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ABSTRACT
Background  Hearing loss has been proposed as 
a modifiable risk factor for dementia. However, the 
relationship between hearing, neurodegeneration, 
and cognitive change, and the extent to which 
pathological processes such as Alzheimer’s disease and 
cerebrovascular disease influence these relationships, is 
unclear.
Methods  Data from 287 adults born in the same week 
of 1946 who underwent baseline pure tone audiometry 
(mean age=70.6 years) and two time point cognitive 
assessment/multimodal brain imaging (mean interval 2.4 
years) were analysed. Hearing impairment at baseline 
was defined as a pure tone average of greater than 25 
decibels in the best hearing ear. Rates of change for 
whole brain, hippocampal and ventricle volume were 
estimated from structural MRI using the Boundary Shift 
Integral. Cognition was assessed using the Pre-clinical 
Alzheimer’s Cognitive Composite. Regression models 
were performed to evaluate how baseline hearing 
impairment associated with subsequent brain atrophy 
and cognitive decline after adjustment for a range of 
confounders including baseline β-amyloid deposition and 
white matter hyperintensity volume.
Results  111 out of 287 participants had hearing 
impairment. Compared with those with preserved 
hearing, hearing impaired individuals had faster rates 
of whole brain atrophy, and worse hearing (higher pure 
tone average) predicted faster rates of hippocampal 
atrophy. In participants with hearing impairment, faster 
rates of whole brain atrophy predicted greater cognitive 
change. All observed relationships were independent of 
β-amyloid deposition and white matter hyperintensity 
volume.
Conclusions  Hearing loss may influence dementia risk 
via pathways distinct from those typically implicated in 
Alzheimer’s and cerebrovascular disease in cognitively 
unimpaired older adults.

INTRODUCTION
Hearing loss has been proposed as a risk factor for 
dementia.1–4 However, the mechanisms by which 
hearing loss may influence neurodegeneration and 
cognitive decline are uncertain. In cross-sectional 
analyses, we have previously shown that periph-
eral hearing ability measured with pure tone audi-
ometry did not predict β-amyloid (Aβ) deposition, 
white matter hyperintensity volume (WMHV) or 

Alzheimer’s disease-pattern neurodegeneration in 
adults aged approximately 70 years born in the 
same week of 1946.5 Building on this work, we 
used longitudinal data from the same cohort to 
investigate how hearing ability, Aβ-deposition and 
WMHV influence subsequent change in cognitive 
performance and brain atrophy.

METHODS
Participants
We included data from 287 participants born 
in the same week of 1946 who underwent two 
time point cognitive assessment/multimodal brain 
imaging (mean age at baseline 70.5 years, mean 
interval between assessments 2.4 years) as part of 
Insight-46, a substudy of the MRC National Survey 
of Health and Development.6

Exclusions from the original Insight 46 sample 
(n=502) included no baseline imaging (n=31); 
baseline imaging quality control failure (n=15); 
pre-existing diagnosis of mild cognitive impair-
ment, dementia or major neurological disorder 
(n=48); confounding otological pathology (n=16); 
hearing testing equipment unavailable (n=19); 
missing APOE genotype (n=2); missing socioeco-
nomic position data (n=3) and no longitudinal 
follow-up visit data (n=81).

Hearing assessment
Baseline hearing assessment included obtaining 
audiometric thresholds for each ear at 0.5, 1, 2 
and 4 kHz using calibrated Maico-MA-25 audiom-
eters with sound-excluding TDH-49 earphones in 
audiocups. Pure-tone averages (PTAs) in the better 
hearing ear were calculated using thresholds for 0.5, 
1, 2 and 4 kHz.5 Hearing impairment was defined 
as a PTA greater or equal to 25 dB HL.

