the only virion morphology we observed, even with

concentrated supernatant.

To determine if this phage had an extended host range, a

variety of different bacteria available in our laboratories, including

Pseudomonas sp., C. freundii, Serratia sp., Pectobacterium sp., Yersinia

enterocolitica, Salmonella sv. and a range of pathogenic and non-

pathogenic E. coli strains, were tested for susceptibility to infection

using C. rodentium overnight culture supernatant. Plaques were

observed on strains of E. coli K-12 and its derivatives, but no signs

of infection were seen for any other bacterium tested.

The supernatant of an uninduced overnight culture of C.

rodentium ICC169-476 produced between 105 and 107 pfu/ml

when titrated on E. coli K-12 strains including MG1655. The

plaques were turbid suggesting that the phage(s) present in the C.

rodentium supernatant were able to lysogenise E. coli K12. This was

confirmed using methods previously described [39]. Phage isolated

from these plaques were propagated on E. coli K12 strain ER2507

to make high titre phage lysates and we cloned and sequenced

DNA extracted from the phage virions in these lysates. The

sequences obtained mapped to prophage WNP in the C. rodentium

genome. Furthermore, random primed PCR performed on

genomic DNA from E. coli WNP lysogen ER2507 NPL showed

that WNP had inserted into an identical genomic location in E. coli

ER2507 to the insertion site identified in C. rodentium, the ssrA

tmRNA gene (data not shown, [20]).

Host range studies using purified WNP lysates (propagated on E.

coli) produced an identical infection pattern to that seen for the C.

rodentium supernatant, and electron microscopy showed that WNP

virions were identical in size and morphology to the virions

observed in the supernatant. This morphology (shown in Figure 5)

allowed classification of WNP into the order Caudovirales and family

Myoviridae [40]. This may indicate that the only virions observed in

the supernatant were those of WNP. Nevertheless, the possibility of

the other C. rodentium prophages forming functional virions cannot

be ruled out, as there could be functional virions other than WNP

spontaneously formed and present in the supernatant of C.

rodentium, for which a susceptible host has yet to be found.

Genome flux in C. rodentium is a natural phenomenon
To determine if the genomic rearrangements observed in vitro

were a natural phenomenon and had an impact on the ability of C.

rodentium to infect its murine host, four isolates were tested to

determine their virulence phenotypes. The isolates selected for

murine infection were ICC169-407 and ICC169-496, which had

both shown several band differences in PFGE profiles, along with

two isolates which both had the same PFGE profile as ICC168:

ICC169-476 which is missing the plasmid pCROD1; and the wild-

type NalR strain ICC169.

Each of the different isolates of C. rodentium were able to colonise

the gastrointestinal tract of the mouse, and all four groups of five

mice showed a normal pattern of infection, as previously described

[41]. Bacterial shedding in the faeces of individual mice was

monitored over the course of the infection. We found no

significant difference in the numbers of bacteria being excreted

between the different groups of mice (Figure 6). The group

infected by ICC169-407 had all cleared the infecting bacteria by

day 15 post infection, however only mice infected with ICC169-

496 had all mice in the group still shedding bacteria at this time

point. Shedding of C. rodentium had ceased in all groups by day 17

post infection (Figure 6). On examination of the colons we found

Figure 3. Chromosomal rearrangements identified in C. rodentium isolates ICC169-407 and ICC169-496. Deviations from (A) the
sequence of the wild-type strain ICC168, are depicted. Rearrangements are highlighted in red and show: (B) genomic inversion between two copies
of ISCro4; (C) genomic inversion between two identical sequences encoding Elongation factor Tu; (D) genomic inversion between identical repeat
sequences encoding the T3SS effector NleD and an adjacent transposase; (E) translocation of sequence from one location to another due to
recombination between identical sequences in two Rhs elements. The GC deviation (G2C)/(G+C) plot for each genome orientation is shown above
each sequence.
doi:10.1371/journal.ppat.1002018.g003
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that there were no obvious differences in the extent of hyperplasia

induced by the different isolates, with the average crypt lengths

measuring from 211 mm (SD = 38 mm) to 240 mm (SD = 70 mm).

These data indicate that neither the chromosomal rearrangements

observed in ICC169-407 and ICC169-496, nor the natural loss of

plasmid pCROD1, have any discernable effect on bacterial

shedding or virulence in C. rodentium.

Genome rearrangements occur in vivo
The effect of mouse passage on the genome architecture of C.

rodentium was also determined. We performed PFGE analysis on

selected ICC169 isolates obtained from mouse faeces at different

times during infection and also from the colon and caecum, the

organs colonised by this pathogen. These isolates are described in

Table 3. PFGE showed that all the post-mouse passage isolates

tested, displayed an identical banding pattern to each other and to

the original strain ICC168 (as shown in Figure 2). This was even

true for isolates taken from mice infected with the isolates ICC169-

496 and ICC169-407, which display different PFGE patterns to

ICC168 (Figures 7A and B, Figure 2). This may indicate that the

different genome rearrangements in these isolates reverted to the

original genomic configuration, that of the wild-type strain

ICC168, on passage through the mouse. Alternatively, it is

possible that a minor subpopulation with the wild-type genome

conformation, that we have shown to exist within cultures of

ICC169-496 and ICC169-407, was selected for within the mouse.

