Hypothermia for traumatic head injury (Review)

Sydenham E, Roberts I, Alderson P

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2009, Issue 1

http://www.thecochranelibrary.com

WILEY
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>PLAIN LANGUAGE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>METHODS</td>
<td>3</td>
</tr>
<tr>
<td>RESULTS</td>
<td>4</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>6</td>
</tr>
<tr>
<td>AUTHORS' CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>CHARACTERISTICS OF STUDIES</td>
<td>10</td>
</tr>
</tbody>
</table>

Hypothermia for traumatic head injury (Review)

Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Hypothermia for traumatic head injury

Emma Sydenham1, Ian Roberts1, Phil Alderson2

1Cochrane Injuries Group, London School of Hygiene & Tropical Medicine, London, UK. 2National Institute for Health and Clinical Excellence, Manchester, UK

Contact address: Emma Sydenham, Cochrane Injuries Group, London School of Hygiene & Tropical Medicine, Room 280, Keppel Street, London, WC1E 7HT, UK. emma.sydenham@lshtm.ac.uk.

Editorial group: Cochrane Injuries Group.
Publication status and date: Edited, conclusions changed, published in Issue 1, 2009.
Review content assessed as up-to-date: 22 May 2008.

Citation: Sydenham E, Roberts I, Alderson P. Hypothermia for traumatic head injury. Cochrane Database of Systematic Reviews 2009, Issue 1. Art. No.: CD001048. DOI: 10.1002/14651858.CD001048.pub3.

Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background
Hypothermia has been used in the treatment of head injury for many years. Encouraging results from small trials and laboratory studies led to renewed interest in the area and some larger trials.

Objectives
To estimate the effect of mild hypothermia for traumatic head injury on mortality and long-term functional outcome complications.

Search strategy
We searched the Injuries Group Specialised Register, Current Controlled Trials MetaRegister of trials, Zetoc, Web of Knowledge; Science Citation Index [expanded], CENTRAL, MEDLINE and EMBASE. We handsearched conference proceedings and checked reference lists of relevant articles. The search was updated on 23 May 2008.

Selection criteria
Randomised controlled trials of hypothermia to a maximum of 35°C for at least 12 hours versus control in patients with any closed traumatic head injury requiring hospitalisation. Two authors independently assessed all trials.

Data collection and analysis
Data on death, Glasgow Outcome Scale and pneumonia were sought and extracted, either from published material or by contacting the investigators. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for each trial on an intention-to-treat basis.

Main results
We found 22 trials with a total of 1409 randomised patients. Twenty trials involving 1382 patients reported deaths. There were fewer deaths in patients treated with hypothermia than in the control group (OR 0.76, 95% CI 0.60 to 0.97). Eight trials with good allocation concealment showed a non-significant reduction in the likelihood of death for patients treated with hypothermia (OR 0.96, 95% CI 0.68 to 1.35). Twenty trials involving 1382 patients reported data on unfavourable outcomes (death, vegetative state or severe disability). Patients treated with hypothermia were less likely to have an unfavourable outcome than those in the control group (OR 0.69, 95% CI 0.55 to 0.86). Eight trials with good allocation concealment showed a non-significant reduction in the likelihood of unfavourable outcome for patients treated with hypothermia (OR 0.79, 95% CI 0.57 to 1.08). Hypothermia treatment was associated with an increase in odds of pneumonia but this increase was not statistically significant for trials with good allocation concealment (3 trials, 69 patients, OR 1.06, 95% CI 0.38 to 2.97).
Authors’ conclusions

Hypothermia may be effective in reducing death and unfavourable outcomes for traumatic head injured patients, but significant benefit was only found in low quality trials. Low quality trials have a tendency to overestimate the treatment effect. The high quality trials found some statistically non-significant benefit of hypothermia which could be due to the play of chance. Hypothermia may increase the risk of pneumonia. Due to uncertainties in its effects, hypothermia should only be given to patients taking part in a randomised controlled trial with good allocation concealment.

Plain Language Summary

Hypothermia (body temperature cooling) for traumatic head injury

Twenty-two randomised controlled trials involving 1409 patients with traumatic head injury were included in this review. In each trial, the patients were randomly divided into two groups: one group remained at normal body temperature, and the other group was cooled to a maximum of 35 degrees Celsius for at least 12 hours. Cooling could be of the whole body (e.g. with a blanket with circulating cold water), or just the head (e.g. with a helmet with circulating cold water). Information on death, disability, and pneumonia was evaluated for each trial.

The review authors found that fewer people died or became severely disabled if they were treated with hypothermia, but this finding may be due to the play of chance. It was also found that patients given hypothermia were more likely to develop pneumonia, and some patients died from pneumonia, but the increased risk of pneumonia could also be due to the play of chance.

Some of the trials included in the review were of low methodological quality. Low quality trials have a tendency to overestimate the effect of a treatment. In this review, the lower quality trials showed hypothermia treatment to be effective in reducing death and disability among head injured patients. However, the good quality trials showed less benefit for hypothermia treatment and a lower chance of pneumonia.

The review authors conclude that hypothermia might reduce death and disability in traumatic head injured patients, but it may also increase the risk of pneumonia. These effects may be due to the play of chance. Due to uncertainties in its effects, hypothermia should only be given to patients taking part in good quality randomised controlled trials.

