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Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we

focus instead on the recent past (1970–2003) to address whether warmer temperatures have already

increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled

mosquito–human model of malaria, which we use to compare projected disease levels with and without

the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming,

with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those

observed. These findings suggest that climate change has already played an important role in the exacer-

bation of malaria in this region. As the observed changes in malaria are even larger than those predicted

by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing

the impact of climate change.
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temperature trend
1. INTRODUCTION
The impact of climate change on vector-transmitted

infectious diseases is a pressing and still highly debated

question, mostly addressed with scenarios for the future.

We are now in a position, however, to also consider the

recent past and address whether climate change has

already influenced the temporal population dynamics of

infectious diseases in recent decades when the first signifi-

cant signs of a change in climate have been detected. This

question is particularly relevant for regions known to be

potentially sensitive to climate change. In the case of

malaria, these regions lie at the edge of its geographical

distribution, in highlands and desert fringes, where temp-

erature or rainfall limits the development of the parasite

and the abundance of the mosquito vector [1,2]. In

these transition regions, where transmission is low and

intermittent, the population dynamics of malaria are for-

mally described as ‘unstable’ or ‘epidemic’, exhibiting

intermittent seasonal outbreaks with high mortality

because of low levels of immunity in the population.

Questions about the effect of warmer temperatures

are especially relevant in highland regions because of

the clear relationship between altitude and temperature,

and the known influences of temperature on both the

Plasmodium parasite and the Anopheles vectors. Tempera-

ture influences the development of the parasite within

the mosquito in a nonlinear manner [3]—the so-called

extrinsic incubation period, also known as sporogony,

which must be completed within the lifetime of the
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vector for transmission to be possible. In between the

two lethal extremes, higher temperatures also speed up

the rate of development of Anopheles mosquitoes and

shorten the gonotrophic cycle, which can increase the

biting rate [4]. Our retrospective analysis of local temporal

dynamics complements broad-scale scenarios for the

impact of climate in decades to come, primarily focused

on global risk maps for future geographical distributions

of malaria (and other vector-borne diseases) [5–10].

Although several highland regions in East Africa have

already experienced a significant exacerbation in the

size of malaria outbreaks over the last three decades

(see [11–13] and references therein), the role of

temperature patterns remains controversial [14]. No

retrospective study has evaluated the effect of local warm-

ing trends with a quantitative approach that explicitly

considers the full transmission cycle of malaria

[11,13,15–18]. The re-analyses of the temperature time

series for the global gridded climate product known as

Climate Research Unit (CRU) [19] has shown that stat-

istically significant trends are present in these regions

and that these could generate significant increases in

vector abundance [17]. The relevance of the gridded

temperature records has been questioned for a landscape

of rapid altitudinal change for which spatial averages can

poorly represent local temperatures at the coarse spatial

resolution of the grid (0.58 per 0.58 lat. � long.) [18]. A

graphical comparison of the temperature records for the

CRU grid point and the local stations in a Kenyan high-

land has shown, however, that both time series exhibit a

similar increasing trend, with lower overall (and also

mean) values for the latter, as the local measurements

can better represent a specific (in this case, higher)

altitude [20].
This journal is q 2010 The Royal Society
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Figure 1. Monthly time series for (a) malaria cases and (b) mean temperatures. The malaria data consist of confirmed cases for

inpatients from the admission records for 1966–2002 at the hospital serving a tea plantation composed of several estates
(Brooke Bond Farms, now Unilever Tea Kenya Ltd; latitude 0.38 S, longitude 35.378 E, elevation 1780–2225 m) [15]. The
temperature data were obtained by dovetailing the records from two meteorological stations within the tea estates, together
with adjustments for altitude based on mean temperature data from a number of stations in Kenya spanning a broader altitude
range (see §2 and electronic supplementary material, figure S1 and §5 for details). The data from the Tea Research Foundation

