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Multilocus analysis of single nucleotide polymorphism haplotypes is a promising approach to dissecting the genetic
basis of complex diseases. We propose a coalescent-based model for association mapping that potentially increases
the power to detect disease-susceptibility variants in genetic association studies. The approach uses Bayesian partition
modelling to cluster haplotypes with similar disease risks by exploiting evolutionary information. We focus on
candidate gene regions with densely spaced markers and model chromosomal segments in high linkage disequilibrium
therein assuming a perfect phylogeny. To make this assumption more realistic, we split the chromosomal region of
interest into sub-regions or windows of high linkage disequilibrium. The haplotype space is then partitioned into
disjoint clusters, within which the phenotype–haplotype association is assumed to be the same. For example, in case-
control studies, we expect chromosomal segments bearing the causal variant on a common ancestral background to be
more frequent among cases than controls, giving rise to two separate haplotype clusters. The novelty of our approach
arises from the fact that the distance used for clustering haplotypes has an evolutionary interpretation, as haplotypes
are clustered according to the time to their most recent common ancestor. Our approach is fully Bayesian and we
develop a Markov Chain Monte Carlo algorithm to sample efficiently over the space of possible partitions. We compare
the proposed approach to both single-marker analyses and recently proposed multi-marker methods and show that
the Bayesian partition modelling performs similarly in localizing the causal allele while yielding lower false-positive
rates. Also, the method is computationally quicker than other multi-marker approaches. We present an application to
real genotype data from the CYP2D6 gene region, which has a confirmed role in drug metabolism, where we succeed in
mapping the location of the susceptibility variant within a small error.
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Introduction

Genetic association studies have emerged as a powerful
tool for dissecting the genetic contribution to complex,
common diseases. Their main goal is to identify inter-
individual genetic variants, mostly single nucleotide poly-
morphisms (SNPs), which show the strongest association with
the phenotype of interest, either because they are causal or,
more likely, statistically correlated or in linkage disequili-
brium (LD) with an unobserved causal variant(s). Univariate
analyses that test each marker for association with the
phenotype can be inefficient, as they do not take into
account the patterns of LD among markers as opposed to
multi-marker or haplotype-based approaches.

Haplotype-based analyses are promising and their use is
supported by results from recent studies that suggest that the
human genome consists of block-like regions of ancestrally
conserved chromosomal segments, whose boundaries are
defined by recombination hotspots [1–3]. The main difficulty
with a haplotype-based approach is that, for a large number
of SNPs, there may be many haplotypes, usually a few
common and several rare ones. One solution is to model all
rare haplotypes as a single ‘‘exposure’’ group, but this
approach could lead to loss of information.

An alternative approach to sensibly reducing the number
of haplotypes considered is to cluster structurally ‘‘similar’’

haplotypes, as they are more likely to carry the same
susceptibility allele and therefore have similar associated risk
[4]. The rationale behind this approach is that haplotypes that
inherit a causal mutation, e.g., case haplotypes for a
dichotomous trait, tend to also inherit alleles at markers
nearby due to LD. Therefore, case haplotypes are expected to
be more similar around the causal locus compared to control
haplotypes. Hence, similar haplotypes are grouped together
in homogeneous clusters, within which disease risk is assumed
constant [4]. A key issue with such haplotype clustering
methods is the choice of the metric used to determine how
similar one haplotype is to another. The similarity metric can
be, for example, the proportion of SNPs at which two
haplotypes are the same [5], or it can exploit the ancestral
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relationships of haplotypes by adopting the notion that if the
causal mutation has occurred only once then haplotypes
share a common ancestry at that point [6–11].

One recently proposed clustering method is that of
Waldron et al. [11]. They modify the ideas of Molitor et al.
[8] by looking for only one cluster with the highest disease
risk haplotypes, and by modifying the similarity score to
account for population allele frequencies and to allow allele
mismatches. In particular, Waldron et al. [11] define a
hypothetical ancestral haplotype (namely the cluster centre)
from which the members of the cluster are thought to have
descended, and they measure the similarity of the centre with
each observed haplotype around a putative causal locus. The
similarity metric is calculated for all windows containing the
putative location. Each window score is the sum of the SNP
scores and the final score for each unique haplotype is taken
to be the maximum window score. The window with the
maximum score is the part of the ancestral haplotype that the
haplotype inherited. The cluster is defined to consist of all
haplotypes whose similarity score exceeds some threshold.
The ancestral haplotype, the causal locus, the penalty
parameter for allele mismatches, and the threshold are
random variables and are updated with a Markov Chain
Monte Carlo (MCMC) algorithm.

Clustering approaches can be thought of as an empirical
approximation to the more formal coalescent approach,
which is promising for LD mapping [12], as the coalescent is
more likely to infer a better approximation to the evolu-
tionary history of mutations of a set of haplotypes. In fact, the
genealogy of a sample of haplotypes contains the patterns of
genetic diversity of the distinct haplotypes, with putative
disease mutations embedded within. Several approaches
based on the coalescent have been developed for fine-scale
mapping [13,14]. However, most of these methods are
effective only for a small number of markers and individuals.

The coalescent assumes that the variation in haplotypes
can be described only by their mutational history. However,
to approximate the shared ancestry among haplotypes more

accurately, a fine-mapping approach may need to account for
recombination. This can be achieved using methods that
consider ancestral recombination graphs (ARG) [15, 16], but
their computational complexity is still high.
In this paper, we propose a Bayesian partition model [17] to

cluster haplotypes according to their associated level of risk by
exploiting evolutionary information. The method is computa-
tionally fast and can handle large datasets with many markers
and/or subjects. Bayesian partition models have been used in
genetic association studies by Seaman et al. [18] for highly
polymorphic candidate genes and by Molitor et al. [8] and
Morris [19,20] for candidate genes or small candidate regions.
We focus on candidate gene regions with densely spaced
markers and assume that a perfect phylogeny holds over short
chromosomal lengths in the region. The perfect phylogeny
assumption implies that each SNP has arisen as a result of a
single ancestral mutation. Recombination, parallel mutations,
or backmutations can cause the perfect phylogeny assumption
to be violated. The distance used for the clustering method has
an evolutionary interpretation, as sequences are clustered
together depending on the time to their most recent common
ancestor in the genealogy. In particular, we proceed by
splitting the chromosomal region of interest into sub-regions
or windows where the perfect phylogeny assumption holds.
Focusing on case-control studies, at each step of the MCMC
algorithm we select a window, i.e., a perfect phylogeny, and we
then partition the haplotype space into disjoint clusters on the
basis of the relative ages of themarkers in the selected window.
Each cluster is then assigned a specific risk. Potentially,
haplotypes can be clustered on the basis of any tree and each
SNP has, a priori, a positive probability to be a cluster centre.
The number and centres of the clusters are both assumed
unknown, a priori. Our approach is fully Bayesian and we
obtain posterior samples of quantities of interest, sampling
over the space of possible partitions. We are particularly
interested in the posterior probability of each SNP being a
cluster, since high values correspond to markers or locations
where case and control haplotypes are best separated,
suggesting the presence of a disease susceptibility variant in
the region. We assess the performance of the proposed
method in a simulation study by comparing it with single
locus analysis; to the haplotype-basedmethod ofWaldron et al.
[11], as implemented in the software HAPCLUSTER; and to
the ARG-based method of Minichiello and Durbin [16],
implemented in the software Margarita. We consider various
simulation scenarios differing in genetic relative risk, minor
allele frequency of the causal allele, number of cases and
controls, disease model, marker density, and recombination
rate. Results indicate that the proposed method performs
similarly in localizing the causal allele while yielding lower
false-positive rates. Also, the method is computationally faster
than other multi-marker approaches. We also apply the
proposed method to real genotype data from the CYP2D6
gene region, which has been shown to be associated with drug
metabolism [21], and we succeed in mapping the location of
the susceptibility variant within a small error.