Background

Traumatic head injury is a major cause of death and disability amongst a predominantly young population, with an estimated ten million people experiencing severe head injury worldwide every year (Alexander 1992). There is, however, a significant lack of evidence about effective therapies in the acute care of these patients. A long-term effort to review the literature and produce management guidelines by the American Association of Neurological Surgeons (Bullock 1996; Kirkpatrick 1997) could only make four definitive statements about treatment effectiveness that were supported by strong evidence from randomised studies.

Mild to moderate hypothermia has been used in the treatment of head injury for over 50 years (Fay 1945). Although there were several promising experimental studies (Laskowski 1960; Clasen 1968) and case series (Sedzimir 1959; Shapiro 1974), no controlled clinical studies were performed and the therapy fell from favour. In the last decade, however, several investigators have reported encouraging results of Phase II and III randomised clinical trials (Clifton 1995; Marion 1997; Shiozaki 1993), corroborated by consistent findings of high levels of cerebral protection associated with systemic cooling in well validated laboratory models of global ischaemia (Busto 1987). The early trials were small, single-centre investigations, which were sufficiently promising to lead on to larger, multi-centre trials.

Whilst the mechanism of action of such temperature control therapy was originally thought to be primarily a reduction in cerebral metabolic rate (Bering 1961), there is now evidence that mild hypothermia might also influence the excessive post-traumatic release of excitatory neurotransmitters (Busto 1989), and attenuate the opening of the blood-brain barrier (Smith 1996). The main risks associated with induced systemic hypothermia are an increased risk of sepsis and pneumonia, coagulation abnormalities, and pos-
sible myocardial ischaemia and atrial fibrillation (Schubert 1995).

OBJECTIVES

To determine whether the use of mild hypothermia in the treatment of traumatic head injury:

- reduces the risk of death (either during the treatment period or at the end of follow-up);
- reduces the proportion of patients who at final follow-up are either dead, in a vegetative state, or severely disabled;
- increases the risk of pneumonia.

METHODS

Criteria for considering studies for this review

Types of studies
A search was conducted for all randomised controlled trials of mild hypothermia versus control.

Types of participants
Patients with any closed traumatic head injury requiring hospitalisation.

Types of interventions
Therapeutic cooling, either locally or systemically, by means of a fluid-filled cooling blanket, a ‘bear-hugger’ air-cooling device, ice water lavage, any combination of the above, or other methods, to a target temperature of at most 35°C for a period of at least 12 consecutive hours. Cooling could begin immediately upon admission to the intensive therapy unit or be deferred until ICP becomes uncontrollable by conventional management.

Types of outcome measures

Primary outcomes
- All-cause mortality at the end of the follow-up period.
- Unfavourable outcome at the end of the follow-up period.

Unfavourable outcome was defined as a Glasgow Outcome Scale score of ‘severe disability’, ‘persistent vegetative state’, or ‘death’; or an equivalent measure if a Glasgow Outcome Score was not presented.

Secondary outcomes
- The frequency of pneumonia.

Search methods for identification of studies
None of the searches were restricted by language, date or publication status.

Electronic searches
For the initial version of the review we searched The Cochrane Injuries Group's Specialised Register in May 1998 for any relevant randomised trials relating to temperature control using the search terms: hypotherm* OR normotherm* OR cool* OR cold* OR temperature.

The search strategy for the register is primarily an electronic search of both MEDLINE and CENTRAL, supplemented by various hand-searching activities listed in the Group details. This was supplemented by a comprehensive EMBASE search, also performed in May 1998, to identify all potential RCTs involving human head injury and temperature control from 1980 onwards. Titles and abstracts from this search were reviewed by David Signorini for possibly relevant trial reports, and the appropriate articles retrieved.

The original search strategies can be obtained by contacting the Trials Search Co-ordinator of the Cochrane Injuries Group. Searches have since been carried out in October 2003, November 2005 and May 2008. The latest search strategies are listed in full in Appendix 1.

Searching other resources
The searches were supplemented by further handsearching of conference proceedings and abstracts as follows:
- International Conference on Recent Advances in Neurotraumatology, Italy 1996
- 2nd International Neurotrauma Symposium, Glasgow 1993
- 3rd International Neurotrauma Symposium, Toronto 1995
- 4th International Neurotrauma Symposium, Seoul 1997
- 27th Meeting of the Society for Critical Care Medicine, USA 1998
- 10th International Symposium on Intracranial Pressure, USA 1997

In addition, reference lists of all relevant trials and review articles were checked, and leading investigators in the field were contacted for information about any other published or unpublished trials which may have been overlooked.

Data collection and analysis
Selection of studies
The results of the search were screened by ES and IR. The full text of relevant records were obtained. Both authors independently compared the trial design with the inclusion criteria for this review. Disagreements were resolved by discussion.

Data extraction and management
The following information was extracted from each trial: method of allocation concealment, blinding of outcome assessment, number of randomised patients, death or severe disability at various times during follow up, treatment duration, duration of follow up, loss to follow up, and number of patients with pneumonia during the treatment period. This information was extracted and entered into Review Manager (RevMan) by ES; IR checked for accuracy. Trial report authors were contacted for additional information or clarification.

Assessment of risk of bias in included studies
Quality of allocation concealment was assessed by the review authors on the following scale (Higgins 2008):

- Yes: low risk of bias (e.g. sequentially numbered, sealed, opaque envelopes)
- No: high risk of bias (e.g. day of the week)
- Unclear: unclear or unknown risk of bias (method not stated).