(TRF) meteorological station were used up to 1992, and from December 1997 to March 1998 when the second record was
missing; the data from the official meteorological station were used from 1992 onwards by adjusting these to the altitude of
the TRF time series. The graph shows the temperature time series adjusted for 1780 m.
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We consider here both disease transmission and local

temperatures in a highland region of Western Kenya for

which a time series of confirmed malaria cases is available

monthly for over three decades. A malaria population

model that couples the dynamics of the disease in both

the mosquito vector and the human host is used to evalu-

ate the impact of a trend in local temperatures on the

population dynamics of the disease. The malaria model

is parametrized using the hospital records for the 1970s

and beginning of the 1980s, a period of low incidence

preceding epidemic behaviour. The expected dynamics

of cases are then projected forward for the following dec-

ades with and without the temperature trend. This

approach differs by design from one based on fitting the

complete set of data, and therefore from one that would

seek to explain a priori the full increase in cases with the

temperature trend. This allows us to quantify the effect

of warming without precluding the change of other

major drivers, such as drug resistance and human popu-

lation movement, also acting on malaria across these

decades. Comparisons of the projections with and with-

out the temperature trend allow us to address how

much of a change in the size of epidemics the observed

warmer temperatures could have generated. Our findings

support a significant effect of warmer temperatures on the

exacerbation of malaria in this East African highland,

while also allowing for a role of other factors. These

conclusions are robust to different model structures for

the population dynamics of the disease and to other

variations in our analyses. We end with limitations of

the analyses, discussion on questions of population

growth and open areas for the future.
Proc. R. Soc. B (2011)
2. DATA
The data consist of a monthly time series of malaria cases

reported from hospital records in the Kericho district of

the Kenyan highlands, on the western side of the Great

Rift Valley near Lake Victoria (figure 1a; see caption for

details). We consider a local temperature time series gen-

erated by dovetailing the records from two local

meteorological stations adjacent to the tea plantation

(figure 1b; see caption and §5 in the electronic

supplementary material for details) [20].

The reported population size for workers and their

dependants in the tea estates ranges from 50 000 to

100 000 in the literature [15,16]. We focus on the lower

half of the altitude range (from 1780 to 1980 m), where

the impact of warming would be expected to be most

evident, and consider first a total constant population of

50 000. We then address the sensitivity of our results to

this number, as well as the possible effect of an increasing

population outside the tea estate (electronic supplemen-

tary material, figure S12 and §11.2) [21]. We present

results for altitudes of 1780 and 1880 m (the lower

boundary and middle of this range, respectively).

Figure 1b shows the temperature time series adjusted

for 1780 m. There is a clear trend in the data of an

increase of approximately 18C over 30 years. Our goal is

to evaluate the possible impact of this observed pattern

on the population dynamics of malaria using a coupled

human–mosquito transmission model.

The mosquito component of our epidemiological

model (electronic supplementary material) requires rain-

fall as a second climate driver. We use two rainfall

datasets in our analyses. The first one is a monthly rainfall
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Figure 2. Coupled mosquito–human model of malaria dynamics. The population is subdivided into a number of classes. In
particular, two types of infected individual are considered: those who present symptoms and therefore receive some sort of

clinical treatment (C), and those who acquire asymptomatic infection (I) but are nevertheless infectious and can transmit
the parasite to the vector. A recovered class (R) consists of individuals who have cleared parasitaemia, or have too low a
level of parasitaemia to effectively infect the vector. The replenishment of susceptibles through immigration or births (B)
and individual losses owing to mortality—or more generally, population turnover (d)—are considered to balance each other
so that the total population N remains constant. A constant maximum size of the worker population and their dependants

in the tea estates supports this assumption [15]. The coupling to the mosquito component of the model occurs through the
‘force of infection’ (b), the per capita rate at which susceptible individuals become infected. This rate contains two terms to
allow for two different sources of infection, for local and external transmission, respectively (electronic supplementary
material). The local force of infection depends on the number of infected mosquitoes W, and the mosquito population is sub-
divided into larvae (L), and adults, with uninfected adults (X) becoming exposed (V) when they bite an infectious human

(electronic supplementary material). Only a fraction of infections in humans (j) fully develops severe malaria symptoms
and then receives clinical treatment (C). Asymptomatic but infectious individuals (I) can present a relapse of severe malaria
symptoms if they are bitten again, but the per capita transmission rate (b) of this process is decreased by a factor h. The clear-
ance or recovery rate for treated infected and sick (C) and non-treated infected individuals (I) are r and r, respectively.

Recovered individuals in R lose immunity at rate s and return to S with a relaxation time that depends on mosquito exposure
(see electronic supplementary material for details).
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time series from a local meteorological station in the

Kericho district from 1970 to 2003 (Kericho Chagaik

Estate, 08200 S, 358200 E, 6000 ft; fig. 3 in [22]). We sub-

divided the monthly cumulative rainfall equally into daily

values to estimate the amount of rainfall per day, since all

our rates in the model equations are expressed per day.