Results

Simulation Studies
We investigated the performance of the proposed method

using simulated case-control data under different scenarios.
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Author Summary

Genetic association studies offer great promise in dissecting the
genetic contribution to complex diseases. The underlying idea of
such studies is to search for genetic variants along the genome that
appear to be associated with a trait of interest, e.g., disease status for
a binary trait. One then proceeds by genotyping unrelated
individuals at several marker sites, searching for positions where
single markers or combinations of multiple markers on the paternally
and maternally inherited chromosomes (or haplotypes) appear to
discriminate among affected and unaffected individuals, flagging
genomic regions that may harbour disease susceptibility variants.
The statistical analysis of such studies, however, poses several
challenges, such as multiplicity and false-positives issue, due to the
large number of markers considered. Focusing on case-control
studies, we present a novel evolution-based Bayesian partition
model that clusters haplotypes with similar disease risks. The novelty
of this approach lies in the use of perfect phylogenies, which offers a
sensible and computationally efficient approximation of the ancestry
of a sample of chromosomes. We show that the incorporation of
phylogenetic information leads to low false-positive rates, while our
model fitting offers computational advantages over similar recently
proposed coalescent-based haplotype clustering methods.



Results were compared to those obtained from the univariate
Fisher’s exact test of association at each SNP maker and those
using the HAPCLUSTER algorithm [11]. The ARG-based
Margarita [16] was only run on the default scenario as defined
below because of computational time constraints. We choose
HAPCLUSTER as a representative of alternative haplotype-
clustering methods since Waldron et al. [11] found (in
simulation studies) that it performs better than other similar
methods such as BLADE [7] and DHSMAP [6]. They also
found that their distance metric outperformed those of
Durrant et al. [10] and Yu et al. [9]. An alternative ARG-based
method is that of Zöllner and Pritchard [15]. However, in trial
runs we found that it is not computationally feasible for such
an extensive simulation study.

We used the software FREGENE [22] to simulate two pools
of 20,000 haplotypes, corresponding to a uniform or variable
recombination rate, spanning a 1-Mb chromosomal region.
The population with constant recombination rate was
simulated from the simple Wright-Fisher model with recom-
bination and mutation rate equal to 2.33 10�8 and 1.13 10�8

per site per generation, respectively. The second population
was simulated with recombination hotspots. We assumed that
60% of all recombination events take place in recombination
hotspots, which occur on average every 200 kb and are 2 kb in
length. Also, 1% of the genome was assumed to consist of
hotspots. The recombination rate within hotspots was 6.56 3

10�7 per site per generation, and 4.44 3 10�9 between
hotspots [22]. The mutation rate was 2.3 3 10�8 per site per
generation.

To reflect ascertainment bias, we draw markers from the
set of SNPs having minor allele frequency (MAF) larger than
1%. From these markers, 1,000 (or 340 depending in the SNP
density chosen) SNPs were selected with probability propor-
tional to p(1� p), where p is the allele frequency of a marker
in the sample, to reflect an extra ascertainment bias towards
markers with two common alleles and to give 1- (or 3-) kb
average SNP density. A causative locus was then selected at
random with allele frequency between p�0.005 and pþ0.005,
where p was in a range between 0.02 and 0.3. Then, for each
pair of randomly sampled haplotypes, the case/control status
was assigned according to either an additive or dominant
disease model for the genotypes at the causal site assuming a
disease prevalence K equal to 1% while the genetic relative
risk of the heterozygote genetic relative risk (GRR[Aa]) varied
between 1.2 and 2.4. Specifically, if fi is the penetrance
function given i copies of the causal allele, i ¼ 0, 1, 2, and
GRR(Aa)¼ r¼ f1/f0, then following the liability model used in
Tzeng [23] and assuming HWE, we have f0 ¼ K/(1 � 2p þ 2pr)
and f2¼ 2rf0� f0 for an additive disease model, and f0¼K/(1�
2p þ 2pr þ p2 � rp2) and f2 ¼ f1 for a dominant one. Pairs of
haplotypes were sampled with replacement from the 20,000
haplotypes until N cases and N controls were obtained. Thus,
each case (control) individual contributed two case (control)
haplotypes to the analysis. The sample size of cases and
controls N also varied between 200 and 2,000.

Next, we removed the causal allele from the dataset and,
using the algorithm described in Materials and Methods, we
found the perfect phylogenies in the dataset. The average
number of gene trees was 200 and the average number of
SNPs in a gene tree was four. Using the SEQ2TR and the
TREEPIC software of Griffiths [24], we obtained the relative
ages of the mutations in the different phylogenies. We

assumed a Beta(1,1) prior for the haplotype risks implying
that, a priori, each observed haplotype has a 0.5 risk of
disease.
The MCMC algorithm was run for 100,000 iterations with a

burn-in of 10,000 iterations for 50 datasets across different
combinations of the simulation parameters. We define the
‘‘default’’ scenario as that corresponding to having N¼ 1,000
cases and controls simulated with variable recombination
rate under an additive disease model with 1.6 GRR(Aa), a SNP
density of 1 kb, and a causal allele with 5% MAF.
The computing time for a dataset of 1,000 markers and

4,000 haplotypes was approximately 23 min (14 min to
construct the phylogenies and 9 min to run the algorithm) on
an Intel Xeon 3.40GHz processor with 2 Gb of memory. The
corresponding computing time for HAPCLUSTER was 24
min. Note that while HAPCLUSTER is written in Cþþ, the
proposed method is implemented in R. As mentioned earlier,
we compare the results from Margarita only under the default
simulation scenario. To run Margarita on a single dataset of
1,000 markers and 4,000 haplotypes, we split the data into
overlapping windows of 200 markers and then run the
algorithm separately on each window, as suggested by
Minichiello (personal communication). This resulted in five
windows for a single dataset. Each window took 15–16 h to
run with 10,000 permutations on 100 ARGs on a high
computing cluster of 2.66GHz Xeon 5150 CPUs, making an
exhaustive comparison of the two approaches impractical. An
R package [25] called BETA (Bayesian Evolutionary Tree
based Association analysis) implementing the method de-
scribed in this article is available upon request from IT
(ioanna.tachmazidou03@ic.ac.uk).

