Martin, MJ; Clare, S; Goulding, D; Faulds-Pain, A; Barquist, L; Browne, HP; Pettit, L; Dougan, G; Lawley, TD; Wren, BW (2013) The agr locus regulates virulence and colonization genes in Clostridium difficile 027. Journal of bacteriology, 195 (16). pp. 3672-81. ISSN 0021-9193 DOI: https://doi.org/10.1128/JB.00473-13

Downloaded from: http://researchonline.lshtm.ac.uk/989900/

DOI: 10.1128/JB.00473-13

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
The **agr** Locus Regulates Virulence and Colonization Genes in *Clostridium difficile* 027

Melissa J. Martin,a Simon Clare,b David Goulding,b Alexandra Faulds-Pain,a Lars Barquist,c,d Hilary P. Browne,a Laura Pettit,b Gordon Dougan,b Trevor D. Lawley,eb Brendan W. Wren*a

Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom; Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Rfam Group, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; EMBL-European Bioinformatics Institute, Hinxton, United Kingdom; Bacterial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom

The transcriptional regulator AgrA, a member of the LytTR family of proteins, plays a key role in controlling gene expression in some Gram-positive pathogens, including *Staphylococcus aureus* and *Enterococcus faecalis*. AgrA is encoded by the *agrACDB* global regulatory locus, and orthologues are found within the genome of most *Clostridium difficile* isolates, including the epidemic lineage 027/BI/NAP1. Comparative RNA sequencing of the wild type and otherwise isogenic *agrA* null mutant derivatives of *C. difficile* R20291 revealed a network of approximately 75 differentially regulated transcripts at late exponential growth phase, including many genes associated with flagellar assembly and function, such as the major structural subunit, FliC. Other differentially regulated genes include several involved in bis-(3′–5′)-cyclic dimeric GMP (c-di-GMP) synthesis and toxin A expression. *C. difficile* 027 R20291 *agrA* mutant derivatives were poorly flagellated and exhibited reduced levels of colonization and relapses in the murine infection model. Thus, the *agr* locus likely plays a contributory role in the fitness and virulence potential of *C. difficile* strains in the 027/BI/NAP1 lineage.

Clostridium difficile is a Gram-positive, anaerobic bacterium that is arguably the most frequent cause of antibiotic-associated colitis and health-care–acquired diarrhea worldwide. Disease-causing isolates can produce two exotoxins, TcdA and TdB, encoded by the 19-kb pathogenicity locus (PaLoc), which interact with the intestinal epithelium and potentially precipitate an acute inflammatory response and even cell death (1–3). Colonization of the intestine by toxigenic *C. difficile* can be asymptomatic, but following antibiotic treatment, a variety of symptoms, including diarrhea or life-threatening pseudomembranous colitis, can ensue (4). Relapsing disease occurs in up to 20% of patients following termination of treatment with certain first-line antimicrobials, such as vancomycin or metronidazole (5). The global increase in incidence and severity of *C. difficile* infection over the last decade is linked to the emergence of certain lineages, including the epidemic 027/BI/NAP1 variants (6–11). Transcontinental dissemination of the 027 variant occurred through at least two distinct fluoroquinolone-resistant lineages, with clinical outcomes resulting in longer colonization duration, increased toxin production, and increased relapse and mortality rates (6, 12, 13). This increased disease severity was typified by multiple outbreaks of *C. difficile* disease between 2003 and 2006, affecting over 300 patients at the Stoke Mandeville hospital, United Kingdom, from which the representative 027 strain, R20291, was isolated (14, 15).

Gene regulatory networks can enable pathogenic bacteria to rapidly adapt to their environment and modulate the expression of virulence-associated factors. So-called two-component systems (TCSs) can play a key role in linking environmental and internal sensing to the control of gene expression. Interestingly, genes with similarity to TCSs, transcriptional regulators, and signaling proteins comprise approximately 10% of *C. difficile* genomes, yet their contribution to the regulatory mechanisms and virulence within *C. difficile* are poorly understood (14, 16). The RolA/B TCS of *C. difficile* has been shown to negatively regulate the *luxS* gene and, consequently, the synthesis of the putative quorum-sensing signaling molecule, autoinducer 2 (AI-2) (16–18). Other classes of regulators reported in *C. difficile* include the transcriptional regulators CcpA (19), CodY (20), and SigH (21), which influence the expression of the exotoxins, TcdA and TdB, and SpolA, which is a key regulator of sporulation and is important for persistence and transmission within the host (22–24). Furthermore, the *C. difficile* flagellar regulon modulates toxin production *in vitro* (25) in addition to having a contributory role in adhesion and colonization *in vivo* (26).