For all the strains tested in mice, the genomic rearrangements

identified appear to be entirely neutral with regards to virulence and

the progression of the infection. However, the fact that the

alternative PFGE profiles seen for ICC169-407 and ICC169-496

Figure 4. Genetic organisation of the C. rodentium prophages showing transcriptionally active genes. The genomes of each of the five
intact prophages in the C. rodentium genome are shown aligned with mapped sequence reads for the whole genome transcriptome. The prophage
remnant CRPr20 is also included due to its high similarity to CRP38 and the difficulty in mapping repetitive sequences. The RNA-seq data are
represented as a plot showing the depth of sequences mapped to the forward strand (blue) and reverse strand (red) above each genome (window
size = 200 bp). The majority of prophage genes, including those predicted to encode phage structural and lysis genes (see key), are expressed.
Putative cargo genes can be identified by their relatively high levels of expression (numbered CDSs; see Table 4 for details). The scale bar indicates
genome length. This figure was produced using Easyfig [67] and Artemis [68].
doi:10.1371/journal.ppat.1002018.g004
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revert to the original, ICC168-like, profile in vivo, indicates that this

original genomic orientation may provide a fitness advantage in the

murine host. The only observed phenotypic effect of genome

rearrangement was for two ICC180 isolates (Table 3). ICC180-P10,

isolated from mouse faeces after ten successive passages through

mice by natural transmission from infected to naive animals through

the faecal-oral route, had a different PFGE profile compared to the

wild-type, pre-passage isolate ICC180 (Figure 7C). Interestingly, we

found that the virulent phage WCR1, known to target lipopolysac-

charide (LPS) as a receptor [42], was unable to infect the post-mouse

passage isolate ICC180-P10, although it was able to form clear

plaques on the wild-type ICC180 and all the other C. rodentium

strains used in this study (data not shown). This data suggests that

the genome rearrangement observed in ICC180-P10 may have

affected LPS biosynthesis.

Our data indicate that genome instability is a feature of C.

rodentium in vivo, as well as in vitro and that the genomic

rearrangements observed are indicative of natural variation within

a population. It is plausible that an invertible genome region may

result in a differential expression of genes, which could allow rapid

adaptation to different environments or stresses. This has been

seen previously in Campylobacter jejuni where large-scale intra-

chromosomal inversions, which were reversible, were associated

with escape from infection by endogenous virulent phages on

passage through the avian gut [43]. In addition, genomic

rearrangements have previously been identified in strains of

Helicobacter pylori [44], Staphylococcus aureus [45], Pseudomonas

aeruginosa [46] and E. coli [47–50] during the course of human

infection and appear to be linked to niche adaptation. Thus, in

different environments, for example in vivo and in vitro, the

dominant populations of C. rodentium could show different genomic

arrangements, as demonstrated by the singular genomic confor-

mation of post-mouse infection C. rodentium strains, despite the

different genome arrangements of the infecting strains. However,

further work is needed to understand the full impact of each

genomic rearrangement on gene expression in C. rodentium, and to

determine if this is a widespread phenomenon in other bacteria.

Concluding remarks
We have shown that the genome of C. rodentium is in a state of

considerable gene flux through large-scale, repeat-mediated

recombination both in vitro and in the murine host, and also

through the expansion of IS elements and the presence of several

actively transposing prophages which are able to insert, apparently

at random, throughout the chromosome and plasmids. Gene flux

has also resulted in significant functional gene loss, particularly due

to prophage and IS element insertions, which were fixed and

invariant in all of the C. rodentium ICC168 derivatives we

sequenced. The fact that almost identical patterns of gene loss

can be seen in two lineages of C. rodentium, independently isolated

Table 4. Highly expressed putative phage cargo genes.

Prophage Numbera CDS IDb Transcript RPKM Value Product

CRP28 1 ROD_02501 43 hypothetical protein

2 ROD_02551 51 hypothetical protein

3 ROD_02681 37 putative membrane protein

4 ROD_02733 53 putative membrane protein

5 ROD_02751 39 putative exported protein

6 ROD_02761 37 putative exported protein

CRP99 7 ROD_09341 72 putative lipoprotein

CRPr20c 8 ROD_19801 840 putative membrane protein

9 ROD_19811 642 putative host toxic membrane protein

10 ROD_20041 257 putative membrane protein

WNP 11 ROD_25751 605 putative damage-inducible protein

12 ROD_25752 512 hypothetical protein

13 ROD_25761 400 hypothetical protein

14 ROD_26221 1415 hypothetical protein

15 ROD_26231 596 hypothetical protein

16 ROD_26241 213 hypothetical protein

CRP38 17 ROD_36461 299 putative exported protein

18 ROD_36471 129 putative membrane protein

19 ROD_36481 226 putative host toxic membrane protein

20 ROD_36801 262 putative membrane protein

21 ROD_36851 121 hypothetical protein

CRP49 22 ROD_47072 422 hypothetical protein

23 ROD_47431 46 hypothetical protein

aPutative cargo gene number used in Figure 4.
bProphage-encoded genes that have RPKM values .2x the average for that phage (average RPKM values for each prophage are: CRP28 = 18, CRP99 = 11, CRPr20 = 78,
WNP = 101, CRP38 = 38, CRP49 = 21). Genes predicted to be involved in the phage lytic or lysogenic cycle were excluded from this list.

cThe prophage remnant CRPr20 is included in this list due to its high similarity to CRP38 and the difficulty in mapping repetitive sequences. The effector cargo genes
encoded on CRPr13, CRPr17 and CRPr33 were described previously [20].

doi:10.1371/journal.ppat.1002018.t004
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from diseased mice on two different continents, a decade apart, is

consistent with this occurring at the root of the evolution of this

species and is likely to have played a significant role in the

evolution of C. rodentium as an A/E pathogen of mice. One such

example is the loss of flagella production through disruption of

both flagella biogenesis systems, as flagella are known to be

important elicitors of the innate immune system.