One Liability Allele
The results from a single simulated dataset under the

default scenario are shown in Figure 1, where the dot on the
x-axis indicates the position of the single susceptibility
mutation. For the proposed method, the marginal posterior
probability of association, i.e., the probability of each SNP
being a cluster centre, and the Bayes factor in favour of
association at each marker are shown. We also report the
(log)p-values from Margarita and Fisher’s exact test, and the
posterior density of location from HAPCLUSTER. The
estimate of the causal mutation is based on the marker with
the minimum p-value (when using the single locus test and
Margarita), the maximum Bayes factor (BETA), or the mode
of the posterior distribution of location (HAPCLUSTER). For
this dataset, all methods identified a marker within 10 kb of
the true causal allele except for HAPCLUSTER (502-kb
distance). The association signal is however notably clearer
under the proposed method.
The same dataset contained 208 perfect phylogenies and

Table 1 reports the posterior probability and Bayes factor of
a tree carrying the causal locus, in which the numbers in
brackets is the tree (all remaining trees had posterior
probability less than 0.015). The true causal allele was
embedded within tree 7 with marker S43 the closest to it.
The posterior mode of the distribution for the number of
clusters was two, including the ‘‘null’’ cluster (explained in the
‘‘Bayesian partition model’’ section of Materials and Meth-
ods), and SNP S58, which belonged to tree 10, had the highest
marginal posterior probability of being a cluster centre. All
marginal probabilities larger than 0.01 and corresponding
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Bayes factors are given in Table 2. The physically closest SNP
to the true susceptibility allele in the table is S47, also
embedded within tree 7. Figure 2 shows the perfect phylogeny
with the highest posterior probability of containing the
susceptibility allele (tree 10), together with the case and
control multiplicities of each unique haplotype in the tree.

Two Causal Alleles
The proposed approach is not limited to the case of a

single variant in a single candidate region. Figure 3 shows the

results from a simulated dataset in which two liability alleles
in separate regions (possibly corresponding to two separate
candidate regions) contribute independently to disease
susceptibility. The results reported correspond to genotype
data for 200 cases and controls simulated assuming a variable
recombination rate, an additive disease model, SNP density of
1 kb, MAF of causal alleles of 10–15%, and GRR(Aa) ¼ 3. In
total there were 184 perfect phylogenies with the two liability
alleles belonging to trees 2 and 183. In Figure 3, the dots on
the x-axis indicate the positions of the two susceptibility

Figure 1. Results from BETA, Margarita, HAPCLUSTER and Fisher’s Exact Test from a Single Dataset with One Susceptibility Allele under the Default

Scenario

Marginal posterior probability of association from BETA (top left), Bayes factor in favour of association at each marker from BETA (top right), p-values
from Margarita and Fisher’s exact test (bottom left), and posterior density of location from HAPCLUSTER (bottom right), where the dot on the x-axis
indicates the position of the susceptibility mutation.
doi:10.1371/journal.pgen.0030111.g001
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mutations. For this particular dataset, the Bayesian model
appears to perform better than the single locus analysis, both
in terms of location error and in reducing noisy associations.
Trees 1 and 179 had the highest posterior probability of
carrying the causal alleles, and the posterior mode of the
distribution for the number of clusters was three, including
the ‘‘null’’ cluster (see ‘‘Bayesian partition model’’ section of
Materials and Methods). The distances between the loci with
the highest marginal posterior probabilities of being cluster
centres and the true locations of the susceptibility alleles
were 4 kb and 19 kb, while the corresponding distances for
the SNPs with the two smallest p-values were 13 kb and 36 kb.
The advantage of the proposed method is likely due to the
fact that we fully exploit the LD information around the
causal alleles, incorporating the evolutionary information
through the perfect phylogeny assumption.

Performance Comparison
Tables 3–6 report the distances from the true location of

the liability variant, together with its standard error for our
method, HAPCLUSTER, and the single locus Fisher’s exact
tests under the different simulation scenarios. In each case,
results shown are averages over 50 simulated datasets. The
location of the causal allele is estimated by the SNP with the
minimum p-value for Fisher’s exact test and Margarita, by the
posterior mode using a kernel density estimate for
HAPCLUSTER, and by the SNP with the maximum Bayes
factor or marginal posterior probability of being a cluster
centre for the proposed model. For BETA, we report results
both when the number of clusters is random and when it is
fixed at two. Although the former assumption is more
flexible, fixing the number of clusters to two is more sensible
if, a priori, one expects only one causal mutation in the
candidate region. Also, in the latter case, results are more
directly comparable with those from HAPCLUSTER, which
assumes only two clusters. In each table, the results under the

default scenario are shown for ease of comparison. The
average distance from the true location for Margarita over 50
replicates under the default simulation scenario is reported
in Table 7, in which PERM p-value is the markerwise p-value
calculated by permutation, EVD p-value is the markerwise p-
value calculated by fitting an extreme value distribution, and
EXP p-value is the experimentwise p-value calculated by
permutation, as given by Margarita. Overall, there are no
significant differences among the methods in terms of
localization error. Figures S1–S14 show typical outputs from
each of the methods considered under the default scenario.
Note that for BETA, results are from the general version with
a random number of clusters, as for all graphs shown. In the
Supporting Information, we also report results of perform-
ance comparison over 100 datasets simulated under alter-
native scenarios (separated in Tables S1 and S2 depending on
the MAF of the causal SNP).
Similarly, there were no major differences in the distribu-

tion of the distances of the estimated and true location of the
susceptibility allele for the different methods. Figure 4 plots
the cumulative probability that the identified location is
within some distance from the true location, over the 50
replicates and the default scenario. For reasonable location
errors, the methods perform equally, with HAPCLUSTER
possibly showing a slight advantage.
On the other hand, the advantage of the proposed

approach is evident when considering the number of false-
positive associations over replicates, as well as the clarity in
association signals. To quantify the latter, we consider a
window around the causal SNP and calculate the average
number of significant associations within that window across
the 50 replicates. Results are shown in Figure 5. For BETA
and single-marker tests, we report results from using two
different significance thresholds, namely a Bayes factor in
favour of association larger than or equal to 10 or 150
(corresponding to a strong or decisive signal, [26]) or a p-
value smaller than or equal to 0.05 or the Bonferroni-
adjusted value (0.05 divided by the number of markers in each
dataset), respectively. For Margarita, we consider the marker-
wise p-values calculated by permutation, while ‘‘Margarita
Bonferroni’’ and ‘‘Margarita corrected’’ correspond to p-
values corrected for multiple testing using Bonferroni and
permutation, respectively. Results for HAPCLUSTER are not
reported, as this software does not provide markerwise
estimates of measures of association.

Table 1. Posterior Probability of Each Gene Tree Carrying the
Liability Allele and the Corresponding Bayes Factor in Favour of
Association with the Disease

Gene Tree (10) (9) (6) (8) (7)

Posterior probability 0.202 0.055 0.035 0.033 0.017

Bayes factor 52.4 12 7.6 7.1 3.6

The numbers in parentheses denote the tree (only the five trees with higher posterior
probabilities are reported).
doi:10.1371/journal.pgen.0030111.t001

Table 2. Marginal Posterior Probability of Each SNP Being a
Cluster Centre and the Corresponding Bayes Factor (Only Those
SNPs with Posterior Probabilities Greater than 0.01 Are Reported)

SNP S58 S53 S36 S48 S57 S47 S59

Marginal probability 0.197 0.051 0.025 0.02 0.02 0.019 0.012

Bayes factor 93.56 21.57 11.18 8.82 8.13 7.56 4.69

doi:10.1371/journal.pgen.0030111.t002

Figure 2. Perfect Phylogeny with the Highest Posterior Probability of

Containing the Susceptibility Allele

At the bottom of each branch we report the case and control
multiplicities of each unique haplotype in the tree.
doi:10.1371/journal.pgen.0030111.g002
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The average number of associations found by BETA with a
threshold of 10 for the Bayes factor remains stable as the
distance increases and is lower than that given by all other
methods apart from the single-marker Fisher’s exact test
results using a conservative Bonferroni adjustment. The
latter, however, still yields a noisier signal than BETA under
the more stringent threshold of 150 for the Bayes factor
(bottom two lines in Figure 5).

