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Acquisition of partially protective immunity is a dominant feature of the epidemiology of malaria among exposed
individuals. The processes that determine the acquisition of immunity to clinical disease and to asymptomatic
carriage of malaria parasites are poorly understood, in part because of a lack of validated immunological markers of
protection. Using mathematical models, we seek to better understand the processes that determine observed
epidemiological patterns. We have developed an age-structured mathematical model of malaria transmission in
which acquired immunity can act in three ways (‘‘immunity functions’’): reducing the probability of clinical disease,
speeding the clearance of parasites, and increasing tolerance to subpatent infections. Each immunity function was
allowed to vary in efficacy depending on both age and malaria transmission intensity. The results were compared to
age patterns of parasite prevalence and clinical disease in endemic settings in northeastern Tanzania and The
Gambia. Two types of immune function were required to reproduce the epidemiological age-prevalence curves seen
in the empirical data; a form of clinical immunity that reduces susceptibility to clinical disease and develops with age
and exposure (with half-life of the order of five years or more) and a form of anti-parasite immunity which results in
more rapid clearance of parasitaemia, is acquired later in life and is longer lasting (half-life of .20 y). The
development of anti-parasite immunity better reproduced observed epidemiological patterns if it was dominated by
age-dependent physiological processes rather than by the magnitude of exposure (provided some exposure occurs).
Tolerance to subpatent infections was not required to explain the empirical data. The model comprising immunity to
clinical disease which develops early in life and is exposure-dependent, and anti-parasite immunity which develops
later in life and is not dependent on the magnitude of exposure, appears to best reproduce the pattern of parasite
prevalence and clinical disease by age in different malaria transmission settings. Understanding the effector
mechanisms underlying these two immune functions will assist in the design of transmission-reducing interventions
against malaria.
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Introduction

Plasmodium falciparum malaria continues to be a major cause
of human morbidity and mortality, especially in Africa, but
varies greatly in endemicity across the continent and else-
where [1]. The consequent variation in levels of acquired
immunity and age-specific disease patterns complicates
malaria epidemiology and means that control policies that
are optimal for one setting are not easily translated to other
settings. In highly endemic areas where clinical immunity
develops rapidly [2]; there is concern that interventions which
reduce transmission could also affect the development of
immunity [3–6]. A delay in the acquisition of immunity beyond
early life has the potential to change the spectrum of serious
clinical symptoms [7,8] and the lifetime risk of disease [4].

While the processes that determine the acquisition of
immunity to P. falciparum clearly impact on the epidemiology
of the disease, they are complex and poorly understood due
to the unclear relationship between immunological markers
and functional immunity [9–11]. However, there is evidence
to suggest that both clinical (anti-disease) immunity and anti-
parasite immunity develop at different rates. For example, in
people who emigrate from malaria endemic settings, clinical

disease appears to emerge only in those who remain away for
at least 3–5 y [7,12]. Furthermore, these emigrants also
present clinically with lower parasite densities than those who
travel from non-endemic areas, suggesting that an additional
component of immunity that regulates parasite densities may
be longer-lived. This hypothesis is also supported by analysis
of age-stratified anti-malarial antibody seropositivity rates
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which gives estimates of half-lives that span decades [13].
There is also evidence to suggest that acquired immunity does
not only depend on exposure but is also influenced
independently by age. For example, there is evidence for an

age-dependent exposure-independent maturation of the
antibody response to malaria [14], and this may in part
explain the observation that the proportion of severe malaria
cases presenting with severe malarial anaemia is more closely
associated with age than with transmission intensity [15,16].
Immune responses which affect subpatent parasitaemia may
influence malaria transmission, but high rates of subpatent
infection in high transmission areas suggest that acquired
immune mechanisms capable of complete parasite clearance
rarely develop in naturally exposed populations, so we allow
for the possibility of subpatent tolerance.
Here we develop a mathematical model to better under-

stand the impact of the development of immunity on
observed epidemiological patterns, and also aspects of the
immunology which might be inferred from the epidemiology
such as time scales of acquisition and loss. Whilst a number of
malaria transmission models have been developed in the past
which incorporate immunity [17–25], each do so in different
ways and hence make comparison between model structures
difficult. In contrast, we systematically explore the impact of
immune responses at different points of the host’s natural
history of infection which are then tested by comparing
model output with epidemiological observations. Our results
demonstrate that more than one type of age- and trans-
mission intensity-specific response are necessary to predict
malaria epidemiological patterns, in line with current
immunological understanding [7,9,10,26].