However, in addition to the loss of functions associated with

virulence, C. rodentium has also lost metabolic capacity, for example

we have shown that the operon encoding galactitol utilisation in

ICC168 and EX-33 has been disrupted by prophage insertion,

thereby limiting the available number of carbon sources that can

be used by this bacterium. There are several examples now of

other bacteria where loss of metabolic flexibility is associated with

having recently changed niche [51–54].

It is clear from mouse infection studies that chromosomal

rearrangements are a natural phenomenon and that, as might be

expected, ongoing genome flux is largely neutral, not having had

time for selection to play a role, and so having no discernable effect

on bacterial shedding or virulence in the murine host. This

included the loss of the large plasmid pCROD1, which, despite

encoding two toxin-antitoxin addiction systems [20], our data

shows is lost at high frequency.

We previously showed that many of the functions that confer C.

rodentium with a common virulence strategy to EPEC and EHEC

are located on horizontally acquired mobile genetic elements [20].

This, together with the large-scale genomic rearrangements and

functional gene loss described in this study, suggests that C.

rodentium has only recently emerged as a significant pathogen and is

still adapting to its new lifestyle. Furthermore, the fact that C.

rodentium is not known to cause disease in wild mice, only in

Figure 5. Electron micrographs of WNP negatively stained with
phosphotungstic acid. All virions can be seen with contracted tails.
Bars, 100 nm (top panels), 200 nm (bottom panel).
doi:10.1371/journal.ppat.1002018.g005

Figure 6. Mouse shedding of C. rodentium. Bacterial shedding in
mouse faeces was monitored over the course of infection from
individual mice. The mean count and standard deviation from groups
of five mice infected with different C. rodentium isolates (see key) are
shown.
doi:10.1371/journal.ppat.1002018.g006

Figure 7. PFGE of XbaI-digested C. rodentium genomic DNA
from isolates recovered before and after mouse inoculation. (A)
PFGE profile of isolate ICC169-496 pre mouse inoculation (left) and
isolate ICC169-496c10 recovered from mouse faeces 10 days post
inoculation. (B) PFGE profile of isolate ICC169-407b15 recovered from
mouse faeces 15 days post inoculation (left) compared to that of the
infecting isolate ICC169-407 pre mouse inoculation (right). (C) PFGE
profile of the pre mouse inoculation strain ICC180 compared to that for
ICC180-P10 recovered from faeces after 10 passages though the mouse.
Additional/missing bands are indicated by red arrows.
doi:10.1371/journal.ppat.1002018.g007
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laboratory rodents, may indicate that this pathogen emerged with

the development of the mouse as a model organism and the

large-scale captive breeding of small rodents. This would certainly

explain the clonal nature of this species.

Materials and Methods

Ethics statement
This study was performed under project licence number 80/

2099 approved by the UK Home Office and carried out in strict

accordance with the UK Animals (Scientific Procedures) Act 1986.

The Wellcome Trust Sanger Institute’s Ethical Review Committee

approved the research protocols used in this study.

Bacterial strains and culture conditions
C. rodentium and E. coli strains were grown at 37uC in Luria–

Bertani (LB) medium. For solid medium 1.5% agar was added,

and for soft medium overlay (top agar) 0.15% agarose was used.

When required, nalidixic acid (Nal) was added to LB to a final

concentration of 50 mg/ml for selection. Phage buffer was

composed of 10 mM Tris/HCl pH 7.4, 10 mM MgSO4, and

0.01% gelatin. The bacterial strains described in this study are

listed in Table 3. The C. rodentium isolates ICC169-335, ICC169-

407, ICC169-474, ICC169-476 and ICC169-496 all came from

the same original stock of ICC169, but show different PFGE

profiles and/or plasmid content.

EX-33 genome sequencing and comparative analysis
The whole genome of C. rodentium strain EX-33 was sequenced

on the 454/Roche GS FLX analyzer, with long-read GS FLX

Titanium chemistry from a 3 kb insert paired end library prepared

according to the manufacturer’s specifications. A de novo assembly

was produced from the generated sequence data using the 454/

Roche Newbler assembly program (Software Release 2.1), which

produced 27 scaffolds with an N50 scaffold size of 390,676 bp

(largest scaffold size 699,126 bp) and 867 contigs with an N50

contig size of 9,811 bp (largest contig size 41,345 bp). The

assembly consisted of 249,640 sequence reads (including 91,558

paired reads) totalling 43,628,532 bp, constituting a theoretical 8-

fold coverage.

EX-33 was also sequenced on the Illumina GA II analyzer. A

standard Illumina library was made with a 200 bp insert size and

sequenced to a 54 bp read length using standard protocols [55],

and a de novo assembly was produced using the Velvet assembly

program. The optimal assembly was produced from a kmer length

of 31. It generated 1,761 contigs with an N50 contig size of

4,177 bp (largest contig size 33,600 bp) from 8,751,150 sequence

reads, constituting a theoretical 88-fold coverage.

