First-event or marginal estimation of cause-specific hazards for analysing correlated multivariate failure-time data?


Tai, BC; De Stavola, BL; de Gruttola, V; Gebski, V; Machin, D; (2008) First-event or marginal estimation of cause-specific hazards for analysing correlated multivariate failure-time data? Statistics in medicine, 27 (6). pp. 922-36. ISSN 0277-6715 DOI: https://doi.org/10.1002/sim.2944

Full text not available from this repository.

Abstract

In the analysis of multivariate failure-time data, the effect of a treatment or an exposure on the hazard of each failure type is sometimes evaluated using only the information on the first event that occurs in every individual, ignoring all events that follow. A Cox proportional hazards model may be fitted to such data, yielding a cause-specific hazard ratio (HR) estimate of the exposure for each failure type conditional on surviving all other failure types. However, such an estimate would not fully utilize all the available information on event times. Alternatively, a marginal approach may be implemented to model the time distribution of each failure type beyond the subject's first failure to (any) second and later failures. We investigate the performance of these two approaches by simulating positive and negative correlated event times from exponential distributions. Surprisingly, our results suggest that the first-event-only method (when multiple failures are possible) performs as well as the marginal method in most practical situations. Generally, for a modest sample size of 400, it is possible to achieve at least 85 per cent coverage of the true marginal HR with the first-event method. Although the coverage is poor for a correlation of 0.7 and beyond, such a high correlation between competing event times may be biologically rather implausible.

Item Type: Article
Faculty and Department: Faculty of Epidemiology and Population Health > Dept of Medical Statistics
Research Centre: Centre for Global Non-Communicable Diseases (NCDs)
PubMed ID: 17551931
Web of Science ID: 253782600009
URI: http://researchonline.lshtm.ac.uk/id/eprint/9753

Statistics


Download activity - last 12 months
Downloads since deposit
0Downloads
283Hits
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item