To compare the power of the different methods, we define
a window of 100 kb on either side of the causative allele and
calculate the proportion of the 50 replicates yielding a
significant association within the window, as in Minichiello
and Durbin [16]. The significance of a signal is assessed using

the rules described in the previous paragraph. Figure 6 shows
the probability of detecting a significant association within
100 kb of the causal SNP under various scenarios and over the
50 replicates. In each plot, we vary a simulation parameter
along the x-axis while assuming default values for the
remaining ones. As mentioned earlier, Margarita was run
only for the default scenario. We were unable to obtain
results from HAPCLUSTER, as this method does not give
markerwise measures of association. From the results in
Figure 6, BETA using the strong rule has more power than
both the single locus approach and Margarita (default
scenario only) with multiplicity-corrected results by permu-
tation, and slightly less power than plain Margarita. Un-

Figure 3. Results of Fisher’s Exact Test and BETA from a Single Dataset with Two Susceptibility Alleles

p-Values from Fisher’s exact test for single-marker disease association (top left), the marginal posterior probability of association from BETA (top right),
and the Bayes factor in favour of association at each marker from BETA (bottom centre), where the dots on the x-axis indicate the positions of two
susceptibility mutations.
doi:10.1371/journal.pgen.0030111.g003
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corrected single locus test is the most powerful approach,
having, however, the worst performance in terms of false
positives.

As noted earlier, an advantage of the proposed approach is
the ability to remove much of the noisy associations. To
investigate this further, we calculated the false positive rate
from BETA and compared the results with the analogous
quantity for Margarita and the univariate analysis. Specifi-
cally, given threshold p-values for Margarita and Fisher’s
exact test and threshold Bayes factors for BETA, we defined
as false positives Mfp, those markers with smaller p-values or
larger Bayes factors lying outside a window of 100 kb either
side of the causal site [27]. For each dataset with M markers,
the false positive rate is then Mfp/M. Figure 7 shows the mean

false positive rates over the replicates and for different
scenarios. The threshold values for the Bayes factors and the
p-values are the same as in the previous analyses. For
Margarita, the three points correspond to the default
scenario and markerwise p-values calculated by permutation
or experimentwise p-values calculated by permutation. The
false-positive rates for BETA are very low under all
simulation scenarios. Under the default scenario, BETA
controls the false positives much better than Margarita.
Results for HAPCLUSTER are not reported, since, as
mentioned earlier, the method does not provide markerwise
measures of association. Note that the choice of a 100-kb
window is arbitrary; a 200-kb window was also used
(unpublished data), which did not alter the conclusions about
false positives.

Table 3. Average Location Errors (in kb) for BETA, HAPCLUSTER,
and Single Locus Analysis for Different Number of Cases and
Controls with All Other Simulation Parameters Set at Default
Values

Methods Compared

in Terms of

Average Distance

(Standard Error)

Number of Cases/Controls

200 500 1,000a 1,500 2,000

BETA 409.51 213.87 206.22 169.26 127.57

(37.05) (34.86) (29.78) (33.67) (43.56)

BETA (fixed number of clusters) 342.43 227.90 235.96 99.21 112.05

(39.95) (35.28) (33.10) (23.35) (41.20)

Minimum p-value 333.21 300.71 243.73 127.72 121.39

(41.36) (40.59) (36.79) (31.18) (40.95)

HAPCLUSTER 411.66 335.49 234.73 113.11 118.60

(38.25) (42.53) (39.78) (29.40) (38.59)

Results are averages (standard errors) over 50 repeats
aThis scenario corresponds to the default which assumes variable recombination rate,
additive disease model, 1,000 cases and controls, SNP density equal to 1 kb, MAF of causal
allele equal to 5%, and 1.6 GRR(Aa).
doi:10.1371/journal.pgen.0030111.t003

Table 4. Average Location Errors (in kb) for BETA, HAPCLUSTER,
and Single Locus Analysis for Different Allele Frequencies of the
Causative Variant with All Other Simulation Parameters Set at
Default Values

Methods Compared

in Terms of

Average Distance

(Standard Error)

Minor Allele Frequency of Causal SNP

0.02 0.05a 0.1 0.3

BETA 265.08 206.22 74.69 7.88

(31.1) (29.78) (17.04) (1.33)

BETA (fixed number of clusters) 211.16 235.96 67.38 7.82

(22.56) (33.1) (18.51) (1.3)

Minimum p-value 266.07 243.73 71.4 7.16

(28.43) (36.79) (18.8) (1.3)

HAPCLUSTER 366.21 234.73 75.33 6.93

(36.4) (39.78) (23.95) (1.11)

Results are averages (standard errors) over 50 repeats.
aThis scenario corresponds to the default which assumes variable recombination rate,
additive disease model, 1000 cases and controls, SNP density equal to 1 kb, MAF of causal
allele equal to 5%, and 1.6 GRR(Aa).
doi:10.1371/journal.pgen.0030111.t004

Table 5. Average location errors (in kb) for BETA, HAPCLUSTER
and single locus analysis for different genotype relative risks with
all other simulation parameters set at default values

Methods Compared

in Terms of

Average Distance

(Standard Error)

Genetic Relative Risk

1.2 1.4 1.6a 1.8 2 2.2 2.4

BETA 323.85 326.73 206.22 120.19 65.98 73.02 51.66

(33.99) (39.93) (29.78) (24.13) (14.61) (13.12) (17.42)

BETA (fixed) 303.61 295.81 235.96 127.25 50.98 64.57 52.32

(34.39) (37.58) (33.10) (25.26) (8.76) (11.91) (12.70)

Minimum p-value 281.55 284.36 243.73 149.63 48.10 70.11 39.64

(35.83) (38.98) (36.79) (30.41) (8.24) (18.78) (9.26)

HAPCLUSTER 374.81 351.72 234.73 177.75 64.52 86.58 29.57

(41.80) (2.92) (9.78) (8.18) (3.92) (6.32) (4.17)

Results are averages (standard errors) over 50 repeats.
aThis scenario corresponds to the default that assumes variable recombination rate,
additive disease model, 1,000 cases and controls, SNP density equal to 1 kb, MAF of causal
allele equal to 5%, and 1.6 GRR(Aa).
doi:10.1371/journal.pgen.0030111.t005

Table 6. Average Location Errors (in kb) for BETA, HAPCLUSTER,
and Single Locus Analysis for a Dominant Disease Model, SNP
Density of 3 kb, or Uniform Recombination

Methods Compared

in Terms of

Average Distance

(Standard Error)

Defaulta Dominant Spacing

3kb

Uniform

BETA 206.22 227.84 269.68 259.03

(29.78) (34.95) (34.90) (31.70)

BETA (fixed number of clusters) 235.96 218.36 248.66 225.95

(33.10) (35.10) (34.53) (29.35)

Minimum p-value 243.73 240.25 213.45 209.73

(36.79) (38.39) (34.66) (31.59)

HAPCLUSTER 234.73 193.66 289.28 259.27

(39.78) (36.44) (41.03) (34.10)

In each case, the remaining simulation parameters are set at their default values. The first
column corresponds to the default scenario. Results are averages (standard errors) over 50
repeats.
aThis scenario corresponds to the default which assumes variable recombination rate,
additive disease model, 1,000 cases and controls, SNP density equal to 1 kb, MAF of causal
allele equal to 5%, and 1.6 GRR(Aa).
doi:10.1371/journal.pgen.0030111.t006
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Finally, we constructed 50 datasets under a null model of
no disease association, and we calculated the false-positive
rate. For the univariate analysis, this was 4.048% (p-value
�0.05) and 0 when using Bonferroni correction, while BETA
resulted in a false-positive rate of 0.138% (Bayes factor �10)
and 0.002% (Bayes factor �150). Therefore, the proposed
model appears to be reliable in confirming association.

