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Abstract: This paper assessed existing EWS challenges and opportunities in cloud computing through
the PSALSAR framework for systematic literature review and meta-analysis. The research used extant
literature from Scopus and Web of Science, where a total of 2516 pieces of literature were extracted
between 2004 and 2022, and through inclusion and exclusion criteria, the total was reduced to 98
for this systematic review. This review highlights the challenges and opportunities in transferring
in-house early warning systems (that is, non-cloud) to the cloud computing infrastructure. The
different techniques or approaches used in different kinds of EWSs to facilitate climate-related
data processing and analytics were also highlighted. The findings indicate that very few EWSs
(for example, flood, drought, etc.) utilize the cloud computing infrastructure. Many EWSs are not
leveraging the capability of cloud computing but instead using online application systems that are not
cloud-based. Secondly, a few EWSs have harnessed the computational techniques and tools available
on a single platform for data processing. Thirdly, EWSs combine more than one fundamental tenet
of the EWS framework to provide a holistic warning system. The findings suggest that reaching a
global usage of climate-related EWS may be challenged if EWSs are not redesigned to fit the cloud
computing service infrastructure.

Keywords: early warning systems; cloud-based early warning systems; cloud computing

1. Introduction

An early warning system (EWS) is an integrated system that facilitates preparedness
and response mechanisms through the dissemination of early warning to reduce the impact
of a natural disaster. An early warning system is an indispensable tool that helps save
lives and reduce the impact of disasters on any infrastructure, such as roads, buildings,
farmlands, etc. It has been estimated that USD 800 million is spent annually to develop and
operationalize EWSs in developing countries that lack the requisite resources to mitigate
the impact of any natural disaster [1]. From a global context, it is estimated that the ratio of
persons with access to early warning services is one in three people, whereas the proportion
is twice as high in Africa. Currently, it is estimated that 3.3 to 3.6 billion people live in
situations that are highly vulnerable to climate-related events [2]. Thus, Africa might
have more vulnerable people than any part of the world. Therefore, to bridge this gap,
new adaptation strategies that leverage the capability of digital technologies are required
to empower the majority of vulnerable people and to ensure effective risk knowledge
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gathering, monitoring, prediction, dissemination of warning information, and response
mechanisms [3].

An early warning system helps with people’s coping mechanisms during a natural
disaster. However, its limited use can negatively impact coping mechanisms. Aside from
this, EWSs are unable to effectively share computational resources because of platform de-
pendency constraints and the need to protect legacy early warning systems. Consequently,
this limits system integration and data acquisition that support climate events simulation
models. Furthermore, even if large data are fed into climate models, as the data sets grow
exponentially, their computational capability deteriorates, leading to inaccurate climate
event prediction. Despite this, no single climate model addresses all the uncertainties of an
early warning system [4]. Therefore, the choice of computational model has an impact on an
EWS’s computational performance, which can cause a delay in warning dissemination [5].

Climate change has the propensity to threaten human lives, and this calls for interna-
tional organizations and researchers to intervene in finding alternative approaches that
harness computational models for improved performance, thereby ensuring everyone on
the planet is protected by early warning systems. There is a need for dynamic climate
data-capturing techniques in order to create a uniform integrated service structure that
supports early warning service management [2]. An effective warning system coordinates
different stakeholders to create the required EWS value chain that could assure the provi-
sion of a standard early warning alert procedure among stakeholders. Dutta [6] suggests
that information dissemination among stakeholders is still a gap in the design of EWS, and
if this is addressed, it can provide efficiently reliable, timely, and accurate information to all
stakeholders within the value chain of climate risk reduction and mitigation.

Despite a need to substantially intensify access and availability of EWS globally by
2030, there is currently no research that categorizes climate-related EWSs as either utilizing
digital technology infrastructure, such as the cloud service infrastructure, or not. The cloud
computing framework offers value in terms of access and interactivity with volumes of
data [7]. It is touted to provide standard web services and open data that can support
distributed services and interoperable systems. Again, it facilitates the application of open-
source applications and greatly contributes to the distribution of early warning system
applications. Furthermore, the cloud infrastructure supports new emerging technologies
like the Internet of Things (IoT) to facilitate risk knowledge gathering, prediction, detection,
monitoring, and collection of climate-related data [8]. However, the services’ interoperabil-
ity and open or big data are uncommon on local systems or server-client applications that
are built in-house for climate-related EWS [9]. Big data is characterized by the value created
from voluminous data which is processed quickly irrespective of the data variability. To this
end, this study conducts a systematic review of existing early warning systems to highlight
the challenges and opportunities for cloud computing-based early warning systems. Thus,
the following research objectives are raised:

Research objective 1: To examine existing literature on climate-related EWS and
identify the underlying approaches and challenges. Thus, the following research questions
were raised:

RQ1: Which existing climate-related EWSs are not based on cloud service infrastructure?
RQ2: What modelling approaches are utilised in assessing the effectiveness of the

existing climate-related EWS?
RQ3: How are the challenges with existing climate-related EWSs addressed?
RQ4: Which type of existing climate-related EWS had the highest and the least number

of studies?
Research objective 2: To examine extant literature on the categories of climate-related

EWS in cloud computing environments and identify the approaches, opportunities, and
limitations. Thus, the following research questions were raised:

RQ5: What is the current cloud-based climate-related EWS?
RQ6: Which modelling approaches are common to measure cloud-based climate-

related EWS effectiveness?
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RQ7: What are the opportunities for cloud-based climate-related EWSs?
RQ8: What are the limitations of cloud-based climate-related EWSs?
RQ9: Which cloud-based climate-related EWS types had the highest and the least

number of studies?
RQ10: To what extent do extant literature on climate-related EWSs (both cloud EWS

and non-cloud EWS) cover more than one fundamental tenet of the EWS framework?
These questions are important in making decisions about approaches used in cloud

and non-cloud-based EWSs for the needed policy intervention, which is achieved from the
perspective of academic researchers who are subject area experts within a wider body of
knowledge. The remaining sections of this paper are presented as follows: related literature
on EWSs (Section 2); method and material (Section 3); results (Section 4); results discus-
sion (Section 5); limitations, practical and policy implication (Section 6); and conclusion
(Section 7).

2. Related Literature on EWS
2.1. Fundamental Tenet of Early Warning Systems

The Early Warning System (EWS) framework comprises complex processes interlinked
to provide the needed structure that supports timely information dissemination on natural
disasters. Its fundamental tenet of the framework comprises a warning model including a
monitoring model, a communication strategy, and an emergency plan to help in managing
natural disasters [10,11]. This shows an interdisciplinary knowledge integration between
scientists, researchers, and stakeholders towards creating an effective climate-related EWS
model for disaster management [12]. Key stakeholders who interface with the processes
include government agencies, communities, and individuals. The challenge with the
fundamental tenet is the extent of coverage of a climate event and the adequacy of tools for
risk gathering, which includes observation and data collection and the likely impact on
people, infrastructure, etc. Climate risk is multidimensional and comprises exposure of
people or assets to the hazard, vulnerability, and coping strategies of persons exposed to
the hazard [13]. An example of a risk framework is INFORM [14], which is an open-source
risk framework. The monitoring and prediction utilise technologies or tools to assist in
processing observed climate conditions in real time to determine the possible outcome of
climate-related events. Dissemination and response mechanisms help in communicating
prediction outcomes to communities that are impacted by climate events. Though there are
challenges associated with each process, a timely response mechanism from an established
relief agency is the most challenging [15]. Unfortunately, even when warning information
is issued in good time, it either may not reach many people at risk or people in the affected
community may fail to adhere to warning messages [16]. Though [17] outlined factors
hindering the effective operation of disaster management practices, it is imperative to
establish effective service platforms that leverage technologies, such as cloud computing,
in bridging the gap in disaster-related management practices.

The Sendai framework is also a disaster risk framework that provides measures to
address multidimensional risk factors and prevent emerging risks. Sendai’s framework
outlines seven global pillars for sustainable access and availability of early warning systems,
which is equally in line with the 2030 vision of increasing the availability and access of
early warning systems. In spite of this, multinational organizations, such as the World
Meteorological Organization (WMO) and the Global Water Partnership, have programmes
and policies to support the implementation of the Sendai Framework. The challenge
with the Sendai framework is the lack of consistent and systematic data collection and
reporting regimes from established government agencies [18]. Resolving this challenge
enhances communication and ensures that early warnings reach the final consumer or
individual. Therefore, the social, technological, and organizational contexts are imperative
for improving the value-addition process of EWSs. Within the social context, an EWS serves
as the information delivery mechanism for people who are vulnerable. The technological
context focuses on tools that help in the automation of services to build the required EWS
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value chain. The organizational context focuses on agencies responsible for receiving
appropriate funding that helps in implementing an intervention mechanism for society.
These contexts are significant in creating a value chain to ensure the timely delivery of early
warnings. Scientific and managerial considerations are drivers for effective communication
of early warning [19]. In view of these, scientific knowledge helps to give credence and
quantitative measures on drivers for effective warning systems and also helps identify
practical, managerial, or technical considerations to inform the right stakeholders of the
appropriate intervention.