The sequence data from the two sequencing platforms

(individual 454 reads and consensus reads from the shredded

Illumina assembly) were combined and assembled using the 454/

Roche Newbler assembly program (Software Release: 2.3) into a

consensus sequence of 382 total contigs (294 large contigs; N50

contig size, 38,722 bp) from 272,234 sequence reads totalling

54,256,007 bp, constituting a theoretical 10-fold coverage. Contigs

were scaffolded using paired reads with an average pair distance of

2,998 bp into 40 scaffolds (N50 scaffold size, 244,370 bp) totalling

5,318,492 bp.

The EX-33 scaffolded contigs from the combined 454-Illumina

assembly were ordered according to the ICC168 genome sequence

(accession numbers FN543502 (chromosome), FN543503

(pCROD1), FN543504 (pCROD2), FN543505 (pCROD3) and

AF311902 (pCRP3)) using ABACAS [56], and the annotation

transferred from the reference genome.

Insertions/deletions in the EX-33 genome were identified by

pairwise whole genome comparison of the ordered scaffolded

contigs with the ICC168 genome sequence using BLASTN and

visualised using the Artemis Comparison Tool [57]. Deletions

from the EX-33 genome with respect to the ICC168 genome were

confirmed by contiguated sequence spanning the syntenic regions

in EX-33 and sequencing reads spanning each insertion/deletion

region in the mapped coverage plot generated using SSAHA [58].

For SNP detection, the EX-33 454-Illumina combined assembly

consensus sequence was shredded, resulting fragments were

mapped by SSAHA and SNPs called with respect to the reference

ICC168 genome and validated according to previously described

protocols [59]. In addition, SNPs that were not located in

repetitive sequences were validated manually, and only SNPs

found in at least 5 sequencing reads, mapping to both strands, and

present in at least 75% of the reads were passed as high-quality

SNPs.

To identify gene flux and genomic rearrangements in the EX-

33 genome, the paired Illumina sequencing reads were mapped to

the ICC168 reference sequence using Maq (http://sourceforge.

net/projects/maq/) and mismapping read pairs were identified

using BamView [60].

PFGE
DNA embedded in plugs was prepared using the CHEF

Genomic DNA Plug Kit (Bio-Rad Laboratories, Hercules, CA,

USA) from bacterial cells in suspension buffer (Bio-Rad Labora-

tories), grown to an optical density at an absorbance of 610 nm

(OD610) of 1.3–1.4. Restriction digestion was performed with 30 U

of XbaI (New England BioLabs) at 37uC overnight. Plugs were

soaked in 0.56 TBE for 15 min at 4uC prior to electrophoresis.

DNA fragments were resolved in 1% SeaKem Gold agarose (FMC

Bioproducts, Rockland, ME, USA) in 0.5 x TBE buffer at 10uC,

using a CHEF DR-III system (Bio-Rad Laboratories), running at a

linear ramping factor of 2–68 s, pulse angle at 120u. The run

length was 25 h at a constant voltage of 6 V/cm. DNA restriction

patterns were assessed visually following ethidium bromide

staining.

Identification of recombination break points in C.
rodentium isolates

The whole genomes of C. rodentium strains ICC169-407 and

ICC169-496 were sequenced by paired-end 454 FLX pyrose-

quencing and assembled using the 454/Roche Newbler assembly

program. For ICC169-407, contigs (1700 total contigs, 1355 large

contigs; N50 contig size, 5,633 bp) were assembled from 290,987

sequence reads with an average read length of 168 bp, constituting

a theoretical 9-fold coverage, contigs were scaffolded using paired

reads with an average pair distance of 3,715 bp into 68 scaffolds

(N50 scaffold size, 378,576 bp). For ICC169-496, contigs (4600

total contigs, 3081 large contigs; N50 contig size, 1,332 bp) were

assembled from 243,094 sequence reads with an average read

length of 162 bp, constituting a theoretical 7-fold coverage, contigs

were scaffolded using paired reads with an average pair distance of

2,595 bp into 153 scaffolds (N50 scaffold size, 45,450 bp).

Scaffolded contigs were aligned with the ICC168 genome

sequence using ABACAS. Read pairs with an insert size of at least

2 kb were mapped to the scaffold contigs using SSAHA and only

read pairs that mapped uniquely and with maximum quality were

selected. Recombination break points were found by BLASTN of

the scaffold contigs against the genome of ICC168 and identifying

single scaffold contigs that matched with two disparate regions of

the reference genome, and also had reads spanning the putative

point of recombination. The read pairs were then mapped to the
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reference genome, using SSAHA, and the break points were

confirmed by a lack of reads spanning the corresponding region in

the ICC168 genome sequence. Rearrangement break points were

confirmed by PCR using primers designed to non-repetitive DNA

sequences in the genome of ICC168 (Table S2).

Carbon source growth curve
An overnight culture of C. rodentium ICC168 was seeded 1:50

into 50 ml of minimal media consisting of M9 salts supplemented

with either 1% glucose or 1% galactitol as a carbon source. The

cultures were then incubated at 37uC with agitation at 200 rpm.

The OD600 was measured every 60 min for 7 h using a Helios

spectrometer (Thermo Scientific).

Plasmid profile
C. rodentium plasmid content and sizes were assessed according to

the method of Kado and Liu [61], and confirmed in different

isolates by PCR of cultures originating from individual colonies of

the same generation using the primers NKP111-NKP118 (Table

S2).

