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Large-scale phenotyping of patients with 
long COVID post-hospitalization reveals 
mechanistic subtypes of disease

One in ten severe acute respiratory syndrome coronavirus 2 infections 
result in prolonged symptoms termed long coronavirus disease (COVID), 
yet disease phenotypes and mechanisms are poorly understood1. Here 
we profiled 368 plasma proteins in 657 participants ≥3 months following 
hospitalization. Of these, 426 had at least one long COVID symptom 
and 233 had fully recovered. Elevated markers of myeloid inflammation 
and complement activation were associated with long COVID. IL-1R2, 
MATN2 and COLEC12 were associated with cardiorespiratory symptoms, 
fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in 
gastrointestinal symptoms and C1QA was elevated in cognitive impairment. 
Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) 
were elevated in those with cognitive impairment and SCG3, suggestive of 
brain–gut axis disturbance, was elevated in gastrointestinal symptoms. 
Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin 
G (IgG) was persistently elevated in some individuals with long COVID, 
but virus was not detected in sputum. Analysis of inflammatory markers 
in nasal fluids showed no association with symptoms. Our study aimed to 
understand inflammatory processes that underlie long COVID and was 
not designed for biomarker discovery. Our findings suggest that specific 
inflammatory pathways related to tissue damage are implicated in subtypes 
of long COVID, which might be targeted in future therapeutic trials.

One in ten severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) infections results in post-acute sequelae of coronavirus 
disease 2019 (PASC) or long coronavirus disease (COVID), which affects 
65 million people worldwide1. Long COVID (LC) remains common, even 
after mild acute infection with recent variants2, and it is likely LC will 
continue to cause substantial long-term ill health, requiring targeted 
management based on an understanding of how disease phenotypes 
relate to underlying mechanisms. Persistent inflammation has been 
reported in adults with LC1,3, but studies have been limited in size,  
timing of samples or breadth of immune mediators measured, leading  
to inconsistent or absent associations with symptoms. Markers of  

oxidative stress, metabolic disturbance, vasculoproliferative processes  
and IFN-, NF-κB- or monocyte-related inflammation have been sug-
gested3–6.

The PHOSP-COVID study, a multicenter United Kingdom study 
of patients previously hospitalized with COVID-19, has reported 
inflammatory profiles in 626 adults with health impairment after 
COVID-19, identified through clustering. Elevated IL-6 and markers of 
mucosal inflammation were observed in those with severe impairment  
compared with individuals with milder impairment7. However, LC 
is a heterogeneous condition that may be a distinct form of health 
impairment after COVID-19, and it remains unclear whether there are 
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(Methods). A multivariate penalized logistic regression model (PLR) 
was used to explore associations of clinical covariates and immune 
mediators at 6 months between recovered patients (n = 233) and 
each LC group (cardiorespiratory symptoms, cardioresp, n = 398, 
Fig. 1c; fatigue, n = 384, Fig. 1d; affective symptoms, anxiety/depres-
sion, n = 202, Fig. 1e; gastrointestinal symptoms, GI, n = 132, Fig. 1f; and 
cognitive impairment, cognitive, n = 61, Fig. 1g). Women (n = 239) were 
more likely to experience CardioResp (odds ratio (OR 1.14), Fatigue 
(OR 1.22), GI (OR 1.13) and Cognitive (OR 1.03) outcomes (Fig. 1c,d,f,g). 
Repeated cross-validation was used to optimize and assess model  
performance (Methods and Extended Data Fig. 1). Pre-existing condi-
tions, such as chronic lung disease, neurological disease and cardio-
vascular disease (Supplementary Table 1), were associated with all LC 
groups (Fig. 1c–g). Age, C-reactive protein (CRP) and acute disease 
severity were not associated with any LC group (Table 1).

To study the association of peripheral inflammation with symp-
toms, we analyzed cross-sectional data collected approximately 
6 months after hospitalizations. We measured 368 immune media-
tors from plasma collected contemporaneously with symptom data. 
Mediators suggestive of myeloid inflammation were associated with 
all symptoms (Fig. 1c–h). Elevated IL-1R2, an IL-1 receptor expressed by 
monocytes and macrophages modulating inflammation11 and MATN2, 

inflammatory changes specific to LC symptom subtypes. Determin-
ing whether activated inflammatory pathways underlie all cases of LC  
or if mechanisms differ according to clinical presentation is essen-
tial for developing effective therapies and has been highlighted as a  
top research priority by patients and clinicians8.

In this Letter, in a prospective multicenter study, we measured 368 
plasma proteins in 657 adults previously hospitalized for COVID-19  
(Fig. 1a and Table 1). Individuals in our cohort experienced a range 
of acute COVID-19 severities based on World Health Organization 
(WHO) progression scores9; WHO 3–4 (no oxygen support, n = 133  
and median age of 55 years), WHO 5–6 (oxygen support, n = 353 and 
median age of 59 years) and WHO 7–9 (critical care, n = 171 and median 
age of 57 years). Participants were hospitalized for COVID-19 ≥3 months 
before sample collection (median 6.1 months, interquartile range (IQR) 
5.1–6.8 months and range 3.0–8.3 months) and confirmed clinically 
(n = 36/657) or by PCR (n = 621/657). Symptom data indicated 233/657 
(35%) felt fully recovered at 6 months (hereafter ‘recovered’) and the 
remaining 424 (65%) reported symptoms consistent with the WHO 
definition for LC (symptoms ≥3 months post infection10). Given the 
diversity of LC presentations, patients were grouped according to 
symptom type (Fig. 1b). Groups were defined using symptoms and 
health deficits that have been commonly reported in the literature1 
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Fig. 1 | Subtypes of LC are associated with distinct inflammatory profiles. 
a, Distribution of time from COVID-19 hospitalization at sample collection. 
All samples were cross-sectional. The vertical red line indicates the 3 month 
cutoff used to define our final cohort and samples collected before 3 months 
were excluded. b, An UpSet plot describing pooled LC groups. The horizontal 
colored bars represent the number of patients in each symptom group: 
cardiorespiratory (Cardio_Resp), fatigue, cognitive, GI and anxiety/depression 
(Anx_Dep). Vertical black bars represent the number of patients in each symptom 
combination group. To prevent patient identification, where less than five 
patients belong to a combination group, this has been represented as ‘<5’. The 
recovered group (n = 233) were used as controls. c–g, Forest plots of Olink protein 