To take into account the autocorrelation patterns result-

ing from daily variability, we also considered a rainfall

time series consisting of daily values from another

meteorological station in the district from 1973 to 2003

(Hail Station, 08220 S, 358160 E, 6480 ft; fig. S1 in

[22]). The treatment of missing data is described in the

electronic supplementary material.
3. RESULTS
A malaria population model that couples the dynamics of

the disease in both the mosquito vector and the human
Proc. R. Soc. B (2011)
host allows us to evaluate the potential response to the

temperature trend. The variables and flows in the model

are illustrated in figure 2 and described in the electronic

supplementary material together with variants of model

structure, including a different representation of immu-

nity. The model can be seen as a dynamic map from

the climate time series of temperature and rainfall to the

disease variables of interest over time, including the

numbers of cases, adult mosquitoes and infections in

both humans and vectors. The results described here cor-

respond to a large number of model simulations that

compare the predicted dynamics after 1985 in the

absence and presence of the temperature trend (electronic

supplementary material). The fitting of the model to the

data up to 1985, using a genetic algorithm to maximize

its likelihood (electronic supplementary material), pro-

vides an ensemble of best parameter sets that reflects

the uncertainty in parameter estimation. The average
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Figure 3. Numerical simulations of the model (a) with and (b) without the trend in temperature. The numerical simulations

generate a distribution of cases for each month reflecting the uncertainty in parameter values of the model (electronic sup-
plementary material). There are three sources of uncertainty in these simulations. First, our parameter search produces a
family of solutions. We use this whole family of parameter sets to simulate the model repeatedly. Second, each simulation with-
out the trend considers a different random sample of temperatures in the 1970s. Third, the model includes an error model to
account for uncontrolled, unavoidable variability from processes not explicitly modelled in our deterministic approach. Thus,

the resulting simulations give us a distribution of cases (as well as infected numbers) for each month. We plot here the median
number of cases (50% percentile, dark grey line), together with the range from the 5 to 95% percentiles (light grey shading) of
the distribution of predicted cases for each month. Comparison of (a) with (b) shows the effect of warmer temperatures on the
dynamics of the malaria model. The observed cases are plotted in red.
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values of the fitted parameters and their uncertainty are

reported in electronic supplementary material, table S1.

Repeated simulations using these parameter sets gen-

erate a distribution of predicted malaria cases for any

given month and for two temperature regimes: the

observed pattern and the baseline, with no trend, gener-

ated by sampling years from the 1970s at random

(electronic supplementary material). The latter time

series mimics the no-trend scenario in which temperature

values in the 1990s would have been ‘like’ those in the

1970s (except for interannual patterns of autocorrela-

tion). We start with the results for an altitude of 1780 m

and the monthly rainfall data.

With the observed temperatures, the simulations gen-

erate a significant increase in the size of epidemics from

the 1970s to the 1990s. Figure 3 compares the projected

dynamics of cases in the presence and absence of the

temperature trend. For each month, we have illustrated

the expected number of cases, superimposed on the 5

and 95 per cent percentiles of the case distribution. The

temperature trend produces an increase in cases that is

clearly absent in the baseline scenario of no trend. The

distribution of simulated cases in the 1990s (and particu-

larly during epidemics) is highly asymmetric, exhibiting a

long tail (figure 4). This implies a large range of plausible

values above the median, including extreme peaks,

with low probability. Warmer temperatures shift the

distribution of the seasonal peaks towards much larger

values, typically eight times larger than those of the

simulations without the trend, if we compare their most

likely values (figure 4).

Comparison of the simulated and observed cases

(figure 3a) shows that the size of observed epidemics
Proc. R. Soc. B (2011)
falls typically within the uncertainty of the projections.

However, the median of the simulated cases is typically

below the observed values, and simulated cases tend to

anticipate the timing of the large peaks in 1997–1998

(we return to discussion of these two differences below).