Imaging analysis
Florbetapir PET and MRI data were acquired on a 
Single Siemens Biograph 3-Tesla PET/MRI scanner. 
Aβ-status (negative/positive) at baseline was deter-
mined using previously published methodology.5 7 
WMHV was estimated using BaMoS.8 Total intra-
cranial volume (TIV) was calculated using Statistical 
Parametric Mapping 12. Changes in whole-brain, 
ventricular and hippocampal volume were calcu-
lated from baseline and repeat 3D T1-weighted 
MRI with the boundary shift integral (BSI).7 9
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Cognitive testing
Cognition was assessed using an adapted version of the Preclin-
ical Alzheimer’s Cognitive Composite (PACC), composed of 
the following tests: Mini-Mental State Examination, Logical 
Memory IIa from the Wechsler Memory Scale-Revised, Digit-
Symbol Substitution test from the Wechsler Adult Intelligence 
Scale-Revised and the 12-item Face-Name test.10

Statistical analysis
Wilcoxon rank sum tests, t-tests and Fisher’s exact test were used 
to assess unadjusted associations between demographic variables 
and hearing impairment (table 1).

Area under the curve (AUC) analyses were performed to inves-
tigate whether hearing impairment or PTA predicted baseline 
Aβ-status. Generalised linear models using the gamma distribu-
tion and log link were used to investigate whether PTA predicted 
baseline WMHV, as per previous work.5

Linear regression models were used to test associations 
between baseline peripheral hearing ability and longitudinal 
measurements of brain volume (whole brain, total hippocampal 
atrophy and ventricular expansion) and cognitive performance 
following adjustment for baseline Aβ-deposition, baseline 
WMHV, age, sex, APOE genotype, education, childhood cogni-
tion and socioeconomic position. For BSI analyses, TIV was 
included as a covariate. To investigate if associations between 
hearing and atrophy (BSI) relate to Alzheimer’s or cerebro-
vascular disease, we assessed interactions with Aβ-deposition 
and baseline WMHV. We additionally assessed if relationships 
between atrophy (BSI) and rates of cognitive decline (change in 
PACC) were influenced by hearing.

Results were expressed using a standard statistical threshold 
of <0.05, as well as a more conservative Bonferroni-corrected 
threshold of p<0.0125, based on the four primary outcomes of 
interest.

RESULTS
111 out of 287 participants had evidence of hearing impairment. 
Relationships between hearing and demographic variables are 
detailed in table 1.

As per cross-sectional analysis,5 there was no evidence that 
hearing ability independently predicted Aβ-status or WMHV at 
baseline in this longitudinal sample. In this longitudinal sample 
22/176 participants with normal peripheral hearing and 26/111 
hearing impaired participants were classified as amyloid posi-
tive (mean Standardized uptake value (SUVR) 0.55 and 0.57, 
respectively, using an eroded subcortical white matter reference 
region). A base model combining age, sex, WMHV, education, 
childhood cognition, socioeconomic position and APOE geno-
type, provided an AUC for Aβ-positivity of 0.73 (95% CI 0.66 
to 0.81) and predictive ability was not significantly improved 
by inclusion of hearing impairment (AUC 0.76, 95% CI 0.69 to 
0.83) or PTA (AUC 0.75, 95% CI 0.68 to 0.82). After adjustment 
for age, sex, Aβ-status, education, childhood cognition, socio-
economic position and APOE the ratio of mean WMHV for 
hearing impaired: not hearing impaired was 0.83 (95% CI 0.62 
to 1.10 p=0.2) and the proportional change in mean WMHV 
for each dB HL increase in PTA was 0.99 (95% CI 0.98 to 1.00, 
p=0.5).

Compared with those with preserved hearing, there was 
evidence that hearing impaired individuals had faster rates of 
whole brain atrophy (p=0.031) (table 2 and figure 1A). There 
was evidence that higher PTA (worse hearing) also predicted 
faster rates of hippocampal atrophy (p=0.023) (table  2 and 
figure 1B). These results were not significant using a Bonferroni-
based statistical threshold, but all longitudinal volume results 
were directionally consistent with each other making it less 
likely these were a consequence of a type I error. There was 
no evidence that hearing ability predicted change in PACC 
score (table  2). These effects remained after adjustment for 
Aβ-status and WMHV. Furthermore, there was no evidence of 

Table 1  Relationship between peripheral hearing ability and baseline 
demographics

Normal peripheral 
hearing (n=176)