Data synthesis
Mantel-Haenzel odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for death, pneumonia, and unfavourable outcomes for each trial on an intention-to-treat basis. The odds ratio was chosen because of the large variation in baseline event rates between the trials (mortality in the control groups ranges from 0% to 82%), implying that the relative risk would not be a good summary measure. Also, the Mantel-Haenzel approach was used because of the inaccuracy of Peto’s approximation when the estimated treatment effect is large, as it was in several of the trials considered. Heterogeneity of treatment effect between trials was assessed using a standard chi-square test, I², and if appropriate, a weighted estimate of the typical treatment effect across all studies was calculated.

Subgroup analysis and investigation of heterogeneity
Subgroup analyses were performed to determine whether the treatment effect varies with: a) trial quality (quality of allocation concealment), b) duration of hypothermia, and c) length of follow-up.

RESULTS
Description of studies
See: Characteristics of included studies; Characteristics of excluded studies; Characteristics of studies awaiting assessment; Characteristics of ongoing studies.

Results of the search
A total of 22 randomised controlled trials were identified that met the inclusion criteria.

Included studies
The 22 included randomised controlled trials involved 1409 randomised patients. All trials except two (Ishikura 1998, Meissner 2003a) reported the number of deaths in the intervention and control groups at final follow-up. Fourteen trials reported GOS scores specifically at three, six or 12 months post-injury. The occurrence of pneumonia was reported in ten trials.

Risk of bias in included studies
Allocation
Adequate allocation concealment is an important dimension of trial quality.

Eight trials had a reasonable standard of allocation concealment (Adelson 2005 HYPO1; Adelson 2005 HYPO2; Clifton 1992; Clifton 1993; Clifton 2001; Marion 1997; Meissner 1998; Qiu 2007). Twelve trials had unclear allocation concealment (e.g. 'by lot') (Aibiki 2000; Biswas 2002; Hashiguchi 2003; Hirayama 1994; Jiang 2000; Meissner 2003b; Shiozaki 1993; Shiozaki 1999; Shiozaki 2001; Smrcka 2005; Yan 2001; Zhang 2000). Two trials did not present mortality or GOS data in the treatment and control groups (Ishikura 1998; Meissner 2003a) and had unclear allocation concealment.

Effects of interventions
Death at final follow-up
Analysis 1.1
Twenty trials involving 1382 patients reported deaths. Patients treated with hypothermia were less likely to die than those in the control group (OR 0.76, 95% CI 0.60 to 0.97). There was no evidence of statistical heterogeneity between trials (Chi² = 15.53, df = 18 (P = 0.63); I² = 0%).
Death at final follow-up stratified by trial quality

Analysis 1.2
Concealed allocation was reported in 8 studies involving 686 patients. Hypothermia treatment was associated with a statistically non-significant reduction in death compared with the control group (OR 0.96, 95% CI 0.68 to 1.35). There was no evidence of statistical heterogeneity between trials (Chi² = 1.01, df = 7 (P = 0.99); I² = 0%).

Non-concealed allocation, or ‘unclear’ concealment according to Higgins 2008, was reported in 12 studies involving 696 patients. Patients treated with hypothermia were less likely to die than those in the control group (OR 0.62, 95% CI 0.44 to 0.86). There was no evidence of statistical heterogeneity between trials (Chi² = 11.14, df = 10 (P = 0.35); I² = 10%).

Unfavourable outcome at final follow-up

Analysis 1.3
Twenty trials involving 1382 patients reported death or severe disability. Patients treated with hypothermia were less likely to have an unfavourable outcome than those in the control group (OR 0.69, 95% CI 0.55 to 0.86). There was some evidence of statistical heterogeneity between trials (Chi² = 30.71, df = 19 (P = 0.04); I² = 38%).

Unfavourable outcome stratified by trial quality

Analysis 1.4
Concealed allocation was reported in 8 studies involving 686 patients. Hypothermia treatment was associated with a statistically non-significant reduction in death compared with the control group (OR 0.79, 95% CI 0.57 to 1.08). There was no statistical heterogeneity between trials (Chi² = 4.79, df = 7 (P = 0.69); I² = 0%).

Non-concealed allocation, or ‘unclear’ concealment according to Higgins 2008, was reported in 12 studies involving 696 patients. Patients treated with hypothermia were less likely to have an unfavourable outcome than those in the control group (OR 0.62, 95% CI 0.45 to 0.86). There was significant statistical heterogeneity between trials (Chi² = 21.55, df = 7 (P = 0.003); I² = 68%).

Four trials involving 262 patients reported GOS scores at 12 months post-intervention. Patients treated with hypothermia were less likely to have an unfavourable outcome than those in the control group (OR 0.52, 95% CI 0.31 to 0.87). There was no statistical heterogeneity between trials (Chi² = 3.62, df = 3 (P = 0.31); I² = 17%).

Pneumonia during the treatment period

Analysis 1.7
Ten trials involving 322 patients reported pneumonia cases. Patients treated with hypothermia were more likely to have pneumonia than those in the control group (OR 2.06, 95% confidence interval 1.28 to 3.30). Pneumonia was stratified by trial quality:

Three trials with good allocation concealment involving 69 patients reported pneumonia cases. Hypothermia treatment was associated with a statistically non-significant increase in pneumonia (OR 1.06, 95% confidence interval 0.38 to 2.97).