Analysis of the genome sequence of the *C. difficile* 027 isolate R20291 identified a locus with similarity to the *agr* operon, which is a conserved determinant in many Gram-positive bacteria (14). In *Staphylococcus aureus*, the global regulation of virulence genes is coordinated by the *agr* quorum-sensing locus, *agrACDB* (27–29). The *agrD* and *agrB* genes encode the precursor to the small secreted cyclic autoinducing peptide (AIP) and a transmembrane protein involved in processing and exporting of AIP, respectively. Extracellular accumulation of AIP activates a typical bacterial TCS by binding to AgrC, a sensor kinase, subsequently resulting in the phosphorylation of the AgrA response regulator. Phosphorylated AgrA binds to DNA via its C-terminal LytTR domain and can activate the transcription of both the RNAII (*agrBDCA*) transcript, creating a positive feedback loop, and the divergent RNAIII transcript encoding a regulatory RNA effector molecule (30, 31).
The C. difficile agr locus carries the requisite genes for a functional agr operon, agrACDB. Interestingly, this complete locus is absent from the first reported C. difficile 630 genome, ribotype 012, and it was originally termed "agr2". All analyzed C. difficile genomes contain the so-called agr1 locus, encoding a partial agr-like locus of agrDB (14).

Originally thought to be specific to 027, a comparative genomic hybridization study identified the complete agr locus, agrACDB, in other clinical isolates, suggesting that this locus is prevalent within the species (32). Here, we undertake further analysis of C. difficile R20291 to determine the network of genes under the regulatory control of the agr locus. We identify a number of characteristics, including flagellar biosynthesis, TcdA production, and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) signaling proteins that are influenced by the agr locus and show that it has a contributory role for colonization in the C. difficile murine model of infection.

Materials and Methods

Bacterial growth conditions and strains. All strains and plasmids used in this study are summarized in Table 1. C. difficile strains were routinely cultured at 37°C under anaerobic conditions (Mini-Mac 250; Don Whitley Scientific) using brain heart infusion (BHI; Oxoid) medium or Brazer’s CCEY agar supplemented with 4% egg yolk (Bioconnections). Where appropriate, C. difficile agar was supplemented with n-cycloserine (250 μg·mL⁻¹) and cefoxitin (8 μg·mL⁻¹), 15 μg/mL thiamphenicol (Sigma), or 20 μg/mL lincomycin (Sigma). Escherichia coli strains were cultured aerobically at 37°C in Luria-Bertani (LB) media (Sigma). Where appropriate, media were supplemented with 12.5 μg/mL chloramphenicol (Alfa Aesar). Spore enumeration was performed by inoculating cultures 1:1 with 100% (vol/vol) ethanol for 1 h at room temperature to kill the vegetative cells. Total CFU were enumerated by serial dilution in phosphate-buffered saline (PBS) and plating on BHI plates supplemented with 0.5% taurocholate (Sigma) to stimulate germination (33).

Library preparation and genomic DNA sequencing. Genomic C. difficile DNA was isolated as previously described (34). Paired-end multiplexed libraries were created as previously described (35), and the Illumina HiSeq 2000 platform was used for whole-genome sequencing of C. difficile R20291 and 20291 agrA76a:CT. Sequencing reads were mapped to the R20291 genome (14) using the Burrows-Wheeler Aligner (BWA) (36).

Mutagenesis and genetic complementation studies. The ClosTron system was used to insertionally inactivate the R20291 agrA gene as previously described (37, 38). Briefly, using the Perutka algorithm (39), plasmid pMTL007C-E2 was re-targeted to the antisense strand of agrA between positions 76 and 77, and the resultant plasmid, pMTL007C-E2- agrA76a, was synthesized by DNA 2.0 (Menlo Park). This plasmid was conjugated into wild-type R20291 as previously described (40) using the electrocompetent E. coli CA434 donor strain (41). Transconjugants were selected on agar plates in the presence of thiamphenicol to select for the plasmid and cycloserine/cefoxitin to select against E. coli. ClosTron integrates then were isolated by their resistance to lincomycin, and loss of the plasmid was confirmed by sensitivity to thiamphenicol. Insertions in agrA were confirmed by PCR screening using the primers pairs agrA76a-Fw/ agrA76a-Rv, agrA76a-R/EBS, and RAM-Fw/RAM-Rv and sequenced using the Illumina HiSeq platform. For complementation studies, the agrA coding sequence and putative promoter region, 372 bp upstream, was PCR amplified from wild-type R20291 template using oligonucleotides agrA NdeI_Fw and agrA HindIII_Rv and inserted into the modular vector pMTL84151 by restriction and ligation cloning into the NdeI/HindIII sites (42), creating the complementation vector pMTL-84151- agrA. The plasmid was confirmed by DNA sequencing, and pMTL-84151- agrA was conjugated into C. difficile R20291 agrA76a:CT as described previously (40).