Figure 1. Observed Patterns of Parasitaemia and Clinical Episodes by Age in Areas and Seasons with Differing Transmission Intensity

(A) Prevalence of parasitaemia by age, region, and altitude (,600 m, 600-1200 m, and .1200 m) from studies in Northern Tanzania.
(B) Clinical episodes by age and altitude for region 2 (Usambara mountains) from severe malaria admissions to district, regional, and referral hospitals.
(C,D) Prevalence of parasitaemia by age, year, and season (wet/dry) from North Bank (C) and South Bank (D) of River Gambia.
doi:10.1371/journal.pcbi.0030255.g001
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Author Summary

Whilst it is clear that natural immunity to malaria infection develops
in those living in malaria-endemic regions of the world, the precise
way in which it is acquired and the duration of immune memory are
less-well-understood. We used a mathematical model that mimics
malaria transmission between humans and mosquitoes in endemic
settings to explore what epidemiological data, and in particular the
prevalence of malaria in different aged individuals, can tell us about
how immunity might develop. We explored three different parts of
the transmission cycle at which immunity could act: 1) reducing the
likelihood that an infected person develops symptomatic disease; 2)
increasing the rate at which infection is cleared, and 3) increasing
the duration of low-level (subpatent) infections that would continue
to boost the immune system and hence protect against further
disease. Our results show that the first two mechanisms together
give rise to patterns of malaria by age group that are consistent with
those observed in different malaria endemic settings in Africa. Our
model also suggests that immunity to symptomatic disease lasts for
at least five years, develops faster if there are higher levels of
infection in the population, and increases with age. On the other
hand, our model suggests that immunity that helps to clear
infection lasts longer (20 years or more), develops later in life, and
does not depend on the amount of transmission in the population.

Acquired Immunity to Malaria



Results

Immunity Functions Required To Reproduce Observed
Age-Prevalence Patterns

We first developed an age-structured transmission model
for malaria in which acquired immunity acts at three different

stages of a host’s history of infection: 1) susceptibility to
symptomatic disease (severe and clinical cases) upon infection
or re-infection, assuming susceptibility decreases with cumu-
lative exposure to infectious bites (e.g., as a result of antibody-
mediated strain-specific immunity); 2) natural recovery from

Figure 2. Predicted Relationship between Age and Parasitaemia or Clinical Disease for the Different Models of Immunity

(A,B) No immunity; (C,D) immunity acting on clearance of subpatent parasites (immunity function 3); (E,F) immunity acting on clearance of detectable
parasites (immunity function 2); (G,H) immunity acting on susceptibility to clinical disease (immunity function 1); (I,J) immunity acting on clearance of
detectable parasites and susceptibility to clinical disease (immunity functions 1 and 2). Parameters are as shown in Table 1.
doi:10.1371/journal.pcbi.0030255.g002
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asymptomatic to undetectable infection (i.e., effective clear-
ance of parasites), which increases with cumulative exposure
to infectious bites after a delay during childhood representing
maturation of the immune system, 3) natural clearance of
undetectable subpatent infection, assuming increased toler-
ance and slower clearance of such infection.

Each response, which we call an immunity function, is allowed
to change with age and malaria transmission intensity
(commonly expressed as the entomological inoculation
(EIR)) and hence represents the acquisition and loss of
immunity dependent upon exposure. The first two immunity
functions incorporate a memory component (i.e., allow for
gradual loss in the absence of reinfection) [27], whereas the
final immunity function (associated with regulation of para-
site density) is assumed independent of acquired immunity, as
subpatent parasites (if any) are kept subpatent by an effective
immune response.

Figure 1A shows the patterns of parasitaemia and clinical
disease by age observed in northern Tanzania. These data
were collected from 24 villages at three different altitude
levels (,600 m, 600-1200 m, and .1200 m) and in two
different regions [28]. In one of the regions (region 2),
estimates of malaria transmission intensity as measured by
the EIR were also collected. These varied by altitude with the
highest transmission intensity occurring at low altitude (56
infectious bites per person years (ibbpy), range 28–108 at
,600 m, 3 ibppy, range 0.4–7.6 at 600-1200 m, and 0.12 ibppy,
range 0.01–0.032 at .1200 m). Although these data were not
available in the other region, the patterns of parasite
prevalence by age and altitude are similar. Clinical data from
severe malaria admissions to district, regional, and referral
hospitals serving the Usambara mountain region (region 2)
are shown in Figure 1B [15].