Seven trials with non-concealed allocation involving 253 patients reported pneumonia cases. Patients treated with hypothermia were more likely to have pneumonia than those in the control group (OR 2.47, 95% confidence interval 1.44 to 4.23).
DISCUSSION

Summary of main results
Hypothermia may be effective in reducing death and unfavourable outcomes for traumatic head injured patients, but significant benefit was only found in low quality trials. The high quality trials found some statistically non-significant benefit of hypothermia which could be due to the play of chance. Hypothermia may increase the risk of pneumonia. Due to uncertainties in its effects, hypothermia should only be given to patients taking part in a randomised controlled trial with good allocation concealment.

Quality of the evidence
Numerous trials of hypothermia treatment have been conducted in recent years. The majority of trials found were of low quality, with unclear allocation concealment. These low quality trials may overestimate the effectiveness of hypothermia treatment versus control. Trials with good allocation concealment showed a smaller treatment effect which may be due to the play of chance. The increased incidence of pneumonia was not statistically significant in trials with good allocation concealment.

Potential biases in the review process
This systematic review addresses a focused research question using predefined inclusion criteria and methodology to select and appraise eligible studies.

As with all systematic reviews, the possibility of publication bias should be considered as a potential threat to validity. However, in light of our extensive and sensitive searching we believe that the risk of such a bias affecting the results is minimal. The majority of trials found or included in the review were of low methodological quality. An additional ten trials with unclear methods of randomisation or allocation concealment were identified, and are awaiting assessment until clarification is obtained from the trial report authors.

Agreements and disagreements with other studies or reviews
The conclusions of this review are broadly consistent with those of Peterson 2008. The majority of trials identified for this review and Peterson 2008 were of low methodological quality. Both reviews found there may be an increased likelihood of pneumonia with hypothermia.

AUTHORS’ CONCLUSIONS

Implications for practice
Hypothermia may be effective in reducing death and unfavourable outcomes for traumatic head injured patients, but significant benefit was only found in low quality trials. Low quality trials have a tendency to overestimate the treatment effect. The high quality trials found some statistically non-significant benefit of hypothermia which could be due to the play of chance. Hypothermia may increase the risk of pneumonia. Due to uncertainties in its effects, hypothermia should only be given to patients taking part in a randomised controlled trial with good allocation concealment.

Implications for research
More high quality randomised controlled trials are needed to determine the benefit of hypothermia for traumatic head injury.

ACKNOWLEDGEMENTS

Thanks to:

- Brenda Thomas (Stroke Review Group) for help and advice with the original EMBASE search strategy.
- Ian Whittle, Kate Signorini, Elena Telaro, Yoichi Nagayama, Irene Kwan, Frank Del Vecchio, Lisa Xue and Cynthia To for help with manuscripts in languages other than English.
- Reinhard Wentz and Irene Kwan of the Injuries Group for the original searches.
- Katharine Ker of the Injuries Group for work on previous versions of the review.
References to studies included in this review

Adelson 2005 HYPO1 [published data only]

Adelson 2005 HYPO2 [published data only]

Aibiki 2000 [published data only]

Biswas 2002 [published data only]

Clifton 1992 [published and unpublished data]

Clifton 1993 [published data only]

Clifton 2001 [published data only]

Hashiguchi 2003 [published data only]

Hirayama 1994 [published data only]

Ishikura 1998 [published data only]

Jiang 2000 [published data only]

Marion 1997 [published data only]

Marion DW, Carlier P. Moderate therapeutic hypothermia improves outcome following severe traumatic brain...

Meissner 1998 [published and unpublished data]

Meissner 2003a [published data only]

Meissner 2003b [published data only]

Qiu 2007 [published data only]

Shiozaki 1993 [published and unpublished data]

Shiozaki 1999 [published data only]

Shiozaki 2001 [published data only]

Smrcka 2005 [published data only]

Yan 2001 [published data only]

Zhang 2000 [published data only]

References to studies excluded from this review

Chouhan 2006 [published data only]

Fukuoka 2004 [published data only]

Aibiki M. Personal communication with author. September 10, 2008.

Gentilello 1997 [published data only]

Hayashi 2002 [published data only]

Hayashi 2005 [published data only]

Legros 1985 [published data only]

References to studies awaiting assessment

Chen 2001 [published data only]

Liu 2005 [published data only]

Liu 2006 [published data only]

Nara 1997 [published data only]

Nordby 1984 [published data only]

Schulman 2005 [published data only]

Shen 2000 [published data only]

Wusi 2006 [published data only]

Yamagami 1997 [published data only]

References to ongoing studies

Adelson 2007 [unpublished data only]

Clifton 2002 [published data only]
National Acute Brain Injury Study: Hypothermia II (NABISH II). Ongoing study 4/1/02 – 6/30/08.