RNA preparation and cDNA synthesis. Bacterial cells were harvested in RNAprotect bacteria (Qiagen), and total RNA was extracted using the FastRNA Pro blue kit (MP Biomedical) according to the manufacturer’s protocol. RNA was eluted in nuclease-free water and quantified using a NanoDrop ND-1000 and 2100 Bioanalyzer (Agilent Technologies). Genomic DNA was removed using one treatment of Turbo DNase (Applied Biosystems), and PCR analyses using primer pairs that amplified housekeeping genes dxr, sigA, and sigB were performed to confirm DNA depletion. Equal amounts of total DNA-free RNA (5 μg) were reverse transcribed using random hexamer primers (Invitrogen) and SuperScript III reverse transcriptase (Invitrogen). cDNAs were synthesized in the presence of actinomycin D to prevent spurious second-strand cDNA synthesis, which inhibits DNA-dependent DNA synthesis (43).

cDNA sequencing and expression profiling. cDNA sequencing was performed using an Illumina HiSeq platform from 150- to 250-bp multiplexed cDNA libraries. Seventy-five cycles of paired-end sequencing from approximately 169 million cDNAs yielded 12,786 MB of sequencing data and 15 to 45 million reads per library (see Table S1 in the supplemental material). cDNA sequence reads were aligned to the C. difficile R20291 genome reference (14) using BWA with a quality parameter (−q) of 15, resulting in 76 to 82% of total reads aligned per library. Reads were mapped to annotated coding sequences (CDs) and intergenic regions to account for possible unannotated noncoding RNAs. Raw read counts were calculated per nucleotide for each gene and intergenic region from three biological replicates of wild-type R20291 and the R20291 agrA76a:CT mutant. Differential expression analyses were performed using R version 2.15.0 and the DESeq statistical analysis package (44). P values were corrected for multiple testing using the Benjamini-Hochberg method, and a q value threshold of 0.1 was used to define differentially regulated genes with an expected false discovery rate of <10% (see Fig. S2 in the supplemental material).

Table 1. Strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Characteristic(s)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R20291</td>
<td>Epidemic PCR ribotype 027, Stoke Mandeville hospital outbreak, United Kingdom, 2005</td>
<td>14</td>
</tr>
<tr>
<td>R20291 agrA</td>
<td>R20291 agrA76a:CT</td>
<td>This study</td>
</tr>
<tr>
<td>R20291 agrA complement</td>
<td>C. difficile R20291 agrA complemented with pMTL-84151- agrA</td>
<td>This study</td>
</tr>
<tr>
<td>E. coli CA434</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conjugation donor for E. coli HB101 [F⁻ mcrB mrr hsdS20(rK- mK-) recA13 leuB6 ara-14 proA2 lacY1 galk2 syl-5 mtl-1 rpsL20(Sm') glnV44 k'] containing plasmid R702</td>
<td>41</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMTL007-CE2</td>
<td>ClosTron plasmid (ColE1, pCD6, catP)</td>
<td>37</td>
</tr>
<tr>
<td>pMTL007-CE2- agrA76a</td>
<td>pMTL007-CE2 derivative retargeted to agrA</td>
<td>This study</td>
</tr>
<tr>
<td>pMTL-84151</td>
<td>E. coli C. difficile shuttle plasmid (pCD6, catP, ColE1 + tra)</td>
<td>42</td>
</tr>
<tr>
<td>pMTL-84151- agrA</td>
<td>pMTL-84151 containing 0.768-kb agrA coding sequence and 0.372-kb putative upstream promoter region</td>
<td>This study</td>
</tr>
</tbody>
</table>

References

1. [C. difficile agr Locus](#)

2. [Table 1. Strains and plasmids used in this study](#)

3. [Materials and Methods](#)

4. [RNA preparation and cDNA synthesis](#)