When the daily rainfall time series is considered,

results show a comparable increase in cases in the pres-

ence versus the absence of a temperature trend. The

above results are also robust to changes in model struc-

ture. When the treated cases enter the recovered

(immune) class instead of the susceptible class, very simi-

lar dynamics and effects of temperature are obtained (see

electronic supplementary material, table S2, for esti-

mated parameters). A more significant change of model

structure that considers a different representation of

population immunity [23] predicts again a significant

effect of warming (electronic supplementary material,

figure S3 and table S3). When the three models are con-

sidered at the same altitude and run with the same

rainfall, the estimated parameters are remarkably similar,

as are the projections for both the malaria cases

(electronic supplementary material, figure S5) and other

epidemiological quantities, such as the entomological

inoculation rate (EIR; electronic supplementary material,

figure S6) and vectorial capacity (not shown). Similar

results on the response to temperature were also obtained

for an altitude of 1880 m. However, the likelihood of the

model was higher for the lower altitude of 1780 m

(electronic supplementary material), consistent with an

effect on transmission that is felt most strongly in the

lower part of the tea estate.

To better understand the response of cases to warm-

ing, we consider how the equilibrium of the model
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(with no seasonality) varies as a function of temperature.

This response curve is highly nonlinear, with a sharp

increase in the equilibrium values over a narrow range

of temperatures (electronic supplementary material,

figure S7a). A sharp transition is defined here as an incre-

ment in the fraction of infected humans of more than 0.8

between 18 and 208C. Approximately one-third of the

solution ensemble exhibits this behaviour, with a grada-

tion of more gentle responses for the rest. Typical values

for the distribution of this transition value are within the

variation of the observed mean temperatures (electronic

supplementary material, figure S7b,c), implying that the

system would have crossed this point more than once

during the seasonal excursions of temperature, which

explains the large increase in the projected cases despite

the small trend in temperature.

The above analyses considered a constant population

size of 50 000. Similar results are obtained with constant

populations ranging from 25 000 to 75 000 (electronic

supplementary material, figure S12). Although the popu-

lation size inside the tea estate is described in the

literature as largely constant, we can ask about the poten-

tial consequences of a growing population in the

surrounding town and rural areas [21] for both the para-

metrization of our model and the higher malaria

prevalence observed in the 1990s. Figure S8 in the elec-

tronic supplementary material shows the exponential

increase in the rural and urban areas of the town of Ker-

icho for the study period. More human hosts outside the

tea estates, and more malaria carriers, could influence

transmission dynamics in different ways. They could

increase the external force of infection, as the result of

workers and their dependants becoming infected outside

the tea estate. We ask whether the data provide evidence

for such a trend in the first part of the time series by fitting

the model with a linear trend in the external force of

infection. The fitted slope of this linear trend is not sig-

nificantly different from zero (electronic supplementary

material, figure S9), and the likelihoods of the model

are similar to those of our original formulation (electronic

supplementary material, figure S10). The parameters

obtained when such a trend is included give rise to similar

ranges of malaria increases in the 1990s (results not

shown). Another possibility, at the opposite end of the
Proc. R. Soc. B (2011)
mixing spectrum, is that a model that considers a non-

zero growth rate inside the tea estate could fit our data

better. To address this possibility, we fitted an extra

parameter—the human birth rate—and compared it with

the death rate (or turnover rate). These two parameters

were set equal in the previous analyses to maintain a con-

stant population. When we allow them to differ, there is

no evidence for a significant difference between birth

and death rates (see electronic supplementary material,

figure S11). In particular, this implies that a model with

a positive exponential growth rate (such as the one

observed outside the tea estates) would fit the data less

well than the model with a constant population size.

These analyses indicate that the parametrization of our

model is robust to these two potential effects of popu-

lation growth outside the tea estate. They do not mean,

however, that a growing population outside the tea

estates, or a related increase in the immigration of cases

from outside the system, has not acted in the 1990s.

These trends belong to a suite of factors that can increase

or decrease the change in malaria owing to warmer temp-

eratures projected by our model. We return to population

growth in this context in §4.
4. DISCUSSION
Our results support a significant role of warmer tempera-

tures in the exacerbation of the disease from the 1970s to

the 1990s. The fact that the increases projected by the

model were nevertheless typically smaller than those

observed in the data is consistent with additional factors

other than temperature also being at play. These factors

include drug resistance of the parasite to chloroquine

(which emerged in Kenya at the beginning of the 1980s

[13,15]), land-use patterns (which can influence effective

local temperatures [24]), the rise of HIV prevalence [25],

increased human movement [13], population growth and

the associated deterioration of health services [12].

