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Abstract
Background: Viral load monitoring is not available for the vast majority of patients receiving
antiretroviral therapy in resource-limited settings. However, the practical utility of CD4 cell count
measurements as an alternative monitoring strategy has not been rigorously assessed.

Methods: In this study, we used a novel modelling approach that accounted for all CD4 cell count
and VL values measured during follow-up from the first date that VL suppression was achieved. We
determined the associations between CD4 counts (absolute values and changes during ART), VL
measurements and risk of virological failure (VL > 1,000 copies/ml) following initial VL suppression
in 330 patients in South Africa. CD4 count changes were modelled both as the difference from
baseline (ΔCD4 count) and the difference between consecutive values (CD4 count slope) using all
3-monthly CD4 count measurements during follow-up.

Results: During 7093.2 patient-months of observation 3756 paired CD4 count and VL
measurements were made. In patients who developed virological failure (n = 179), VL correlated
significantly with absolute CD4 counts (r = - 0.08, P = 0.003), ΔCD4 counts (r = - 0.11, P < 0.01),
and most strongly with CD4 count slopes (r = - 0.30, P < 0.001). However, the distributions of the
absolute CD4 counts, ΔCD4 counts and CD4 count slopes at the time of virological failure did not
differ significantly from the corresponding distributions in those without virological failure (P = 0.99,
P = 0.92 and P = 0.75, respectively). Moreover, in a receiver operating characteristic (ROC) curve,
the association between a negative CD4 count slope and virological failure was poor (area under
the curve = 0.59; sensitivity = 53.0%; specificity = 63.6%; positive predictive value = 10.9%).

Conclusion: CD4 count changes correlated significantly with VL at group level but had very
limited utility in identifying virological failure in individual patients. CD4 count is an inadequate
alternative to VL measurement for early detection of virological failure.

Background
Access to antiretroviral therapy (ART) is expanding in low-
and middle-income countries with over 2 million people

receiving treatment by December 2006, representing 28%
of the 7.1 million estimated to be in need [1]. Recent stud-
ies from sub-Saharan Africa have shown that ART is a cost-
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effective public health intervention [2-4]. Over 1.3 mil-
lion people in the region were receiving ART by December
2006 and yet more than 3.5 million further individuals
remained untreated [1]. To date, early pessimism that ART
could not be effectively delivered on a large scale in the
region using a simplified public health approach has
proven largely unfounded. However, lack of laboratory
monitoring to identify patients failing treatment and
requiring a switch in treatment regimen remains a critical
issue.

Plasma viral load (VL) monitoring, the gold standard used
in high-income countries for diagnosing virological fail-
ure, is not available in many resource-limited settings.
Currently a single World Health Organisation (WHO)-
recommended second-line regimen is the only therapeu-
tic option available for HIV-infected patients in sub-Saha-
ran Africa who develop virological failure during their
first-line regimen [5]. Although these regimens are offered
free of charge in the national ART programme in some
countries, no further treatment options are typically avail-
able in the public sector thereafter. Sensitive and specific
means for timely identification of treatment failure are
therefore greatly needed to maximize the benefits of these
limited drug options.

Routine VL monitoring in resource-limited settings
requires significant infrastructure and expertise and
remains prohibitively expensive in most settings. Other
low-cost means of detecting virological failure must there-
fore be considered. Colebunders and colleagues, for
example, proposed an algorithm based on clinical and
treatment history and inexpensive laboratory indices such
as haemoglobin level and total lymphocyte count [6].
However, when evaluated in a South African cohort, the
sensitivity and specificity of the algorithm were unaccept-
ably low [7]. WHO has recommended use of CD4 cell
count measurements and clinical outcomes for monitor-
ing ART in the absence of VL [5]. However, the clinical and
CD4 cell count changes that are able to predict virological
failure have not been identified.