5. [cDNA sequencing and expression profiling](#)
Quantitative reverse transcription-PCR (qRT-PCR). Relative expression levels of target transcripts were determined using Power SYBR green PCR master mix (Invitrogen) by following the manufacturer’s protocol. Specific primer pairs for tcdA, fliC, CDR20291_1514 (KEGG accession number) and the rpoA internal control were designed using Primer3 software (http://frodo.wi.mit.edu). RNA from three biological replicates, independent of the RNA-seq samples, was prepared from R20291 and R20291 agrA76a::CT isolated from late exponential growth phase. Comparative threshold cycle (C\textsubscript{T}) analysis was performed, and the mean expression from three biological replicates and three replicates of each for target transcripts was calculated (45). Mean C\textsubscript{T} values were normalized to the internal control housekeeping gene, rpoA. Relative mRNA expression was represented by fold change (see Fig. 3).

Oligonucleotides. The complete list of oligonucleotides used in this study is provided in Table S2 in the supplemental material.

Bioinformatics. Multiple sequence alignments were created using ClustalW2 (46, 47).

TEM. Negative staining and transmission electron microscopy (TEM) were performed to visualize C. difficile flagella. R20291, R20291 agrA76a::CT, and agrA complement strains were grown under the same conditions as samples prepared for RNA processing and TcdA quantification. Cultured colonies were mixed with distilled water to create a slightly turbid suspension and applied to Formvar-carbon-coated EM grids. An equal volume of 3% ammonium molybdate with 1% trehalose was added to negative stain. Images were taken on an FEI Spirit Biotwin 120-kV TEM with a Tietz F415 charge-coupled-device (CCD) camera.

TcdA quantification. C. difficile cultures were grown in BHI broth with shaking to late exponential phase, and culture supernatants were removed. TcdA quantification was performed by sandwich enzyme-linked immunosorbent assay (ELISA) as previously described (23). CFU were determined to ensure equal numbers of vegetative cells in all samples and replicates.

CI experiments. The C. difficile murine model of infection was used to perform competitive index (CI) experiments as previously described (23). Wild-type C57BL/6 mice (n = 5) were infected with 5 \times 105 spores via gavage in 0.2 ml PBS. Equal amounts of spores from the parental R20291 and isogenic R20291 agrA76a::CT mutant derivative were used. Fecal samples were collected and enumerated by plating on C. difficile CCYE agar, with and without lincomycin, and incubated for 48 h. Agar supplemented with lincomycin selected for the knockout containing the errB cassette. The CI number was determined using the following ratio: (R20291 agrA76a::CT/R20291 wild-typejing)/input (R20291 agrA76a::CT/ R20291 wild-typejing). Statistical testing was performed using the Mann-Whitney test applied to log\textsubscript{10} values of the CI ratios. All animal infections were performed in accordance with the United Kingdom Home Office Animals (Scientific Procedures) Act of 1986.

RNA-seq data accession number. RNA-seq data generated in this work are available online at ArrayExpress under accession number E-ERAD-97.

RESULTS

The distribution of the C. difficile agr locus. It has previously been shown that the agr locus is absent from some C. difficile isolates (14, 32). To better understand the prevalence of agr within the C. difficile species, we carried out comparative genomic analysis to determine its distribution within sequenced and fully annotated C. difficile isolates (Table 2) (14, 48). This revealed that the agr locus is not limited to the ribotype 027 strains but is present in multiple disease-causing C. difficile lineages, including PCR ribotypes 001 and 017.

Analysis of the genome of C. difficile R20291 revealed that the agr locus included agrA, agrC, agrD, and agrB, respectively (14). Interestingly, in the S. aureus agr operon these genes are in the reverse order (agrBagrDagrA) (Fig. 1a). The C. difficile R20291 agrA-encoded protein shares 28% amino acid identity with the equivalent S. aureus AgrA and contains both a predicted N-terminal REC region, which is transcribed in late exponential (optical density at 600 nm OD\textsubscript{600} 0.7) phase in BHI media and TcdA quantification. To study the role of the agr locus in C. difficile R20291, an isogenic mutant of agrA was constructed using the Clostron system (37). The genotype of the C. difficile R20291 agrA76a::CT mutant derivative was confirmed by PCR analysis exploiting specific primers (data not shown). Illumina sequencing of whole-genome DNA purified from the C. difficile R20291 agrA76a::CT mutant derivative revealed that no secondary mutations were acquired, and the genetic background was otherwise identical to the parental R20291 aside from the anticipated single intron insertion. Characterization of the growth kinetics of C. difficile R20291 agrA76a::CT and R20291 revealed no obvious differences under the conditions tested (see Fig. S1 in the supplemental material).