concentrations (NPX) associated with Cardio_Resp (n = 365) (c), fatigue (n = 314) 
(d), Anx_Dep (n = 202) (e), GI (n = 124) (f) and cognitive (n = 60) (g). Neuro_Psych, 
neuropsychiatric. The error bars represent the median accuracy of the model. 
h,i, Distribution of Olink values (NPX) for IL-1R2 (h) and MATN2, neurofascin and 
sCD58 (i) measured between symptomatic and recovered individuals in recovered 
(n = 233), Cardio_Resp (n = 365), fatigue (n = 314) and Anx_Dep (n = 202) groups  
(h) and MATN2 in GI (n = 124), neurofascin in cognitive (n = 60) and sCD58 in 
Cardio_Resp and recovered groups (i). The box plot center line represents the 
median, the boundaries represent IQR and the whisker length represents 1.5× IQR. 
The median values were compared between groups using two-sided Wilcoxon 
signed-rank test, *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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an extracellular matrix protein that modulates tissue inflammation 
through recruitment of innate immune cells12, were associated with 
cardioresp (IL-1R2 OR 1.14, Fig. 1c,h), fatigue (IL-1R2 OR 1.45, Fig. 1d,h), 
anxiety/depression (IL-1R2 OR 1.34. Fig. 1e,h) and GI (MATN2 OR 
1.08, Fig. 1f). IL-3RA, an IL-3 receptor, was associated with cardioresp  
(OR 1.07, Fig. 1c), fatigue (OR 1.21, Fig. 1d), anxiety/depression (OR 1.12, 
Fig. 1e) and GI (OR 1.06, Fig. 1f) groups, while CSF3, a cytokine promot-
ing neutrophilic inflammation13, was elevated in cardioresp (OR 1.06, 
Fig. 1c), fatigue (OR 1.12, Fig. 1d) and GI (OR 1.08, Fig. 1f).

Elevated COLEC12, which initiates inflammation in tissues by 
activating the alternative complement pathway14, associated with  
cardioresp (OR 1.09, Fig. 1c), fatigue (OR 1.19, Fig. 1d) and anxiety/
depression (OR 1.11, Fig. 1e), but not with GI (Fig. 1f) and only weakly 
with cognitive (OR 1.02, Fig. 1g). C1QA, a degradation product released 
by complement activation15 was associated with GI (OR 1.08, Fig. 1f) 
and cognitive (OR 1.03, Fig. 1g). C1QA, which is known to mediate 
dementia-related neuroinflammation16, had the third strongest associa-
tion with cognitive (Fig. 1g). These observations indicated that myeloid 
inflammation and complement activation were associated with LC.

Increased expression of DPP10 and SCG3 was observed in the GI 
group compared with recovered (DPP10 OR 1.07 and SCG3 OR 1.08, 
Fig. 1f). DPP10 is a membrane protein that modulates tissue inflamma-
tion, and increased DPP10 expression is associated with inflammatory 
bowel disease17,18, suggesting that GI symptoms may result from enteric 
inflammation. Elevated SCG3, a multifunctional protein that has been 
associated with irritable bowel syndrome19, suggested that noninflam-
matory disturbance of the brain–gut axis or dysbiosis, may occur in 
the GI group. The cognitive group was associated with elevated CTSO 
(OR 1.04), NFASC (OR 1.03) and SPON-1 (OR 1.02, Fig. 1g,i). NFASC and 
SPON-1 regulate neural growth20,21, while CTSO is a cysteine proteinase 
supporting tissue turnover22. The increased expression of these three 
proteins as well as C1QA and DPP10 in the cognitive group (Fig. 1g)  
suggested neuroinflammation and alterations in nerve tissue repair, 
possibly resulting in neurodegeneration. Together, our findings indi-
cated that complement activation and myeloid inflammation were 
common to all LC groups, but subtle differences were observed in the 
GI and cognitive groups, which may have mechanistic importance. 

Acutely elevated fibrinogen during hospitalization has been reported 
to be predictive of LC cognitive deficits23. We found elevated fibrino-
gen in LC relative to recovered (Extended Data Fig. 2a; P = 0.0077), 
although this was not significant when restricted to the cognitive group 
(P = 0.074), supporting our observation of complement pathway activa-
tion in LC and in keeping with reports that complement dysregulation 
and thrombosis drive severe COVID-19 (ref. 24).

Elevated sCD58 was associated with lower odds of all LC symptoms 
and was most pronounced in cardioresp (OR 0.85, Fig. 1c,i), fatigue 
(OR 0.80, Fig. 1d) and anxiety/depression (OR 0.83, Fig. 1e). IL-2 was 
negatively associated with the cardioresp (Fig. 1c, OR 0.87), fatigue 
(Fig. 1d, OR 0.80), anxiety/depression (Fig. 1e, OR 0.84) and cognitive 
(Fig. 1g, OR 0.96) groups. Both IL-2 and sCD58 have immunoregulatory 
functions25,26. Specifically, sCD58 suppresses IL-1- or IL-6-dependent 
interactions between CD2+ monocytes and CD58+ T or natural killer 
cells26. The association of sCD58 with recovered suggests a central role 
of dysregulated myeloid inflammation in LC. Elevated markers of tissue 
repair, IDS and DNER27,28, were also associated with recovered relative 
to all LC groups (Fig. 1c–g). Taken together, our data suggest that sup-
pression of myeloid inflammation and enhanced tissue repair were 
associated with recovered, supporting the use of immunomodulatory 
agents in therapeutic trials29 (Supplementary Table 2).