When considering the utility of CD4 cell counts as a sur-
rogate for virological failure, the critical issue is whether
the variability in CD4 cell count measurements ade-
quately reflects the variability in viral load. A number of
previous observations suggest that this may be limited.
Firstly, in a study of untreated patients in the USA, higher
VLs were associated with greater rates of CD4 cell decline
at a group level, but had minimal value for predicting the
rate of CD4 cell decline in individual patients; only
4%–6% of the variability in CD4 cell losses could be
explained by plasma VL [8]. Secondly, it is well recognised
that a significant proportion of patients receiving ART
have discrepant virological and immunological

responses. Blood CD4 cell counts fail to increase in
5%–50% of patients receiving ART despite prolonged
undetectable plasma VL. Conversely, marked increases in
CD4 cell counts are observed in some patients despite
incomplete virological suppression [9-14]. Thirdly, in a
study from Botswana, initial blood CD4 cell count
increases only had moderate discriminative ability for
identifying those patients who successfully achieved VL
suppression after starting ART [15]. Collectively these
existing data suggest that CD4 cell counts have limited
capacity to explain the variability of VL measurements at
an individual level both in treated and untreated patients.

A number of studies have previously examined factors
associated with virological treatment failure in high-
income settings [16-23]. However, the practical utility of
CD4 cell count measurements as a substitute for viral load
monitoring has not been specifically assessed using rigor-
ous analyses. Data relevant to ART programmes in
resource-limited settings are especially needed. We there-
fore conducted an analysis of longitudinal data from the
Cape Town AIDS Cohort (CTAC) in South Africa in which
CD4 cell counts and VL measurements are routinely meas-
ured every three months. Using all data points measured
during follow-up, we determined the association between
VL measurements, risk of virological failure and CD4 cell
counts analysed as either absolute values, changes from
baseline (ΔCD4 count) or the difference between consec-
utive values (CD4 cell count slope). We were thereby able
to assess the utility of CD4 cell counts to predict virologi-
cal failure in a resource-limited setting.

Methods
Setting and study population
The Cape Town AIDS Cohort (CTAC) has been described
in detail previously [24]. In brief, ART-naïve patients were
referred to the cohort from a wide range of primary health
care facilities in Cape Town to the adult HIV clinics affili-
ated with the University of Cape Town (UCT). Patients
accessed ART through participation in multicentre phase
III clinical trials at the New Somerset Hospital and the
Desmond Tutu HIV Research Centre at UCT between
1996 and 2006. Participants gave informed consent and
clinical trials protocols were approved by the UCT Clinical
Research Ethics Committee. Enrolment criteria differed
between the various trials but collectively encompassed
patients with a wide spectrum of baseline blood CD4 cell
counts, viral load and clinical stages. All patients received
a minimum of three antiretroviral drugs: a non-nucleo-
side reverse transcriptase inhibitor and two nucleoside
analogues; three nucleoside analogues; or a protease
inhibitor with two nucleoside analogues.

Viral load was determined by reverse transcriptase-
polymerase chain reaction (Amplicor®, Roche Molecular
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Systems, Branchburg, New Jersey, USA) and CD4 counts
were measured by flow cytometry (Beckman Coulter®,
Miami, Florida, USA). Blood CD4 cell counts and plasma
VL were measured every 2–3 months when patients were
routinely reviewed. Clinical stage of disease was assessed
using WHO criteria. Demographic data were recorded and
the socioeconomic status of each patient was defined
using the Cape Metropolitan Council suburbs composite
index, which has been described previously [24].

Statistical analyses
In all analyses conducted in this study, virological sup-
pression was defined by a VL of < 400 HIV RNA copies/ml
following initiation of ART. The baseline CD4 cell count
was that measured at the time that virological suppression
was first achieved. Virological failure was defined as the
first episode of viral load ≥ 1,000 HIV RNA copies/ml fol-
lowing previous successful VL suppression, confirmed by
a second consecutive measurement. To investigate sensi-
tivity thresholds, we also explored in separate analyses VL
thresholds of > 400 and of > 10,000 HIV RNA copies/ml.
Changes in CD4 cell count were reported in two ways:
ΔCD4 was defined as the change in CD4 cell count from
the baseline value and the CD4 count slope was defined
as the difference between consecutive CD4 cell count
measurements as determined by subtraction of the former
value from the latter value.