Figure 1C–1D shows the prevalence of parasiteamia by age

in locations on the north bank and south bank of River
Gambia, The Gambia [29]. Transmission in The Gambia is
highly seasonal, and transmission intensity differs between
the settings with higher intensity on the south bank. The
estimates are presented separately for the dry and wet
seasons, with higher prevalence observed during peak trans-
mission in the wet season.
The corresponding patterns predicted by different versions

of the model are shown in Figure 2. If the model does not
incorporate immunity at any point, we observe a rise in the
prevalence of parasitaemia or clinical disease which saturates
at older ages (Figure 2A and 2B). This clearly does not match
the decline in both parasitaemia and clinical disease at older
ages observed in data (Figure 1). Allowing the model to
incorporate immunity that results in increased persistence of
subpatent infections (immunity function 3) gives rise to
profiles that either peak too early in life and decay too rapidly
at high EIRs or which saturate for low EIRs (Figure 2C and
2D). Allowing the model to incorporate immunity resulting in
more rapid recovery from asymptomatic infections or
symptomatic disease (immunity function 2) gives rise to
patterns of parasitaemia that match those observed reason-
ably well. However, the patterns of symptomatic disease decay
too slowly with age (Figure 2E–2F). Finally, allowing the
model to incorporate immunity that reduces the proportion
of infections that result in clinical disease (immunity function
1) results in patterns of clinical disease that closely match
those observed in the data but fails to reproduce the decline
in parasitaemia with age (Figure 2G–2H). Other discrepancies
between the model predictions and observed patterns of
parasitaemia and disease by EIR and inconsistencies in
lifetime episodes were also observed for each immunity
function (see Protocol S1).
We next considered combining the different functions to

Figure 3. Predicted Relationship between Age and Parasitaemia at Different Levels of Transmission Intensity for the Model Incorporating Immunity

Functions 1 and 2 and in Which Recovery from Infection Is Determined Solely by Age

(A) Patterns predicted by the model compared to those observed in region 2 in Northern Tanzania by altitude. EIRs for the model are 110 for low
altitude (measured EIR 28–108), 18 for medium altitude (measured EIR 0.4–7.6), and 0.5 for high altitude (measured EIR 0.01–0.32), percentage treated f
¼ 50%.
(B) Patterns predicted by the model compared to those observed on the north and south banks of the River Gambia. Model EIRs were 50 for the north
bank and 15 for the south bank. Percentage treated f¼50%. All other parameters are as in Table 1. Our estimates of EIR are inversely proportional to the
assumed value of parameter b; EIR estimates would be halved if we would assume b to be twice as large.
doi:10.1371/journal.pcbi.0030255.g003
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identify which combination best reproduces the observed
age-prevalence patterns in Figure 1. Combining immunity
functions 1 and 2 (i.e., allowing a reduction in the proportion
of infections that give rise to clinical disease and an increase
in the rate of recovery from asymptomatic infection to
subpatent infection) reproduces well the age-prevalence of
parasitaemia and severe disease observed in the study data
(Figure 2I and 2J). It also reproduces the observed decrease in
clinical cases in older ages as the EIR is increased (see
Protocol S1). Adding the third immunity function (increasing
persistence of subpatent infection) results in patterns that
more closely resemble those observed if this function alone
drives immunity (Figure 2C and 2D) and therefore lessens the
agreement between model predictions and observed data.

Improved Model for the Impact of Immunity on Recovery
from Asymptomatic Infection

The age-prevalence patterns in Figure 2I and 2J resemble
but do not exactly match those observed in data (Figure 1).
There are many reasons for not expecting an exact match:
estimates of EIR are imprecise, and quoted values are

averages over surveys and locations within altitude ranges;
there may be random variation and unaccounted factors,
such as bias in data sampling among age groups; and parasite
density and detection at a given age may differ among sites.
However, we note that the model predicts age-parasitaemia
curves which saturate with age for medium-to-low EIR, which
is not observed in data. Adjusting parameters does not seem
to alter this feature. However, if natural recovery from
infection (e.g., from asymptomatic to subpatent) is solely
determined by age (via physiological processes, provided
there is exposure on which infection is conditional), we
obtain patterns closer to those observed (Figure 3). This
suggests that parasite immunity in non-naı̈ve individuals may
be controlled by physiological development rather than by
the amount of natural exposure (provided there is exposure)
[7–9,14,15,30].