RNA-seq analysis of the regulon in the C. difficile R20291 agrA76a::CT mutant. As the S. aureus agr locus plays a key role in controlling the coordinated expression of virulence genes, we used RNA-seq analysis to begin to define the regulon under the control of the C. difficile R20291 agr locus. To this end, total RNA was
isolated from *C. difficile* R20291 and R20291 *agr*76a::CT grown to late exponential phase. The log2 fold change of transcript abundance between these RNA populations was obtained (*P* ≤ 0.1) (see Fig. S2 in the supplemental material), and transcripts were visualized by mapping the coverage per base pair to the reference R20291 genome (Fig. 2a). In total, 75 transcripts were found to be significantly differentially expressed in the R20291 *agr*76a::CT mutant. The differentially regulated transcripts were categorized according to their functional class, and the enrichment of each represented class was determined. The functional classes of flagellar regulon and pathogenicity, regulators, and macromolecule degradation were enriched for differentially expressed genes in R20291 *agr*76a::CT compared to R20291 (*P* ≤ 0.05 by hypergeometric test) (Fig. 2b). Validation of RNA sequencing results was performed by qRT-PCR. In agreement with the R20291 *agr*76a::CT transcriptome, *tcdA*, *flhC*, and CDR20291_1514 transcripts all were underrepresented (*-1.39*, *-5.64*, and *-2.93* fold change, respectively) compared to wild-type R20291 (Fig. 3).

The transcript of *agrC*, encoding the cognate sensor kinase directly downstream of *agrA*, was underexpressed in the R20291 *agr*76a::CT transcriptome (*P* = 2.17 × 10⁻¹⁸). There may be a regulatory role of *agrA* in *agrC* expression causing this decrease. Alternatively, it is possible that the ClosTron insertion in the *agr* gene affects the transcription of the subsequent gene in the locus, in this case *agrC*. Polar effects resulting from insertional inactivation using the ClosTron system have been described previously in independent mutants located in the *C. difficile* flagellar region (*flfA*, *flfG*, and *flhB-flhR*), which resulted in 8- to 20-fold down-regulation of the downstream transcript, *flhA* (25, 50).

Of the 75 differentially expressed transcripts, 64 were determined to be underrepresented in the R20291 *agr*76a::CT transcriptome (see Table S3 in the supplemental material). Most strik-
ingly, the transcripts of the majority of genes involved in flagellum formation were underexpressed. Of the 54 genes believed to be involved in flagellum formation, 50 were affected, including all of the regulatory and structural genes, with the exception of \textit{fliN}, encoding the hypothetical C-ring protein. The flagellin, the major structural protein of flagella, encoded by \textit{fliC}, was underexpressed 6.5-fold \((P = 2.05 \times 10^{-20})\). The anti-sigma factor encoded by \textit{flgM} and alternative sigma factor encoded by \textit{fliA} were underrepresented 6.2- and 4.2-fold, respectively, and may be direct targets of the transcriptional regulator AgrA. Three of the six flagellin modification genes found in the 027 strains were also found to be underexpressed, including two putative glycosyl transferases, \textit{CDR20291_0242} and \textit{CDR20291_0243} (3.7- and 2.7-fold change, respectively).

Expression of mRNA encoding TcdA was underexpressed 2.4-fold \((P = 3.0 \times 10^{-4})\) in R20291 \textit{agrA76a::CT} compared to that in R20291 (see Table S3 in the supplemental material). The reason for this altered expression cannot be determined from these data, but it is interesting that the \textit{C. difficile} flagellar regulon has been reported recently to modulate toxin A production\cite{25}. TcdB was not as highly expressed as TcdA in the R20291 wild-type and R20291 \textit{agrA76a::CT} mutant transcriptomes and was not differentially regulated in the R20291 \textit{agrA76a::CT} transcriptome.

Ten genes annotated as regulatory proteins were differentially expressed in R20291 \textit{agrA76a::CT} compared to wild-type R20291. These included three genes linked to c-di-GMP signaling, \textit{CDR20291_0685}, \textit{CDR20291_1268}, and \textit{CDR20291_1514}, which were underrepresented in R20291 \textit{agrA76a::CT} and encode proteins that contain GGDEF or EAL domains (see Table S3 in the supplemental material). Furthermore, three transcripts encoding
putative TCSs, CDR20291_3126 to CDR20291_3128, were also underexpressed in the R20291 agrA76a::CT transcriptome (see Table S3 in the supplemental material).