We next sought to validate the experimental and analytical 
approaches used. Although Olink has been validated against other 
immunoassay platforms, showing superior sensitivity and speci-
ficity30,31, we confirmed the performance of Olink against chemi-
luminescent immunoassays within our cohort. We performed 
chemiluminescent immunoassays on plasma from a subgroup of  
58 participants (recovered n = 13 and LC n = 45). There were good cor-
relations between results from Olink (normalized protein expression 
(NPX)) and chemiluminescent immunoassays (pg ml−1) for CSF3, IL-1R2, 
IL-3RA, TNF and TFF2 (Extended Data Fig. 3). Most samples did not 
have concentrations of IL-2 detectable using a mesoscale discovery 
chemiluminescent assay, limiting this analysis to 14 samples (recovered 
n = 4, LC n = 10, R = 0.55 and P = 0.053, Extended Data Fig. 3). We next 
repeated our analysis using alternative definitions of LC. The Centers 
for Disease Control and Prevention and National Institute for Health 

Table 1 | Cohort demographics

GI Fatigue Cardiorespiratory Anxiety/
depression

Cognitive 
impairment

Recovered P value

 Age at admission Years (s.d.) 57.72 (11.48) 56.57 (11.07) 57.08 (11.37) 56.36 (10.84) 59.24 (12.82) 58.92 (13.72) 0.046 *

Sex Female N (%) 68 (53%) 143 (47%) 161 (43%) 89 (45%) 24 (42%) 55 (27%) 1.69 × 10−6****

Ethnicity

White 110 300 331 193 50 197

0.09 NS
South Asian 14 26 38 16 7 46

Black 8 16 25 11 7 10

Mixed/Other 8 24 22 16 7 17

WHO clinical progression 
scale for acute COVID-19

Class 3–4 41 83 88 45 18 45

0.28 NS
Class 5 45 107 124 74 21 115

Class 6 27 78 89 55 11 57

Class 7–9 27 98 115 62 21 50

CRP Mean (s.d.) 5.33 (5.42) 5.47 (7.17) 5.17 (6.82) 5.79 (8.12) 4.58 (5.78) 4.75 (10.38) 0.76 NS

Length of hospitalization Days (s.d.) 12.04 (14.3) 14.59 (18.41) 15.39 (19.96) 14.57 (17.76) 14.95 (16.01) 12.5 (15.73) 0.0047**

Steroida % Yes 34% 35% 37% 38% 33% 29% 0.294 NS

Remdesivira % Yes 4% 3% 4% 2% 3% 3% 0.725 NS

Comorbidities Mean (s.d.) 2.9 (2.62) 2.675 (2.3) 2.553 (2.24) 2.911 (2.47) 2.493 (2.17) 1.554 (1.67) 9.92 × 10−10****

The demographics of each symptom group and recovered controls are shown. The WHO clinical progression scale was used to classify acute COVID-19 severity: class 3–4: no oxygen 
requirement; class 5: oxygen therapy; class 6: noninvasive ventilation or high-flow nasal oxygen and class 7–9: organ support. Differences between groups were compared using chi-squared, 
two-way Kruskal–Wallis or two-way analysis of variance as appropriate. Data are n (%) or mean (s.d.). CRP levels represent those measured contemporaneously with clinical data collected in 
this study. aDenotes treatment given during acute illness.
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and Care Excellence definitions for LC include symptoms occurring 
1 month post infection32,33. Using the 1 month post-infection definition 
included 62 additional participants to our analysis (recovered n = 21, 3 
females and median age 61 years and LC n = 41, 15 females and median 
age 60 years, Extended Data Fig. 2c) and found that inflammatory 
associations with each LC group were consistent with our analysis 
based on the WHO definition (Extended Data Fig. 2d–h). Finally, to 
validate the analytical approach (PLR) we examined the distribution 
of data, prioritizing proteins that were most strongly associated with 
each LC/recovered group (IL-1R2, MATN2, NFASC and sCD58). Each 
protein was significantly elevated in the LC group compared with 
recovered (Fig. 1h,i and Extended Data Fig. 4), consistent with the PLR. 
Alternative regression approaches (unadjusted regression models and 
partial least squares, PLS) reported results consistent with the original 
analysis of protein associations and LC outcome in the WHO-defined 
cohort (Fig. 1c–g, Supplementary Table 3 and Extended Data Figs. 5 
and 6). The standard errors of PLS estimates were wide (Extended Data 
Fig. 6), consistent with previous demonstrations that PLR is the opti-
mal method to analyze high-dimensional data where variables may 
have combined effects34. As inflammatory proteins are often colinear, 
working in-tandem to mediate effects, we prioritized PLR results to 
draw conclusions.

To explore the relationship between inflammatory mediators  
associated with different LC symptoms, we performed a network 
analysis of Olink mediators highlighted by PLR within each LC group. 

COLEC12 and markers of endothelial and mucosal inflammation 
(MATN2, PCDH1, ROBO1, ISM1, ANGPTL2, TGF-α and TFF2) were highly 
correlated within the cardioresp, fatigue and anxiety/depression 
groups (Fig. 2 and Extended Data Fig. 7). Elevated PCDH1, an adhesion  
protein modulating airway inflammation35, was highly correlated 
with other inflammatory proteins associated with the cardioresp 
group (Fig. 2), suggesting that systemic inflammation may arise from  
the lung in these individuals. This was supported by increased expres-
sion of IL-3RA, which regulates innate immune responses in the lung 
through interactions with circulating IL-3 (ref. 36), in fatigue (Figs. 1d 
and 2), which correlated with markers of tissue inflammation, includ-
ing PCDH1 (Fig. 2). MATN2 and ISM1, mucosal proteins that enhance  
inflammation37,38, were highly correlated in the GI group (Fig. 2), high-
lighting the role of tissue-specific inflammation in different LC groups. 
SCG3 correlated less closely with mediators in the GI group (Fig. 2), 
suggesting that the brain–gut axis may contribute separately to some 
GI symptoms. SPON-1, which regulates neural growth21, was the most 
highly correlated mediator in the cognitive group (Fig. 2 and Extended 
Data Fig. 7), highlighting that processes within nerve tissue may under-
lie this group. These observations suggested that inflammation might 
arise from mucosal tissues and that additional mechanisms may con-
tribute to pathophysiology underlying the GI and cognitive groups.