Peripheral hearing 
impaired (n=111) P value

Association 
with PTA

Age at baseline, years, mean (SD) 70.5
(0.6)

70.5
(0.6)

0.39* r=0.06 
(p=0.3)†

Female, n (%) 91
(51.7)

47
(42.3)

0.15‡ p=0.25*

TIV, mL, mean (SD) 1430
(135)

1445
(128)

0.32¶ r=−0.03 
(p=0.67)†

APOE4 carrier, n (%)¶ 54
(30.1)

32
(28.8)

0.69‡ p=0.08*

Childhood cognition, z-score, 
mean (SD)

0.40
(0.72)

0.48
(0.71)

0.39§ r=0.06 
(p=0.92)†

Advanced education, n (%) 99
(56.3)

52
(46.8)

0.15‡ p=0.15*

Non-manual occupation (parental), 
n (%)

70
(39.8)

43
(38.7)

0.90‡ p=0.83*

Non-manual occupation
(own adult), n (%)

22
(12.5)

20
(18.0)

0.23‡ p=0.32*

PTA best hearing ear, dB HL, median 
(IQR)

17.5
(13.8–21.3)

31.3
(27.5–37.5)

<0.001* n/a

Hearing aid use, n (%) 3
(1.7)

39
(35.1)

<0.001‡ p<0.001*

Self-reported tinnitus, n (%) 30
(17.1)

36
(32.4)

0.004‡ p=0.0025*

Hearing impairment at baseline was defined as a PTA of greater than 25 Decibels in the best hearing ear.
*Unadjusted Mann-Whitney U test.
†Spearman’s rank correlation.
‡Unadjusted Fisher’s exact test.
§Unadjusted Student’s t-test.
¶Defined on basis of presence of at least one APOE4 allele there was a small number of APOE4 homozygotes including 6 (3.4%) with 
normal hearing and 2 (1.8%) with impaired hearing (p=0.49).
n/a, not available; PTA, pure tone average; TIV, total intracranial volume.

Table 2  Linear regression models testing associations between 
baseline hearing ability and cross-sectional/longitudinal measurements 
of brain volume (whole brain, total hippocampal and ventricular), and 
the Preclinical Alzheimer’s Cognitive Composite following adjustment 
for amyloid deposition, white matter hyperintensity volume, age, sex, 
APOE genotype, educational attainment, childhood cognitive ability, 
socioeconomic position and total intracranial volume (for volumetric 
brain analyses only)

β-coefficient (95% CI; p value)

Hearing impairment
(binary)

PTA
(per 1 dB increase)

Baseline whole brain volume (mL) 0.98
(−8.65 to 10.6; 0.84)

−0.02
(−0.51 to 0.48; 0.95)

Whole brain volume change (mL/year) −0.80
(−1.52 to –0.08; 0.031)

−0.026
(−0.06 to 0.008; 0.13)

Baseline hippocampal volume (mL) 0.11
(−0.02 to 0.24; 0.11)

0.0065
(−0.0051 to 0.0136; 0.069)

Hippocampal volume change
(mL/year)

−0.0085
(−0.018 to 0.0012; 0.088)

−0.00053
(−0.00098 to –0.00008; 0.023)

Baseline ventricle volume (mL) −1.02
(−4.21 to 2.06; p>0.05)

−0.04
(−0.17 to 0.08; >0.05)

Ventricle volume change
(mL/year)

0.06
(−0.14 to 0.25; >0.05)

−0.0002
(−0.0073 to 0.0072; >0.05)

PACC baseline
(z-score)

−0.067
(−0.202 to 0.067; p=0.33)

−0.005
(−0.011 to 0.001; p=0.12)

PACC change
(z-score)

0.003
(−0.037 to 0.043; p=0.88)

−0.002
(−0.0021 to 0.0016; p=0.82)

p<0.05 highlighted in bold.
Ventricle BSI model did not fully meet assumptions for linear regression so bootstrapping (2000 replications) was used to produce 
bias-corrected and accelerated 95% CIs and meant precise p value calculation was not possible.
BSI, boundary shift integral; PACC, Preclinical Alzheimer’s Cognitive Composite; PTA, pure tone average; SUVR, Standardized uptake 
value.
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an interaction between hearing ability and Aβ-status or WMHV 
in terms of their effects on atrophy or cognitive change.