2.2. Existing Early Warning Systems

Existing EWSs store and process climate risk data in-house or on local servers, where
data processing becomes a challenge when climate data is voluminous. Existing EWSs
deployed on web-based platforms that are managed on a single server need continuous
updates of their dataset; however, due to the volume of data required, its operation becomes
a challenge. Therefore, it is imperative to ensure an effective integrated service automation.
Thus, a web-based platform is a basic step toward operating EWSs [20]. For the purpose of
this research, existing EWSs are described as warning systems developed without using a
cloud computing framework. Web-based systems that offer static and limited interaction
with data might have structured processes but lack dynamism in gathering risk information,
monitoring, and predicting recurring or occurring natural disasters, including droughts,
floods, earthquakes, etc., [21].

A drought EWS is complex because of the biophysical drivers involved in creating
different drought indicators. Additionally, human experiences of drought and its impacts
contribute to the complexity of creating a drought EWS, thus leading to a challenge in
designing drought monitoring early warning (MEW) systems, which are key in drought
preparedness [22]. Flash drought has rapid intensification without sufficient early warning,
which poses a challenge in current flash drought early warning systems, and thus, typifying
flash drought events to find the risk of exposure is still a challenge [23]. The challenges
with on-site earthquake EWSs include predicting the location, magnitude, and structural
drift to enhance seismic preparedness and safety measures [24–26]. For example, the
extended “integrated particle filter” (IPFx) is an automated earthquake source identification
system for the “Japanese earthquake early warning” (EEW) system, which sends early
warnings during active seismicity [27]. Floods are the most frequent type of natural
disaster, and the challenges with a flood EWS include the accurate sensing of flood to
prevent damage to property and life [28], determination of the warning module’s threshold,
hydraulic model development, and calibration [29]. An example of a flood-based EWS
that leverages the web-application technology, server, and IoT has been proposed by [30].
A landslide EWS requires monitoring and prediction because of its internal mechanism,
which requires precise mechanistic models [31]. While many early warning systems can
be identified, hydro meteorological hazards remain the most prevalent that impact society
both simultaneously and sequentially [32].

The underlying automated technique of an EWS is a computational algorithm that
automates the data processing and modelling of the right set of metrics for any natural
disaster [33]. Examples of such computational algorithms include artificial neural networks
(ANNs) for detecting control risk parameters [33], recursive neural networks for drought
forecasting [34], a combination of neural networks and support vector machines for drought
prediction [35], the FinDer algorithm [36], etc. DroughtCast includes a machine-learning
framework for forecasting drought a week or month before its occurrence [37]. Similarly,
“ANYWHERE DEWS” (AD-EWS) is a hydrometeorological drought forecasting system
that provides a wide range of indices on water cycle components, such as groundwater,
soil moisture, etc. [38]. In spite of these algorithms, the success of early warning systems
depends on end-users because they act on the warning message to reduce the impact of
climate events on their lives and infrastructure [38].
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The challenge with existing climate-related EWS is the inability to process a large set
of climate-related data to fit different sets of climate conditions. For instance, data on the
location of vulnerable people and infrastructure can be very large, such that it becomes
difficult to create and process the required set of risk map metrics. Though the underlying
algorithm of an EWS can lead to different processing outcomes at the same time [39], as
technology advances, more effective computational platforms with several algorithms can
be utilised to overcome the computational challenges of existing climate-related EWSs.

2.3. Cloud Computing-Based EWS Opportunities

Cloud computing is an information technology framework that provides a service
infrastructure for different users to access large-scale and shared computing infrastruc-
ture capability over the internet. Cloud-based computing platforms also use web-based
infrastructure to offer computing capabilities and robust data processing computational
models. They can offer substantial access to several warning systems using their shared
pool capabilities, thereby ensuring sustainable availability. Sharing cloud resources is more
advantageous than expanding existing web-based platforms [40]. The advantage of cloud
computing technology is access to real-time voluminous data processing and its ability
to obtain a huge volume of data from different integrated systems. Again, its mechanism
facilitates easy deployment, offers on-demand scalability, and ensures wide accessibility
of resources to help create dynamic systems [41]. The success of EWSs can be measured
by their impact on saving lives, land, and infrastructures and supporting the long-term
sustainability of the EWS. Generally, people adopt different coping mechanisms for differ-
ent climate-related events based on the warning information they receive. The benefit of a
cloud computing platform is that it provides well-tested cloud platforms that can support
pre-emptive modelling of climate events in real time. Again, cloud interoperability ensure
one cloud service is connected with another to share data, thereby increasing access to early
warning information.

Cloud computing, as an information technology architecture, hosts remote servers on
the internet and provides virtual data storage and processing of data. Its architecture can
be categorised into private, public, hybrid, and multi-cloud. The hybrid cloud combines a
company’s on-premises private cloud and third-party, public cloud services into a single
application. The multi-cloud architecture uses several cloud vendors to distribute applica-
tions on several cloud environments. Aside from the cloud computing architecture, there
are three main services that are provided: infrastructure as a service (IaaS), platform as a ser-
vice (PaaS), and software as a service (SaaS). IaaS provides computation, networking, and
storage resources on demand, whereas PaaS provides hardware, software, and platforms to
support the development and maintenance of software or applications on an organization’s
computing infrastructure. SaaS is similar to IaaS and PaaS in that it offers software online
that can be subscribed to by its users. Multi-cloud provides a mix of IaaS, PaaS, or SaaS
resources. This architecture and its services ensure the availability of applications and data
governance. Data governance defines how data is collected, stored, and used from top-
down and bottom-up [42], thus creating the required framework to support information
dissemination from the national (government), local (community), and user (individual)
levels. Big data has become an important intangible asset to many organizations, and
when measurable performance indicators are set, it creates the needed value chain for data
governance [43]. In this regard, cloud computing architecture guarantees reliable data for
accurate prediction of climate events in EWS [44].

Both cloud computing-based EWSs and non-cloud EWSs (i.e., existing EWSs) use
the internet as a backbone. However, the difference lies in the underlying architecture,
which can either be IaaS, SaaS, and PaaS or server-client (e.g., a local server). Cloud storage
provides a set of servers with larger capacities to manage voluminous demands for data
storage and access. However, the barriers to cloud computing adoption include organi-
sational culture, security, and trust in adopting new technology, such as the “cloud” [45].
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Amron, Ibrahim [46] ranked compatibility, top management support, and benefit as the
first three factors that influence acceptance of cloud technology.

Since cloud computing allows the sharing of resources, it is easy to share location
data [21], which can be used to identify vulnerable communities and people in any disaster
situation. Cloud-based search engines that leverage location data in real-time facilitate
risk knowledge gathering, monitoring, and warning dissemination to create a customised
visualization of a map of a geographical location [21]. Planning the infrastructure of the
EWS is crucial to ensure a dynamic location data gathering [47]. Some examples of cloud
computing-based EWS include Geological Hazard EWS [48]. Cloud computing-based
search engines employ parallel cloud computing capabilities to overcome location data
computational challenges. Thus, this makes it easy to incorporate climate-driven data in
spatial scales. Among the parallel cloud computing search engines or applications is Google
Earth Engine, which provides real-time remote sensing [21]. Search engines are built using
algorithms that are executed by the cloud servers for geological disaster prediction and
modelling in Geographic Information Systems [48]. “Retrieving Environmental Analytics
for Climate and Health” (REACH) is another cloud-based application that uses Google
Earth Engine (GEE) to process data on land surface temperature, spectral indices, and
precipitation [49]. Algorithms (e.g., machine-learning algorithms), when put on a single
platform, such as hybrid cloud, provide the needed flexibility of performing different
computing tasks at a greatly reduced cost. In contrast, non-cloud-based systems are unable
to provide such algorithm flexibility, which impacts negatively on their performance. Arti-
ficial intelligence and cloud-based collaborative platforms provide a logical and structured
approach for algorithms to collect and analyse data in order to devise the required strategy
for any natural disaster management [50].