Women were more likely to experience LC (Table 1), as found in pre-
vious studies1. As estrogen can influence immunological responses39, 
we investigated whether hormonal differences between men and 
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women with LC in our cohort explained this trend. We grouped men 
and women with LC symptoms into two age groups (those younger 
than 50 years and those 50 years and older, using age as a proxy for 
menopause status in women) and compared mediator levels between 
men and women in each age group, prioritizing those identified by PLR 
to be higher in LC compared with recovered. As we aimed to understand 
whether women with LC had stronger inflammatory responses than 
men with LC, we did not assess differences in men and women in the 
recovered group. IL-1R2 and MATN2 were significantly higher in women 
≥50 years than men ≥50 years in the cardioresp group (Fig. 3a, IL-1R2 
and MATN2) and the fatigue group (Fig. 3b). In the GI group, CSF3 was 
higher in women ≥50 years compared with men ≥50 years (Fig. 3c), 
indicating that the inflammatory markers observed in women were not 
likely to be estrogen-dependent. Women have been reported to have 
stronger innate immune responses to infection and to be at greater 
risk of autoimmunity39, possibly explaining why some women in the 
≥50 years group had higher inflammatory proteins than men the same 
group. Proteins associated with the anxiety/depression (IL-1R2 P = 0.11 
and MATN2 P = 0.61, Extended Data Fig. 8a) and cognitive groups (CTSO 
P = 0.64 and NFASC P = 0.41, Extended Data Fig. 8b) were not different 
between men and women in either age group, consistent with the 
absent/weak association between sex and these outcomes identified 
by PLR (Fig. 1e,g). Though our findings suggested that nonhormonal 
differences in inflammatory responses may explain why some women 
are more likely to have LC, they require confirmation in adequately 
powered studies.

To test whether local respiratory tract inflammation persisted 
after COVID-19, we compared nasosorption samples from 89 partici-
pants (recovered, n = 31; LC, n = 33; and healthy SARS-CoV-2 naive 
controls, n = 25, Supplementary Tables 4 and 5). Several inflamma-
tory markers were elevated in the upper respiratory tract post COVID 
(including IL-1α, CXCL10, CXCL11, TNF, VEGF and TFF2) when compared 
with naive controls, but similar between recovered and LC (Fig. 4a). 
In the cardioresp group (n = 29), inflammatory mediators elevated in 
plasma (for example, IL-6, APO-2, TGF-α and TFF2) were not elevated 
in the upper respiratory tract (Extended Data Fig. 9a) and there was 
no correlation between plasma and nasal mediator levels (Extended 
Data Fig. 9b). This exploratory analysis suggested upper respiratory 
tract inflammation post COVID was not specifically associated with 
cardiorespiratory symptoms.

To explore whether SARS-CoV-2 persistence might explain the 
inflammatory profiles observed in the cardioresp group, we measured 
SARS-CoV-2 nucleocapsid (N) antigen in sputum from 40 participants 
(recovered n = 17 and LC n = 23) collected approximately 6 months post 
hospitalization (Supplementary Table 6). All samples were compared 
with prepandemic bronchoalveolar lavage fluid (n = 9, Supplementary 
Table 4). Only four samples (recovered n = 2 and LC n = 2) had N antigen 
above the assay’s lower limit of detection, and there was no differ-
ence in N antigen concentrations between LC and recovered (Fig. 4b, 
P = 0.78). These observations did not exclude viral persistence, which 

might require tissues samples for detection40,41. On the basis of the 
hypothesis that persistent viral antigen might prevent a decline in anti-
body levels over time, we examined the titers of SARS-CoV-2-specific 
antibodies in unvaccinated individuals (recovered n = 19 and LC n = 35). 
SARS-CoV-2 N-specific (P = 0.023) and spike (S)-specific (P = 0.0040) 
immunoglobulin G (IgG) levels were elevated in LC compared with 
recovered (Fig. 4c).

Overall, we identified myeloid inflammation and complement 
activation in the cardioresp, fatigue, anxiety/depression, cognitive and 
GI groups 6 months after hospitalization (Extended Data Fig. 10). Our 
findings build on results of smaller studies5,6,42 and are consistent with a 
genome-wide association study that identified an independent associa-
tion between LC and FOXP4, which modulates neutrophilic inflammation 
and immune cell function43,44. In addition, we identified tissue-specific 
inflammatory elements, indicating that myeloid disturbance in different  
tissues may result in distinct symptoms. Multiple mechanisms for LC 
have been suggested, including autoimmunity, thrombosis, vascular 
dysfunction, SARS-CoV-2 persistence and latent virus reactivation1.  
All these processes involve myeloid inflammation and complement 
activation45. Complement activation in LC has been suggested in a  
proteomic study in 97 mostly nonhospitalized COVID-19 cases42 and  
a study of 48 LC patients, of which one-third experienced severe  
acute disease46. As components of the complement system are known to 
have a short half-life47, ongoing complement activation suggests active 
inflammation rather than past tissue damage from acute infection.

Despite the heterogeneity of LC and the likelihood of coexisting 
or multiple etiologies, our work suggests some common pathways 
that might be targeted therapeutically and supports the rationale for 
several drugs currently under trial. Our finding of increased sCD58 
levels (associated with suppression of monocyte–lymphocyte inter-
actions26) in the recovered group, strengthens our conclusion that 
myeloid inflammation is central to the biology of LC and that trials of 
steroids, IL-1 antagonists, JAK inhibitors, naltrexone and colchicine 
are justified. Although anticoagulants such as apixaban might prevent 
thrombosis downstream of complement dysregulation, they can also 
increase the risk of serious bleeding when given after COVID-19 hos-
pitalization48. Thus, clinical trials, already underway, need to carefully 
assess the risks and benefits of anticoagulants (Supplementary Table 2).