Neither the quality of health services nor the size of the

population of workers and their dependants appears to

have changed significantly over the past three decades,

and although a considerable fraction of the population

travels regularly to lower, more endemic regions, this

travel is not new [13,15]. Thus, the tea plantation data



1666 D. Alonso et al. Epidemic malaria and warmer temperatures
provide an opportunity to estimate the magnitude of the

effect of warmer temperatures in a more ‘controlled’ set-

ting than in its surrounding regions. There, too, the

burden of malaria has increased [21,26]. Our results

suggest that warmer temperatures can explain a signifi-

cant portion of this increase, acting in the same

direction, if not synergistically [24], with change in

other important factors.

Our results appear robust to different variations in

model structure, including the specific description of popu-

lation immunity and how repeated exposure to the disease

affects infectiousness and immunity. This flexibility in the

model formulation is important because the representation

of immunity in malaria models can take several forms, but

also because there is evidence for the existence of acquired

functional immunity and asymptomatic infections in other

highland areas of Kenya based on the age structure of cases

and molecular studies [12,27].

We have considered mean temperatures and not the

higher temporal resolution of diurnal variation. One

important future direction will be to consider the variation

in minimum and maximum temperatures [28–31].

Refinements of our analysis would further benefit from

consideration of the human population distribution with

altitude, and from measurements of indoor versus out-

door temperatures for this specific location. We have

considered here a maximum difference of 58C as reported

for the tea plantation [15]. At lower altitudes in the same

region (1430–1580 m above sea level), a maximum

difference of 3.28 has been reported [32]. However, a

value of 58 is better supported by a higher likelihood of

our model for that difference than for lower ones.

Detailed temperature measurements every half-hour

for six months at another East African highland (in Ethio-

pia) indicate differences up to 5 and 68C, between

temperatures outdoors (ambient and within vegetation)

and indoors (human dwellings with different types of

roofs and uses), at 1950 m (J. Cox, A. Tulu &

M. J. Bouma 1998, unpublished data; see electronic sup-

plementary material, figure S7). The pioneer studies of

Garnham [33] in the Kenyan highlands described larger

differences between uninhabited and inhabited huts

under certain weather conditions at similar altitudes

(fig. 4 in Garnham [33]). In our model, a phenomenolo-

gical parameter fitted to the data represents implicitly

the myriad mechanisms, including behaviour, that can

alter the temperature perceived by adult mosquitoes

[34]. Thus, the resulting effective difference does not

need to simply reflect indoor versus outdoor tempera-

tures. The resulting numbers of adult mosquitoes

predicted in our simulations range typically from 0.05

to 0.5 individuals per human and are consistent with

empirical observations in these regions [35], even though

the model was fitted to malaria cases only, with all other

variables in the model, including vector abundances, as

‘hidden’ variables for which time series data were not avail-

able. The collection of malaria vector densities in highland

areas is especially difficult given their low numbers and the

intermittent character of epidemics [28].

Our results suggest that some local transmission was

already present in the region in the 1970s and at the

beginning of the 1980s. The model incorporates both

an external and an internal force of infection to represent,

respectively, the importation of infection from lower
Proc. R. Soc. B (2011)
regions outside the tea estates and the local transmission

via the mosquito vector. The internal force of infection

becomes more prominent in the 1990s with the increase

in temperatures (see electronic supplementary material,

figure S6, for a related measure of infection intensity,

the EIR, measuring the number of infectious bites per

person per year).

The model projections in the 1990s capture the timing

(year) of two out of the three major epidemics. This

suggests that temperature plays a role in the interannual

variability of the disease, and leads to open questions on

the relationship between temperature and rainfall

anomalies in this region, given the previously described

role of rainfall in the interannual variability of malaria in

the tea estates [21,22]. The simulations also suggest

that any trend in the rainfall data itself (for example in

its variability over time) does not produce a significant

increase in cases across these decades. This is apparent

in the baseline simulations that contain the effect of the

observed rainfall patterns but not the temperature

trend, and do not show significant increases in cases.

This does not preclude, however, an interaction between

rainfall and temperature, so that a trend in the variability

of the former would only manifest itself under warmer

temperatures—a possibility that remains to be examined.

The model is less able to capture precisely the monthly

timing of seasonal epidemics, especially for one large peak

in 1997 the timing of which is delayed in the simulations.