Application to CYP2D6 Data
The CYP2D6 gene on Chromosome 22q13 has a known role

in drug metabolism, with multiple polymorphisms of CYP2D6
gene causing a recessive poor drug metaboliser phenotype.
Hosking et al. [21] genotyped 1,018 individuals at 32 SNP
markers across a 890-kb region flanking the CYP2D6 gene.
From the 1,018 individuals, 41 were predicted to have the
poor metaboliser phenotype and were thus treated as cases.
This dataset has been used by Morris et al. [28], Maniatis et al.
[29], Waldron et al. [11], and Verzilli et al. [27] to test their proposed LD mapping methods. Hosking et al. [21] reported

a 390-kb region of significance around CYP2D6, Morris et al.
[28] gave a 95% posterior confidence interval of 185 kb, and
Maniatis et al. [29] yielded a 172-kb support interval, while
Waldron et al. [11] and Verzilli et al. [27] refined it to 160 kb
and 79 kb, respectively.
We used PHASE [30] to resolve ambiguous haplotype pairs

for each individual. The pair for each individual was chosen
at random according to the posterior probability of the
haplotype pair provided by PHASE, and the resulting dataset
was analysed as phase-known haplotype data. To investigate
the effect of phase uncertainty, we repeated the above
procedure ten times to obtain ten independent datasets,
and ran the proposed method separately on each of these
datasets.
Since the average SNP density for this dataset is 30 kb, we

used a geometric prior distribution on the number of SNPs of
each tree with parameter p equal to 0.98 (see ‘‘Model
specification’’ section of Materials and Methods). An inter-
pretation of this approach is that there is prior belief that the
causal allele lies in a single-marker tree. Moreover, we fixed
the number of clusters to be two, i.e., we expect a single causal
location.
Each dataset consisted of 26 perfect phylogenies except for

one that had 27. Most of the datasets resulted in 23 trees that
contained a single SNP, two trees with two SNPs, and one tree
with five SNPs. In all analyses, only gene trees 17, 18, 19, and
20 resulted in a non-zero posterior probability of carrying the

Table 7. Average Distance (in kb) from the True Location of the
Liability Loci Together with Its Standard Error for Margarita over
50 Replicates under the Default Simulation Scenario

Margarita

Average Distance

and Standard Error

Permutation

p-Value

Extreme Value

Distribution

p-Value

Experimentwise

Permutation

p-Value

Average distance (kb) 212.31 211.71 200.77

(Standard error) (35.28) (35.17) (33.49)

Permutation p-value is the Margarita markerwise p-value calculated by permutation,
extreme value distribution p-value is the Margarita markerwise p-value calculated by
fitting an extreme value distribution, and experimentwise permutation p-value is the
Margarita experimentwise p-value calculated by permutation.
doi:10.1371/journal.pgen.0030111.t007

Figure 4. Cumulative Distribution of Distances between the Association

Peak and the Causal SNP

Analysis of 50 datasets simulated under the default scenario, namely
variable recombination rate, additive disease model, 1,000 cases and
controls, SNP density of 1 kb, MAF of causal allele 5%, and 1.6 GRR(Aa).
doi:10.1371/journal.pgen.0030111.g004

Figure 5. Average Number of Significant Associations within an Interval

around the Causal SNP

Analysis of 50 datasets simulated under the default scenario, namely
variable recombination rate, additive disease model, 1,000 cases and
controls, SNP density 1 kb, MAF of causal allele 5%, and 1.6 GRR(Aa). For
‘‘BETA strong signal’’ and ‘‘BETA decisive signal,’’ we consider markers
with Bayes factors �10 and �150, respectively. For ‘‘Fisher’s exact test’’
and ‘‘Fisher’s exact test Bonferroni’’ we consider markers with p-values
�0.05 and the Bonferroni-adjusted value respectively. For Margarita we
consider the markerwise p-values calculated by permutation, while
‘‘Margarita Bonferroni’’ and ‘‘Margarita corrected’’ correspond to p-
values corrected for multiple testing using Bonferroni and permutations,
respectively.
doi:10.1371/journal.pgen.0030111.g005
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liability allele (with an average of 0.75, 0.08, 0.15, and 0.02,
respectively). Table 8 reports the marginal posterior proba-
bilities and Bayes factors of each SNP being a cluster centre
(averaged over the ten analyses), and Figure 8 shows p-values
from Fisher’s exact test for single-marker disease association,
the marginal posterior probability of association and the
Bayes factor in favour of association at each marker (again
averaged over the ten analyses), where the vertical line on the
x-axis indicates the location of CYP2D6. The results suggest
strong evidence that marker 19 at 550 kb is the closest marker
to gene CYP2D6 (at 525.3 kb), which leads to a location error
of 24.7 kb. All ten analyses resulted in the same 95% credible
interval of 119 kb. The same credible interval was given from
all ten datasets analyzed by the general BETA version (where
the number of clusters is random). In this case, in all ten
imputed datasets, the posterior mode of the distribution for
the number of clusters was two, including the ‘‘null’’ cluster
(explained in the ‘‘Bayesian partition model’’ section of the

Materials and Methods). The credible interval obtained by
BETA compares favourably with the supporting intervals
reported by other authors mentioned above.

Discussion

We have presented a Bayesian method to perform an
evolution-based association analysis using haplotype data.
Haplotype data capture the genetic variation among individ-
uals in a population, and their use in genetic association
studies can potentially increase the power to locate suscept-
ibility variants [31]. Our approach is based on the construc-
tion of rooted gene trees over small genetic regions. Although
gene trees do not represent the exact history of haplotypes,
they offer a sensible and computationally efficient approx-
imation of the ancestry of a sample of chromosomes. The
proposed algorithm is particularly suited for densely geno-
typed regions and can be applied to the analysis of single

Figure 6. Power for a Range of Models

Probability of a significant signal within 100 kb of the causal allele. Each point on the x-axis corresponds to 50 datasets under each of the simulation
parameters while keeping the rest at their default values. The two points that do not belong to a line correspond to the default scenario for Margarita
markerwise p-values calculated by permutation and Margarita experimentwise p-values calculated by permutation. For ‘‘BETA strong signal’’ and ‘‘BETA
decisive signal’’ we consider markers with Bayes factors �10 and �150, respectively.
doi:10.1371/journal.pgen.0030111.g006

Figure 7. Mean False-Positive Rates (%) for Various Models

Each point on the x-axis corresponds to 50 datasets under each of the simulation parameters while keeping the rest at their default values. The three
points that do not belong to a line correspond to the default scenario for Margarita markerwise p-values calculated by permutation with or without
Bonferroni correction, and Margarita experimentwise p-values calculated by permutation.
doi:10.1371/journal.pgen.0030111.g007
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candidate genes, multiple candidate genes, or larger candi-
date regions. The performance of the proposed method has
been compared with single-locus analyses and with recently
proposed multi-locus methods in simulation studies. Results
indicate that BETA performs similarly in localizing a causal
allele, but leads to lower false-positive results. Moreover, it
offers computational advantages over alternative multi-
marker methods. In an application to real data from the
CYP2D6 region, we are able to map the location of a
susceptibility variant within a small error.
The proposed model is flexible and computationally

efficient. It makes no assumptions about the disease model
and allows modelling of multiple putative variants. Moreover,

