van Kerkhove, MD; Parsonnet, J; Weingart, M; Tompkins, LS (2006) Investigation of mediastinitis due to coagulase-negative staphylococci after cardiothoracic surgery. Infection control and hospital epidemiology, 27 (3). pp. 305-307. ISSN 0899-823X DOI: 10.1086/503176

Downloaded from: http://researchonline.lshtm.ac.uk/9047/

DOI: 10.1086/503176

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: Copyright the publishers
Investigation of Mediastinitis Due to Coagulase-Negative Staphylococci After Cardiothoracic Surgery •

Author(s): Maria D. Van Kerkhove, MS; Julie Parsonnet, MD; Michal Weingart, PhD, MPH; Lucy S. Tompkins, MD, PhD

Source: Infection Control and Hospital Epidemiology, Vol. 27, No. 3 (March 2006), pp. 305-307

Published by: The University of Chicago Press on behalf of The Society for Healthcare Epidemiology of America

Stable URL: http://www.jstor.org/stable/10.1086/503176

Accessed: 01/10/2013 14:06

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Investigation of Mediastinitis Due to Coagulase-Negative Staphylococci After Cardiothoracic Surgery

Maria D. Van Kerkhove, MS; Julie Parsonnet, MD; Michal Weingart, PhD, MPH; Lucy S. Tompkins, MD, PhD

Six cases of coagulase-negative staphylococcal mediastinitis were identified in the latter half of 1999. A new preoperative cleansing solution was suspected by hospital staff to be a factor in the outbreak. We evaluated this possible risk factor along with other known and suspected surgical site infection risk factors in this case-control study.

In the latter half of 1999, the infection control department at Stanford University Medical Center (Stanford, CA) identified 6 cases of mediastinitis caused by CoNS. During the 4 years preceding this outbreak, the number of mediastinitis cases due to CoNS was stable (a mean of 1 case per year). Of the 6 cases of CoNS mediastinitis, Staphylococcus epidermidis was identified as the causal pathogen in 3. The pathogens responsible for the remaining 3 cases were not identified further. One case of CoNS mediastinitis occurred during each month except August, when 2 occurred. In this outbreak, all cases occurred in adult patients who underwent cardiothoracic surgery between July and November 1999. Molecular fingerprinting with pulsed-field gel electrophoresis (PFGE) of the 6 infecting bacterial isolates revealed that each patient was infected with a unique strain of CoNS. This suggested that the patients were not infected by a common source and that their own skin flora was the likely source of infection.

Simultaneous with the onset of the cluster of mediastinitis cases, use of a new preoperative skin cleansing solution (a combination of 62% alcohol and povidone iodine USP 5% [0.5% available iodine]) was introduced into the cardiovascular operating rooms. This unusual outbreak of mediastinitis due to pathogens that rarely cause surgical site infections (SSIs), coupled with the initiation and cessation of use of a new preoperative cleansing solution during the same interval as the outbreak, led us to hypothesize that the cleansing solution was less effective in lowering the concentration of skin flora at the surgical site than the solution used previously and, thus, that use of the new solution may have led to bacterial regrowth during the course of surgery.

METHODS

A case of mediastinitis was defined as organ or organ-space SSI that involved the chest cavity, was caused by staphylococci, occurred after a cardiothoracic surgical procedure during July–November 1999, and affected patients 30-85 years of age. All cases were reported to the infection control department, and in all cases, analysis of deep mediastinal tissue and/or bone revealed that CoNS bacterial pathogens were responsible for the mediastinal infections. The control group comprised a random selection of patients in the same age range who underwent cardiothoracic surgery during the study period. A case-control ratio of 1:4 was sought to optimize the power to detect a significant difference between the groups; however, only 22 controls met the study criteria.