Transcriptomics
The whole genome transcriptome of ICC169-476 was

sequenced using Illumina sequencing technology as previously

described [62]. Removal of genomic DNA from the RNA sample

and subsequent successful cDNA generation was confirmed by

PCR using the four primer pairs NKP125-132 that generate

amplicons internal to C. rodentium housekeeping genes (Table S2).

Expression values were calculated as Reads mapped Per Kilobase

per Million reads (RPKM) and recorded for each predicted CDS

in the ICC168 genome (Table S3).

Prophage excision/transposition detection
PCR analysis to detect spontaneous prophage excision and

circularisation was performed using supernatant from an overnight

culture of C. rodentium ICC169-476 or ICC169-407 as a template

and primer pairs designed to sequences at the ends of the

integrated prophage genomes, facing outwards towards the

prophage attachment sites for each prophage (CRP28L and

CRP28R, CRP99L and CRP99R, NPout1 and NPout4, CRP38L

and CRP38R, CRP49L and CRP49R). The CRPr20 primers

CRP20L and CRP20R were also used as a control. Primers are

listed in Table S2.

To confirm prophage transposition, CRP99 PCR products were

end repaired, gel purified and then cloned into SmaI cut pUC19

vectors. MegaX DH10B T1R electro-competent cells (Invitrogen)

were used for the transformations, and transformants were selected

on Xgal/IPTG (blue/white screen). Libraries were sequenced

using standard forward and reverse primers. Sequences of at least

300 bp in length (of which approximately 200 bp mapped to one

or other end of prophage CRP99) were mapped to the C. rodentium

ICC168 genome sequence. Circular diagrams showing the

insertion sites were made using DNAplotter [63].

Phage characterisation
WNP virions were isolated from plaques formed on E. coli K-

12 strain ER2507 after titration with chloroform-treated

supernatant from an overnight culture of C. rodentium ICC169-

476. Following plaque purification and further propagation on E.

coli K-12 strain ER2507, DNA was extracted from high titre

WNP lysates as previously described [42]. For cloning, WNP

DNA and a pUC19 vector were digested with BamHI prior to

ligation. The ligated vector and insert were used to transform

chemically competent E. coli DH5a cells, and the transformed

cells selected, using a blue/white screen, purified and sequenced

using standard primers.

The integration site of WNP in E. coli was determined by

random primed PCR [64] on the E. coli WNP lysogen ER2507

NPL using the WNP specific primers NPL1 and NPR1, and the

nested primers NPL2 and NPR2 respectively (Table S2). The

resulting PCR products were sequenced and mapped to the E. coli

K-12 MG1655 genome sequence (Accession number U00096)

[22].

Transmission electron microscopy (TEM) and host range

determination were performed as described previously [39].

Murine infections
Female 6–8 weeks old C57BL/6 mice, purchased from

Charles River (Margate, United Kingdom), were used to assess

the virulence of different C. rodentium ICC169 isolates. All mice

used in these studies came from colonies that were specific-

pathogen free. Animals were housed in individually HEPA

filtered cages with sterile bedding and free access to sterilised

food and water. C. rodentium inocula were prepared by culturing

bacteria overnight at 37uC in 100 ml of LB containing Nal.

Cultures were harvested by centrifugation and resuspended in a

10% volume of PBS. Groups of five mice for each strain tested

were orally inoculated using a gavage needle with 200 ml of the

bacterial suspension. The viable count of the inocula was

determined by retrospective plating on LB agar plates containing

Nal. At selected time points post-infection, faeces were aseptically

collected (100 mg faeces/ml PBS), serially diluted in PBS and

plated on LB agar containing Nal. All plates were incubated

overnight at 37uC. When all mice had stopped shedding bacteria

the mice were sacrificed and colons removed. Small pieces of

colonic tissue were fixed in 4% formaldehyde, then paraffin

embedded, sectioned and stained with haematoxylin and eosin,

for histological examination.

In addition, mice were orally inoculated with C. rodentium

ICC180 as previously described and at the peak of infection (day 7

post-gavage) housed with naive mice to allow the natural

transmission of ICC180 to occur via the faecal-oral route [65].

The natural transmission of ICC180 was followed by aseptic

recovery of faecal samples from each animal at various time points

after introduction. Mice infected in this way (termed passage 1, P1)

were then housed with naive animals and the newly infected

animals designated passage 2 (P2). This was continued until

ICC180 had undergone ten successive passages from infected to

naive mice, and ICC180-P10 was isolated from the faeces of

passage 10 (P10) mice.

Accession numbers
The EX-33 genome sequencing reads from both the Illumina

and 454 platforms have been deposited in the Short Read Archive

under the accession number ERS005106. The combined 454-

Illumina assembly of the EX-33 contigs can be accessed from the

website of the Wellcome Trust Sanger Institute (http://www.

sanger.ac.uk/resources/downloads/bacteria/). The sequence and

annotation of the fimbrial operon unique to EX-33 has been

submitted to the EMBL/GenBank/DDBJ databases with the

accession number FR715298.

The 454 sequencing reads for ICC169-407 and ICC169-496

have been deposited in the Short Read Archive under the

accession numbers ERS004752 and ERS004750 respectively, and

the ICC169-476 transcriptome Illumina sequencing reads can be

found at ArrayExpress under accession number E-MTAB-502.
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Supporting Information

Figure S1 Plasmid profile of different C. rodentium isolates.