Figure 8. Results of Fisher’s Exact Test and BETA Using the CYP2D6 Dataset

p-Values from Fisher’s exact test for single marker-disease association (top left), the marginal posterior probability of association (top right) and the
Bayes factor in favour of association at each marker (bottom centre) from the CYP2D6 gene region, where the vertical line on the x-axis indicates the
location of CYP2D6.
doi:10.1371/journal.pgen.0030111.g008

Table 8. Marginal Posterior Probability of Each SNP Being a
Cluster Centre and the Corresponding Bayes Factor for the
CYP2D6 Data (All Remaining Markers Have Zero Posterior
Probability)

CYP2D6 data SNP

S19 S25

Marginal probability 0.837 0.163

Bayes factor 261.45 9.89

doi:10.1371/journal.pgen.0030111.t008
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it can be easily extended to handle a continuous phenotype,
and work is ongoing to apply it to genetic association studies
with a survival outcome.

We have also presented a simplified version of the
proposed method, in which we restrict the number of clusters
to two, which is equivalent to looking for a single marker that
best separates cases from controls. This is appropriate when
we suspect a single susceptibility allele in the region of
interest. In this way, we remove some variability, since we fix
one of the parameters, leading to improved performance.
Although, in general, the version of BETA with a random
number of clusters is more flexible and realistic, we
recommend using both versions and comparing the results.

The incorporation of environmental covariates in the
model could be made possible by assuming, for instance, a
cluster-specific probit regression. However, this is likely to be
computationally demanding. Moreover, in our presentation
of the method, we have assumed that the haplotypes are
inferred from the genotypes with certainty. Although
haplotype reconstruction is more reliable with dense markers
and regions of strong LD, phase uncertainty ideally should be
incorporated into the analysis. For instance, a fairer
comparison with univariate analysis should probably involve
simulating genotypes and then running our method on
estimated haplotypes. Haplotype reconstruction programs,
such as PHASE [30], output the posterior probabilities of
haplotype pairs for each genotype, and we could randomly
select the haplotype pair of an individual according to these
posterior probabilities. This is the approach we used in the
application to the real data from the CYP2D6 region.
Alternatively, we could add a further Metropolis-Hastings
(M-H) step and sample from the different haplotype
reconstructions and perform the rest of the analysis (as
described in Materials and Methods) given the chosen phase.

Materials and Methods

Our Bayesian partition modelling involves two core analytical
steps. We first split the genomic region under study into windows of
high LD; this is done by sequentially constructing perfect phylogenies
over the region of interest with window boundaries, which are
deterministically defined by the locations where the perfect
phylogeny assumption breaks down. Once the set of windows and
corresponding trees have been identified, the Bayesian partition
model searches through trees to identify those, if any, in which the

corresponding set of haplotypes appear to form clusters that
discriminate cases from controls, thus possibly harboring a causal
variant. These two steps are described in detail next.

Perfect phylogeny and gene trees. Over small genomic regions,
where LD is strong and recombination is low, it is reasonable to
assume that haplotypes have evolved according to a perfect
phylogeny [24]. Assuming nonrecurrent point mutations (in which
case the infinitely-many-sites model holds), we can construct a unique
tree that describes the mutation history of a sample of haplotypes.
The tree is a representation of the haplotype data and it is useful to
think of the haplotype data as a tree, because the causal variant is
embedded within the coalescent process describing the genealogy of
the haplotypes under study [32].

Consider, for example, the incidence matrix for the haplotype data
reported in Table 9. Columns correspond to 12 diallelic SNPs and
rows identify the unique haplotypes and we assume there are 800
haplotypes in total. Alleles at each SNP position are coded as 0 for the
major allele (i.e., the most frequent in the population) and 1 for the
minor allele. Data are compatible with a rooted phylogeny if and only
if, for any two SNPs (or columns) in the incidence matrix, the pattern
of (01, 10, 11) is not present. An explanation of this constraint is that
since the infinitely-many-sites model does not allow for back or
recurrent mutation, the only way for these three gametic types to
exist in the sample is for at least one recombination event to have
occurred between the two sites [33]. Therefore, the use of the perfect
phylogeny model requires both observations of little or no
recombination in DNA segments [1–3,34], and the infinitely-many-
sites assumption of population genetics.

It is possible to construct a gene tree when the perfect phylogeny
condition is true for all pairs of SNPs of a study sample using, for
example, Gusfield’s algorithm [35,24]. Figure 9 shows the gene tree for
the haplotypes in Table 9. The nodes in the tree correspond to
mutations that have generated the segregating sites and the gene tree
is rooted at the haplotype with all major alleles. Mutations are
ordered on the tree according to their relative age. If the causal
mutation is embedded between SNPs 1 and 7, all descendant
haplotypes of that lineage will inherit it and, therefore, we expect
that most case haplotypes are among the 308 haplotypes that
correspond to the first three branches of the tree (first three lines
of Table 9). Thus, in the region of the disease locus, a sample of case
haplotypes tend to have a more-recent shared ancestry than do
control haplotypes, because many of them share a recent disease
mutation. Note, however, that sporadic cases due to phenocopies,
dominance, and epistasis introduce substantial noise in the pheno-

Table 9. Incidence Matrix for Ten Distinct Haplotypes Together
with Their Frequencies, Consisting of 12 SNPs (S1–S12), Where 0
Is the Major Allele and 1 Is the Minor Allele

Frequency S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

147 1 0 0 0 1 0 1 0 0 0 1 0

146 1 0 0 0 1 0 1 0 0 0 0 0

15 1 0 0 0 0 0 1 0 0 0 0 0

163 1 0 0 0 0 0 0 0 0 1 0 0

49 0 1 0 0 0 1 0 0 0 0 0 1

46 0 1 0 0 0 1 0 0 0 0 0 0

92 0 0 0 1 0 1 0 0 0 0 0 0

51 0 0 0 1 0 1 0 0 1 0 0 0

41 0 0 0 1 0 1 0 1 1 0 0 0

50 0 0 1 0 0 1 0 0 0 0 0 0

doi:10.1371/journal.pgen.0030111.t009

Figure 9. The Gene Tree Consistent with the Haplotypes in the Incidence

Matrix of Table 6

Labels 1–12 refer to mutations S1–S12. At the bottom of each branch we
report the multiplicity of each observed haplotype in the sample.
doi:10.1371/journal.pgen.0030111.g009
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type–haplotype relationship, which influences the relative frequen-
cies of nonpenetrant case haplotypes carried by unaffected controls
and control haplotypes carried by affected cases.

The proposed method can be applied to a single candidate region,
multiple candidate regions, and to fine-scale mapping. Recent studies
suggest that recombination events occur preferentially outside genes
[34,36]. Thus, in the case of single or multiple candidate regions we
assume that each gene lies in a region of high LD. Within each region,
then, we assume, as described above, a coalescent model of evolution
and the infinitely-many-sites model and represent each gene with a
separate tree. For fine-scale mapping, the chromosomal segment can
be divided into a number of gene trees with boundaries determined
by loci in which the perfect phylogeny assumption is violated. Details
of how this is achieved are given in the following section.