3. Materials and Methods

This study’s methodology is the Protocol Search Appraisal Synthesis Analysis Report
(PSALSAR) framework for systematic literature review (SLR) and meta-analysis [51,52].
This method was suitable because it provides a framework that also includes the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach, which
guided this research to assess existing knowledge of climate-related early warning systems.
The systematic literature review helped to identify, evaluate, and synthesize existing litera-
ture based on clearly defined inclusion criteria to address the outlined research questions,
and the meta-analysis was conducted using simple statistical techniques to find the research
output by authors [53]. Table 1 depicts the six steps in the PSALSAR framework for sys-
tematic and meta-analysis studies, and these steps guarantee the methodology’s accuracy,
systematicity, exhaustiveness, and reproducibility [54], thereby minimising publication bias
in the identification and selection of articles. The framework also guided data collection
from the data sources for further analysis.
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Table 1. PSALSAR framework for systematic review and meta-analysis.

Steps Outcomes Methods

Protocol Define study scope PICOC framework identifies the research scope and
research questions [55].

Search
Define the search strategy Searching strings.

Search studies platforms Search databases.

Appraisal
Select studies Using inclusion and exclusive criteria.

Quality assessment Define the quality assessment approach using three scaled
ratings: low (i.e., 0), medium (i.e., 1) or high (i.e., 2).

Synthesis
Extract data Data was extracted or collected from Scopus and Web of

Science (WoS).

Categorise data Categorise published research articles and present outcomes
for further analysis.

Analysis

Data analysis Quantitative, descriptive, and qualitative analysis of results.

Result and discussion Show challenges and result comparison.

Conclusion Derive conclusion and future research.

Report
Report writing PRISMA methodology.

Journal article production Summarise the research outcome and present its findings.

PICOC: Population, Intervention, Comparison, Outcome, and Context.

3.1. Protocol

The PICOC framework helped to define the research scope and formulate the key
research questions outlined in this study [55]. Table 2 describes the PICOC framework and
provides the definition of key aspects of this framework relative to the SLR application.

Table 2. PICOC framework.

Concept Definition SLR Application

Population The research deals with climate-related
EWSs worldwide.

Scientific research on climate-related EWSs, including the
cloud-based EWS.

Intervention
Application of existing techniques or
approaches to address the problem
identified.

This shows the research gaps that need further research in
terms of the appropriate methodology and the least studied.

Comparison
Techniques to contrast the intervention
used to measure or assess climate-related
EWSs against cloud-based EWSs.

Differences between the methods to value/quantify the type
of climate-related EWS.

Outcomes
Define the measures to assess the
challenges and opportunities in selected
publications.

Assess the existing knowledge in terms of the most and or
least studied types of EWS, model, or approach used.
Mentioned gaps in terms of limitations related to the
methodological model.

Context This defines the settings or area of the
population.

Trends of climate-related EWS research, existing EWSs and
challenges, cloud-based EWSs and their benefits.

3.2. Search

This step defines the search string strategy to help identify the relevant literature
from online data repositories. The search strings consist of keywords and logical gates
to help with the effective filtering of literature and to identify SLR applications. These
keywords are the key variables in the research questions. At the same time, the logical
gates include “AND”, “OR”, and “NOT” [56]. “AND” unifies the search levels, and
“OR” is used for a sequence of synonyms; “NO” limits words that are “messing up”
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the search of each database. A pilot study was conducted on keywords to refine the
search keywords and avoid ambiguity. Keywords can be identified in the document title,
abstract, and keywords listed in a publication. The choice of an online data repository
depends on the nature of the research topic [57], which also determines its search strategy.
Two reviewers worked independently and separately to retrieve articles, which were
finalized on 3 March 2023. The articles were restricted between the years 2004 and 2022
from the selected data repositories Scopus and WoS. Scopus is a worldwide peer-reviewed
publication. Google Scholar, unlike WoS and Scopus, is limited in terms of publisher list,
journal list and types, or information on timespan of records. Though Google Scholar
has an advanced search engine for citations not available in other databases [58], it was
not considered in this study. The outcome of the search includes the number of available
publications, trends, and the fewest research publications on EWS. In this research, the
number of articles (n) represents the sample size. Table 3 shows the category of database
and search string.

Table 3. Category of database and search string.

Databases Search String Syntax Filter No. of Articles
(Sample Size) Search Date

Scopus

(TITLE-ABS-KEY (cloud AND early AND
warning AND systems) AND TITLE-ABS-KEY
(“challenges”) OR TITLE-ABS-KEY (“gaps” OR
TITLE-ABS-KEY (limitations))
(TITLE-ABS-KEY (cloud AND early AND
warning AND systems) AND TITLE-ABS-KEY
(“techniques”))
“early warning systems” AND “challenges” OR
“limitations” OR “gaps”
“early warning systems” AND “techniques”

Initial Filter: year >(current)
EXACTKEYWORD Cloud
Computing, Early warning
systems

1857 3 March 2023

WoS

“cloud early warning systems” AND
“challenges” OR “gap”
“cloud early warning systems” AND
“techniques”
“early warning systems” AND “challenges” OR
“limitations” OR “gaps”
“early warning systems” AND “techniques”

Initial Filter: and year
>(current year)
EXACTKEYWORD Cloud
Computing, Early warning
systems

659 3 March 2023

In addition to keywords, inclusion and exclusion criteria were also determined to
narrow down the search results to the most relevant paper. Table 4 presents the criteria for
article inclusion and exclusion.

Table 4. Inclusion and exclusion criteria.

Criteria Decision

Papers published in a scientific peer-reviewed journal. Included

Predefined keywords should exist as a whole or at least in the title, keywords, or
abstract section of the paper. Included

Papers written in the English language. Included

Duplicate papers within the search documents. Excluded

Papers that were not accessible. Excluded

Papers that were published before 2004. Excluded

3.3. Appraisal

This step involves the selection of articles for further evaluation to identify the relevant
paper. Papers might meet the inclusion and exclusion criteria; however, they may not be
relevant. Thus, two approaches were conducted: study selection using inclusion criteria
and quality assessment. During this step, three independent reviewers screened and
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reviewed the report presented in a Microsoft Excel template. Differences in opinion were
discussed in order to arrive at a consensus on appraisal.

i. Screening and selection of studies using inclusion criteria:

Literature including extended abstracts, keynotes, presentations, conference proceed-
ings, reviews, and non-English language papers were excluded. A PRISMA flowchart for
general screening processes and selection of relevant literature is presented in Figure 1.
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Figure 1. PRISMA flowchart for screening and article selection.

The PRISMA flowchart consists of four steps. The identification step is performed
using title, abstract, and keywords along the thematic areas. The screening step uses
the article’s title to remove duplicates, editorial letters, etc. The eligibility step includes
abstract reading and main full-text reading, while the inclusion stage presents all the final
papers. All articles that were deemed relevant from the full text were extracted for further
quality assessment.

ii. Quality/risk assessment

The risk assessment was conducted by independent reviewers who verified selected
articles to ensure they met the selection criteria. A scaled rating was adopted to measure
the quality of selected articles by focusing on key descriptive criteria set in this study. For
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instance, any article rated as low signifies that the article does not focus on specified criteria.
The quality assessment served as a guide to whether each article selected in the final assess-
ment meets all the criteria or not. The first step in the process of quality assessment is that, at
each stage of the PRISMA flowchart, articles must meet the specified domain and approach,
therefore leading to a number of articles being included and excluded (Figure 1). Secondly,
articles included (98 articles) in the final stage of the PRISMA flowchart should meet the
criteria in Table 5. Thus, selected articles were deemed as highly focused or otherwise
by this study’s independent reviewers. Also, because the articles selected can introduce
biases in the systematic literature review, a transparent process in the article selection is
needed to minimize bias [59]. Similarly, any differences in opinion can also introduce a
bias, which was addressed through an open discussion to reach a consensus. Moreover, the
independent reviewers are also mindful of the peer-reviewed journal structure, which in
itself is a risk assessment criterion, such that all published papers on WoS or Scopus have
already been well scrutinised. This suggests that the published articles have adhered to a
journal’s quality assessment standard and that the source of the article can be considered
reliable and has scientific merit.

Table 5. Criteria to extract information from selected articles.