Determinants of virological failure
The Wilcoxon matched pairs test was used to compare
continuous variables and the χ2 test for comparison of cat-
egorical variables. The Kaplan-Meier method was used to
estimate the virological failure-free proportion. Cox pro-
portional hazard regression models were fitted to identify
factors associated with the likelihood of virological fail-
ure, using the SAS phreg procedure (SAS software version
8.2, SAS, Cary, NC, USA). In this analysis virological fail-
ure-free survival was defined as the time from the date of
first virological suppression to when viral load was con-
firmed to reach > 1,000 copies/ml, death or last known
clinic visit. Risk factors considered in the analysis were
prevalent AIDS (prior to, or at the date of a first viral load
< 400 HIV RNA copies/ml) and incident AIDS (occurring
subsequent to the date of a first viral load < 400 HIV RNA
copies/ml), socio-demographic variables (including age,
socioeconomic status and gender), baseline CD4 cell
count and follow-up CD4 cell count (categorized a priori
as a < 100 or ≥ 100 cells/μl increase at any time-point dur-
ing follow-up). Follow-up CD4 cell count measurements
were modelled as a time varying covariate. At each time-
point in the modelling process, the CD4 cell count value
considered was the value recorded at that specific time-
point, if available. Otherwise, the most recent recorded
value (within 2–3 months) was considered. Variables sig-
nificantly associated with the likelihood of occurrence of

virological failure in univariate models (P < 0.05) were
considered for inclusion in a multivariate model.

Association between CD4 count and viral load failure
Different strategies were employed to comprehensively
assess the strength of the association between treatment-
induced changes in CD4 cell count and virological failure.
Firstly, for patients who failed virologically, we fitted three
separate scatter-plots of all VL measurements (log10 cop-
ies/ml) done during follow-up and either the concurrently
measured absolute CD4 counts, ΔCD4 count values or
CD4 count slopes at each time-point. In these analyses the
strength of association was assessed by calculating Pear-
son correlation coefficients.

For patients who developed virological failure, we next
compared the distributions of CD4 cell values, ΔCD4
counts and CD4 cell slopes measured at the time of failure
with the distributions of all data points from patients who
did not develop virological failure. All CD4 cell count and
viral load values included in these analyses were concur-
rently measured during follow-up. Data were included
from the date of first viral load suppression until the date
of development of virological failure or the date of last
CD4 count measurement for those who did not fail viro-
logically.

We next determined the association between the CD4 cell
count slope and virological failure using a receiver operat-
ing characteristic (ROC) curve. The area under the ROC
curve was assessed with the use of the C statistic. Sensitiv-
ity, specificity, positive predictive value, negative predic-
tive value estimates were calculated, with 95% confidence
interval (CI), using Clopper-Pearson exact method or
Fleiss approximation as appropriate.

Results
Virological failure during follow-up
Of 360 patients who started ART during the study period,
330 (91.7%) achieved initial viral load suppression dur-
ing follow-up and were therefore included in the analyses
of virological failure. All treatment regimens incorporated
at least 3 drugs; the numbers of patients receiving regi-
mens based on triple nucleosides, a non-nucleoside
reverse transcriptase inhibitor or a protease inhibitor were
51 (15%), 115 (35%) and 164 (50%), respectively.
Patients were followed for a median of 24.7 patient-
months (IQR, 4.7–51.6) of observation. During this time,
15 (4.5%) patients died.

Overall, a total of 3756 paired CD4 cell count and VL
measurements were made during 7093.2 patient-months
of observation. 179 (54.2%) patients developed virologi-
cal failure with an incidence of 30.3 (95%CI 26.2–34.2)
cases per 100 patient-years. Virological suppression was
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maintained in the remaining 151 (45.8%) patients. Kap-
lan-Meier analysis showed that risk of virological failure
decreased with increasing duration of follow-up (Figure
1A). The median time to development of failure was 24.7
months.