The complexity of the seasonal pattern, with two peaks

per year (a main peak following the main rainfall season

and an earlier, smaller peak following the short rains)

may find an explanation in the complex ecology of the

vector(s) [22]. This level of mechanism, especially if

two different vectors are involved, cannot be reproduced

by our model explicitly, particularly given the ‘anoma-

lous’ timing of the 1997 outbreak and the short length

of the record exhibiting epidemics. A better result

would have been obtained if we had fitted the model to

the whole time series, including the second part when

the seasonal patterns become more evident, but this was

not the goal of our analysis. We specifically avoided fitting

the whole time series because this would have implicitly

assumed, a priori, that temperature alone was responsible

for the observed epidemics. Thus, we do not expect our

projections after 1985 to be able to accurately predict

the observed patterns; they are instead intended to quan-

tify the magnitude of the increase in cases that

temperature can explain on its own.

We have considered different human sub-models to

examine the robustness of the results to the structure

and representation of acquired immunity (and super-

infection; electronic supplementary material). An open

question is whether these different representations

have important dynamical consequences, in terms of

characteristic scales of interannual variability and bifur-

cation patterns with increasing transmission intensity.

For our purposes here, these sub-models, with two

levels of susceptibility and infection, provide a represen-

tation of the dynamics of human malaria at the

population level that goes beyond simpler SIRS formu-

lations but remains sufficiently parsimonious to be

coupled to the mosquito component and confronted to

population-level time-series data. Future extensions of

the human sub-model(s) could incorporate age explicitly
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[36] in formulations with multiple levels of immunity and

infection (parasitaemia [37]). Parameter estimation for

such extensions will require additional data at the individ-

ual level to complement the population time series. For

endemic or ‘stable’ malaria regions, epidemiological

models with multiple immunity levels have been devel-

oped and parametrized based on age-specific

prevalence, levels of parasitaemia and infectivity from epi-

demiological surveys [37]. For more epidemic or

‘unstable’ regions, population-level time series provide

key information on the more dynamic behaviour of

cases over time, especially in the interannual variability

in the size of epidemics [38]. Ongoing efforts seek to

combine epidemiological data at these different levels of

organization for inference purposes of more complex

transmission models. Although the expectation would

be that more detailed representations of acquired immu-

nity will not be critical at the lower end of the

transmission spectrum, it will be valuable to confirm

this and to develop models that can be applied across

broad ranges of transmission intensities.

We have considered a constant population with turn-

over. The population of Unilever’s (formerly Brooke

Bond’s) estate has been reported to have remained largely

unchanged over the years [15,16,39]. There has been,

however, significant growth of the population in the

nearby town (around 4–5% annually; electronic sup-

plementary material, figure S8), and the question of the

possible effect of such growth on malaria prevalence in

the tea estates arises. We have shown that, despite such

growth, the malaria data we have used to fit the models

do not support an increase in either the external force

of infection or the local population within the tea estates

(in agreement with the literature) for the first half of the

time series (electronic supplementary material, §11). It

is important to note that these analyses do not address

(and are not meant to address) whether a rise in the exter-

nal force of infection is at play later on in the 1990s, but

rather whether the estimated model parameters are

robust to relaxing the assumption of a constant force of

infection and a constant population. As we have already

emphasized, we recognize that drivers other than temp-

erature are likely to have influenced malaria prevalence,

and that these would act to modify the estimated increase

owing to temperature alone. Our study was specifically

designed to estimate the effect of temperature in isolation

from other trends. This is because the meaningful

consideration of such trends would require additional

time-series data (for example, on levels of drug resistance,

HIV/AIDS and human movement), and even then it

would be difficult to statistically differentiate the respect-

ive effects of multiple trends. Most of these trends would

add, however, to the increase in cases projected for

warmer temperatures. In particular, a rising external

force of infection is likely with patterns of increased move-

ment and growing surrounding populations, and this

would act to further increase malaria prevalence beyond

the rise generated by temperature. In this regard, the

expansion of the human population into valleys within

the highlands that can act as a reservoir for malaria and

provide a source of transmission for higher, uphill areas

[21] is especially relevant.