Hutchison 2008 [published data only]

Mrlian 2006 [published data only]

Qiu 2005 [published data only]

Qiu 2006 [published data only]

Wang 2005 [published data only]

Wang 2007 [published data only]

Xia 2005 [published data only]

Yan 2007 [published data only]

Zhi 2003 [published data only]
Additional references

Adelson 2008a

Adelson 2008b

Alexander 1992

Bering 1961

Bullock 1996

Busto 1987

Busto 1989

Clasen 1968

Clifton 1995

Fay 1945

Higgins 2008

Kirkpatrick 1997

Laskowski 1960

Peterson 2008

Review Manager (RevMan)

Schubert 1995

Sedzimir 1959

Shapiro 1974

Smith 1996

* Indicates the major publication for the study.
Characteristics of included studies [ordered by study ID]

Adelson 2005 HYPO1

<table>
<thead>
<tr>
<th>Methods</th>
<th>Multicentre, randomised, controlled trial.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients less than 13 years of age, with a GOS of 8 or less.</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients: Cooling to 32-33°C within 6 hours of injury for 48 hours. Passively rewarmed by 1°C every 3-4 hours. Normothermia patients: no intervention/not reported.</td>
</tr>
</tbody>
</table>
| Outcomes | ICP
| | CPP
| | Mortality
| | Infection
| | Arrhythmia
| | Coagulopathy
| | Pneumonia |
| Notes | |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>‘The investigators were blinded to the allocation. The statistician and data systems manager controlled the randomisation protocol and were blinded to the site.’ Adelson 2008b</td>
</tr>
</tbody>
</table>

Adelson 2005 HYPO2

<table>
<thead>
<tr>
<th>Methods</th>
<th>Single centre, randomised, controlled trial.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients less than 17 years of age, with a GOS of 8 or less.</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients: Cooling to 32-33°C for 48 hours. Passively rewarmed by 1°C every 3-4 hours. Normothermia patients: no intervention/not reported.</td>
</tr>
</tbody>
</table>
| Outcomes | ICP
| | CPP
| | Mortality
| | Infection
| | Arrhythmia
| | Coagulopathy
| | Pneumonia |
Adelson 2005 HYPO2 (Continued)

Notes
The time between injury and randomisation was more than 6 hours. In some cases there was an unknown time of injury (e.g. child abuse)

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>'The investigators were blinded to the allocation. The statistician and data systems manager controlled the randomisation protocol and were blinded to the site.' Adelson 2008b</td>
</tr>
</tbody>
</table>

Aibiki 2000

Methods
Randomised controlled trial.
Four patients were excluded from the normothermic group after randomisation because of abdominal or chest injuries

Participants
Patients aged 4 to 76, within 8 hours of traumatic brain injury. Glasgow coma scale score of 8 or less on admission to emergency room

Interventions
Hypothermia patients: Cooling to 32-33C within 4 hours on injury for 3-4 days. Rewarming at 1C per day.
Normothermia patients: maintained at 36-37C.

Outcomes
Death and GOS at 6 months.
Thromboxane A2 and prostaglandin I2 levels during study. Complications during treatment

Notes
GOS assessed by "independent neurosurgeon who were not aware of the study". p.3904

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>'Patients were assigned randomly to each group.' p. 3903 No mention of allocation concealment</td>
</tr>
</tbody>
</table>

Biswas 2002

Methods
Randomised controlled trial.

Participants
Children up to 18 years old, with closed traumatic brain injury and a GCS of 8 or less

Interventions
Hypothermia patients (n=10): cooled to 32 to 34 degrees Celsius for 48 hours, by cooling blanket placed underneath the body. Rewarming over a period of 12 hours.
Control patients (n=11): rectal temperature was maintained between 36.5 and 37.5 degrees Celsius
Biswas 2002 (Continued)

| Outcomes | Death.
| | GOS at three, six and 12 months.
| | ICP and CPP.

| Notes | GOS assessed blind to allocation.
| | Analysis on an intention-to-treat basis.
| | Two patients in the hypo group were lost to follow-up and the end of the study period. (2/10 lost to follow-up.)
| | Five patients in the control group were lost to follow-up at the end of the study period. (5/11 lost to follow-up.)

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>

Clifton 1992

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients with GCS 4-8 with closed head injury but no major systemic injuries, in whom cooling could begin within 6 hours of injury</td>
</tr>
</tbody>
</table>
| Interventions | Hypothermia patients: cooling to 30-32°C for 24 hours using cooling blankets and iced saline stomach lavage. Rewarming over a period of 24 hours.
| | Control patients: No active temperature management. |
| Outcomes | Death and GOS at 3 months.
| | Complications during treatment phase. |
| Notes | GOS was not assessed blind to treatment allocation. |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>By 'sealed envelopes'.</td>
</tr>
</tbody>
</table>

Clifton 1993

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients age 16 to 60, GCS 4-7 with closed head injury but no major systemic injuries, in whom cooling could begin within 6 hours of injury</td>
</tr>
</tbody>
</table>
Clifton 1993

Interventions
- Hypothermia patients: cooling to 32-33°C for 48 hours using cooling blankets. Rewarming over a period of 48 hours.
- Control patients: Cooling blankets were used to maintain body temperature at 37°C for 80 hours.

Outcomes
- Death and GOS at 3 months.
- Complications during treatment period.
- ICP during treatment period.

Notes
- GOS assessed blind to treatment allocation.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>By ‘sealed envelopes’.</td>
</tr>
</tbody>
</table>

Clifton 2001

Methods
- Randomised controlled trial.

Participants
- Patients aged 16 to 65 with a non-penetrating head injury and a Glasgow coma scale of 3 to 8 after resuscitation.