Patterns of Infectivity by Age
An alternative way of testing the immunity functions

(conditional on the remaining model structure and assump-
tions being valid) is to compare the predicted mean

Figure 4. Observed and Predicted Patterns of Infectivity (Gametocytaemia) by Age in Tanzania and in The Gambia

(A) Predicted infectivity by age from the model with different immunity functions. If1¼ immunity function 1 (susceptibility to clinical disease); If2 ¼
immunity function 2 (clearance of detectable parasites); If3 ¼ immunity function 3 (clearance of subpatent infection), If2* denotes EIR-independent
version of If2. Parasitaemia is calculated in the model as symptomatic cases plus asymptomatic infections (DHþAH). All runs assume an annual EIR¼ 40
ibppy and that parameters are as before (Table 1), except cD is adjusted (for If2 and If3) to make comparable the curves corresponding to different
immunity function models.
(B–D) Observed gametocytaemia by age from (B) the low altitude area of region 2 in Tanzania, (C) The Gambia south of the river bank, and (D) The
Gambia north of the river bank. Parameters for the model are annual EIR¼ 110 (B), 50 (C), 15 (D), infectivity CD¼ 0.3 as before (B,D), 0.4 (C), percentage
treated f ¼ 50%. All other parameters are as in Table 1.
doi:10.1371/journal.pcbi.0030255.g004
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infectivity by age, which may be regarded as the probability of
carrying gametocytes (although not all gametocyte carriers
will be infectious), with the observed age-prevalence of
gametocytes. The patterns predicted by our best model
(incorporating immunity functions 1 and 2) closely match the
patterns observed in northern Tanzania and The Gambia
(Figure 4). Since the model parameters were fixed or fitted to
asexual parasite data, these results are an independent test of
the model’s ability to reproduce observed epidemiological
patterns.

Duration of Clinical and Parasite Immunity
Our determined half-lives of clinical and parasite immun-

ity were 5 y and 20 y, respectively. By varying these
parameters, we explored whether patterns of age-prevalence
can inform possible bounds for these parameters.

Reducing the half-life for the duration of clinical immunity
below 5 y results in a sharp increase in the proportion of all
infections that are symptomatic cases and, in addition, results
in less-pronounced age-prevalence peaks which begin to
deviate from those observed in data. Increasing the duration
of clinical immunity does not substantially change age-

prevalence patterns but does have an impact on the
proportion of infections that are symptomatic cases (Figure
5A and 5B).
Reducing the half-life for the duration of parasite

immunity below 20 y similarly has an impact on the age-
prevalence curves and at very low values (,10 y) gives rise to
curves that saturate rather than decline at older ages. The
proportion of infections that are asymptomatic and para-
sitaemic is also increased. However, increasing the duration
of parasite immunity has little impact on either outcome
(Figure 5C and 5D).

Discussion

Our results demonstrate that, while distinct models can
explain patterns of parasitaemia observed in individuals aged
0–5 y, in order to reproduce full age-prevalence patterns of
parasitaemia and clinical disease observed in endemic
malaria settings at least two distinct acquired immunity
processes are required: 1) an early age (or early exposure)
reduction in clinical susceptibility, and 2) a process of
parasite immunity that increases the rate of natural recovery

Figure 5. Sensitivity of the Relationship between Parasitaemia, Clinical Disease, and Age to Assumptions about the Duration of Acquired Immunity