Clostridium difficile is predicted to contain 234 putative small noncoding RNAs (51). In this study, 10 intergenic regions were differentially regulated in R20291 agrA76a::CT (see Tables S3 and S4 in the supplemental material). Each intergenic sequence was searched against a nonredundant nucleotide collection using NCBI BLAST, but no evidence of sequence conservation outside the *Clostridium* genus was found. Additionally, each sequence was searched against the Rfam database (52), but no Rfam matches were identified. For 9/10 differentially regulated intergenic regions. However, the 5’ untranslated intergenic region upstream of the flagellar operon where the *C. difficile* c-di-GMP riboswitch, Cd1, is located was underexpressed 5.3-fold ($P = 1.22 \times 10^{-11}$). Due to its location, Cd1 is suggested to regulate flagellar biosynthesis genes and motility by responding to cyclic di-GMP concentrations (53).

agr locus positively regulates *C. difficile* flagellar biosynthesis and TcdA in vitro. Based on the RNA-seq transcriptome data, we hypothesized that the *C. difficile* R20291 agrA76a::CT mutant would be unable to form flagellar filaments. Consequently, cultures of R20291 and R20291 agrA76a::CT were prepared as described for the RNA-sequencing analysis and examined using electron microscopy for the formation of flagella. This analysis revealed that while peritrichous flagellar filaments were abundant on the cell surface of R20291, equivalent structures were absent from similarly treated R20291 agrA76a::CT cultures (Fig. 4).

A sandwich ELISA was used to determine the levels of TcdA expressed in R20291 or R20291 agrA76a::CT culture supernatants grown under conditions equivalent to those used for RNA preparation (Fig. 5). *C. difficile* R20291 cultures harbored detectable TcdA at 7.42 ng/ml, which is comparable to R20291 agrA76a::CT at 3.32 ng/ml when cultured under equivalent conditions.

The *agr* complementation vector (pMTL-84151-agrA) was introduced into the R20291 agrA76a::CT mutant to confirm that the observed phenotypes were the result of the Clostron insertion in the *agr* gene (see Materials and Methods). Growth kinetics for wild-type R20291, R20291 agrA76a::CT, and *agr* complemented strains revealed similar growth dynamics between all three strains (see Fig. S1 in the supplemental material). The *agr* complementation vector did not restore the flagellar filaments to the cell surface of the R20291 agrA76a::CT mutant strain. It is possible that the complementation vector did not express wild-type levels of *agrA*; therefore, it failed to complement the flagella. However, the *agr* complemented strain successfully restored TcdA production to 8.11 ng/ml, comparable to wild-type R20291 levels ($P = 0.008$) (Fig. 5).

C. difficile R20291 agrA76a::CT exhibits an early colonization defect in mice. *C. difficile* R20291 can establish a chronic intestinal infection in the murine model, with relapse infection consistently occurring after cessation of vancomycin treatment (54–56). To assess any role of the *agr* locus in the murine model of infection, direct fitness comparisons using competitive index (CI) experiments were performed. Here, healthy C57BL/6 mice ($n = 5$ per group) were orally infected after clindamycin treatment with equal numbers of viable R20291 and R20291 agrA76a::CT.
with equal amounts of mycin (clind; represented as a gray line) for 7 days prior to infection via gavage infection in the murine model of infection. Mice were treated with clinda-1, 4, 6, and 8 days postchallenge (Fig. 6a). To determine if the agrA were monitored for 8 days after the challenge.

FIG 6 C. difficile R20291 agr locus mediates efficient colonization and relapsing infection in the murine model of infection. Mice were treated with clindamycin (clind; represented as a gray line) for 7 days prior to infection via gavage with equal amounts of C. difficile R20291 and R20291 agrA/76a::CT. Fecal shedding of R20291 and the R20291 agrA/76a::CT mutant was monitored. Data are representative of two independent experiments (n = 5 per group). (a) Competitive index (CI) course of R20291 and R20291 agrA/76a::CT mutant monitored over 8 days. Open circles indicate CI values from individual mice, and the red horizontal bars represent the geometric means. R20291 agrA/76a::CT mutant is attenuated at 1, 4, 6, and 8 days postinfection as determined by Mann-Whitney test. (b) To test whether the mutation in the R20291 agrA locus influences relapsing infection, mice received a 7-day course of vancomycin (vanco; represented as a green line) following the initial infection, during which fecal shedding of C. difficile decreased to below the detection limit (represented as a dashed horizontal line). Fecal shedding of C. difficile relapsed in both groups; however, R20291 agrA/76a::CT levels were consistently reduced. Statistically significant differences are indicated by asterisks (*, P < 0.05; **, P < 0.01; ***, P < 0.001) and were determined by two-way analysis of variance.