No. Criteria Categories Considered Justification

1. Year of publication Between 2004 and Dec 2022 Studies before 2004 were not considered.

2. Name of journal - Describe the distribution of the research
publication.

3. Study area Name of the country Geographical location where the study was
conducted by the article’s author.

4. Types of data sources

Primary data

Data sampled in the research field includes
data derived from field data, surveys, case
studies, or interviews. Primary data is
collected using technology, such as sensors.
The Internet of Things is also considered.

Secondary data

Data was sampled from readily available
information and not verified in the field. This
data includes socioeconomic data and mixed
sources like global statistics.

Mixed data These data include organizational reports,
modelling, surveys, and field data.

Model generated data

This is when a model is used to generate
data. The model validation approach
includes results validation with benchmark
functions, results validated with real-time
data, results validated with historical data, or
results validated statistically.

5. Method

Expert knowledge
Experts rank existing EWSs, including the
cloud-based EWS, based on their potential to
provide warning services to human beings.

Underlining computational
algorithm

Indicates the computational algorithm
interlinking the complex processes of EWSs,
namely risk knowledge gathering,
monitoring and prediction, communication
or dissemination of warning information,
and response mechanisms.
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Table 5. Cont.

No. Criteria Categories Considered Justification

6. Fundamental tenet of early
warning systems assessment

Risk knowledge gathering,
detection, prediction,
dissemination of warning
information, and response
mechanisms

Expresses the components of the early
warning systems, which are categorised into
five types. EWSs that address more than one
tenet are regarded as having a
multi-dimensional approach to EWS design.

7. The type of EWSs assessed Different kinds of EWSs in
literature

At least one EWS type should be assessed:
flood, drought, earthquake, heat wave, etc.

8. Relevant contribution

Policy Describe the relevant contribution of the
reviewed article to policy.

Practical Describe whether the reviewed article has
practical relevance.

Theoretical Describe whether the reviewed article
contributes toward improving theory.

Social
Describe whether the reviewed article
contributes toward improving the societal
response to early warnings.

9. Limitations

Methodological
Uncertainties about the result due to the
application of the unclear or less developed
method.

Data Primary and secondary data source quality
and scarcity that challenge the research work.

Model validation EWS studies that lacks the ability to verify
the results using model validation.

3.4. Synthesis

This step involves data extraction and categorizing relevant literature using the pre-
pared criteria (Table 5). Categorisation helped to organize the data extracted based on
variables of interest, the characteristics of the articles, and the criteria used to evaluate the
research topic. In this research, the criteria describing the variable of interest by [52] was
applied to help synthesise the literature review. Finally, the data on each selected paper
was summarised in a Microsoft Excel spreadsheet using the criteria in Table 5.

A systematic literature review seeks to identify articles that meet predefined eligibility
criteria; however, this can be compromised when research results from authors are not
reported, unavailable, or not indexed, thereby influencing a study’s result by introducing
bias in reporting an outcome of a study. Thus, though limiting the type of study to articles
that are eligible for inclusion can potentially reduce the risk of bias due to missing results,
systematic reviews might suffer from poor indexing, which makes it impossible to identify
all studies. Therefore, further topic search on Google was conducted to reduce any bias
in reporting.

3.5. Analysis

This involves the evaluation of synthesized data into meaningful information to help
address the research questions. The information presented covers both the qualitative
and quantitative explanation of the results, discussion, and further direction. The type of
statistical tools depends on research findings, hypotheses tested, and the type of statistics
reported in the analysis [60]. Descriptive statistics were used to present the publication
trends, date of publication, and study coverage and assess indicators of EWSs. An overview
of the evidence, knowledge gaps, and research implications were presented based on the
selected criteria (see Table 5). Challenges with descriptive analysis include the researcher’s
knowledge and understanding of the subject, which can influence personal judgement and
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future research direction [60]. This limitation with descriptive analysis was also addressed
through discussion among the three independent reviewers to arrive at a consensus.

3.6. Report

The report is presented using PRISMA methodology and results summarization. This
approach intends to improve the completeness of published articles in meeting the inclusion
criteria at each stage of the PRISMA flowchart. Thus, the report is presented using Figures
and Tables alongside the qualitative and quantitative description.

4. Results

The results on the PRISMA flowchart (Figure 1) show that at the identification step,
a total of 2516 pieces of literature were extracted from the WoS and Scopus. During
the screening stage, duplicate pieces of literature were removed using a Microsoft Excel
template that enables sorting of rows and columns in ascending order, and literature
with “no author name available”, conference papers, editorials, etc., that are not clearly
focused on climate EWS assessment were further removed manually by independent
reviewers, as these can introduce biases in article selection. Also, articles that were selected
(19 articles) without digital object identifier (DOI) were excluded due to the possibility of
bias in reporting missing results. Subsequently, a further Google search was conducted on
these selected articles without or missing DOI using the article’s topic, which resulted in
four articles being retrieved and included in the final analysis. Unfortunately, a request
sent directly to the article’s author(s) to make a copy of the full text of their research
available yielded no response. Thus, 98 published articles were retained, as they fulfilled
all the inclusion criteria. Table 6 shows some studies that appear to meet the inclusion
criteria, but because they were not easily assessable, these studies were not retained for the
final analysis.

Table 6. Articles that met inclusion criteria but were excluded.

Authors Topic Year

Cavallin, Sterlacchini [61] GIS techniques and decision support system to reduce landslide risk: the case
study of Corvara in Badia, Northern Italy. 2011

Cheneau and Risser [62] Real-time mapping and pre-alert system for landslides in the Swiss Alps: the
OLPAC methodology. 2019

Ghamghami, Ghahreman [63] Detection of climate change effects on meteorological droughts in the
Northwest of Iran. 2014

Alemaw [64] Flood hazard forecasting and geospatial determinants of hydromorphology in
the Limpopo basin, R Southern Africa. 2010

Meng, Feng [7] Research on the application of Internet of Things technology in earthquake
prevention and disaster reduction 2014

There were 88 articles categorised as non-cloud-based EWSs and 10 cloud-based EWSs.
Out of the 88 articles, one article focused on gap analysis of EWSs in general. The findings
on the category of EWSs suggest a high number of non-cloud-based EWSs. Thus, 13 (13%)
and 22 (22%) selected final articles focused, respectively, on landslides and earthquakes.
This result suggests that landslide and earthquake non-cloud-based EWSs have received
more attention from researchers. Furthermore, examples of cloud-based EWSs identified in
the literature include snowmelt floods (one), drought (one), floods (four), tsunamis (one),
and landslides (three). Though there were several natural disaster occurrences, including
heat waves, ice storms, dust storms, etc., EWSs for these natural disasters were limited in
the data repository considered in this study.

Figure 2 shows the aspect of the EWS framework that the cloud and non-cloud-based
EWSs address. Out of the ninety-eight sampled size of literature, forty-seven focused on
prediction, while two focused on response mechanisms. This suggests that researchers
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are focusing their efforts on finding new methods of predicting climate events, with the
outcome informing the nature of integration with aspects of the EWS framework.
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Table 7 shows that the literature focuses on more than two aspects of the EWS frame-
work. Again, it describes the results of studies that meet the inclusion criteria and the
study’s characteristics, focusing on the EWS framework. It is observed that both cloud
and non-cloud-based EWSs focus on more than one aspect of the EWS framework. For
example, non-cloud-based landslide EWSs combine prediction and monitoring, while
cloud-based flood EWSs combine detection and dissemination of warning information.
This suggests that EWSs can be designed to detect and, at the same time, disseminate
warning information to the affected areas.

Figure 3 shows the use of models to generate data for different EWSs. It is observed
that 41 pieces of literature focused on models to generate data for EWSs; some model’s
results are validated statistically (eight), other models are validated with historical data (17)
or with real-time data (three), and other models are validated with benchmark functions
(23). This suggests that models are mostly used to generate data for EWSs, and these
models are validated with benchmark functions in order to improve their performance.
The limited number of pieces of literature on model validation with real-time data suggests
a gap that needs more research.
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Table 7. The EWS framework is divided into cloud and non-cloud components.