(A,B) Sensitivity to the duration of the immune response that reduces susceptibility to clinical disease where dS is the half-life; (A) shows the relationship
between parasitaemia and age, and (B) shows the proportion of people predicted by the model to be symptomatic cases, have asymptomatic
infections, and be parasitaemic (i.e., have patent infections) for different values of dS. Subpatent infections are not shown. For dS less than 5 y, the
model predicts too high a proportion of all infections to be symptomatic cases rather than asymptomatic (B).
(C,D) Sensitivity to the duration of the immune response that increases clearance of detectable parasites where dA is the half-life; (C) shows the
relationship between parasitaemia and age, and (D) shows the proportion of people predicted by the model to be symptomatic cases, asymptomatic
infections, and parasitaemic for different values of dA. For dA less than approximately 20 y, the model predicts that high levels of parasitaemia will
persist into adulthood (C). Results are presented for an annual EIR of 110 ibppy. Similar patterns are obtained for lower EIR values.
doi:10.1371/journal.pcbi.0030255.g005
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from infection and which develops substantially later in life
(late childhood to adolescence). Adopting one of these
processes in isolation does not reproduce observed patterns
of age-prevalence of asexual parasitaemia, disease, and
infectivity (gametocytaemia) across different endemicities
(as measured by EIR). Moreover, while both clinical and
parasite immunity were allowed to vary with age and EIR, the
model in which natural recovery from infection (e.g.,
asymptomatic to subpatent) is determined solely by age
better matches observed patterns than a model in which this
is also determined by the intensity of exposure (EIR). This
suggests parasite immunity in non-naı̈ve individuals may be
controlled by physiological processes rather than by amount
of exposure (provided there is exposure). These findings
agree with the current view that parasite immunity may
require ageing to develop, but subsequently can persist
without high antibody titres and therefore be maintained
by occasional infrequent boosting [7–9]. Peaks in para-
sitaemia above 30 y of age present across endemic levels in
eastern Tanzania might reflect malaria-HIV co-infection [31]
and are not expected to be captured by the model.

Incorporating a prolonged duration of (subpatent) infec-
tions, i.e., continual reinfection that prolongs infection and
boosts an immune response that allows parasitaemia to
persist at subpatent levels, worsened the model predictions.
However, we cannot exclude that an overall immune-
modulated increase in duration of infections takes place, as
suggested by recent hypotheses from within-host models [32]
and in transmission models with fewer immunity components

[17,18]. This is because the increase in duration of subpatent
infection with increasing EIR could be weaker than consid-
ered by us. Furthermore, interpretation of this immunity
function may depend on our model structure: we assume (via
immunity functions 1 and 2) that a host returning to the
noninfected state (SH) is likely to rapidly become asympto-
matic with subpatent parasitaemia upon reexposure (i.e., is
immune to symptomatic and to patent asymptomatic
infection), tantamount to frequent subpatent infection but
with recovery and reinfection modelled explicitly. Other
models [17,18] assume persistent asymptomatic infection
(though patency status may not be specified) which may be
regarded as an implicit way of modelling this reinfection
cycle.
Our model additionally allowed us to explore what age-

prevalence patterns can tell us about the duration of clinical
and parasite immunity. Our results suggest that clinical
immunity has shorter memory (with a half-life of the order 5
y or more), while parasite immunity is effectively everlasting
(with a half-life of 20 y or more after onset in adolescence).
These durations are in line with evidence that migrating
adults returning to endemic areas tend to become more
sensitive to clinical attack but have lower parasite levels than
children [8]; they are also in line with immunological studies
in which one postulated mechanism of clinical immunity
(antibodies to parasite phospholipids) has been shown to have
a rather short half-life [33,34].
There are limitations in the epidemiological data that are

available to inform model parameters. In particular, there are
few and uncertain estimates of EIR by altitude range [28,35],
as mentioned earlier. Furthermore, EIR estimates were not
obtained from the same villages that were parasitologically
surveyed, and the local history of interventions (which might
affect the EIR) is not known. Therefore, discrepancies
between observed and estimated EIR values are to be
expected, especially in low-transmission areas where mosqui-
to sampling is more difficult.
The model presented here clearly makes a number of

simplifying assumptions. One of the main limitations is that
the immunity functions, whilst generated based on current
immunological understanding, could not be constrained by
data. Further data on the way in which immunity develops
and on the factors driving its development could help to
refine these functions. The model also does not allow for
partial immunity to reinfection, which would be relevant
from the point of view of treating or vaccinating against pre-
erythrocyte stages. While sterilising or partial pre-erythrocyte
immunity are likely to be rare [7], it could be useful to extend
the model to explore this possibility. Thirdly, we have not
explicitly modelled the effects of parasite genetic diversity
and have thus, strictly speaking, treated infections as mono-
clonal. However, the widely accepted hypothesis that immune
development is regulated by antigenic variation and cumu-
lative exposure to inoculations of differing parasite strains
[20,22,26,32,36] is analogous to our definition of immunity
levels in terms of cumulative exposure with finite memory.
Our model is therefore consistent with theories in which
immunity is strain-specific whilst integrating other aspects of
acquired immunity development supported by cross-sectional
data and current immunological understanding.
This age-structured malaria transmission model shares

many features with existing models [17–25] but is novel in the

Figure 6. Schematic Illustration of the Full Transmission Model for

Humans and Mosquitoes (without Explicit Ageing in Humans)