spores (5 × 10⁶ CFU), and C. difficile CFU in fecal sheddings were monitored for 8 days after the challenge. C. difficile R20291 agrA/76a::CT was shed at significantly lower levels than R20291 at 1, 4, 6, and 8 days postchallenge (Fig. 6a). To determine if the agr locus influences relapse, the mice from similar CI challenges were treated with a clinically relevant dose of oral vancomycin for 7 days (Fig. 6b), and C. difficile fecal shedding was again monitored. Fecal shedding of C. difficile returned in both groups within 3 days of vancomycin cessation. However, while the R20291 fecal shedding levels returned to pre-vancomycin-treatment levels, those of R20291 agrA/76a::CT were consistently reduced. Statistical analysis confirmed that R20291 agrA/76a::CT is relatively attenuated in terms of relapse infection.

DISCUSSION

Previous whole–genome sequencing analysis of the epidemic 027, R20291, identified the C. difficile agr locus (agrACDB), which showed similarity to the agr genes of S. aureus. Comparative genomic analysis with disease-causing ribotypes 017 and 001 confirmed that this locus is not specific to ribotype 027, as previously thought (48). The agr genes of C. difficile are in the reverse order from the agr genes of S. aureus, while the agr-like genes of Enterococcus faecalis (frrABD5C) are also different (57). The genetic organization of agr genes varies between different species (57, 58). This work aimed to identify the role of this locus in the virulence of C. difficile R20291; therefore, we generated an insertion mutant in the transcriptional regulator, AgrA.

In this study, we report the first RNA sequencing analysis of a C. difficile strain to investigate the regulatory network controlled by the agr locus. Similar to other studies reporting transcriptional profiling of relevant agr loci, we investigated the regulon in the 027 agrA mutant when grown to late exponential phase (59). Consequently, we identified 75 genes that were differentially regulated in the R20291 agrA/76a::CT mutant transcriptome. The genes positively and negatively regulated by the agr locus included flagellar biosynthesis genes, tcdA, c-di-GMP regulatory protein genes, and uncharacterized two-component regulatory systems.

The majority of the flagellar biosynthesis genes were underexpressed in the C. difficile R20291 agrA/76a::CT transcriptome. This could explain the inability of the R20291 agrA/76a::CT mutant to produce cell surface-anchored filaments in vitro as observed by TEM analysis. Experimental investigations have shown that insertion inactivation of the major flagellin subunit, FlIC, results in the inability to produce flagellar filaments, resulting in a nonmotile phenotype and 10-fold less adherence to the murine cecum layer (60) (26). Interestingly, recent studies have shown that the C. difficile flagellar regulon has a role in the modulation of toxin A production (25). We have shown that the tcdA transcript is underexpressed in the R20291 agrA/76a::CT mutant, and reduced levels of TcdA were produced in vitro compared to those of the parental wild-type strain, R20291. The reduced TcdA phenotype may relate to the differential expression of the flagellar regulon.