Authors Year
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Yao, Zeng [31] 2015 x x x Landslide

Singer, Schuhbäck [65] 2009 x x x Landslide

Kuyuk, Allen [66] 2014 x x x Earthquake

Hsu and Pratomo [67] 2022 x x x Earthquake

Crowell, Schmidt [68] 2016 x x x Earthquake

Wald [69] 2020 x x x Earthquake

Böse, Wenzel [70] 2008 x x x Earthquake

Wannachai, Aramkul [28] 2022 x x x Flash
droughts

Ritter, Berenguer [71] 2020 x x x Flash
droughts

Watanabe, Koyama [72] 2021 x x x Forest

Harjupa, Abdillah [73] 2022 x x x Rainfall

Mahomed, Clulow [74] 2021 x x x Lightning

Hofmann and Schüttrumpf [75] 2020 x x x Pluvial
flood

Uwayisenga, Mduma [76] 2021 x x x Flood

Tzouvaras, Danezis [77] 2020 x x x Landslide

Wächter, Babeyko [78] 2012 x x x Tsunami

This study’s result suggests that 57 works of literature focused on computational
algorithms, and 41 are not focused on computational algorithms. Thus, the literature on
EWSs utilises computational platforms, and it is ideal for harnessing all computational
algorithms onto a single platform that can be shared globally.

Figure 4 shows the relevance contribution of reviewed articles, which are categorised
into practical, theoretical, policy, and social. It is observed that practical contribution
constitutes 72 per cent of the literature, followed by theoretical (6%), policy (5%), and social
(13%). This suggests that more emphasis was on the operationality or practicality of EWSs
than either theory or policy. Thus, because there are several approaches to practically
address emerging climate-related events, it is challenging to create the required policy
framework to support EWSs. Furthermore, it is suggestive that theories have been well
advanced, and therefore, new implementation approaches are needed.
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Appendix A presents the challenges with EWSs and approaches applied to solve
those challenges. It is observed that among the challenges with EWS, either non-cloud
or cloud-based, include accurate prediction of events using predictive models, collection
of climate events data, gaps between the EWS’s message and the public’s response, lack
of a global identification/prediction system for the most vulnerable regions, services’
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interoperability and open data, etc. Furthermore, current approaches to solving challenges
with climate-related EWSs include artificial intelligence, fuzzy logic models, a combination
of wavelet transform and particle swarm optimization kernel extreme learning machine,
Acoustic Emission techniques, the “Online sequential-extreme learning machine” (OS-ELM)
algorithm, recurrent neural networks to build dynamic predictors, use of real-time satellite
observations with a database of global terrestrial characteristics, collection of techniques
and tools that harnesses the potential of data continuously on a single platform, use of IoT
Cloud platform to detection of climate events, etc. This suggests that several approaches or
techniques are employed in different EWSs to address emerging issues relating to climate
events. Hence, there is a multiplicity of approaches that can be put on a single platform or
infrastructure and shared across different EWS frameworks. This demonstrates that more
practical approaches were adopted in the design and implementation of EWSs. Though the
current approach to resolving the challenge of EWSs has been identified, there is a limited
application of the cloud-based service architecture, namely IaaS, PaaS, and IaaS.

The quality assessment of each final article on a fundamental tenet of EWSs using
the rating suggests a low (seven), medium (seventy-four), and high (seventeen) focus.
Thus, out of the ninety-eight final articles, seven articles were low in quality at describing
the fundamental tenets or were not focused on any of the fundamental tenets of EWSs,
seventy-four articles were medium in quality, as they focused on only one fundamental
tenet of EWSs, and seventeen articles were high in quality, as they focused on more than
one fundamental tenet of EWS. This outcome suggests that the extent to which the quality
assessment of articles on climate-related EWSs considers more than one fundamental tenet
is high.

In terms of cloud-based EWS quality assessment ratings, the record rating is one
low, seven medium, and one strong. This result shows that one article was recorded
as not focusing on the fundamental tenets of EWSs, seven articles focused on only one
fundamental tenet, and one article focused on more than one fundamental tenet of EWSs.
These findings suggest that there is a high chance of cloud EWS focusing on only one aspect
of the tenet.

In terms of the non-cloud-based EWS, the record rating is six low, sixty-seven medium,
and sixteen strong. This result shows that six articles were recorded as not focusing on the
fundamental tenets, sixty-seven articles focused on only one fundamental tenet, and sixteen
articles focused on more than one fundamental tenet. These findings suggest that there
is a high chance of non-cloud EWSs focusing on only one aspect of the tenet. Therefore,
both cloud and non-cloud EWSs are more tilted toward focusing on only one aspect of
the tenets.

5. Discussion
5.1. Fundamental Tenet of Early Warning Systems

This section discusses the key question that focuses on identifying the underlying
approaches and challenges of EWSs. The question of whether existing climate-related
EWSs cover more than one aspect of the EWS framework is also addressed. The review
suggests that EWSs cover more than one aspect of the EWS framework (Table 7). Again,
the review indicates that the aspect of prediction is more dominant than monitoring,
detection, dissemination of warning information, and response mechanisms (Figure 2).
This demonstrates that there is a drive towards the prediction of climate events, hence the
use of models to generate climate data (Figure 2). It reveals that climate models either use
historical data or real-time data for model validation (Figure 2).

Secondly, the question on modelling approaches commonly used in assessing existing
climate-related EWS effectiveness suggests that different computational approaches were
utilised to assess the different aspects of the EWS framework. For example, some predictive
models have underlying mathematical models, such as Boussinesq equations, which help
in generating the required numerical dataset for the prediction of tsunamis [79], thereby
filling the data gap in climate event modelling. Aside from the mathematical model
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underlying EWSs, some devices have been deployed for the effective monitoring of climate
events and the collection of sufficient data for prediction models. The use of devices
determines the choice of computational models, and among such devices include the use
of IoT and sensor-enabled devices [80,81]. This suggests the possible hybridization of
prediction and monitoring approaches to facilitate data processing on EWSs [82], where the
hybrid approach uses neural network and heuristic approaches. Aside from hybridisation,
EWSs address one or more tenets of the EWS framework (see Table 7), thus providing a
multi-dimensional approach to EWS design [79]. For example, Yao, Zeng [31] proposed a
landslide EWS that both monitors and predicts landslides. Hsu and Pratomo [67] proposed
an earthquake EWS that can predict and disseminate warning information. On the contrary,
Zhou, Yin [83] proposed a landslide EWS that only predicts landslide occurrence. Among
the papers that address only one aspect of the EWS framework are Zheng, Wang [84] for
earthquake prediction, Zhang, Zhang [85] for earthquake detection, and Zhang, Meng [86]
for unsafe crew acts (UCAs) detection. Computational models that have been applied
in this regard include the Bayesian network (BN) and deep learning models with fully
convolutional networks (Table 7). Thus, depending on the focus of EWS, the modelling can
focus on addressing one or more aspects of the EWS framework.

Conclusively, the quality assessment report suggests that many EWSs, either non-
cloud or cloud-based, focus more on only one fundamental tenet of EWSs. The findings
suggest a high chance of cloud EWSs focusing on only one aspect of the fundamental tenet.
There is evidence that very few pieces of literature (one article) consider more than one
tenet. Similarly, there is a high chance of non-cloud EWSs focusing only on one aspect of
the tenet, whereas 16 articles focused on more than one fundamental tenet of non-cloud
EWSs. Despite the potential of cloud computing infrastructure, its application is yet to be
fully exploited in EWSs toward addressing climate-related risks. Platform dependency
limitations might be the reason for having many existing early warning systems focusing
on a single tenet.

5.2. Existing Climate-Related Early Warning Systems

This section discusses the question relating to the existing literature on climate-related
EWSs, the identification of underlying approaches, and the challenges. Among the key
questions raised include whether existing climate-related EWSs use cloud service infras-
tructure. It is revealed from the literature that many EWSs do not use the cloud-based
service infrastructure, and few fall within the cloud computing domain. Again, with
the challenges with existing EWSs, it is revealed that early warning systems have chal-
lenges that impede their application to climate-related events. Knowing these challenges
(Appendix A) helps in finding the most suitable model for assessing the effectiveness of
existing climate-related EWSs. The performance of EWS in predicting, monitoring, and
sending warning information and responses remains the major challenge. This is because
of the uncertainty in estimating parameters that fit a certain threshold, and unfortunately,
the performance of this parameter decreases with time, and this affects the performance of
EWSs. When existing climate-related non-cloud-based EWSs are unable to process large
amounts of data, it impacts their performance. In this regard, the neural network approach
remains one of the best approaches to assess the performance or effectiveness of existing
climate-related EWSs. For instance, the multi-layer perceptron neural network (MLP-NN)
was used to predict tsunamis, with model performance measured by the margin of error in
prediction [79]. Altunkaynak and Nigussie [87] combined the wavelet transform (WT) and
particle swarm optimization kernel extreme learning machine (PSO-KELM) for predicting
daily rainfall with nonlinearity patterns. The internal mechanisms of landslides are very
complex, leading to the challenge of having a precise mechanistic model for landslide
prediction. Thus, though data-driven models are applicable to predict landslides, the un-
derlying prediction model that is based on feed-forward neural networks can only express
the static relationships among data variables; hence, static models are quite limited in
landslide prediction tasks. Therefore, application of recurrent neural networks help to



Climate 2023, 11, 188 18 of 34

build dynamic predictors for landslide prediction [31]. Additionally, machine-learning and
satellite remote sensing approaches offer an opportunity to monitor deep-seated landslide
deformation and associated processes [88]. Appendix A shows the different approaches
to resolving challenges, and it also demonstrates the need to have systematic data and
structured data collection and integration techniques [18]. Hence, when a JavaScript library
is built into the web browser, it facilitates data collection and enhances user interaction
with climate simulation applications.