Our finding of elevated S- and N-specific IgG in LC could suggest 
viral persistence, as found in other studies6,42,49. Our network analysis 
indicated that inflammatory proteins in the cardioresp group inter-
acted strongly with ISM1 and ROBO1, which are expressed during res-
piratory tract infection and regulate lung inflammation50,51. Although 
we were unable to find SARS-CoV-2 antigen in sputum from our LC 
cases, we did not test for viral persistence in GI tract and lung tissue40,41 
or in plasma52. Evidence of SARS-CoV-2 persistence would justify trials 
of antiviral drugs (singly or in combination) in LC. It is also possible 
that autoimmune processes could result in an innate inflammatory 
profile in LC. Autoreactive B cells have been identified in LC patients 
with higher SARS-CoV-2-specific antibody titers in a study of mostly 
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mild acute COVID cases (59% WHO 2–3)42, a different population from 
our study of hospitalized cases.

Our observations of distinct protein profiles in GI and cognitive 
groups support previous reports on distinct associations between 
Epstein–Barr virus reactivation and neurological symptoms, or autoan-
tibodies and GI symptoms relative to other forms of LC49,53. We did 
not assess autoantibody induction but found evidence of brain–gut 
axis disturbance (SCG3) in the GI group, which occurs in many auto-
immune diseases54. We found signatures suggestive of neuroinflam-
mation (C1QA) in the cognitive group, consistent with findings of 
brain abnormalities on magnetic resonance imaging after COVID-19 
hospitalization55, as well as findings of microglial activation in mice 
after COVID-19 (ref. 56). Proinflammatory signatures dominated in 
the cardioresp, fatigue and anxiety/depression groups and were con-
sistent with those seen in non-COVID depression, suggesting shared 
mechanisms57. The association between markers of myeloid inflam-
mation, including IL-3RA, and symptoms was greatest for fatigue. 
Whilst membrane-bound IL-3RA facilitates IL-3 signaling upstream 
of myelopoesis36 its soluble form (measured in plasma) can bind IL-3 
and can act as a decoy receptor, preventing monocyte maturation 
and enhancing immunopathology58. Monocytes from individuals 
with post-COVID fatigue are reported to have abnormal expression 
profiles (including reduced CXCR2), suggestive of altered maturation 
and migration5,59. Lung-specific inflammation was suggested by the 
association between PCDH1 (an airway epithelial adhesion molecule35) 
and cardioresp symptoms.

Our observations do not align with all published observations on 
LC. One proteomic study of 55 LC cases after generally mild (WHO 2–3) 
acute disease found that TNF and IFN signatures were elevated in LC3. 
Vasculoproliferative processes and metabolic disturbance have been 
reported in LC4,60, but these studies used uninfected healthy indivi duals 
for comparison and cannot distinguish between LC-specific pheno-
mena and residual post-COVID inflammation. A study of 63 adults 
(LC, n = 50 and recovered, n = 13) reported no association between 
immune cell activation and LC 3 months after infection61, though 
myeloid inflammation was not directly measured, and 3 months post 
infection may be too early to detect subtle differences between LC  
and recovered cases due to residual acute inflammation.

Our study has limitations. We designed the study to identify 
inflammatory markers identifying pathways underlying LC subgroups 
rather than diagnostic biomarkers. The ORs we report are small, but 
associations were consistent across alternative methods of analysis and 
when using different LC definitions. Small effect sizes can be expected 
when using PLR, which shrinks correlated mediator coefficients to 
reflect combined effects and prevent colinear inflation62, and could also 
result from measurement of plasma mediators that may underestimate 
tissue inflammation. Although our LC cohort is large compared with 
most other published studies, some of our subgroups are small (only 
60 cases were designated cognitive). Though the performance of the 
cognitive PLR model was adequate, our findings should be validated 
in larger studies. It should be noted that our cohort of hospitalized 
cases may not represent all types of LC, especially those occurring after 
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mild infection. We looked for an effect of acute disease severity within 
our study and did not find it, and are reassured that the inflammatory 
profiles we observed were consistent with those seen in smaller studies  
including nonhospitalized cases42,46. Studies of posthospital LC  
may be confounded by ‘posthospital syndrome’, which encompasses 
general and nonspecific effects of hospitalization (particularly inten-
sive care)63.

In conclusion, we found markers of myeloid inflammation and 
complement activation in our large prospective posthospital cohort 
of patients with LC, in addition to distinct inflammatory patterns in 
patients with cognitive impairment or gastrointestinal symptoms. 
These findings show the need to consider subphenotypes in managing 
patients with LC and support the use of antiviral or immunomodulatory 
agents in controlled therapeutic trials.
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Methods
Study design and ethics
After hospitalization for COVID-19, adults who had no comorbidity 
resulting in a prognosis of less than 6 months were recruited to the 
PHOSP-COVID study (n = 719). Patients hospitalized between February 
2020 and January 2021 were recruited. Both sexes were recruited and 
gender was self-reported (female, n = 257 and male, n = 462). Written 
informed consent was obtained from all patients. Ethical approvals 
for the PHOSP-COVID study were given by Leeds West Research Ethics 
Committee (20/YH/0225).

Symptom data and samples were prospectively collected from 
individuals approximately 6 months (IQR 5.1–6.8 months and range 
3.0–8.3 months) post hospitalization (Fig. 1a), via the PHOSP-COVID 
multicenter United Kingdom study64. Data relating to patient demo-
graphics and acute admission were collected via the International 
Severe Acute Respiratory and Emerging Infection Consortium World 
Health Organization Clinical Characterisation Protocol United King-
dom (ISARIC4C study; IRAS260007/IRAS126600) (ref. 65). Adults 
hospitalized during the SARS-CoV-2 pandemic were systematically 
recruited into ISARIC4C. Written informed consent was obtained from 
all patients. Ethical approval was given by the South Central–Oxford 
C Research Ethics Committee in England (reference 13:/SC/0149), 
Scotland A Research Ethics Committee (20/SS/0028) and WHO Ethics 
Review Committee (RPC571 and RPC572l, 25 April 2013).