Determinants of virological failure
The baseline clinical and socio-demographic characteris-
tics are reported in Table 1. Groups of patients who did or
did not develop virological failure were both composed of
young adults with similar distributions of gender, socioe-

conomic status, and baseline CD4 cell count and clinical
stage of disease. All had sexually acquired disease.

In univariate Cox proportional hazards regression mod-
els, none of the variables examined was significantly asso-
ciated with the likelihood of virological failure (Table 1).
These variables included follow-up CD4 cell count (Wald
test P = 0.32), baseline CD4 cell count (Wald test P =
0.46), baseline WHO stage (Wald test P = 0.50), incident
AIDS (Wald test P = 0.22), age (Wald test P = 0.09), gender
(Wald test P = 0.63), and socio-economic status (Wald test
P = 0.53). The lack of association with baseline CD4 cell
count was further confirmed using a stratified Kaplan-
Meier plot (Figure 1B).

In view of the lack of significant associations between
patient characteristics and virological failure, multivariate
analysis was not done. Collectively these data showed that
development of virological failure was not associated with
baseline patient characteristics, follow-up CD4 cell counts
or the development of new AIDS-defining illnesses. In
separate analyses, use of VL thresholds of > 400 and of >
10,000 HIV RNA copies/ml produced the same outcomes.

CD4 cell count changes and virological failure
We next examined in greater detail the associations
between all viral load and CD4 cell count values meas-
ured concurrently during follow-up. Correlations between
VL and absolute CD4 count, ΔCD4 cell counts and CD4
cell slopes were calculated for those patients who devel-
oped virological failure (Figure 2A–C). Significant correla-
tions were observed between log10 VL and both absolute
CD4 cell count values (r = - 0.08, P < 0.01), ΔCD4 cell
count (r = - 0.11, P < 0.01), and most strongly with CD4
count slope (r = - 0.30, P < 0.001). This suggests that the

(A) Kaplan-Meier probabilities of virologic failure-free pro-portionFigure 1
(A) Kaplan-Meier probabilities of virologic failure-
free proportion. The numbers of patients followed up for 
0, 12, 24, 36, 48 and 60 months were 330, 180, 123, 82, 39 
and 26, respectively. (B) Kaplan-Meier probabilities of failure-
free survival stratified by baseline CD4 cell count quartile 
range (median = 327; IQR = 205–435 cells/ul).
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Table 1: Baseline demographic and clinical characteristics of the cohort studied (N = 330 patients).

Characteristic Not failed (n = 151) Failed (n = 179) P-value

Gender
Male 84(56) 93(52) 0.51
Female 67(44) 86(48)

Age [median years(IQR)] 34(29–40) 32(27–38) 0.15
Socioeconomic status

High status 68(45) 88(49) 0.45
Low status 83(55) 91(51)

Baseline CD4 cell count (cells/μl)
Median (IQR) 331(193–467) 323(208–431) 0.74
< 200 40(27) 38(21) 0.28
200–350 41(27) 62(35)
> 350 70(46) 79(44)

WHO stage
Stage 1&2 74(49) 83(46) 0.82
Stage 3 59(39) 71(40)
Stage 4 18(12) 25(14)
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CD4 count slope at a given time-point would be the
strongest indicator of the likelihood of virological failure.

CD4 cell counts measured at the time of virological failure
were also compared with the distribution of all CD4 cell
count measurements obtained from patients who did not
develop failure (Figure 2D–F). These analyses showed that
the distributions of absolute CD4 counts, ΔCD4 counts
and CD4 count slopes did not significantly differ compar-
ing values during virological failure to values during viral
load suppression (P = 0.99, P = 0.92 and P = 0.75, respec-
tively).