Splitting a chromosomal region into perfect phylogenies. A rooted
perfect phylogeny (PP) assumption poses the constraint that, for any
two SNPs in the incidence matrix, not all three combinations (01, 10,
11) exist. Recombination and back or parallel mutation leads to the
possible existence of all three combinations. We have developed an R
routine based on the algorithm of Lenhard [37] that scans a
chromosomal region consisting of m markers and splits the region
into sub-regions that satisfy the PP condition. In particular, starting
from SNP S1, it checks the PP condition between SNPs S1 and S2. If
the condition is true, it checks the condition between pairs S1 and S3,
and S2 and S3. If the condition is not valid for SNPs S 1 and S 3, then
SNPs S 1 and S 2 form a gene tree and the procedure is repeated
starting from SNP S 3. The same happens if the condition is valid for S
1 and S 3, but not for S 2 and S 3. If the condition is true for both pairs,
the algorithm checks the PP assumption pairwise between SNPs S 4
and S 1– S 3. Generally, if the pattern of (01, 10, 11) is identified
between SNPs Si and Sj (for every i , j), but not identified for any
pairs between Sk1 and Sk2 (for i � k1 , k2 , j), then SNPs Si � Sj � 1
form a perfect phylogeny, and the procedure is repeated starting
from SNP Sj. However, note that this algorithm leads to only one of
the possible tree configurations for the chromosomal region under
study, since using different SNPs as a starting point may result in
different tree configurations.

Bayesian partition model. As mentioned earlier, the proposed
method splits the haplotype space into disjoint clusters on the basis
of haplotype similarity, with the number of clusters unknown, a
priori. To measure the closeness of one haplotype to another, we
adopt a distance that has an evolutionary interpretation, with
sequences sharing a cluster depending on the time to their most
recent common ancestor. Thus, the distance metric is based on the
relative ages of the mutations in the sample or on the order with
which the mutations have arisen in the haplotype sample, which is
provided by the topology of the gene tree. Any SNP set selected as
cluster centres can therefore be time ordered, and we assign
haplotypes to clusters according to the relative ages of the centres.
Suppose, for example, that SNPs 4, 5, and 7 of Figure 9 are selected as
cluster centres. SNP 7 is older than SNP 5, and SNP 4 is on a different
branch, implying that a haplotype carrying mutation 4 cannot carry
mutation 5 or 7. Starting with SNP 5, we assign the haplotypes that
correspond to the first two branches of the tree (namely, the first two
haplotypes in Table 9) as members of this cluster. The only member
of the cluster with SNP 7 as centre is the third haplotype, because,
although the first two haplotypes carry mutation 7, they have been
already allocated to a cluster. The seventh, eighth, and ninth
haplotypes are allocated to a separate cluster with centre SNP 4,
and all remaining haplotypes are assigned to a hypothetical ‘‘null’’
cluster, which can be interpreted as a baseline risk group. Therefore,
the choice of the centres defines the way that haplotypes are assigned
to their clusters. Given the centres, every haplotype is deterministi-
cally allocated to the cluster with the closest centre, using the metric
above.

Haplotypes within each cluster have cluster-specific risks of
disease, which are assumed to be exchangeable and to come from
some simple distribution. As mentioned earlier, this is intended to
capture the fact that haplotypes that are similar to each other in the
region of a putative causal mutation are likely to be associated with
similar risks of disease. An MCMC algorithm is developed to obtain
posterior samples of quantities of interest, averaging over the space
of possible partitions. In particular, we are interested in the posterior
distribution of the number of clusters and the posterior probability
that each SNP is chosen as a cluster centre. For example, in the
extreme scenario of a fully penetrant variant that is among the set of
typed markers, we expect a high posterior probability of having only
two clusters, namely, the cluster with the causal variant as cluster
centre and the ‘‘null’’ cluster.

Model specification. For simplicity, let us first consider the case in

which the haplotype data form a single perfect phylogeny, as in Table
9. Assume that the haplotype space is currently partitioned into nc¼
nclust þ 1 independent clusters (nc includes the ‘‘null’’ cluster, while
nclust is the number of SNPs selected as cluster centres). A convenient
approach to parameterising the space of possible partitions is to
introduce an indicator vector c, with c¼ (c1,. . .cnSNP

), with ck in f0,1g, k
¼1,. . .,nSNP, such that ck¼1 if the kth SNP is selected as cluster centre
and ck¼0 otherwise, where nSNP is the number of SNPs in the dataset.
That is, there is a one-to-one map from the space of possible
partitions to the sample space of c.

Next, yij in f0,1g is the disease status indicator of haplotype i ¼
1,. . .,nj in cluster j ¼ 1,. . .,nc. The vector of responses for cluster j is
denoted by Dj ¼ (y1j,y2j,. . .ynj j) and let D ¼ fDj, j ¼ 1,. . .,ncg. Each yij is
assumed to have a Bernoulli distribution with parameter hj, the
disease risk associated with cluster j. The Bayesian formulation is
completed by specifying priors on the parameters h and c. We assume
a uniform prior on c, i.e., the probability of each cluster
configuration is equal to 1/2nSNP. Note that this induces a probability
distribution on the number of cluster centres; the probability of

having nclust cluster centres is equal to
nSNP

nSNP

� �
=2nSNP . Cluster-specific

risks are then given a conjugate Beta distribution with parameters a
and b. This choice of prior distributions leads to computational
advantages. In particular, the posterior distribution of c is propor-
tional to the product of its prior distribution and the marginal
probability of the data where the latter is available analytically as

pðDjc;a;bÞ ¼
Z
H

p hja;bð ÞpðDjh;a;bÞdh

¼ CðaÞCðbÞ
Cðaþ bÞ

� �nc Ync
j¼1

C

 
aþ

Xnj
i¼1

yij

!
C

 
bþ nj �

Xnj
i¼1

yij

!
C aþ bþ nj
� � ð1Þ

where C denotes the Gamma function and H¼ ½0; 1�x . . . x½0; 1�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
nc

.

Similarly, the full conditional distribution of the risk parameters is
readily sampled from, as it is available in closed form

hj jDj ; c;a;b ;Beta aþ
Xnj
i¼1

yij ;bþ nj �
Xnj
i¼1

yij

 !
; 8j ¼ 1; . . . ; nc

ð2Þ

In the case of ntr perfect phylogenies or trees (i.e., when we split the
regions into separate windows or where we consider more than one
candidate region), an extra layer is added in the hierarchy of the
model, since the partition c is now conditional on the tree T selected
to cluster haplotypes. In particular, we specify a uniform prior on the
trees, so that, a priori, each tree is equally likely to contain the
putative mutation (recall that the underlying rationale is to exploit
between marker LD around a putative causal variant, independent of
the extent of LD or number of markers corresponding to each tree).
The joint prior distribution of a gene tree T and a partition c is given
by

pðT; cÞ ¼ pðTÞpðcjTÞ ¼ 1
ntr

1
2nSNPT

; ð3Þ

where nSNPT denotes the number of segregating sites in gene tree T.
Details of the proposed MCMC algorithm are given later on.

Note that instead of assuming a uniform prior on the trees, we
could use a more informative prior distribution. For example, if the
average marker density is large, we would expect recombination to
break the perfect phylogeny condition frequently, resulting in several
trees with a small number of SNPs and a few trees with a larger
number of SNPs. In this case, it might be more appropriate to use a
prior distribution that favours trees with a small number of markers,
such as the geometric distribution.