Data were collected to account for variables affecting symptom 
outcome, via hospital records and self-reporting. Acute disease sever-
ity was classified according to the WHO clinical progression score: 
WHO class 3–4: no oxygen therapy; class 5: oxygen therapy; class 6: 
noninvasive ventilation or high-flow nasal oxygen; and class 7–9: man-
aged in critical care9. Clinical data were used to place patients into  
six categories: ‘recovered’, ‘GI’, ‘cardiorespiratory’, ‘fatigue’, ‘cognitive  
impairment’ and ‘anxiety/depression’ (Supplementary Table 7). 
Patient-reported symptoms and validated clinical scores were used 
when feasible, including Medical Research Council (MRC) breath-
lessness score, dyspnea-12 score, Functional Assessment of Chronic 
Illness Therapy (FACIT) score, Patient Health Questionnaire (PHQ)-9 
and Generalized Anxiety Disorder (GAD)-7. Cognitive impairment was 
defined as a Montreal Cognitive Assessment score <26. GI symptoms 
were defined as answering ‘Yes’ to the presence of at least two of the 
listed symptoms. ‘Recovered’ was defined by self-reporting. Patients 
were placed in multiple groups if they experienced a combination of 
symptoms.

Matched nasal fluid and sputum samples were prospectively 
collected from a subgroup of convalescent patients approximately 
6 months after hospitalization via the PHOSP-COVID study. Nasal and 
bronchoalveolar lavage fluid (BALF) collected from healthy volunteers 
before the COVID-19 pandemic were used as controls (Supplementary 
Table 4). Written consent was obtained for all individuals and ethical 
approvals were given by London–Harrow Research Ethics Committee  
(13/LO/1899) for the collection of nasal samples and the Health 
Research Authority London–Fulham Research Ethics Committee (IRAS 
project ID 154109; references 14/LO/1023, 10/H0711/94 and 11/LO/1826) 
for BALF samples.

Procedures
Ethylenediaminetetraacetic acid plasma was collected from whole 
blood taken by venepuncture and frozen at −80 °C as previously 
described7,66. Nasal fluid was collected using a NasosorptionTM FX·I 
device (Hunt Developments), which uses a synthetic absorptive matrix 
to collect concentrated nasal fluid. Samples were eluted and stored 
as previously described67. Sputum samples were collected via passive 
expectoration and frozen at −80 °C without the addition of buffers. 
Sputum samples from convalescent individuals were compared with 
BALF from healthy SARS-CoV-2-naive controls, collected before the 
pandemic. BALF samples were used to act as a comparison for lower 

respiratory tract samples since passively expectorated sputum from 
healthy SARS-CoV-2-naive individuals was not available. BALF samples 
were obtained by instillation and recovery of up to 240 ml of normal 
saline via a fiberoptic bronchoscope. BALF was filtered through 100 µM 
strainers into sterile 50 ml Falcon tubes, then centrifuged for 10 min 
at 400 g at 4 °C. The resulting supernatant was transferred into sterile 
50 ml Falcon tubes and frozen at −80 °C until use. The full methods for 
BALF collection and processing have been described previously68,69.

Immunoassays
To determine inflammatory signatures that associated with symp-
tom outcomes, plasma samples were analyzed on an Olink Explore 
384 Inflammation panel70. Supplementary Table 8 (Appendix 1) lists 
all the analytes measured. To ensure the validity of results, samples 
were run in a single batch with the use of negative controls, plate 
controls in triplicate and repeated measurement of patient samples 
between plates in duplicate. Samples were randomized between 
plates according to site and sample collection date. Randomization 
between plates was blind to LC/recovered outcome. Data were first 
normalized to an internal extension control that was included in 
each sample well. Plates were standardized by normalizing to inter-
plate controls, run in triplicate on each plate. Each plate contained a 
minimum of four patient samples, which were duplicates on another 
plate; these duplicate pairs allowed any plate to be linked to any other 
through the duplicates. Data were then intensity normalized across 
all cohort samples. Finally, Olink results underwent quality control 
processing and samples or analytes that did not reach quality control 
standards were excluded. Final normalized relative protein quantities 
were reported as log2 NPX values.

To further validate our findings, we performed conventional elec-
trochemiluminescence (ECL) assays and enzyme-linked immunosor-
bent assay for Olink mediators that were associated with symptom 
outcome (Supplementary Methods). Contemporaneously collected 
plasma samples were available from 58 individuals. Like most omics 
platforms, Olink measures relative quantities, so perfect agreement 
with conventional assays that measure absolute concentrations is 
not expected.

Sputum samples were thawed before analysis and sputum plugs 
were extracted with the addition of 0.1% dithiothreitol creating a one 
in two sample dilution, as previously described71. SARS-CoV-2 S and N 
proteins were measured by ECL S-plex assay at a fixed dilution of one 
in two (Mesoscale Diagnostics), as per the manufacturers protocol72. 
Control BALF samples were thawed and measured on the same plate, 
neat. The S-plex assay is highly sensitive in detecting viral antigen in 
respiratory tract samples73.

Nasal cytokines were measured by ECL (mesoscale discovery) and 
Luminex bead multiplex assays (Biotechne). The full methods and list 
of analytes are detailed in Supplementary Methods.

Statistics and reproducibility
Clinical data was collected via the PHOSP REDCap database, to which 
access is available under reasonable request as per the data sharing 
statement in the manuscript. All analyses were performed within the 
Outbreak Data Analysis Platform (ODAP). All data and code can be 
accessed using information in the ‘Data sharing’ and ‘Code sharing’ 
statements at the end of the manuscript. No statistical method was 
used to predetermine sample size. Data distribution was assumed to 
be normal but this was not formally tested. Olink assays and immuno-
assays were randomized and investigators were blinded to outcomes.

To determine protein signatures that associated with each symp-
tom outcome, a ridge PLR was used. PLR shrinks coefficients to account 
for combined effects within high-dimensional data, preventing false 
discovery while managing multicollinearity34. Thus, PLR was chosen 
a priori as the most appropriate model to assess associations between 
a large number of explanatory variables (that may work together to 
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mediate effects) and symptom outcome34,62,70,74. In keeping with our 
aim to perform an unbiased exploration of inflammatory process, the 
model alpha was set to zero, facilitating regularization without com-
plete penalization of any mediator. This enabled review of all possible 
mediators that might associate with LC62.