Interventions
- Hypothermia patients: cooling to 32.5-34°C for 48 hours using ice, cold gastric lavage, unwarmed ventilator gases, and then temperature control pads. Rewarming at rate of up to 0.5°C in 2 hours.
- Control: Body temperature maintained at 37°C.

Outcomes
- Death and GOS at 6 months.
- ICP monitored during treatment.
- Nine neurobehavioural and neuropsychological scales at 6 months.

Notes
- GOS was assessed blind to treatment allocation.
- Outcome data missing for 7 patients, and not presented for 17 patients whose entry details were incomplete.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>Allocation concealment unclear, but report states that “only the study biostatistician was aware of each patient’s treatment group assignment”</td>
</tr>
</tbody>
</table>
Hashiguchi 2003

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation method not stated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Participants age 10 years or older, with a GCS of 8 or less, ‘who required continuous infusion of barbiturates to control intracranial hypertension.’ p.1055</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients (n=9): intracranial temperature in the lateral ventricle was maintained at 33.5 to 34.5 degrees Celsius for 48 hours, by water circulating blankets above and below the body. Rewarming over a period of 3 days, by 1 degree Celsius each day. Control patients (n=8): intracranial temperature was maintained between 36.5 and 37.5 degrees Celsius for 5 days, by water circulating blankets above and below the body. Barbiturates were given to both groups at 6 to 8 mg/kg/h for the first 48 hours, then at 2 mg/kg/h for 3 days</td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>

Hirayama 1994

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation method not stated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients age 18 to 81, GCS 3-7 with closed head injury. Hypothermia started within 6 hours of injury</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients: cooling to 32-33C for 48 hours using cooling blankets. Rewarming over a period of 48 hours. Control patients: Not stated.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Death and GOS at 3 months. ICP during treatment period.</td>
</tr>
<tr>
<td>Notes</td>
<td>Blinding of outcome assessment not stated.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>
Ishikura 1998

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation by 'random sampling'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients with GCS 3-8 with closed head injury.</td>
</tr>
<tr>
<td>Interventions</td>
<td>'Moderate hypothermia' without any details.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Thrombopoetin levels during treatment. Deaths in hypothermia arm only.</td>
</tr>
<tr>
<td>Notes</td>
<td>Abstract only.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>'11 patients with severe closed head injuries were divided into two groups by random sampling.' No information provided on allocation concealment</td>
</tr>
</tbody>
</table>

Jiang 2000

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation method not clear.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients with mean age of 41 years, GCS 3-8.</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients: 'Mild hypothermia' induced using cooling blankets until ICP within 'normal range' for 24 hours. Control patients: Temperature maintained between 37-38°C for 14 days</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Death and GOS at 12 months. Complications.</td>
</tr>
<tr>
<td>Notes</td>
<td>Assessment by MD blinded to treatment allocation.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>

Marion 1997

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation by 'sealed envelopes'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients age 16 to 75, GCS 3-7 with closed head injury, in whom cooling could begin within 6 hours of injury</td>
</tr>
</tbody>
</table>
Marion 1997

Interventions

Hypothermia patients: Cooling to 32-33°C for 24 hours using cooling blankets and nasogastric lavage. Rewarming over a period of 12 hours.

Control patients: Active management of temperature to 37-38.5°C during five day treatment period

Outcomes

Death and GOS at 3, 6 and 12 months.

ICP and CPP values during treatment phase.

Complications for subset.

Notes

GOS assessment by psychiatrist blinded to treatment allocation

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>'Using a block-randomization scheme, we assigned patients with a Glasgow coma score of 3 or 4 to a treatment group separately from those with a score of 5 to 7 by choosing among equal numbers of sealed envelopes containing the group assignments.' p.540</td>
</tr>
</tbody>
</table>

Meissner 1998

Methods

Randomised controlled trial.

Participants

Patients with severe blunt head injury, in whom cooling could begin within 8 hours of injury

Interventions

Hypothermia patients: Cooling to 32-33°C for 48 hours.

Control patients: Temperature maintained at 36-37°C.

Outcomes

Death.

Infections.

Notes

GOS assessed at 6 months by non-blinded assessor, but not yet available

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>By 'sealed envelopes'.</td>
</tr>
</tbody>
</table>
Meissner 2003a

Methods
Randomised controlled trial.

Participants
Patients with severe blunt head injury. Intervention was started within 8 hours of injury

Interventions
Hypothermia patients: Cooling to 32-33C for 48 hours.
Control patients: Temperature maintained at 36-37C.

Outcomes
Heart rate.
Mean blood pressure.
Plasma cortisol.

Notes
Primary outcome of study was moderate hypothermia on the cardiovascular and cortisol response in severe head injury
No mortality data reported.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>

Meissner 2003b

Methods
Randomised controlled trial.

Participants
Patients aged 18 or older, with severe closed head injury with a GCS <=9. Intervention was started within 8 hours of injury

Interventions
Hypothermia patients: Cooling to 32-33C for 24-48 hours. Cooling was by water blankets and forced air.
Control patients: Temperature maintained at 36-37C.

Outcomes
TSH
TT4
FT4
TT3
FT3
RT3

Notes
This study examined thyroid hormone response in relation to therapeutic hypothermia

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>
Qiu 2007

Methods
Randomised, controlled, double-blind trial.