The small-molecule bacterial secondary messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) is an important signaling molecule in bacteria, mediating the transition between sessile and motility lifestyles (61). C. difficile R20291 is predicted to encode up to 31 proteins involved in c-di-GMP turnover (62). C-di-GMP is synthesized by diguanylate cyclase enzymes that contain GGDEF domains, while phosphodiesterases that contain a phosphodiesterase domain catalytically inactivating c-di-GMP. The small-molecule c-di-GMP signaling proteins (CDR20291_0965, CDR20291_1268, and CDR20291_1514) in the R20291 agrA/76a::CT mutant transcriptome are solely phosphodiesterase enzymes due to a predicted catalytically inactive GGDEF domain. The protein orthologues have been experimentally characterized in C. difficile strain 630 (CD0757, CD1421, and CD1616, respectively) (62). Purified CD0757 was confirmed to have enzymatic activity when overexpressed in Vibrio cholerae, resulting in enhanced motility on soft agar (62). Conversely, mutating the glutamic acid residue of the EVLxR motif, important for enzymatic activity of the phosphodiesterase, abolished this enhanced motility phenotype (62). The agr-regulated c-di-GMP EAL-containing proteins, encoded by CD1421 and CD1616 in strain 630, also exhibited enhanced motility phenotype when overexpressed in V. cholerae. In agreement, Purcell and colleagues demonstrated that artificial elevation of c-di-GMP levels negatively regulated motility and flagellar biosynthesis genes (flgB, flfA, and flgM) in C. difficile 630 (64). Furthermore, our data reveal the
diffgeleral expression of novel *Clostridium difficile* transcriptional regulators and two-component systems, such as the sensor histidine kinase and cognate response regulator encoded by CDR20291_3424 and CDR20291_3425, respectively. Transcriptional regulators are commonly associated with the signaling network of c-di-GMP; in *Salmonella enterica* serovar Typhimurium, the response regulator CsgD activates the expression of diguanylate cyclase-containing protein, AdrA, in turn triggering cellulose biosynthesis (65, 66). It is possible that the levels of c-di-GMP in the R20291 agrA76a:CT mutant are increased due to the underexpression of the EAL-containing regulatory proteins, which stimulate degradation of the small cyclic molecule. The elevated c-di-GMP levels may be negatively affecting the flagellar biosynthesis genes, similar to the findings from Purcell et al. (64).

In addition to *S. aureus*, orthologous agr systems have been shown to be relevant for virulence in pathogenic firmicute species (57, 67). The inactivation of the agrA gene of *L. monocytogenes* attenuates virulence of the bacterium in the murine model, causing a 50% lethal dose (LD₅₀) 10-fold higher than that of the wild-type strain (67). Furthermore, isogenic mutant strains of the agr-like locus in *E. faecalis* were attenuated for virulence in the rabbit endophthalmitis model (68, 69), in the nematode *Caenorhabditis elegans* model (70), and in the mouse peritonitis model (57). Here, we have demonstrated that the 027 agr locus contributes to colonization and relapsing infection in the *C. difficile* murine infection model. The mechanism by which the R20291 agrA76a:CT mutant has reduced colonization and reduced relapse infection is difficult to speculate, as the mutation affects 75 genes in vitro. The inability of the R20291 agrA76a:CT mutant to form flagellar filaments may contribute to the attenuated colonization and relapse infection observed; similarly, TcdA may be necessary for efficient colonization of *C. difficile* R20291 in the murine model. A direct comparison in the murine infection model between defined agrA, tcdA, and aflagellate mutants may help to define the relative contribution of these determinants in colonization.

Whole-genome sequencing analysis of the R20291 agrA76a:CT mutant confirmed that the observed phenotypic differences were due solely to the insertional inactivation of the agrA gene and not acquired secondary mutations. The variation in the effectiveness of complementation may result from relatively low expression of AgrA from the complementing plasmid, allowing AgrA to bind only to the highest affinity sites. Furthermore, polar effects resulting from the AgrA mutation in downstream coding sequences may have inhibited effective complementation studies. The insertional deletion of agrA resulted in the underexpression of the downstream coding region of agrC, suggesting that agrAC form a single transcriptional unit. Similarly, the *C. acetobutylicum* agr cluster is also predicted to comprise two transcriptional units, agrBD and agrCA (71). However, the complete *C. difficile* agr locus is significantly underrepresented in the R20291 agrA76a:CT mutant at exponential phase in BHI broth (data not shown), suggesting that agrACDB is a single transcript, similar to *S. aureus* agr RNAII.

In conclusion, we demonstrate that the agr locus modulates known *C. difficile* virulence factors in vitro and has a contributory role in colonization and relapse of epidemic *C. difficile* 027 in vivo. We propose that this is due to the transcriptional regulatory control of the agr locus and have demonstrated its effect on the expression of multiple determinants by RNA sequencing.

ACKNOWLEDGMENTS

This project was funded by the Wellcome Trust (grant numbers 086418/Z, 098051, and 086418) and a Medical Research Council New Investigator Research Grant (T.D.L.; grant 93614).

We are grateful to John Heap and Nigel Minton for plasmids pMTL007C-E2 and pMTL-84151.

REFERENCES

31. Marsden GL, Davis IJ, Wright VJ, Sebaihia M, Kuijper EJ, Minton NP.

32. Wilson KH.

33. Wren BW, Tabaqchali S.

ison of OG1RF and an isogenic *fsrB* deletion mutant by transcriptional analysis: the Fsr system of *Enterococcus faecalis* is more than the activator of gelatinase and serine protease. J. Bacteriol. 188:2875–2884.