A 50 repeats tenfold nested cross-validation was used to select 
the optimal lambda for each model and assess its accuracy (Extended 
Data Fig. 1). The performance of the cognitive impairment model was 
influenced by the imbalance in size of the symptom group (n = 60) rela-
tive to recovered (n = 250). The model was weighted to account for this 
imbalance resulting in a sensitivity of 0.98, indicating its validity. We 
have expanded on the model performance and validation approaches 
in Supplementary Information.

Age, sex, acute disease severity and preexisting comorbidities 
were included as covariates in the PLR analysis (Supplementary Tables 1 
and 3). Covariates were selected a priori using features reported to 
influence the risk of LC and inflammatory responses1,39,64,75. Ethnicity 
was not included since it has been shown not to predict symptom 
outcome in this cohort64. Individuals with missing data were excluded 
from the regression analysis. Each symptom group was compared with 
the ‘recovered’ group. The model coefficients of each covariate were 
converted into ORs for each outcome and visualized in a forest plot, 
after removing variables associated with regularized OR between 0.98 
and 1.02 or in cases where most variables fell outside of this range, using 
mediators associated with the highest decile of coefficients either side 
of this range. This enabled exclusion of mediators with effect sizes 
that were unlikely to have clinical or mechanistic importance since the 
ridge PLR shrinks and orders coefficients according to their relative 
importance rather than making estimates with standard error. Thus, 
confidence intervals cannot be appropriately derived from PLR, and 
forest plot error bars were calculated using the median accuracy of the 
model generated by the nested cross-validation. To verify observations 
made through PLR analysis, we also performed an unadjusted PLR, an 
unadjusted logistic regression and a PLS analysis. Univariate analyses 
using Wilcoxon signed-rank test was also performed (Supplementary 
Table 8, Appendix 1). Analyses were performed in R version 4.2.0 using 
‘data.table v1.14.2’, ‘EnvStats v2.7.0’ ‘tidyverse v1.3.2’, ‘lme4 v1.1-32’, 
‘caret v6.0-93’, ‘glmnet v4.1-6’, ‘mdatools v0.14.0’, ‘ggpubbr v0.4.0’ and 
‘ggplot2 v3.3.6’ packages.

To further investigate the relationship between proteins elevated 
in each symptom group, we performed a correlation network analysis 
using Spearman’s rank correlation coefficient and false discovery rate 
(FDR) thresholding. The mediators visualized in the PLR forest plots, 
which were associated with cardiorespiratory symptoms, fatigue, 
anxiety/depression GI symptoms and cognitive impairment were used, 
respectively. Analyses were performed in R version 4.2.0 using ‘bootnet 
v1.5.6’ and ‘qgraph v1.9.8’ packages.

To determine whether differences in protein levels between men 
and women related to hormonal differences, we divided each symp-
tom group into premenopausal and postmenopausal groups using 
an age cutoff of 50 years old. Differences between sexes in each group 
were determined using the Wilcoxon signed-rank test. To understand 
whether antigen persistence contributed to inflammation in adults with 
LC, the median viral antigen concentration from sputum/BALF samples 
and cytokine concentrations from nasal samples were compared using 
the Wilcoxon signed-rank test. All tests were two-tailed and statistical 
significance was defined as a P value < 0.05 after adjustment for FDR 
(q-value of 0.05). Analyses were performed in R version 4.2.0 using 
‘bootnet v1.5.6’ and ‘qgraph v1.9.8’ packages.

Extended Data Fig. 10 was made using Biorender, accessed at 
www.biorender.com.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This is an open access article under the CC BY 4.0 license.
The PHOSP-COVID protocol, consent form, definition and derivation 
of clinical characteristics and outcomes, training materials, regulatory 
documents, information about requests for data access, and other 
relevant study materials are available online at ref. 76. Access to these 
materials can be granted by contacting phosp@leicester.ac.uk and 
Phospcontracts@leicester.ac.uk.
The ISARIC4C protocol, data sharing and publication policy are  
available at https://isaric4c.net. ISARIC4C’s Independent Data and 
Material Access Committee welcomes applications for access to data 
and materials (https://isaric4c.net).
The datasets used in the study contain extensive clinical information 
at an individual level that prevent them from being deposited in an 
public depository due to data protection policies of the study. Study 
data can only be accessed via the ODAP, a protected research environ-
ment. All data used in this study are available within ODAP and acces-
sible under reasonable request. Data access criteria and information 
about how to request access is available online at ref. 76. If criteria are 
met and a request is made, access can be gained by signing the eDRIS 
user agreement.

Code availability
Code was written within the ODAP, using R v4.2.0 and publicly available 
packages (‘data.table v1.14.2’, ‘EnvStats v2.7.0’, ‘tidyverse v1.3.2’, ‘lme4  
v1.1-32’, ‘caret v6.0-93’, ‘glmnet v4.1-6’, ‘mdatools v0.14.0’, ‘ggpubbr 
v0.4.0’, ‘ggplot2 v3.3.6’, ‘bootnet v1.5.6’ and ‘qgraph v1.9.8’ pack-
ages). No new algorithms or functions were created and code used 
in-built functions in listed packages available on CRAN. The code  
used to generate data and to analyze data is publicly available at 
https://github.com/isaric4c/wiki/wiki/ISARIC; https://github.com/
SurgicalInformatics/cocin_cc and https://github.com/ClaudiaEfstath/
PHOSP_Olink_NatImm.
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Extended Data Fig. 1 | Penalized logistic regression performance. Graphs 
show classification error and Area under curve (AUC) from the 50 repeats 
tenfold nested cross-validation used to optimise and assess the performance of 
PLR testing associations with each LC outcome relative to Recovered (n = 233): 
Cardio_Resp (n = 398), Fatigue (n = 384), Anxiety/Depression (n = 202), GI 