Participants
Patients 18-65 years old with traumatic brain injury with a Glasgow Coma Scale score of 8 or less

Interventions
Hypothermia patients: Cooling to 33-35°C for 4 days after craniotomy, using a cooling blanket and cooling head cap with circulating water at 4°C. 'Natural' rewarming.
Normothermia patients: cooling not used.

Outcomes
Mortality.
ICP.
Serum superoxide dismutase level.
Glasgow Outcome Scale at 1 year post-intervention.

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Yes</td>
<td>'Allocation and randomization was concealed so that the study investigators were not aware to which group the patient would be assigned, and the allocation sequence was protected until assignment.' p.230</td>
</tr>
</tbody>
</table>

Shiozaki 1993

Methods
Randomised controlled trial.

Participants
Patients age 10 or over, GCS 8 or less with head injury, who 'required continuous infusion of barbiturates to control intracranial hypertension'. p.363

Interventions
Hypothermia patients: cooling to 33.5-34.5°C using water-circulating cooling blankets for a minimum of 48 hours and until ICP was below 20 mmHg for 24 hours. Rewarming over a period of 24 hours.
Control patients: No active temperature management.

Outcomes
Death and GOS at 6 months.
Pneumonia.
Complications during treatment.
ICP and CPP values during treatment period for hypothermic arm only.

Notes
GOS assessed blind to treatment allocation.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>
Shiozaki 1999

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation concealment not clear. No loss to follow up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients age 10 and above with traumatic brain injury, a Glasgow coma scale of 8 or less, and 'who required continuous infusion of barbiturate medication to control intracranial hypertension.' p.185</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients: cooling to 33.5-34.5°C for 48 hours, using water circulating blankets. Rewarming at 1°C per day. Normothermia patients: maintained at 36.5-37.5°C.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Death and GOS at 6 months. Complications</td>
</tr>
<tr>
<td>Notes</td>
<td>Blinding of outcome assessment not stated.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>

Shiozaki 2001

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation concealment not clear. No loss to follow up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients with traumatic brain injury, a Glasgow coma scale of 8 or less, and 'in whom ICP was maintained below 25mmHg by conventional therapies'. p.50</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients: Cooling to 33.5-34.5°C for 48 hours, using cooling blankets and gastric lavage. Rewarming at 1°C per day. Normothermia patients: maintained at 36.5-37.5°C.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Death and GOS at 3 months. Complications</td>
</tr>
<tr>
<td>Notes</td>
<td>Blinding of outcome assessment not stated.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>
Smrcka 2005

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial - randomisation method not described. No loss to follow up described.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients with traumatic brain injury with a Glasgow Coma Scale score of 8 or less, who were up to age 61 years of age</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia (n=37): surface cooling to 34°C for 72 hours. Temperature measured in urinary bladder. Passive rewarming Normothermia (n=35): cooling not used.</td>
</tr>
</tbody>
</table>
| Outcomes | ICP
CPP
SvO$_2$ (jugular bulb oxygen saturation)
GOS |
| Notes | |

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>

Yan 2001

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomised controlled trial. Allocation concealment not described. No loss to follow up described.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Patients with traumatic brain injury within 10 hours of injury and a Glasgow Coma Scale of 3 to 8 on initial assessment</td>
</tr>
<tr>
<td>Interventions</td>
<td>Hypothermia patients: Cooling to 32-34°C for 3-5 days, using a cooling bed and, in some, ice blocks. 'Natural' rewarming. Normothermia patients: cooling not used.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Death, follow up period unclear. Neuroelectrophysiological measurements.</td>
</tr>
<tr>
<td>Notes</td>
<td>Blinding of outcome assessment not stated.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>
Zhang 2000

Methods
Randomised controlled trial.
Allocation concealment not described. No loss to follow up mentioned

Participants
Patients aged under 65 with traumatic brain injury and a Glasgow Coma Scale of 3-8 on admission to hospital

Interventions
Hypothermia patients: Cooling to 32-33C for 3-8 days.
Normothermia patients: temperature not stated.

Outcomes
Death, follow up period unclear.

Notes
Blinding of outcome assessment not stated.

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>Not described.</td>
</tr>
</tbody>
</table>

Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chouhan 2006</td>
<td>Patients were not cooled for a minimum of 12 consecutive hours</td>
</tr>
<tr>
<td>Fukuoka 2004</td>
<td>Quasi-randomised study design.</td>
</tr>
<tr>
<td>Gentilello 1997</td>
<td>Randomised trial of rewarming therapy after accidental hypothermia in trauma</td>
</tr>
<tr>
<td>Hayashi 2002</td>
<td>Not a randomised study.</td>
</tr>
<tr>
<td>Hayashi 2005</td>
<td>Not a randomised study.</td>
</tr>
<tr>
<td>Legros 1985</td>
<td>Not a randomised study.</td>
</tr>
<tr>
<td>Liu 2005</td>
<td>Patients who died within 72 hours of participating in the study were not included in the analysis</td>
</tr>
<tr>
<td>Liu 2006</td>
<td>Patients were not cooled for a minimum of 12 consecutive hours</td>
</tr>
<tr>
<td>Nara 1997</td>
<td>Unable to find sufficient information on study design.</td>
</tr>
<tr>
<td>Nordby 1984</td>
<td>Not a randomised comparison, and hypothermia confounded with barbituate therapy</td>
</tr>
<tr>
<td>Schulman 2005</td>
<td>Patients to this study were excluded if they had evidence of acute brain injury and if they had previous traumatic brain injury</td>
</tr>
</tbody>
</table>
Continued