Since CD4 slopes were the parameter most strongly asso-
ciated with log10 VL among those who developed virolog-

ical failure, we fitted a receiver operating characteristic
curve (ROC) using data from all the patients to examine
this association further (Figure 3). This analysis showed
that the predictive value of CD4 cell slope for virological
failure was poor. The area under the ROC curve was 0.59
and the sensitivity, specificity, positive predictive and neg-
ative predictive values were all low (Figure 3).

CD4 cell counts among patients who did not achieve 
virological suppression
Virological suppression was not achieved by 30 (8.3%) of
the total of 360 patients treated in this cohort during fol-
low-up and were therefore not included in the above anal-
yses. Separate analysis of data from these patients showed
that a significant correlation was similarly observed

Scatter plots of (A) absolute CD4 cell count, (B) ΔCD4 cell count (change in CD4 count from baseline) and (C) CD4 cell count slope (difference between consecutive CD4 count measurements) and corresponding viral load values (log10 copies/ml) meas-ured in patients who developed virological failureFigure 2
Scatter plots of (A) absolute CD4 cell count, (B) ΔCD4 cell count (change in CD4 count from baseline) and (C) 
CD4 cell count slope (difference between consecutive CD4 count measurements) and corresponding viral load 
values (log10 copies/ml) measured in patients who developed virological failure. Distributions of (D) absolute CD4 
counts, (E) ΔCD4 counts and (F) CD4 count slopes of patients (n = 179) at the time of virological failure (dashed lines) com-
pared to the distribution of measurements of all patients (n = 330) at all time-points when viral load remained suppressed 
(solid lines).
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between all measurements of absolute CD4 counts and
the corresponding log10 VL measurements (r = - 0.25, P <
0.0001) (Fig 4A). However, the distributions of the ΔCD4

counts and CD4 count slopes in this group did not differ
significantly from those observed among the 151 patients
who achieved and maintained virological suppression
during follow-up (P = 0.87 and P = 0.25 respectively) (Fig
4B–C). This showed that CD4 cell counts were also a poor
correlate of viral load among patients who did not achieve
viral load suppression.

Discussion
Early detection of virological failure is important for opti-
mal management of HIV-infected patients receiving ART.
Patients who continue to receive a failing regimen are at
risk of immunological failure, morbidity and death.
Moreover, accumulation of multiple antiretroviral drug
resistance mutations may compromise the response to
future drugs and fuel the spread of primary drug resistance
within communities. Since VL monitoring is not available
in most resource-limited settings, we investigated the util-
ity of CD4 cell count measurements for predicting viro-
logical failure in a cohort of South African patients.
Baseline absolute CD4 cell counts as well as clinical and
socio-demographic characteristics were not predictive of
virological failure. Analyses of longitudinal data from
those who developed virological failure revealed that
absolute CD4 cell counts and CD4 cell count changes
(ΔCD4 cell counts and CD4 cell count slopes) were signif-
icantly correlated with viral load measurements at a group
level. However, subsequent analysis showed that none of
these methods of analysing CD4 cell counts could be used
to identify individual patients at the time they developed

Receiver Operating Characteristic (ROC) curve assessing the association between a negative CD4 cell count slope (ie a falling CD4 count) and virological failure (area under the curve = 0.59)Figure 3
Receiver Operating Characteristic (ROC) curve 
assessing the association between a negative CD4 
cell count slope (ie a falling CD4 count) and virologi-
cal failure (area under the curve = 0.59).
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virological failure. Since the distributions of CD4 cell
counts and CD4 cell count changes among those with
virological failure did not differ significantly from those of
patients who maintained virological suppression, these
could not be used to provide a clinically useful means for
individual patient assessment for virological failure.