States are shown in circles, and subscripts denote the population (H ¼
humans, M ¼ mosquitoes): susceptible SH/SM, latent infection EH/EM,
infected with symptomatic disease (severe and clinical cases) DH,
asymptomatic patent infection AH, infected with undetectable (sub-
patent) parasite density UH, infectious mosquitoes IM. KH /KM is the force
of infection on the human and mosquito populations, respectively, 1/h is
the mean latent period in humans, 1/g the mean latent period in
mosquitoes, / is the proportion of human infections that develop
disease, f the proportion of symptomatic cases that receive effective
drug treatment, rT the rate of recovery on treatment, rD the rate of
recovery without treatment, rA the rate at which asymptomatic infections
become subpatent, and rU the rate at which subpatent infections are
cleared. The coloured circles denote the stages at which acquired
immunity can have an effect (modifying /, rA, and rU). The parameters
and their values are described in Table 1.
doi:10.1371/journal.pcbi.0030255.g006
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way it combines epidemiological and immunological pro-
cesses. Previous models have considered immune responses of
types similar to those studied here (especially immunity that
acts on the duration of asymptomatic and subpatent
infections) [17,18,21,22,24], whilst others have represented
acquired immunity through increased ability to reduce
blood-stage parasite density [18,22,23,25].

Clearly, it is never possible to determine whether the
structural assumptions behind any model represent the true
processes generating the observed data, and it is likely that
more complex model structures could also generate similar
patterns. One alternative method that could be employed is
to track parasite density rather than infection alone. Such an
approach explicitly acknowledges variation in parasite load
between individuals, and this variation may influence the
development of immunity. However, such an approach also
has its limitations. In particular, the distinction between

disease and asymptomatic and subpatent infection requires
definition of arbitrary parasite density thresholds for
becoming diseased once infected and for detection by
microscopy. Our assumption that susceptibility and recovery
vary continuously via dependence on cumulative exposure is,
however, analogous to the effect of immunity in bringing
parasite density below such thresholds.
A second alternative method for incorporating immunity

into mathematical models is to explicitly model strains and
hence incorporate long-lasting strain-specific immunity. As
noted above, our assumption that immunity develops with
exposure and has finite memory essentially reproduces the
patterns that would be obtained from such a model. The
model does not imply that parasite density or strain-specific
immunity are unimportant; as indeed there is strong evidence
to support both playing a role in the development of
immunity. Rather, our simpler model structure which

Table 1. Summary of Model Parameters and Their Values

Parameter Description (Transmission Model) Value Unit Source/Comment

K0 Force of infection (at maximum exposure) — ibppy Setting dependent

K0ð1-e�a=a0 Þ Force of infection with age-dependent exposure — ibppy Assumes exposure increases with body size

a0 Age at which half the total increase in exposure is

achieved

3 Year Estimated in this paper

b Probability of successful human inoculation upon

an infectious bite

0.25 — Estimates in other papers differ; they are usually based

on patent infection and affected by susceptibility1

rT Rate of recovery from clinical malaria upon

chemotherapy

1/21 Day �1 Varies with drug; includes time to clear gametocytes [38]

rD Mean rate of natural recovery from symptomatic

malaria; assumed to be identical to rA

1/180 Day �1 Baseline value2 [39,40]

rA Mean rate of recovery from asymptomatic to

subpatent

1/180 Day �1 Baseline value

rU Mean rate of clearance of subpatent infections 1/180 Day �1 Baseline value

/ Probability of becoming a symptomatic case upon

infection (susceptibility)

0.5 — Baseline value

1/h Mean incubation period in humans 15 Day [25]

cD, cA, cU Probability of mosquito infection upon biting a

human in state D, A, U, respectively

0.3–0.4, 0.03, 0.015 — [38,41]

s Gametocyte clearance delay upon chemotherapy 21 Day Varies with drug taken

f Proportion of symptomatic cases treated effectively 0.5 — Setting dependent

l0 Human natural mortality rate (assumed to be

constant with age)