Shen 2000 Not a randomised trial.
Wusi 2006 Not a randomised trial.
Yamagami 1997 Not a randomised trial; hypothermia group GCS 4-6, normothermia group GCS 8-10

Characteristics of studies awaiting assessment [ordered by study ID]

Chen 2001

<table>
<thead>
<tr>
<th>Methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Awaiting clarification from authors about method of randomisation and allocation concealment</td>
</tr>
</tbody>
</table>

Guo 2004

<table>
<thead>
<tr>
<th>Methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Awaiting clarification from authors about method of randomisation and allocation concealment</td>
</tr>
</tbody>
</table>

Hutchison 2008

<table>
<thead>
<tr>
<th>Methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Data to be included in this review for issue 2, 2009.</td>
</tr>
<tr>
<td>Mrlian 2006</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Methods</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Awaiting clarification from authors about method of randomisation and allocation concealment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qiu 2005</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Awaiting clarification from authors about method of randomisation and allocation concealment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qiu 2006</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Awaiting clarification from authors about method of randomisation and allocation concealment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wang 2005</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Awaiting clarification from authors about method of randomisation and allocation concealment</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Wang 2007</td>
<td></td>
</tr>
<tr>
<td>Xia 2005</td>
<td></td>
</tr>
<tr>
<td>Yan 2007</td>
<td></td>
</tr>
<tr>
<td>Zhi 2003</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics of ongoing studies [ordered by study ID]

Adelson 2007

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>Pediatric traumatic brain injury consortium: hypothermia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Treatment, Randomized, Single Blind (outcome assessor), single group assignment, efficacy study</td>
</tr>
<tr>
<td>Participants</td>
<td>TBI patients under 16 years of age, with a GCS \leq 8.</td>
</tr>
<tr>
<td>Interventions</td>
<td>Patients in the treatment arm will be cooled to 32-33°C for 48 hours and then slowly rewarmed</td>
</tr>
</tbody>
</table>
| **Outcomes** | - To determine the effect of induced moderate hypothermia (32-33°C) after severe TBI in children on mortality.
 - To determine the effect of hypothermia after severe TBI in children on global function and neurocognitive outcomes in the areas of intellectual ability/development, memory and learning, and behaviour.
 - To determine the effect of hypothermia after severe TBI in children of different age ranges (<6y and 6 to <16y) on mortality and 6 and 12 months functional and neurocognitive outcomes.
 - To determine the effect of hypothermia after severe TBI in children on reducing intracranial hypertension and maintaining adequate cerebral perfusion pressure (CPP). |
| **Starting date** | November 2007 |
| **Contact information** | P. David Adelson +1(412)692-6347 david.adelson@chp.edu
 S. Danielle Brown +1(412)692-8794 brownds2@upmc.edu |
| **Notes** | Phase III Clinical Trial. |

Clifton 2002

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>National Acute Brain Injury Study: Hypothermia II (NABISH II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Randomized, prospective, multi-center trial. Hypothermia for 48 hours, begun within 6 hours of severe brain injury</td>
</tr>
<tr>
<td>Participants</td>
<td>Patients aged 16 to 45 years inclusive who have a closed head injury, present to the Emergency Department with a Glasgow Coma Score between 3-8, have a body temperature (bladder or rectal) of 35 degrees Celsius or less at admission, and an Abbreviated Injury Score (AIS) of 4 or less for the rest of the body</td>
</tr>
<tr>
<td>Interventions</td>
<td>The patients will be randomly allocated to either the hypothermia group or the normothermia group. A cooling suit will be used to cool the hypothermia patients down to a body temperature of 33 degrees Celsius. This temperature of 33 degrees will be maintained in the hypothermia patients for 48 hours. After 48 hours, the study nurses will gradually re-warm the hypothermia patients no faster than one degree every four hours. This takes at least 16 hours sometimes longer depending upon the stability of the patient's vital signs. The control group - normothermia will be allowed to re-warm gradually upon arrival to the hospital with no medical intervention to raise or lower the body temperature</td>
</tr>
</tbody>
</table>
Outcomes

Mortality and GOS, ICP and complications. Outcomes will be measured 6 months post injury by Harvey Levin, MD at Baylor College of Medicine. The personnel conducting outcome measurements will be blinded to the patient’s assigned treatment protocol (whether hypothermia or normothermia).

Starting date

4/1/02 - 6/30/08

Contact information

Guy L. Clifton, MD
Chairman Neurosurgery Dept., University of Texas Medical School
6431 Fannin St., Suite 7.148
Houston, TX 77030
713-500-6135
guy.l.clifton@uth.tmc.edu
Emmy R. Miller, RN, PhD, Co-investigator NABISH II
Associate Professor of Neurosurgery
University of Texas Medical School, Houston, TX
6431 Fannin St., Suite 7.148
Houston, TX 77030
713-500-6145
Emmy.R.Miller@uth.tmc.edu

Notes

There are other study sites participating in NABISH II. They are:

- University of Pittsburgh, Duke University, University of California at Los Angeles, University of California at Sacramento, University of California at San Francisco, University of Virginia at Fairfax, University of Cincinnati, University of Mississippi at Jackson