In addressing the question regarding which type of existing EWS has the highest
and the least number of studies, earthquake EWSs have the highest number of works
of literature (totalling 22 articles), and the least number of studied EWSs include land
falling droughts, sematic, biodiversity, debris flow, surface water quality, algae blooms,
unsafe crew acts, air quality, suicide, lightning, thunderstorm, volcano, and flash drought.
Landslide EWSs have the second-highest number of works of literature (totalling 13 articles).
Yao, Zeng [31] suggest that due to a lack of data on earthquakes and landslides, data-driven
models are proposed to address this challenge. Other researchers that also identified data-
driven models include landslide detection by Tzouvaras, Danezis [77] and pluvial flood
prediction (floodGAN) by Hofmann and Schüttrumpf [89].

5.3. Cloud Computing-Based EWS Opportunities

This section also addresses the key research question regarding the assessment from
the literature of the categories of EWSs in cloud computing to identify the approaches,
opportunities, and limitations. Based on the question on the current cloud-based EWS, the
literature reveals that early warning systems for cloud computing include flood, drought,
landslide, and snowmelt flood. Flood EWS has the highest number of studies, accounting
for four works of literature (representing 4% of analysed sampled literature), while drought
and snowmelt floods both account for the least number (one) (representing 1% of analysed
sampled literature). These categories of EWSs use different underlying approaches to
model data capture and processing. De Filippis, Rocchi [9] indicate that interoperable web
services and the use of open data platforms help customise hydro-climatic information to
user’s needs, thus ensuring data capture and storage, data flow management procedures
from several data providers, real-time web publication, and service-based information
dissemination. For example, EWSs leverage the capability of cloud computing by combin-
ing artificial intelligence (AI) and several techniques to predict drought [90]. In terms of
tsunamis, an EWS named INSPIRE leverages cloud computing capability for the simulation
of tsunamis [91]. With respect to flood, computer vision with image processing functional-
ity was embedded in an IoT cloud platform for flood prediction [92]. It can be identified
from the reviewed literature that few EWSs deployed on the cloud computing environment
could not specifically indicate the service infrastructure, either IaaS, PaaS, or software as
a service (SaaS). This notwithstanding, the cloud service’s infrastructure, such as IaaS,
PaaS and SaaS, offers unique opportunity to creating a uniform service infrastructure for
multiplicity of approaches or techniques.

Regarding the modelling approaches commonly used in measuring the effectiveness of
cloud-based EWSs, this review shows that these approaches used in the categorised EWSs
(Table 7) offer an opportunity for real-time data processing of satellite observation databases
globally [93]. This review shows that there is an application, referred to as DataOps,
that combines different techniques and tools onto a single platform that continuously
harnesses data on climate information for sharing on web platforms [90]. The IoT cloud
computing platform offers an opportunity to monitor and analyse flood images through
cloud computer vision with image processing models. Also, LoRa technology in cloud
computing frameworks helps customise sensors and gateway devices because of their low
energy consumption capabilities [80]. The web environment offers the needed tools for
data collection and remote control, which enables technical maintenance and calibration of
sensors [20]. Galaz, Cienfuegos [94] indicate that since web browsers can have an inbuilt
JavaScript library, it can facilitate consistent data gathering and analysis to support global
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observation of climate-related events [94]. Cloud services bridge the gap between scientific
research on warning and preparedness of institutions and communities [91]. Despite these
opportunities, there appears to be very limited literature regarding the use of cloud service
infrastructure for climate-related EWSs. Artificial intelligence and machine learning are
the common modelling approaches in the processing of climate-related data. While these
approaches are relevant, their performance measures the effectiveness of the approach.

It is crucial to note that there is a body of evidence that 88 early warning systems
are non-cloud-based while 10 are cloud-based. This outcome suggests a lack of usage
of the cloud computing infrastructure despite its benefits. Despite the opportunities of
cloud computing, the limitations of cloud computing include data governance [42], which
indicates that the structure of data collected, stored, and used in an organization needs to be
aligned with the cloud service infrastructure. The fact that no one computational algorithm
fits all data models creates a computational challenge that impacts the performance of
the computational approaches. Again, since there are different data-driven models with
different underlying techniques that help in predicting and monitoring climate conditions,
it shows that performance can be a limiting factor [95]. Thus, the performance matrix can
create the needed value chain for data governance [43]. The literature review indicates that
cloud computing climate-related EWSs can cover multiple aspects of the EWS framework
(Table 7), for example, combining prediction and monitoring or detection and dissemination
of warning information.

With cloud computing, data can be stored anywhere and accessed via the internet;
thus, cloud computing EWSs are more resilient to failure and still remain operational. Un-
fortunately, the cost of deploying cloud service infrastructure can be a limitation towards
its use, and this calls for more funding from international climate-focused organizations.
Fortunately, the cost associated with purchasing hardware can be eliminated when the
cloud computing infrastructure is adopted in the development of EWSs. Another limitation
to cloud computing EWSs is that since data is stored redundantly, it could raise security
and privacy concerns. Thus, an organization may adopt using government-hosted cloud
computing service infrastructures to ensure compliance. Though commercial-hosted cloud
computing service infrastructures can provide a distributed data storage system to opera-
tionalize EWSs, contractual issues, and vendor lock-ins could negatively impact access to
commercial cloud-hosted EWSs. EWSs should be accessed by every person irrespective
of their geographical location; however, developing countries with inadequate internet
infrastructure and technological skills can negatively impact global access to EWSs.

Figure 4 shows that more attention is on the operation of EWSs, in which there are
more non-cloud-based EWSs than cloud-based EWSs. It could be inferred in terms of
the level of maturity that non-cloud-based EWSs could reach either the intermediate or
advanced adoption stage, whereas cloud-based EWSs could either be in the foundational
stage or intermediate stage. This suggests further research in assessing the level of maturity
relative to cloud-based EWSs.

6. Limitations, Practical and Policy Implications

This study’s limitation is the choice of the methodology adopted, which includes doc-
uments written in another language apart from the English language not being considered,
even though they might have useful and relevant information that could be beneficial to
this study. Secondly, documents written prior to 2003 were also not considered despite the
relevant information they might contain. Thirdly, the use of the Boolean operator (AND) in
the search criteria in the online repository could not yield any information, for example,
cloud computing AND early warning systems. The choice of Scopus and WoS as data
sources was also the study’s limitation because of the likelihood that other data sources
might have relevant articles that can be useful for this study. However, the 2516 works of
literature that were extracted, screened, and reduced to 98 pieces of literature were helpful
in overcoming this data source limitation.
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Practically, this research has identified climate-related EWSs, which are categorised
into cloud and non-cloud-based. This classification could help policymakers in knowing
the most dominant climate-related EWSs deployed using the cloud computing service
infrastructure. In terms of policy, since the cloud computing service infrastructure can be
openly accessed, it has the potential to substantially increase the access and availability
of climate-related EWSs to support the 2030 vision agenda. Again, policymakers should
consider developing the needed legislative framework to support cloud-based climate-
related EWSs. This research provides the basis for policymakers to engage EWS design
practitioners about the prospects of migrating non-cloud EWSs to cloud infrastructure.