A unique feature of our study is that we used a novel mod-
elling approach that accounted for all CD4 cell count and
VL values measured during follow-up from the first date
that VL suppression was achieved. Some previous studies
have modelled the difference between the CD4 cell counts
measured at initiation of treatment and at a single arbi-
trary point during ART defined a priori. Other studies
assessing factors associated with virological failure did not
account for all CD4 cell count measurements performed
during follow-up [15-23]. Neither of these approaches
fully evaluates CD4 cell count dynamics during ART,
increasing the potential for misclassification bias. Our
analytic approach also differs in that we modelled virolog-
ical failure as the end-point of interest rather than virolog-
ical treatment success as reported elsewhere. We used a VL
> 1,000 copies/ml to define treatment failure consistent
with local protocols. However, the same outcomes were
obtained using thresholds of > 400 and > 10,000 copies/
ml, which is consistent with previous data from this set-
ting [25].

Baseline CD4 cell count was not predictive of virological
failure in this ART-naïve population. However, in patients
who developed virological failure, absolute CD4 cell
count measurements, ΔCD4 cell counts and CD4 cell
count slopes during ART each correlated significantly with
VL measurements taken at the same time-points. Of these
three parameters, the CD4 cell count slope was the most
strongly correlated. This indicates that the rate of increase
or decrease of CD4 cell count at a given time-point was the
parameter that was most strongly associated with current
VL. However, the distributions of ΔCD4 cell count and
CD4 cell count slope values were very broad even among
patients who maintained virological suppression. This
suggests that considerable fluctuations in CD4 cell counts
occur among patients despite sustained virological con-
trol. When these distributions were compared with the
distributions of data from patients who had current viro-
logical failure, they almost completely overlapped. This
demonstrated that absolute CD4 cell counts and CD4 cell
count changes could not be used to identify patients who
have developed virological failure. These findings were
further corroborated by the observation that the distribu-
tions of CD4 cell count changes in the 30 patients who
never achieved virological suppression were also broadly
overlapping with the distributions of data from those who
maintained virological suppression.

To investigate these associations further, we focussed on
the use of CD4 cell count slopes since this was the param-
eter most strongly associated with VL at a group level.
However, ROC curve analysis confirmed that use of CD4
slopes provided very poor test characteristics for predict-
ing virological failure. The specificity and sensitivity of a
negative CD4 cell count slope was low, showing that this
parameter was not of practical utility in this clinical set-
ting. Furthermore, the data show that a negative CD4 cell
count slope could not even be used as a screen to identify
those at high risk of virological failure as a means of
rationing scarce viral load monitoring resources.

A strength of this study is that patients were closely fol-
lowed in a multicentre clinical trials unit with strict proto-
cols for regular clinical and laboratory monitoring every
2–3 months, leading to reliable identification of virologi-
cal failure. As soon as a VL > 1,000 copies/ml was first
detected, confirmatory viral load testing was done. The
cohort characteristics were diverse and so the data are not
only relevant to those with advanced immunodeficiency.
Despite differing cohort characteristics, follow-up proce-
dures and analytic approaches, our data are consistent
with and extend previous studies that have found a poor
association between CD4 cell counts and the develop-
ment of virological failure [8,15].

We acknowledge the limitations of this study. An impor-
tant potential limitation is that all patients studied were
ART-naïve. Therefore these findings may not be generalis-
able to treatment-experienced patients. Our patients par-
ticipated in international multicentre clinical trials. Their
experience may differ from that of patients accessing treat-
ment in a community-based setting. We do not have good
assessments of treatment compliance although the mech-
anism underlying virological failure is unlikely to affect
the relationship between CD4 cell counts and viral load.
Despite a limited cohort size, follow-up in this study was
prolonged, a substantial proportion developed virological
failure and the number of paired CD4 cell counts and VL
measurements was large.

Conclusion
In conclusion, we have shown that although changes in
CD4 cell count correlated significantly with VL at a group
level, they had very poor predictive value when being used
to assess individual patients. Thus, CD4 cell count meas-
urements cannot be used as a substitute for virological
failure monitoring. Rigorous cost benefit analyses are
required to further evaluate use of VL monitoring in this
setting. Furthermore, there is a great need for develop-
ment of simplified techniques to measure VL and for
exploration of alternative low-cost assays for monitoring
[26].
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