Ethidium bromide-stained 0.7% agarose gel. S. enterica Typhimur-

ium SL1344 (http://www.sanger.ac.uk/resources/downloads/

bacteria/salmonella.html) was used as a control and marker; the

sizes of the three plasmids in its genome are indicated. C. rodentium

isolates ICC168, ICC169, ICC169-407 and ICC169-474 all have

the same sized band at 54 kb, which corresponds to the large

plasmid pCROD1. The intensity of this band is comparable for

ICC168, ICC169 and ICC169-407, but for ICC169-474 the

intensity is greatly reduced. ICC180 and ICC169-496 do not have

this band. All the C. rodentium isolates show bands of a size

corresponding to the other three plasmids, pCROD2 (39 kb),

pCROD3 (3.9 kb) and pCR3 (3.2 kb). Chr = sheared chromo-

somal DNA bands. Plasmid sizes are indicated in kb.

(TIF)

Figure S2 Prophage CRP99 insertions in the genome of C.

rodentium. 235 inserts from the circularised genome of prophage

CRP99 genome were cloned, sequenced and mapped to the

chromosome and plasmids of C. rodentium ICC168. 133 sequences

mapped to the chromosome (left, green = complete insert

sequence derived from paired end sequencing, blue = single read

forward strand, red = single read reverse strand). 70 insertions

were in plasmid pCROD3 and 32 were in plasmid pCRP3 (middle

and right respectively). Paired end sequencing showed that the

entirety of each plasmid was incorporated into the circularised

CRP99 genome, and insertion sites were identified as direct

repeats of 3–7 bp (shown in green on the two plasmids). For inserts

with sequence data from one end only, insertion sites were inferred

from the first 5 bp of sequence (shown in red for reads on the

reverse strand and blue for reads on the forward strand). No

insertions were detected in pCROD1 or pCROD2.

(TIF)

Table S1 Intragenic SNP differences between C. rodentium strains

EX-33 and ICC168.

(DOC)

Table S2 Oligonucleotide primers used in this study.

(DOC)

Table S3 Transcription values for each predicted CDS in the

genome of C. rodentium ICC168.

(XLS)

Acknowledgments

We thank Prof. Chihiro Sasakawa of Tokyo University for the kind gift of

C. rodentium strain EX-33. We also acknowledge the core sequencing and

informatics teams at the Sanger Institute for their assistance.

Author Contributions

Conceived and designed the experiments: N. Petty, J. Parkhill, G. Frankel,

G. Dougan, G. Salmond, N. Thomson. Performed the experiments: N.

Petty, T. Feltwell, D. Pickard, S. Clare, A. Toribio, M. Fookes, K. Roberts,

R. Monson, S. Nair, R. Kingsley, R. Bulgin, S. Wiles, D. Goulding, D.

Willey, R. Rance, L. Yu, J. Choudhary, M. Quail. Analyzed the data: N.

Petty, T. Keane, C. Corton, N. Lennard, D. Harris, C. Churcher, G.

Salmond, N. Thomson. Wrote the paper: N. Petty, G. Frankel, G. Dougan,

G. Salmond, N. Thomson.

References

1. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, et al. (2001)

Complete genome sequence of a multiple drug resistant Salmonella enterica serovar
Typhi CT18. Nature 413: 848–852.

2. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, et al. (2001)
Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:

523–527.

3. Barthold SW, Coleman GL, Jacoby RO, Livestone EM, Jonas AM (1978)

Transmissible murine colonic hyperplasia. Vet Pathol 15: 223–236.

4. Schauer DB, Falkow S (1993) Attaching and effacing locus of a Citrobacter freundii

biotype that causes transmissible murine colonic hyperplasia. Infect Immun 61:
2486–2492.

5. Schauer DB, Zabel BA, Pedraza IF, O’Hara CM, Steigerwalt AG, et al. (1995)
Genetic and biochemical characterization of Citrobacter rodentium sp. nov. J Clin

Microbiol 33: 2064–2068.

6. Wales AD, Woodward MJ, Pearson GR (2005) Attaching-effacing bacteria in

animals. J Comp Pathol 132: 1–26.

7. Deng W, Li Y, Vallance BA, Finlay BB (2001) Locus of enterocyte effacement

from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer

among attaching and effacing pathogens. Infect Immun 69: 6323–6335.

8. Luperchio SA, Schauer DB (2001) Molecular pathogenesis of Citrobacter rodentium

and transmissible murine colonic hyperplasia. Microbes Infect 3: 333–340.

9. Mundy R, Macdonald TT, Dougan G, Frankel G, Wiles S (2005) Citrobacter

rodentium of mice and man. Cell Microbiol 7: 1697–1706.

10. Itoh K, Maejima K, Ueda K, Fujiwara K (1978) Effect of intestinal flora on
megaenteron of mice. Microbiol Immunol 22: 661–672.

11. Itoh K, Matsui T, Tsuji K, Mitsuoka T, Ueda K (1988) Genetic control in the
susceptibility of germfree inbred mice to infection by Escherichia coli

O115a,c:K(B). Infect Immun 56: 930–935.

12. Muto T, Nakagawa M, Isobe Y, Saito M, Nakano T (1969) Infectious

megaenteron of mice. I. Manifestation and pathological observation. Jpn J Med

Sci Biol 22: 363–374.

13. Barthold SW, Coleman GL, Bhatt PN, Osbaldiston GW, Jonas AM (1976) The

etiology of transmissible murine colonic hyperplasia. Lab Anim Sci 26: 889–894.

14. Brennan PC, Fritz TE, Flynn RJ, Poole CM (1965) Citrobacter freundii associated

with diarrhea in laboratory mice. Lab Anim Care 15: 266–275.