7. Conclusions

This research reviewed recent literature on existing early warning systems’ challenges
and opportunities for cloud computing early warning systems. Through this systematic
literature review, several EWSs were identified and categorised into cloud and non-cloud.
While the cloud computing framework offers a service infrastructure to enable a shared
pool of computing resources, the existing EWSs use a server-client computing structure
that allows the sharing of limited resources, including storage and processing capabilities.
The findings indicate that few EWSs, including flood, drought, landslide, and snowmelt
flood, utilise the cloud computing infrastructure, whereas many EWSs either are not lever-
aging the capability of cloud computing infrastructure or are online platforms that do not
utilise the cloud computing service infrastructure. Secondly, few EWSs harness several
techniques and tools, such as artificial intelligence techniques, onto a single platform for
data processing. Thirdly, sensor capabilities and IoT devices have also been deployed
on cloud computing platforms to facilitate data capture for different kinds of natural
disaster occurrences. Fourthly, data-generated models that are used in EWSs are often
validated using historical data or real-time data. The fact that models are mostly used
in generating data for climate-related EWSs, which are then validated with benchmark
functions, indicates the reuse of models rather than developing new computational models,
which might be time-consuming. Thus, the cloud-based computing infrastructure facili-
tates climate-related model reuse through its resource-sharing capabilities. Lastly, several
challenges with climate-related EWSs were identified and categorised into non-cloud and
cloud computing-based systems. These findings contribute significantly toward enhancing
the use of early warning systems in vulnerable communities because of the easy-to-access
uniform cloud service infrastructure that can perform different climate event simulations.
Again, it contributes toward helping EWS practitioners distinguish cloud and non-cloud-
based applications and strive toward a cloud computing framework because of the benefits
of ensuring resource sharing.
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No:# Authors Year Nature of Climate
Event

Challenge with EWS (Cloud and
Non-Cloud) Current Approach
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1. Zhou, Yin [83] 2018 Landslide

Random fluctuation of prediction
results and inaccurate prediction
when step-like deformations
happen.

Combination of the Wavelet
Transform (WT) and “Particle
Swarm Optimization-Kernel
Extreme Learning Machine
(PSO-KELM)” methods and the
landslide causal factors.

x

2. Zheng, Wang [84] 2022 Earthquake Collection of seismic data.

Seismic data collection using
smartphones to develop a
smartphone-based earthquake early
warning system. Again,
signal-processing techniques and
machine-learning algorithms were
applied to sensor data for
monitoring earthquakes.

x

3. Zhang, Zhang [85] 2021 Earthquake
Early reporting of earthquake
location and magnitude to
mitigate seismic hazards.

A deep learning approach that uses
fully convolutional networks to
simultaneously detect earthquakes
and estimate source parameters in
real-time.

x

4. Zhang, Meng [86] 2022 Unsafe crew acts
(UCAs)

Gaps exist between prediction
models developed by researchers
and those adopted by practitioners
in predicting unsafe crew acts.

A Bayesian network (BN) based
approach called “Standardized Plant
Analysis Risk–HumanReliability
Analysis (SPAR-H)” was applied to
predict the probability of seafarers’
unsafe acts. The practicability of
SPAR-H and theforward and
backward inference functions of BN
were applied to evaluate the
probabilistic risk of unsafe acts and
PSFs.

x

5. Zhang, Qiao [96] 2021 Earthquake
A gap existed between the EEWS’s
message and the public’s
response.

Public participation and training
people to be proactive towards
warning messages.

x

6. Zaki, Chai [97] 2014 Landslide

Obtaining data from deforming
soil bodies, which are deep lying
due to a high level of attenuation
and to signal contamination by
ambient noise.

Acoustic Emission techniques for
soil slope monitoring. x
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7. Yuan, Wang [23] 2019 Flash droughts

Flash drought risk change in a
warming future climate remains
unknown due to a diversity of
flash drought definitions, unclear
role of anthropogenic fingerprints,
and uncertain socioeconomic
development.

New method for explicitly
characterizing flash drought events x

8. Yuan, Tu [98] 2021 Flash flood

A single rainfall pattern is
inconsistent with the actual
diversified rainfall process, thus
creating a challenge with early
warning of flash floods.

Cumulative distribution functions
(CDFs) were applied to fit the
cumulative rainfall-duration curves
corresponding to typical rainfall
processes and the probability
density functions (PDFs).
Afterwards, the HEC-HMS
hydrological model is applied to
simulate the rainfall-runoff process,
and the critical rainfall
corresponding to different
characteristic rainfall patterns is
calculated with a trial algorithm.

x

9. Yuan, Liu [99] 2019 Flash droughts

Sudden occurrence and
randomness of heavy rainstorms
in hilly areas pose challenges to
the identification of early warning
indicators for mountain flash
floods.

The HEC-HMS model was applied
to simulate the rainfall-runoff
process and determine the early
warning indicators under different
rainfall patterns through repeated
trial calculations.

x

10. Yao, Yang [79] 2021 Tsunami

Modelling of tsunami wave
interaction with coral reefs to date
focuses mainly on process-based
numerical models.

A numerical model based on the
Boussinesq equations is applied to
provide a dataset for MLP-NN
training and testing.

x
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11. Yao, Zeng [31] 2015 Landslide

Landslide early warning systems
can be implemented by
monitoring and predicting
landslide displacements. The
challenge is the complexity of the
internal mechanisms of landslides,
and precise mechanistic models of
landslides are difficult to obtain.
Therefore, data-driven models are
usually applied because
traditional models, such as
feed-forward neural networks, can
only express static relationships;
the applicability of these static
models is quite limited in
landslide prediction tasks.

Recurrent neural networks are used
to build dynamic predictors of
landslide displacement using a
training algorithm named reservoir
computing.

x

12. Yang, Robert [93] 2010 Flood and landslide
Lack of a global flood/landslide
identification/prediction system
for the most vulnerable regions.

Combining real-time satellite
observations with a database of
global terrestrial characteristics.

x

13. Yang, Chen [100] 2021 Algae blooms

The threat of algal blooms on
water resources and their early
detection remains a challenge in
eutrophication management
worldwide.

Fuzzy logic has become a robust tool
for establishing early warning
systems. Application of a fuzzy logic
model driven by biochemical data
sampled by two auto-monitoring
sites and numerically simulated
velocity.

x

14. Tamburri, van Mierlo
[90] 2022 Drought

Data deluge grows exponentially;
however, data utilisation is not
growing at the same pace.

DataOps represents a set of
techniques and tools that are used to
harness the potential of data
continuously whilst incrementally
using complex cloud systems
orchestration techniques.

x

15. Srivihok, Honda [91] 2014 Tsunami

Lack of an effective end-to-end
tsunami early warning system to
connect scientific components of
warning with the preparedness of
institutions and communities to
respond to an emergency.

An online tool called “INSPIRE” to
help in tsunami inundation
simulation and loss estimation.

x
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16. Soh, Razak [92] 2022 Flood
The challenge with detecting
riverbank level and river water
level.

A system that monitors the river
water level by using computer
vision with image processing and
IoT Cloud platforms to detect
riverbank level and river water level.

x

17. Restrepo-Estrada, de
Andrade [101] 2018 Flood

A gap in research with regard to
the use of social media as a proxy
for rainfall-runoff estimations and
flood forecasting.

Applied transformation function for
the proxy variable for rainfall by
analysing “geo-social” media
messages and rainfall measurements
from authoritative sources, which
are later incorporated within a
hydrological model for streamflow
estimation.

x

18. Raziei and Fatahi [102] 2011 Drought
Lack of updated and reliable
meteorological data in a
data-scarce region.

Applied NCEP/NCAR gridded
precipitation dataset for drought
monitoring. Additionally, Principal
Component Analysis (PCA) coupled
with Varimax rotation to the SPI
field of SPI-6 and SPI-12 for both
NCEP/NCAR and observational
datasets was applied.

x

19. Pandeya, Uprety [103] 2021 Flood

Existing data gaps represent the
main bottleneck for establishing
an effective community-based
flood early warning system in a
data-scarce region.

Applied a citizen science-based
hydrological monitoring approach
in which we tested low-cost
river-level sensors.

x

20. Madruga De Brito,
Kuhlicke [104] 2020 Drought

Contemporary drought impact
assessments have been
constrained due to data
availability, leading to an
incomplete representation of
impact trends.

Near-real-time monitoring of
drought socio-economic impacts
based on media reports.
Additionally, text mining techniques
were employed for impact statement
identification relating to livestock,
agriculture, forestry, fires, recreation,
energy, and transport sectors.

x

21. Chai, Luo [105] 2019 Suicide
Lack of an effective system to
identify suicide-related media
reporting.

Google Trends and suicide-related
media reporting. x
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22. Jin, Cai [106] 2019 Surface water quality Deterioration of surface water
quality in real-time.

Data-driven model for surface water
quality prediction and provide
real-time early warnings according
to the historical observation data.
Integrated with Genetic algorithm to
optimize initial weight parameters.
BPNN is used to adjust appropriate
connection architectures and
identify features of water quality
variation in real-time early warning.

x

23. De Filippis, Rocchi [9] 2022 Flood

Services interoperability and open
data are not common in local
systems implemented in
developing countries.