A modification of the method of Pfaller^1 was used for restriction fragment analysis by PFGE. Briefly, organisms were grown overnight in broth, pelleted by centrifugation, and embedded in agarose with lysostaphin. Plugs were incubated for 1 hour at 37°C in lysing buffer and additional lysostaphin and then incubated for 1 hour at 55°C in Tris-EDTA wash buffer. Plugs were washed 5 times in wash buffer before digestion with SmaI enzyme at 30°C for an interval ranging from 2 hours to overnight. Enzyme activity was stopped with EDTA, and plugs were placed into slots on a freshly poured agarose gel. Plugs were tested in duplicate or triplicate. Electrophoresis was performed with a CHEF-DR II apparatus (BioRad) at 14°C and 125-150 mA overnight. The gel was stained with ethidium bromide and photographed digitally under UV light. Relatedness among band patterns was determined by the method of Tenover et al.2,4

This case-control study evaluated potential risk factors for the development of mediastinitis, including age; sex; duration of preoperative preparation; prophylactic antibiotic use; duration of surgery; exposure to hospital personnel, preoperative cleansing solutions, and surgical equipment; and previous heart surgery.5-12 We were unable to assess National Nosocomial Infections Surveillance System risk class13 because 11 of the 28 subjects had missing American Society of Anesthesiologists risk scores or wound classification information. Because a large number of patients had been exposed to one surgeon, “surgeon A,” the risk factor “exposure to hospital personnel” was measured as being exposed to surgeon A versus being exposed to any other surgeon at the hospital between July and November 1999. Although we suspected that use of the preoperative skin cleansing solution was a risk factor for CoNS mediastinitis and tried to account for this, the surgical report data concerning the type of preoperative cleansing solution used were found to be unreliable, and therefore we could not assess the impact of this factor.

A data collection instrument was developed to obtain information about each subject’s previous medical history, laboratory procedures performed, and surgical procedures performed. The hospital’s medical information system database was used to obtain missing information, if any, about cardiac catheterization procedures. Information regarding patients’ general health (eg, diabetes, obesity, and immune system...
was not caused by infection from a single source and, therefore, epidemiology findings initially indicated that this outbreak a greater frequency of previous heart surgery (67% vs. 9%; Mediastinitis is a serious postoperative complication.13 Molecular analysis revealed an OR of 1.01 (95% CI, 1.00-1.04) for duration of surgery and an OR of 3.00 (95% CI, 0.08 to ∞) for previous heart surgery. Because all the patients in the case group were operated on by surgeon A, the relationship between surgery by surgeon A and mediastinitis could not be calculated.

R E S U L T S

A total of 6 patients (5 men and 1 woman) developed CoNS mediastinitis during the study period. The cases generally were older than the controls (72 vs 65 years old; \(P = .13 \)) and had a higher frequency of previous heart surgery (67% vs. 9%; \(P < .01 \)) (Table 1). Exposure to prophylactic antibiotics, a pulmonary artery line, a cardiac catheter, and/or a transesophageal echogram probe were similar among cases and controls. Similarly, the mean duration of time of the preoperative preparation (ie, the interval between the patient entrance into the operating room and the first incision) was nearly equivalent among cases and controls in both data sets. Perhaps the most striking differences between cases and controls was the exposure to surgeon A (100% vs 36%, respectively; \(P < .05 \)) and the mean duration of surgery (392 minutes [6.5 hours] vs 270 minutes [4.5 hours], respectively; \(P < .05 \)).

Duration of surgery (odds ratio [OR], 1.01; 95% confidence interval [CI], 1.00-1.03), previous heart surgery (OR, 16.64; 95% CI, 1.45-312.65, and exposure to surgeon A (OR, 12.15; 95% CI, 1.52 to ∞) were significantly associated with mediastinitis (Table 2). Multivariate analysis revealed an OR of 1.01 (95% CI, 1.00-1.04) for duration of surgery and an OR of 3.00 (95% CI, 0.08 to ∞) for previous heart surgery. Because all the patients in the case group were operated on by surgeon A, the relationship between surgery by surgeon A and mediastinitis could not be calculated.

C O N C L U S I O N

Mediastinitis is a serious postoperative complication.13 Molecular epidemiology findings initially indicated that this outbreak was not caused by infection from a single source and, therefore, samples were not obtained from hospital personnel for culture. Analysis of cases and controls who underwent cardiovascular surgery at the hospital between July and November 1999 revealed that increased duration of surgery—a well-documented risk factor for SSI—was associated with the risk of developing mediastinitis. This led us to look more closely at the distributions of the duration of the surgery among the cases and controls, and we hypothesized that the increased duration of surgery resulted possibly from variation in surgical technique of the surgical team. Further statistical analysis found that being operated on by surgeon A to be significantly associated with the development of the disease. Patients exposed to surgeon A tended to have longer surgery durations (\(P < .01 \)); however, we were not able to evaluate whether there were significant differences in certain clinically relevant characteristics between surgeon A’s patients the other surgeons’ patients. For example, data about the subjects’ immune system status, general physical health, and preexisting conditions (such as diabetes) were not included in the analysis.