0.05 Year �1 Data in [28]

q(a) Density of people with age a Exponential Year �1 Data in [28]

am Maximum age in the human community 60 Year

a Biting rate on humans by a female mosquito 0.67 Day �1 [42] and refs within

lM Mosquito natural mortality rate 0.10 Day �1 [42] and refs within

dm Half-life of maternal immunity protection 0.25 Year Range 0.1–0.5 explored; results are not sensitive to the

assumed value within this range [43]

pm Proportion of level of maternal immunity conferred 0.5 No data available

r0 Baseline rate of recovery 1/180 Day �1 [39,40]

dS Half-life of clinical immunity 5 Year Estimated in this paper

dl Latent period in development of parasite immunity 10 Year Exposure-independent physiological maturation of the

immune system

dA Half-life of parasite immunity 20 Year Estimated in this paper; natural recovery from

asymptomatic and clinical infections

dU Baseline average duration of subpatent infections 180 Year [39,40]

wA Maximum amplification of baseline recovery rate 30 — Estimated in this paper

HS Level of clinical immunity at half saturation 40 — Estimated in this paper

HA Level of parasite immunity at half saturation 800 Estimated in this paper

kS 2 — Sets immunity function degree of steepness, similar to

[21]

kA 2 — Similar to [21]

1Values in range 0.2–0.5 are found in the literature, implying stated EIR values could be larger by a factor 0.5/b.
2In the absence of immunity effects.
doi:10.1371/journal.pcbi.0030255.t001
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implicitly incorporates these processes through immunity
functions allows us to explore the timescales over which
clinical and parasite immunity develop and are lost as well as
the role of ageing and exposure on these functions.

Few previous models have been consistent in checking that
they can reproduce the patterns of infection observed across
a range of endemicities. By validating output against such
patterns, we have sought to develop a model that is both
informative about the impact of immunity on falciparum
malaria epidemiology and also forms a solid basis with which
to explore the impact of interventions. Having a robust
framework which adequately captures the development of
immunity with exposure and age is particularly important in
exploring the impact of interventions such as insecticide
treated nets (ITNs) and intermittent preventive therapy (IPT)
in infants and children for which there is the potential to
delay immunological development.

Materials and Methods

Mathematical transmission model. We model a human population
with continuous age structure in which individuals of a given age can
be in one of the following states: susceptible or not infected (SH),
latent infection (EH), infected with symptomatic disease (including
severe and clinical cases) (DH), asymptomatic with detectable para-
sites (AH), and asymptomatic infection with undetectable (subpatent)
parasite density (UH). The main distinction between states DH and AH
is that individuals in state AH do not prompt treatment that leads to a
change in infection state. The state UH is included to account for the
fact that measured parasitemia often decays with age, while highly
sensitive parasite detection techniques suggest parasitemia continues
increasing with age nearing 100% in highly endemic areas [37]. In
tandem, we consider a mosquito population whose individuals can be
susceptible (SM), exposed (latent) (EM), or infectious (IM). Figure 6
shows the transitions between states in each population (without
displaying ageing). Susceptible humans move to latent infection at
rate K, the force of infection on the human population. Individuals
remain in this state for a mean duration 1/h (the mean latent period).
A proportion / develop disease whilst the remainder (1�/) move to
the asymptomatic infection category. A proportion f of symptomatic

Figure 7. Immunity Functions That Act on: (A,B) the Susceptibility to Developing Clinical Disease; (C,D) the Clearance of Detectable Parasites, and (E,F)

the Clearance of Subpatent Infection

(A,C,E) Show schematically how each model assumes that immunity is developed (through exposure and/or age) and lost.
(B,D,F) Show the resulting effect of these immunity levels on (B) susceptibility to clinical disease, (D) the rate of clearance of detectable parasites, and (F)
the clearance of subpatent infection as people age and for five different transmission settings (identified by the EIR in ibppy). Further mathematical
details are given in Protocol S1.
doi:10.1371/journal.pcbi.0030255.g007

PLoS Computational Biology | www.ploscompbiol.org December 2007 | Volume 3 | Issue 12 | e2552577

Acquired Immunity to Malaria



cases (DH) receive effective drug treatment and recover at rate rT,
while the remaining cases recover naturally without treatment at rate
rD. If clinical treatment or natural recovery is fully successful at
removing parasites (with probability /), the host returns to the
susceptible state and otherwise moves to the asymptomatic state.
Asymptomatic infections become subpatent at rate rA, and these
subpatent infections are cleared at rate rU with individuals returning
to the susceptible state. Those in the asymptomatic state may
additionally develop disease through superinfection at rate /K. Each
human infection state, namely DH, AH, and UH, has a specific level of
infectivity (transmission of mature gametocytes) to biting mosquitoes.
The full equations for this model and further parameter definitions
are given in Protocol S1.