Web platform and related services
developed for the Local Flood Early
Warning System of the Sirba River in
Niger (SLAPIS) to tailor
hydroclimatic information to the
user’s needs, both in content and
format. This platform uses
open-source software components
and interoperable web services to
create a software framework for data
capture and storage, data flow
management procedures from
several data providers, real-time
web publication, and service-based
information dissemination.

x

24. Fang, Xu [107] 2015 Snowmelt flood

Lack of integrated system for
snowmelt flood management.
Developing a prototype integrated
system for snowmelt flood early
warning in water resource
management.

Develop a prototype integrated
information system (IIS) for
snowmelt flood early warning with
the combination of IoT,
Geoinformatics and Cloud Service.

x

25. Frigerio et al. [20] 2014 Landslide

Lack of integrated services
adopted for the design and the
realization of a web-based
platform for automatic and
continuous monitoring of the
Rotolon landslide.

Use a web environment for data
collection and a remote control
permits technical maintenance and
calibration of instruments and
sensors.

x
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26. Jiang, Li [82] 2019 Air pollution

Current early warning systems
rarely focus on the mining of
pollutant characteristics and their
corresponding scientific
evaluation.

A hybrid forecasting model was
proposed combined with an
advanced data processing
technique—a neural network and a
new heuristic algorithm.

x

27. Sharma, Deo [108] 2020 Air quality
Lack of effective framework to
emulate hourly air quality
variables.

Online sequential-extreme learning
machine (OS-ELM) algorithm
integrated with improved complete
ensemble empirical mode
decomposition with adaptive noise
(ICEEMDAN) is designed as a data
pre-processing system to robustly
extract predictive patterns and
fine-tune the model generalization
to a near-optimal global solution,
which represents modelled air
quality at hourly forecast horizons.

x

28. Xu, Yang [109] 2017 Air quality Lack of a model to predict daily
air pollution.

The hybrid forecasting model is
based on the theory of
“decomposition and ensemble” and
combined with the advanced data
processing technique, support vector
machine, bio-inspired optimization
algorithm and the leave-one-out
strategy for deciding weight.

x

29. Pramanik, Samal [81] 2022 Air quality

The traditional approach of air
quality monitoring involves large
and expensive scientific
equipment permanently installed.

Designed an IoT-enabled ambient air
quality monitoring system to track
the presence of toxic gaseous
elements in real-time.

x

30. Chieochan, Saokaew
[110] 2013 Debris flow

Debris flow detection systems, like
wireless sensors, satellite images,
and radar, are not suitable for
general public use.

Use of computer vision technique to
build a simulation environment. x

31. Mandl, Frye [111] 2013 Earthquake

Lack of integrated system to
couple loosely collaborated sensor
systems for a variety of space,
airborne, and ground sensors.

Use of “SensorWeb” that comprised
heterogeneous sensors tied together
with an open messaging architecture
and web services.

x
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32. Böse et al. [70] 2008 Earthquake

The major challenge in the
development of earthquake early
warning (EEW) systems is the
achievement of robust
performance at the largest possible
warning time.

PreSEIS (Pre-SEISmic) was
developed based on single station
observations and, at the same time,
shows higher robustness. The neural
network-based approach was used
in parameter estimation.

x

33. Iaccarino, Gueguen [26] 2021 Earthquake
Predicting the structural drift for
On-site Earthquake Early Warning
(EEW) applications.

Linear least square regression (LSR)
and four non-linear
machine-learning (ML) models.

x

34. Yucel and Onen [112] 2014 Rainfall

Difficulties in estimating
precipitation impose an important
limitation on the possibility and
reliability of hydrologic
forecasting and early warning
systems.

Weather Research and Forecasting
(WRF) model and the Multi
Precipitation Estimates (MPE)
algorithm

.x

35. Ritter, Berenguer [71] 2020 Flash flood
Flash floods evolve rapidly in time,
which poses particular challenges
to emergency managers.

A method named ReAFFIRM that
uses gridded rainfall estimates was
used to assess in real-time the flash
flood hazard and translate it into the
corresponding impacts.

x

36. Watanabe, Koyama [72] 2021 Forest
The challenge with monitoring
forests in tropical regions in
real-time.

An automatic change detection
method for near real-time (NRT)
forest monitoring based on L-band
ALOS-2/PALSAR-2 ScanSAR HH,
HV, and HH/HV ratio was used to
detect various deforestation stages
based on their different radar
scattering characteristics.

x

37. Spruce, Sader [113] 2011 Forest
Challenges with detecting forest
defoliation by gipsy moth
outbreaks.

Use of MODIS data for determining
near real-time defoliation. x
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38. Altunkaynak and
Nigussie [87] 2015 Rainfall

Because of its nonlinearity,
prediction of daily rainfall with
high accuracy and long prediction
lead time is difficult.

Two methods called combined
season-multilayer perceptron
(SAS-MP) and hybrid
wavelet-season-multilayer
perceptron (W-SAS-MP) were
developed to enhance prediction
accuracy and extend prediction lead
time of daily rainfall up to 5 days.

x

39. Hofmann and
Schüttrumpf [75] 2020 Pluvial flood

The effective forecast and warning
of pluvial flooding in real-time is
one of the key elements and
remaining challenges of integrated
urban flood risk management.

Risk-based solutions and 2D
hydrodynamic models are used in
the early warning process.
Additionally, distributed computing
of hydrologic independent models
was employed over high
computational times of
hydrodynamic simulations.

x

40. Hofmann and
Schüttrumpf [89] 2021 Pluvial flood

Recent approaches have used
mainly conventional fully
connected neural networks, which
were (a) restricted to spatially
uniform precipitation events and
(b) limited to a small amount of
input data.

Data-driven models that utilizes
deep convolutional generative
adversarial network are used to
predict pluvial flooding caused by
nonlinear spatial heterogeny rainfall
events. The model developed,
floodGAN, is based on an
image-to-image translation
approach whereby the model learns
to generate 2D inundation
predictions conditioned by
heterogenous rainfall distributions.

x

41. Thiery, Gudmundsson
[95] 2017 Thunderstorms

Every year, intense nighttime
thunderstorms cause numerous
boating accidents on the lake,
resulting in thousands of deaths
among fishermen.

Satellite data-driven storm
prediction system, the prototype
Lake Victoria Intense Storm Early
Warning System (VIEWS).

x

42. Qing, Zeng [114] 2022 Tornado

Applying machine-learning
algorithms to detect tornadoes
usually encounters class
imbalance problems because
tornadoes are rare events in
weather processes.

ADASYN-LOF algorithm (ALA)
was used to solve the imbalance
problem of tornado sample sets
based on radar data.

x
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43. Sayad, Mousannif [115] 2019 Wildfires Challenge with data set to model
wildfire prediction.

Used Remote Sensing data related to
the state of the crops (NDVI) and
meteorological conditions (LST), as
well as the fire indicator “Thermal
Anomalies” acquired from “MODIS”
(Moderate Resolution Imaging
Spectroradiometer), to build a model
for wildfire prediction. Experiments
were made using the big data
platform “Databricks”.

x

44. van Natijne,
Lindenbergh [88] 2020 Landslide

Nowcasting and early warning
systems for landslide hazards
have been implemented mostly at
the slope or catchment scale.
These systems are often difficult to
implement at a regional scale or in
remote areas.

Machine-learning and satellite
remote sensing products offer new
opportunities for both local and
regional monitoring of deep-seated
landslide deformation and
associated processes.

x

45. Tzouvaras, Danezis [77] 2020 Landslide Lack of data-driven model for
landslide detection.

Used Copernicus open-access and
freely distributed datasets along
with open-source processing
software SNAP (Sentinel’s
Application Platform) for landslide
detection triggered by heavy rainfall.

x

46. Bagwari, Roy [80] 2022 Landslide

Data changes in the monitoring
area may be noticed in many days,
months, or years, depending on
the weather characteristics.
Therefore, a frequent and large
amount of data from the
monitored area is not required to
be sent to a cloud server.

Use of LoRa technology to design a
customized sensor node and
gateway node to monitor the
changes periodically with low
energy power consumption.

x

47. Galaz, Cienfuegos [94] 2022 Tsunami

Tsunami simulation software has
inherent complexities in phases of
installation, execution, and pre-
and post-processing that prevent
its use in other areas of risk
management, such as
communication and education.

A JavaScript library built into a web
browser to facilitate data gathering
and analyses from tsunami
simulations by means of interactive
and efficient visualizations.

x
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