CoNS are components of the normal skin flora, and the uniqueness of each strain strongly suggests that the infection was caused by introduction of the patient’s own flora during surgery. Although we could not determine the effects of preoperative skin preparation on infection, the new product had a lower concentration of the bactericidal component (povidone iodine) than did other products. Thus, its effect on the inhibition of growth of skin flora could have progressively dimin-

TABLE 1. Characteristics of Subjects Who Underwent Cardiothoracic Surgery at Stanford University Medical Center (Stanford, CA)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Case Subjects (n = 6)</th>
<th>Control Subjects (n = 22)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years</td>
<td>71.7</td>
<td>65.3</td>
<td>.128</td>
</tr>
<tr>
<td>Male sex, % of subjects</td>
<td>83.3</td>
<td>68.2</td>
<td>.64</td>
</tr>
<tr>
<td>Preparation time before surgery, mean min</td>
<td>73</td>
<td>71.1</td>
<td>.832</td>
</tr>
<tr>
<td>Contact with surgeon A, % of subjects^a</td>
<td>100</td>
<td>36.4</td>
<td>.016</td>
</tr>
<tr>
<td>Duration of surgery, mean min</td>
<td>392</td>
<td>269.7</td>
<td>.038</td>
</tr>
<tr>
<td>Previous heart surgery, % of subjects</td>
<td>66.7</td>
<td>9.1</td>
<td>.01</td>
</tr>
</tbody>
</table>

^a See Methods for a brief description of how the values for surgeon A were calculated.

TABLE 2. Univariate and Multivariate Analyses of Risk Factors for Mediastinitis After Cardiothoracic Surgery

<table>
<thead>
<tr>
<th>Statistical Analysis, Variable</th>
<th>Odds Ratio (95% Confidence Interval)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact with surgeon A^a</td>
<td>12.15 (1.52 to ∞)</td>
<td>.02</td>
</tr>
<tr>
<td>Duration of surgery</td>
<td>1.01 (1.00 to 1.03)</td>
<td>.01</td>
</tr>
<tr>
<td>Previous heart surgery</td>
<td>16.64 (1.45 to 312.65)</td>
<td>.02</td>
</tr>
<tr>
<td>Multivariate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact with surgeon A^b</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Duration of surgery</td>
<td>1.014 (1.00 to 1.04)</td>
<td>.10</td>
</tr>
<tr>
<td>Previous heart surgery</td>
<td>3.00 (0.08 to ∞)</td>
<td>.50</td>
</tr>
</tbody>
</table>

^a The median unbiased estimate is presented (the regular maximum likelihood estimate could not be calculated).

^b Unable to calculate.
ished over time. Additionally, after use of the suspected preoperative skin preparation was stopped, the CoNS infection rates among patients undergoing cardiothoracic surgery returned to baseline. A reasonable but unprovable hypothesis would be that the combination of prolonged duration of surgery with diminishing effect of the preoperative skin solution led to regrowth of the patients' CoNS during the procedure and, thus, enhanced the opportunity for contamination of the mediastinum. Cardiovascular procedures tend to have a longer duration than abdominal or orthopedic surgery procedures, for example. Thus, the decision about which preoperative cleansing solution should be used during cardiovascular surgery should consider the effectiveness of the product to reduce regrowth of skin flora over an extended period.

ACKNOWLEDGMENTS

We thank Brenda Bouvier, Tammy Schaffner, and Alexandra (Sasha) Madison, for their generous help in obtaining information about the subjects; and Ray Balise, PhD, and Edmund Lau, MS, for their advice in statistical analysis.

Ms. Van Kerkhove and Dr. Parsonnet are from the Department of Health, Research, and Policy, and Drs. Parsonnet and Tompkins are from the Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University Medical Center, Stanford, California. Ms. Van Kerkhove is from the Exponent Health Sciences Practice, New York, New York. Prof. Weingart is from Exponent Health Sciences Practice, Oakland, California.

Address reprint requests to Maria D. Van Kerkhove, MS, Exponent Health Sciences Practice, 420 Lexington Avenue, Suite 1740, New York, New York 10170 (mvankerkhove@exponent.com).

Received August 4, 2004; accepted January 6, 2005; electronically published February 28, 2006.

© 2006 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2006/2703-0015$15.00.

REFERENCES