15. Ediger RD, Kovatch RM, Rabstein MM (1974) Colitis in mice with a high

incidence of rectal prolapse. Lab Anim Sci 24: 488–494.

16. Brenner DJ, Grimont PA, Steigerwalt AG, Fanning GR, Ageron E, et al. (1993)

Classification of citrobacteria by DNA hybridization: designation of Citrobacter

farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter

werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter

genomospecies. Int J Syst Bacteriol 43: 645–658.

17. Luperchio SA, Newman JV, Dangler CA, Schrenzel MD, Brenner DJ, et al.

(2000) Citrobacter rodentium, the causative agent of transmissible murine colonic

hyperplasia, exhibits clonality: synonymy of C. rodentium and mouse-pathogenic

Escherichia coli. J Clin Microbiol 38: 4343–4350.

18. Okutani A, Tobe T, Sasakawa C, Nozu R, Gotoh K, et al. (2001) Comparison of

bacteriological, genetic and pathological characters between Escherichia coli

O115a,c:K(B) and Citrobacter rodentium. Exp Anim 50: 183–186.

19. Barthold SW, Osbaldiston GW, Jonas AM (1977) Dietary, bacterial, and host

genetic interactions in the pathogenesis of transmissible murine colonic

hyperplasia. Lab Anim Sci 27: 938–945.

20. Petty NK, Bulgin R, Crepin VF, Cerdeno-Tarraga AM, Schroeder GN, et al.

(2010) The Citrobacter rodentium genome sequence reveals convergent evolution

with human pathogenic Escherichia coli. J Bacteriol 192: 525–538.

21. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of

bacteria. Mol Biol Evol 13: 660–665.

22. Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, et al. (1997) The

complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.

23. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, et al. (2001)

Complete genome sequence of Salmonella enterica serovar Typhimurium LT2.

Nature 413: 852–856.

24. Sanderson KE, Liu SL (1998) Chromosomal rearrangements in enteric bacteria.

Electrophoresis 19: 569–572.

25. Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, et al. (2009)

Inference of the impact of insertion sequence (IS) elements on bacterial genome

diversification through analysis of small-size structural polymorphisms in

Escherichia coli O157 genomes. Genome Res 19: 1809–1816.

26. Girardeau JP, Bertin Y, Martin C (2009) Genomic analysis of the PAI ICL3

locus in pathogenic LEE-negative Shiga toxin-producing Escherichia coli and

Citrobacter rodentium. Microbiology 155: 1016–1027.

27. Jackson AP, Thomas GH, Parkhill J, Thomson NR (2009) Evolutionary

diversification of an ancient gene family (rhs) through C-terminal displacement.

BMC Genomics 10: 584.

28. Macnab RM (1996) Flagella and motility. In: Umbarger HE, ed. Escherichia coli

and Salmonella Typhimurium: Cellular and Molecular Biology. 2nd ed.

Washington, DC: American Society for Microbiology. pp 123–145.

C. rodentium: A Pathogen in Flux

PLoS Pathogens | www.plospathogens.org 14 April 2011 | Volume 7 | Issue 4 | e1002018



29. Ren CP, Beatson SA, Parkhill J, Pallen MJ (2005) The Flag-2 locus, an ancestral

gene cluster, is potentially associated with a novel flagellar system from Escherichia

coli. J Bacteriol 187: 1430–1440.

30. Aldridge P, Karlinsey J, Hughes KT (2003) The type III secretion chaperone

FlgN regulates flagellar assembly via a negative feedback loop containing its

chaperone substrates FlgK and FlgL. Mol Microbiol 49: 1333–1345.

31. Khan MA, Bouzari S, Ma C, Rosenberger CM, Bergstrom KS, et al. (2008)
Flagellin-dependent and -independent inflammatory responses following infec-

tion by enteropathogenic Escherichia coli and Citrobacter rodentium. Infect Immun

76: 1410–1422.

32. Li J, Smith NH, Nelson K, Crichton PB, Old DC, et al. (1993) Evolutionary

origin and radiation of the avian-adapted non-motile salmonellae. J Med

Microbiol 38: 129–139.

33. Lengeler J (1977) Analysis of mutations affecting the dissimilation of galactitol
(dulcitol) in Escherichia coli K-12. Mol Gen Genet 152: 83–91.

34. Echols H, Green L (1971) Establishment and maintenance of repression by

bacteriophage lambda: the role of the cI, cII, and cIII proteins. Proc Natl Acad

Sci U S A 68: 2190–2194.

35. Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, et al. (2009) A

strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus

Salmonella typhi. PLoS Genet 5: e1000569.

36. Deng W, de Hoog CL, Yu HB, Li Y, Croxen MA, et al. (2010) A comprehensive

proteomic analysis of the type III secretome of Citrobacter rodentium. J Biol Chem

285: 6790–6800.

37. Morgan GJ, Hatfull GF, Casjens S, Hendrix RW (2002) Bacteriophage Mu

genome sequence: analysis and comparison with Mu-like prophages in

Haemophilus, Neisseria and Deinococcus. J Mol Biol 317: 337–359.

38. Toussaint A (1985) Bacteriophage Mu and its use as a genetic tool. In: Galizzi A,
ed. Genetics of Bacteria. London: Academic Press. pp 117–146.