(n = 132), (e) Cognitive (n = 6). The distributions of classification error and area 
under curve (AUC) from the nested cross-validation are shown. Box plot centre 
line represents the Median and boundaries of the box represent interquartile 
range (IQR), the whisker length represent 1.5xIQR.
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Extended Data Fig. 2 | Associations with long COVID symptoms in full 
study cohort. (a) Fibrinogen levels at 6 months were compared between 
pooled LC cases (n = 295) and Recovered (n = 233) and between the Cognitive 
group (n = 41) and Recovered (n = 233). Box plot centre line represent the 
Median and boundaries of the box represent interquartile range (IQR), the 
whisker length represents 1.5xIQR, any outliers beyond the whisker range are 
shown as individual dots. Median differences were compared using two-sided 
Wilcoxon signed-rank test *=p < 0·05, **=p < 0·01, ***=p < 0·001, ****=p < 0·0001. 
Unadjusted p-values are reported. b) Distribution of time from COVID-19 
hospitalisation at sample collection applying CDC and NICE definitions of 

LC (n = 719) (c) Upset plot of symptom groups. Horizontal coloured bars 
represent the number of patients in each symptom group: Cardiorespiratory 
(Cardio_Resp), Fatigue, Cognitive, Gastrointestinal (GI) and Anxiety/Depression 
(Anx_Dep). Vertical black bars represent the number of patients in each 
symptom combination group. To prevent patient identification, where less than 
5 patients belong to a combination group, this has been represented as ‘<5’. The 
Recovered group (n = 250) were used as controls. Forest plots show Olink protein 
concentrations (NPX) associated with (d) Cardio_Resp (n = 398), (e) Fatigue 
(n = 342), (f) Anx_Dep (n = 219), (g) GI (n = 134), and (h) Cognitive (n = 65). Error 
bars represent the median accuracy of the model.

http://www.nature.com/natureimmunology


Nature Immunology

Letter https://doi.org/10.1038/s41590-024-01778-0

Extended Data Fig. 3 | Validation of olink measurements using conventional 
assays in plasma. Olink measured protein (NPX) were compared to 
chemiluminescence assays (ECL or ELISA, log2[pg/mL]) to validate our findings, 
where contemporaneously collected plasma samples were available (n = 58). 
Results from key mediators associated with LC groups were validated: CSF3, 

IL1R2, IL2, IL3RA, TNFa, TFF2. R= spearman rank correlation coefficient and 
shaded areas indicated the 95% confidence interval. Samples that fell below the 
lower limit of detection for a given assay were excluded and the ‘n’ value on each 
panel indicates the number of samples above this limit.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Univariate analysis of proteins associated with each 
symptom. Olink measured plasma protein levels (NPX) compared between LC 
groups (Cardio_Resp, n = 398, Fatigue n = 384, Anxiety/Depression, n = 202, GI, 
n = 132 and Cognitive, n = 60) and Recovered (n = 233). Proteins identified by 
PLR were compared between groups. Median differences were compared using 

two-sided Wilcoxon signed-rank test. * = p < 0·05, ** = p < 0·01, *** = p < 0·001, 
****= p < 0·0001 after FDR adjustment. Box plot centre line represent the Median 
and boundaries of the box represent interquartile range (IQR), the whisker 
length represents 1.5xIQR, any outliers beyond the whisker range are shown as 
individual dots.

http://www.nature.com/natureimmunology


Nature Immunology

Letter https://doi.org/10.1038/s41590-024-01778-0

Extended Data Fig. 5 | Unadjusted Penalised Logistic Regression. Olink 
measured proteins (NPX) and their association with Cardio_Resp (n = 398), 
Fatigue (n = 342), Anx_Dep (n = 219), GI (n = 134), and Cognitive (n = 65). Forest 

plots show odds of each LC outcome vs Recovered (n = 233), using PLR without 
adjusting for clinical co-variates. Error bars represent the median accuracy  
of the model.
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Extended Data Fig. 6 | Partial Least Squares analysis. Olink measured proteins (NPX) and their association with Cardio_Resp (n = 398), Fatigue (n = 342), Anx_Dep 
(n = 219), GI (n = 134), and Cognitive (n = 65) groups. Forest plots show odds of LC outcome vs Recovered (n = 233), using PLS analysis. Error bars represent the standard 
error of the coefficient estimate.
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Extended Data Fig. 7 | Network analysis centrality. Each graph shows the centrality score for each Olink measured protein (NPX) found to have significant 
associations with other proteins that were elevated in the Cardio_Resp (n = 398), Fatigue (n = 342), Anx_Dep (n = 219), GI (n = 134), and Cognitive (n = 65) groups  
relative to Recovered (n = 233).
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Extended Data Fig. 8 | Inflammation in men and women with long COVID. 
Olink measured plasma protein levels (NPX) between men and women with 
symptoms, divided by age (<50 or >=50years): (a) shows IL1R2 and MATN2 in the 
Anxiety/Depression group (<50 n = 55, >=50 n = 133), (b) shows CTSO and NFASC 

in the Cognitive group (<50 n = 11, >=50 n = 50). Median values were compared 
between men and women using two-sided Wilcoxon signed-rank test. Box plot 
centre line represent the Median and boundaries represent interquartile range 
(IQR), the whisker length represents 1.5xIQR.
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Extended Data Fig. 9 | Inflammation in the upper respiratory tract. Nasal 
cytokines measured by immunoassay in the CardioResp Group (n = 29) and 
Recovered (n = 31): (a) shows IL1a, IL1b, IL-6, APO-2, TGFa, TFF2. Median 
differences were compared using two-sided Wilcoxon signed-rank test. Box 
plot centre line represents the Median and boundaries of the box represent 

interquartile range (IQR), the whisker length represent 1.5xIQR. (b) Shows 
cytokines measured by immunoassay in paired plasma and nasal (n = 70). 
Correlations between IL1a, IL1b, IL-6, APO-2, TGFa and TFF2 in nasal and plasma 
samples were compared using Spearman’s rank correlation coefficient (R). 
Shaded areas indicated the 95% confidence interval of R.
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Extended Data Fig. 10 | Graphical abstract. Summary of interpretation of key findings from Olink measured proteins and their association with CardioResp (n = 398), 
Fatigue (n = 342), Anx/Dep (n = 219), GI (n = 134), and Cognitive (n = 65) groups relative to Recovered (n = 233).
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