Upon convergence, from the posterior sample of partitions we
obtain the posterior probability that the causal mutation is
embedded in the ancestry of each of the gene trees. The mean and
standard deviation of the posterior risk associated with each unique
haplotype in the sample are also obtained. Furthermore, we estimate
the Bayes factor in favour of association at each marker, which is
given by the ratio of the posterior odds to prior odds [26]. The prior
of each SNP being a cluster centre is evaluated by simulation using
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Equation 3. Finally, we use the location of the SNP with the highest
marginal posterior probability of being a cluster centre as an estimate
of the location of the susceptibility allele.

Construction of 95% credible intervals. For the proposed method,
it is straightforward to construct credible intervals for the estimated
location of the causative SNP. At each iteration of the MCMC
algorithm, we obtain an estimate of the causal location by averaging
the locations of the markers currently selected as cluster centres.
Thus, upon convergence, we obtain a posterior distribution of
locations, from which a credible interval can be constructed. Under
the default simulation scenario, in 43 out of the 50 replicates, the
95% credible interval contained the true causal locus. Figure 10
shows the posterior densities of the putative location of the causative
variants, together with 95% credible intervals for two datasets
simulated with 1.8 and 2.4 GRR(Aa), with all other simulation
parameters set at their default values. The credible intervals are 150
and 15 kb wide, respectively.

Sensitivity to prior specification. To assess the sensitivity of the
results to prior specification, we assigned Gamma(10,10) hyperpriors
to the parameters a and b of the Beta prior on disease risks. We then
ran the model for 100 different datasets simulated with variable
recombination rate, additive disease model with GRR(Aa) 2, SNP
density 1 kb, 200 cases and controls, MAF 5%, and MAF of the causal
SNP 5%–7%, and obtained an average distance of 274.66 kb (22.98 kb
standard error), compared to an average distance of 237.49 kb (25.17
kb standard error) of the standard model. As expected, in this case,
the average distance was higher than before, since we allowed for
more sources of uncertainty. However, both models resulted in a
similar average number of clusters.

The MCMC algorithm. Considering the case of a single perfect
phylogeny, we use a M-H step to sample from the full conditional
distribution of the vector c given the data. Namely, we consider two
possible moves in the partition space: (1) Birth step: adding a cluster
centre. (2) Death step: deleting a cluster centre.

Each move entails selecting a SNP at random, and proposing to
change c�i ¼ 1, if the current ci¼ 0 (birth) or c�i ¼ 0 otherwise. Thus,
the proposal distribution q(c*jc) is simply 1/nSNP. Given the cluster
centres, the observed haplotypes are deterministically allocated to the
haplotype clusters according to the time in which they share a
common ancestor in the genealogy with the cluster centres (as
described earlier). Since we assume a conjugate Beta distribution for h,
the acceptance probability simplifies to min(1,Bayes factor(c*,c)) ¼
min(1,p(Djc*,a,b)/p(Djc,a,b)), where the marginal probability is calcu-
lated using Equation 1.

In the case of ntr perfect phylogenies, we need an extra MCMC step
in which we sample the tree containing the putative mutation. At
each MCMC iteration, we now have two M-H steps: (1) Change
partition step: sample a new partition from the posterior distribution

of the number of clusters and the cluster centres without changing
the current gene tree. (2) Update tree: sample a new tree and a new
partition from their joint posterior distribution.

The first M-H step is the same as the one used in the case of a single
gene. For the second M-H step, assuming a uniform prior on the
trees, the joint prior distribution of a gene tree T and a partition c is
given by Equation 3. In particular, we first sample a tree from the ntr
possible trees with probability 1/ntr, and then each SNP in the tree has
a 0.5 probability of being a cluster centre. Therefore, the proposal
move in the tree and the partition space is equal to Equation 3. This
leads to an acceptance probability for the second M-H sampler that
again only involves the Bayes factor in favour of the proposed
partition over the current partition. In summary, the MCMC
algorithm is:

1. Randomly choose a gene tree and initialize the partition (and
therefore the T and c parameters) within the tree. Calculate the
marginal probability of the model under partition c.

2. Within the current tree T, choose randomly one SNP, i.e., SNP Si,
and switch its ci indicator from zero to one (and vice versa), thus
proposing a new partition c*. Allocate haplotypes to the cluster
with the ‘‘closest’’ centre. Calculate the marginal probability of the
data under the proposed partition c* using equation 1.

3. Evaluate the Bayes factor in favour of c*, and calculate the
acceptance probability. If accepted, set c ¼ c*.

4. Randomly choose a gene tree T*, and propose a move for c given
T* by generating c* from the prior. Allocate haplotypes to the
cluster with the ‘‘closest’’ centre. Calculate the marginal proba-
bility of the data under the proposed partition c* using Equation 1.

5. Evaluate the Bayes factor in favour of c*, and calculate the
acceptance probability. If accepted, set T ¼ T* and c ¼ c*.

6. Repeat steps 2–5 until convergence.

Supporting Information

Figure S1. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Marginal posterior probability of association from BETA (top left),
Bayes factor in favour of association at each marker from BETA (top
right), p-values from Margarita and Fisher’s exact test (bottom left),
and posterior density of location from HAPCLUSTER (bottom right),

Figure 10. Posterior Density of Location of Causal Allele and 95% Credible Intervals

Credible intervals (95%) of causal location for two datasets simulated with 1.8 and 2.4 GRR(Aa) and all other simulation parameters at default values. The
credible intervals are 150 kb and 15 kb wide, respectively.
doi:10.1371/journal.pgen.0030111.g010
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where the dot on the x-axis indicates the position of the susceptibility
mutation. (This legend applies to Figures S1–S14.)

Found at doi:10.1371/journal.pgen.0030111.sg001 (141 KB EPS).

Figure S2. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg002 (140 KB EPS).

Figure S3. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg003 (141 KB EPS).

Figure S4. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg004 (141 KB EPS).

Figure S5. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg005 (141 KB EPS).

Figure S6. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg006 (141 KB EPS).

Figure S7. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg007 (141 KB EPS).

Figure S8. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg008 (140 KB EPS).

Figure S9. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg009 (142 KB EPS).

Figure S10. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg010 (141 KB EPS).

Figure S11. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg011 (141 KB EPS).

Figure S12. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg012 (141 KB EPS).

Figure S13. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg013 (141 KB EPS).

Figure S14. Results from BETA, Margarita, HAPCLUSTER, and
Fisher’s Exact Test from a Case-Control Study under the Default
Scenario

Found at doi:10.1371/journal.pgen.0030111.sg014 (141 KB EPS).

Table S1. Performance Comparison

Performance comparison of BETA with HAPCLUSTER and single
locus analysis for MAF of the causal SNP equal to 5%–7% and
number of case/control genotypes equal to 200, and for different SNP
densities, minor allele frequencies, and GRRs. Results obtained over
100 repeats under each scenario.

Found at doi:10.1371/journal.pgen.0030111.st001 (34 KB DOC).

Table S2. Performance Comparison

Performance comparison of BETA with HAPCLUSTER and single
locus analysis for MAF of the causal SNP equal to 10%–15% and
number of case/control genotypes equal to 200, and for different SNP
densities, minor allele frequencies, and GRRs. Results obtained over
100 repeats under each scenario.

Found at doi:10.1371/journal.pgen.0030111.st002 (34 KB DOC).
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