39. Petty NK, Foulds IJ, Pradel E, Ewbank JJ, Salmond GPC (2006) A generalized

transducing phage (phiIF3) for the genomically sequenced Serratia marcescens

strain Db11: a tool for functional genomics of an opportunistic human pathogen.
Microbiology 152: 1701–1708.

40. Ackermann HW (2003) Bacteriophage observations and evolution. Res

Microbiol 154: 245–251.

41. Wiles S, Clare S, Harker J, Huett A, Young D, et al. (2004) Organ specificity,

colonization and clearance dynamics in vivo following oral challenges with the

murine pathogen Citrobacter rodentium. Cell Microbiol 6: 963–972.

42. Petty NK, Toribio AL, Goulding D, Foulds I, Thomson N, et al. (2007) A

generalized transducing phage for the murine pathogen Citrobacter rodentium.

Microbiology 153: 2984–2988.

43. Scott AE, Timms AR, Connerton PL, Loc Carrillo C, Adzfa Radzum K, et al.
(2007) Genome dynamics of Campylobacter jejuni in response to bacteriophage

predation. PLoS Pathog 3: e119.

44. Kraft C, Stack A, Josenhans C, Niehus E, Dietrich G, et al. (2006) Genomic

changes during chronic Helicobacter pylori infection. J Bacteriol 188: 249–254.

45. Goerke C, Matias y Papenberg S, Dasbach S, Dietz K, Ziebach R, et al. (2004)

Increased frequency of genomic alterations in Staphylococcus aureus during chronic

infection is in part due to phage mobilization. J Infect Dis 189: 724–734.

46. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, et al. (2008)

Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A

105: 3100–3105.

47. Bielaszewska M, Prager R, Kock R, Mellmann A, Zhang W, et al. (2007) Shiga

toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic

Escherichia coli O26 infection in humans. Appl Environ Microbiol 73: 3144–3150.

48. Friedrich AW, Zhang W, Bielaszewska M, Mellmann A, Kock R, et al. (2007)
Prevalence, virulence profiles, and clinical significance of Shiga toxin-negative

variants of enterohemorrhagic Escherichia coli O157 infection in humans. Clin

Infect Dis 45: 39–45.
49. Levine MM, Nataro JP, Karch H, Baldini MM, Kaper JB, et al. (1985) The

diarrheal response of humans to some classic serotypes of enteropathogenic

Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor.
J Infect Dis 152: 550–559.

50. Mellmann A, Bielaszewska M, Zimmerhackl LB, Prager R, Harmsen D, et al.
(2005) Enterohemorrhagic Escherichia coli in human infection: in vivo evolution of

a bacterial pathogen. Clin Infect Dis 41: 785–792.

51. Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, et al. (2008)
Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella

Gallinarum 287/91 provides insights into evolutionary and host adaptation
pathways. Genome Res 18: 1624–1637.

52. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, et al. (2009)
Pseudogene accumulation in the evolutionary histories of Salmonella enterica

serovars Paratyphi A and Typhi. BMC Genomics 10: 36.

53. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, et al. (2001) Massive
gene decay in the leprosy bacillus. Nature 409: 1007–1011.

54. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, et al. (2003)
Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella

parapertussis and Bordetella bronchiseptica. Nat Genet 35: 32–40.

55. Quail MA, Swerdlow H, Turner DJ (2009) Improved protocols for the Illumina
Genome Analyzer sequencing system. Curr Protoc Hum Genet 62:

18.2.1–18.2.27.
56. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M (2009) ABACAS:

algorithm-based automatic contiguation of assembled sequences. Bioinformatics
25: 1968–1969.

57. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, et al.

(2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422–3423.
58. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large

DNA databases. Genome Res 11: 1725–1729.
59. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, et al. (2010)

Evolution of MRSA during hospital transmission and intercontinental spread.

Science 327: 469–474.
60. Carver T, Bohme U, Otto TD, Parkhill J, Berriman M (2010) BamView:

viewing mapped read alignment data in the context of the reference sequence.
Bioinformatics 26: 676–677.

61. Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large
and small plasmids. J Bacteriol 145: 1365–1373.

62. Croucher NJ, Fookes MC, Perkins TT, Turner DJ, Marguerat SB, et al. (2009)

A simple method for directional transcriptome sequencing using Illumina
technology. Nucleic Acids Res 37: e148.

63. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter:
circular and linear interactive genome visualization. Bioinformatics 25: 119–120.

64. Fineran PC, Everson L, Slater H, Salmond GP (2005) A GntR family

transcriptional regulator (PigT) controls gluconate-mediated repression and
defines a new, independent pathway for regulation of the tripyrrole antibiotic,

prodigiosin, in Serratia. Microbiology 151: 3833–3845.
65. Wiles S, Dougan G, Frankel G (2005) Emergence of a ‘hyperinfectious’ bacterial

state after passage of Citrobacter rodentium through the host gastrointestinal tract.
Cell Microbiol 7: 1163–1172.

66. Wiles S, Clare S, Harker J, Huett A, Young D, et al. (2005) Organ-specificity,

colonization and clearance dynamics in vivo following oral challenges with the
murine pathogen Citrobacter rodentium. Cell Microbiol 7: 459.

67. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison
visualiser. Bioinformatics. In press.

68. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. (2000) Artemis:

sequence visualization and annotation. Bioinformatics 16: 944–945.

C. rodentium: A Pathogen in Flux

PLoS Pathogens | www.plospathogens.org 15 April 2011 | Volume 7 | Issue 4 | e1002018