Table 1 summarises variables, parameters, and the values used to
generate the model outcomes presented in Results. Sensitivity
analyses of model output to these parameters are presented in
Protocol S1. In our analysis, we focus on results obtained once
endemic levels are reached. Model outputs are generated by fixing the
EIR or by fixing mosquito density (m) and calculating the EIR via the
equations describing the mosquito section of the parasite’s trans-
mission cycle (see Protocol S1). We ignore any possible dependence
of infectivity in the different infection states (DH,AH,UH) on age and
EIR because this is currently less-well-understood [38]. For simplicity,
we assume that the rate of natural recovery from clinical disease (rD)
in the absence of treatment is identical to that from asymptomatic
infection (rA), and that the rate of recovery of treated cases (rT) is
determined by treatment only.

Parameter estimation. Unknown parameters (Table 1) were
estimated by running the model over a wide range of plausible
values and excluding values which lead to epidemiological patterns
that clearly failed to visually match observed patterns. Our aim was to
identify model structures and parameters values based on their
ability to reproduce patterns and relationships. Given the many
uncertainties in model structure, large number of parameters, and
limited data available, it would have been very difficult to implement
a more formal and rigorous statistical approach. Rather, we have
focused on qualitative comparison and understanding. The sensitivity
analyses to key parameters (in Protocol S1) give an idea of
uncertainty and ranges of parameter values that might be expected
on the basis of this model and datasets.

Incorporation of acquired immunity. To explore the impact that
acquired immunity can have on patterns of age prevalence in
endemic settings, we extend the basic transmission model above to
incorporate immunity acting at three different stages of a host’s
history of infection. Mathematical details of the functions, described
in brief below, are given in Protocol S1.

1. Susceptibility to symptomatic disease, / (immunity function 1). We
assume that individuals are born with maternally acquired immunity
which is determined by the endemic level of disease and decays with a
half-life dM. Following birth, clinical immunity accumulates due to
exposure at a rate dependent on the force of infection in the
population, K. This acquired immunity decays with a half-life dS. The
schematic for this model is shown in Figure 7A. Susceptibility to

symptomatic disease is then assumed to decrease in a nonlinear way
as levels of clinical immunity increase. The overall dependence of
susceptibility / on age and EIR resulting from this model is shown in
Figure 7B.

2. Rate of natural recovery from asymptomatic to undetectable infection, rA
(immunity function 2). The parasite immunity level associated with this
response is similarly assumed to accumulate at a rate dependent on
the force of infection in the population, K. The onset of parasite
immunity is further assumed to have an age-related delay with mean
dl, and any maternal immunity is lost during this period. Parasite
immunity then decays with half-life dA. The schematic for this model
is shown in Figure 7C. The recovery rate rA is assumed to increase
with levels of parasite immunity through a nonlinear function which
saturates at higher levels of immunity. The overall dependence of
recovery on age and EIR resulting from this model is shown in Figure
7D, where change with age follows from age-dependent exposure (see
Protocol S1).

As an alternative, we also consider a model in which parasite
immunity is determined only by age (given some exposure to
infection) and not by EIR.

3. Rate of natural clearance of undetectable infection, rU (immunity function
3). We assume that the duration of undetectable infection is boosted
by continual reexposure and therefore not directly dependent on
age. The onset of immunity is therefore dependent on the force of
infection, K, and decays with half-life dU as in previous models of
superinfection [17,18]. A schematic for this is shown in Figure 7E and
the resulting recovery rate as a function of the force of infection in
Figure 7F.

Supporting Information

Protocol S1. Mathematical Details and Sensitivity Analyses for Key
Model Parameters

Found at doi:10.1371/journal.pcbi.0030255.sd001
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