There was evidence of an interaction between hearing impair-
ment and the relationship between whole brain atrophy and 
cognitive change (p=0.031): while there was no evidence of an 
association between rates of brain atrophy and cognitive change 
in participants with preserved hearing (β-coefficient=0.002, 
p=0.68, figure  1C), in those with hearing impairment faster 
rates of whole brain atrophy predicted greater cognitive change 
(β-coefficient=0.017, p=0.004, figure 1D). Again, all observed 
relationships were independent of Aβ-status and WMHV. This 
relationship remained evident following removal of an outlier 
with BSI less than −15 mL per year (β-coefficient=0.012, 
p=0.042).

DISCUSSION
We demonstrate that peripheral hearing impairment predicts 
faster rates of brain atrophy in older adults. This is consis-
tent with previous reports,11 12 but extends these findings to 

show these effects are independent of Aβ-status and WMHV 
suggesting that relationships between hearing loss and neurode-
generation may be driven by mechanisms other than Alzheimer’s 
or cerebrovascular disease.7 This does not, however, preclude 
the possibility that accelerated atrophy involving key structures 
such as the hippocampus could prime or accelerate the subse-
quent emergence of neurodegenerative pathologies such as 
Alzheimer’s disease.2

Hearing impairment did not predict cognitive change in those 
with normal hearing, but faster rates of whole brain atrophy did 
predict greater cognitive change in participants with hearing 
impairment. Hearing loss imposes a cognitive load, particularly 
on processes that require speech comprehension: our findings 
suggest that this may cause cognitive dysfunction to become 
manifest, in situations where brain reserve is already limited (e.g. 
due to increased underlying brain atrophy).13 Future work exam-
ining the precise mechanisms that predict cognitive change in the 
context of hearing impairment are required. In particular, inves-
tigating to what extent auditory impairment is a risk factor for, 

Figure 1  (A) Relationship between hearing impairment and whole brain atrophy rates. (B) Relationship between pure tone average and hippocampal 
atrophy rates. (C) Relationship between change in cognitive performance and whole brain atrophy in participants with normal hearing. (D) Relationship 
between change in cognitive performance and whole brain atrophy in participants in participants with peripheral hearing impairment. Scatter plots show 
the raw data. The solid line represents the marginal adjusted mean following regression modelling (adjusted for baseline amyloid deposition, baseline white 
matter hyperintensity volume, age, sex, APOE genotype, educational attainment, childhood cognitive ability, socioeconomic position and total intracranial 
volume). The dashed lines represent the 95% CIs. Negative volume change values correspond to increased rates of brain atrophy. *p<0.05; **p<0.0125 
(Bonferroni threshold). PACC, Preclinical Alzheimer’s Cognitive Composite.
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or manifestation of neurodegenerative processes, and whether 
these can be mitigated by appropriate hearing interventions.4 14

It is important to note that the effects of peripheral hearing 
ability on atrophy rates and cognition in this sample of cogni-
tively healthy older adults were subtle and the clinical mean-
ingfulness of these effects is uncertain. Longer-term follow-up 
looking at data such as conversion to dementia will be vital to 
establish the true relevance of this finding.

This study benefits from detailed longitudinal phenotyping as 
well as a unique level of age-matching. Limitations include the 
fact that some of the cognitive tests have an auditory compo-
nent, reduced sample size and a relatively selective population 
due to participant drop-out, as well as relatively short duration 
of follow-up.15 Future work with larger sample sizes, longer 
follow-up durations and more detailed biomarker characterisa-
tion will be of value. In addition, this study does not investigate 
central auditory processing, a cognitively demanding process 
involving a range of brain areas, which has been shown to have 
particular relevance in neurodegenerative conditions and should 
be an important focus for future work.16

Our data suggest a complex interplay of hearing ability, neuro-
degeneration and cognition and implicate pathways separate to 
those typically implicated in Alzheimer’s and cerebrovascular 
disease.
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