The consideration and consequences of a growing

population in surrounding areas of the tea plantation
Proc. R. Soc. B (2011)
through the modification of the internal force of infection

is less evident for several reasons. First, population

growth in models for vector-transmitted diseases (with a

single host), such as ours, decreases the force of infection

within the system: this is because a larger number of hosts

do not change the number of vectors, and this leads to a

decrease in both the fraction of mosquitoes per human

and the force of infection, which is a function of

this ratio. Thus, a larger population acts in this way to

effectively decrease transmission intensity in models

with frequency-dependent transmission (electronic

supplementary material, §11). A growing local population

per se cannot explain an increase in prevalence simply as

the result of the transmission dynamics, unless the

models were to incorporate indirect (and potentially

important) mechanisms by which higher populations

and/or densities of humans lead to more mosquitoes,

especially in anthropophilic vectors such as Anopheles

gambiae. This brings us to our second point. Population

growth can act in more complex ways than the dilution

effect described above, including the opposite direction,

through heterogeneous biting by the vector [40] and

mechanisms associated with human settlement that

increase breeding sites for the vectors or stress the

capacity of declining health services. These mechanisms

are difficult to parametrize without specific empirical

studies, including the effects of human densities versus

abundances, on the vector to human ratio. Third, a

single, well-mixed population with exponential growth

would provide a poor representation of the system at

large, which is effectively composed of two subpopu-

lations: the tea plantation and the surrounding areas.

The tea estates have designated areas with company-

built standard housing for staff and family only. Clusters

of these houses are found over the tea plantation (in a

strip of around 25 km that is on one side flanked by

another tea plantation), and transmission takes place pri-

marily at night when the population of the tea estates is

spatially segregated from the surrounding rural popu-

lation. Typical distances to the suburban areas of the

town of Kericho exceed those that An. gambiae would

typically travel when searching for blood meals [41].

Therefore, the populations inside and outside the tea

plantation are not well mixed from the perspective of

malaria transmission, and the degree of mixing via the

vector is unlikely to have biased our results. In addition,

the two subpopulations exhibit different demography

(and probably different treatment levels). All these factors

indicate that an extension of our model (without popu-

lation growth and only one subpopulation) would

require the explicit consideration of the two subpopu-

lations, and its parametrization would require the

consideration of at least the additional data on the

number of cases outside the tea plantation. Importantly,

however, population growth could act to either increase

or decrease the effect of warmer temperatures on malaria

prevalence in other highland locations, depending on the

balance of the opposite forces described here, and this

should be considered in extrapolations of our work

beyond the tea plantations, given the pronounced demo-

graphic expansion in highland regions of East Africa.

Rising population (densities) could also play a role in

the intensity of transmission in very sparsely populated

areas, such as deserts, and particularly when vectors are
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poor (zoophilic), and the animal to human feeding ratio

could change, resulting in more bites on humans [42].

An increase in transmission intensity, regardless of the

underlying drivers, does not preclude the potential effec-

tiveness of control measures in these regions. On the

contrary, it underscores the importance of such measures,

and of studies evaluating the extent to which trends in dis-

ease risk resulting from warmer temperatures will increase

the need and costs of intervention [43]. Control efforts

including insecticide spraying have risen in Kenyan high-

lands (including the tea estates) in the last decade, and

several recent studies demonstrate the potential effective-

ness of such efforts in ‘unstable’ transmission settings,

where transmission intensity decreases significantly

during the dry season. For example, the addition of mos-

quito larval control with microbial larvicides to

insecticide-treated nets was shown to confer significant

additional protection against malaria parasites in highland

regions [44]. The last 2 years in the time series analysed

here exhibits a decrease in cases that was explained by a

change in drug treatment by Shanks et al. [15]; the epide-

miological dynamics themselves may also have contributed

to this pattern given the decrease present in our model pro-

jections for that period (figure 3a). The combination of

regular, widespread indoor residual spraying with long-

lasting insecticides and the use of ACTas first-line antima-

larial drug treatment reduced and possibly interrupted

local malaria transmission in two adjacent highland areas

from April 2007 to March 2008, following a series of inter-

ventions started in 2005 by the Ministry of Health of

Kenya [45]. As pointed out by the authors [45], however,

the sustained elimination of malaria will require the

reduction and eventual elimination of malaria in surround-

ing, more endemic areas, with the possibility of the

development of resistance in the vector and/or parasite.

Finally, the general approach we have used here should

be applicable to retrospective records in other highland

regions for which both malaria cases and meteorological

variables exist. It would be informative to compare the

conclusions of this dynamical approach across different

regions, particularly if data on other drivers such as drug

resistance were also available. In the meantime, this

study already underscores the nonlinear response of

malaria dynamics to increases in temperature, with small

temperature differences amplified in the disease response.
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