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Summary
Background Chronic kidney disease is becoming more prevalent in Africa, and its genetic determinants are poorly
understood. Creatinine-based estimated glomerular filtration rate (eGFR) is commonly used to estimate kidney
function, modelling the excretion of the endogenous biomarker (creatinine). However, eGFR based on creatinine
has been shown to inadequately detect individuals with low kidney function in Sub-Saharan Africa, with eGFR
based on cystatin-C (eGFRcys) exhibiting significantly superior performance. Therefore, we opted to conduct a
GWAS for eGFRcys.

Methods Using the Uganda Genomic Resource, we performed a genome-wide association study (GWAS) of eGFRcys
in 5877 Ugandans and evaluated replication in independent studies. Subsequently, putative causal variants were
screened through Bayesian fine-mapping. Functional annotation of the GWAS loci was performed using
Functional Mapping and Annotation (FUMA).

Findings Three independent lead single nucleotide polymorphisms (SNPs) (P-value <5 × 10−8 (based on likelihood
ratio test (LRT))) were identified; rs59288815 (ANK3), rs4277141 (OR51B5) and rs911119 (CST3). From fine-mapping,
rs59288815 and rs911119 each had a posterior probability of causality of >99%. The rs911119 SNP maps to the
cystatin C gene and has been previously associated with eGFRcys among Europeans. With gene-set enrichment
analyses of the olfactory receptor family 51 overlapping genes, we identified an association with the G-alpha-S
signalling events.
*Corresponding author. MRC/UVRI and LSHTM Uganda Research Unit, Uganda.
E-mail address: segun.fatumo@lshtm.ac.uk (S. Fatumo).
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Interpretation Our study found two previously unreported associated SNPs for eGFRcys in continental Africans
(rs59288815 and rs4277141) and validated a previously well-established SNP (rs911119) for eGFRcys. The identified
gene-set enrichment for the G-protein signalling pathways relates to the capacity of the kidney to readily adapt to an
ever-changing environment. Additional GWASs are required to represent the diverse regions in Africa.

Funding Wellcome (220740/Z/20/Z).

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study
Reported CKD prevalence varies greatly within Africa, in part,
due to the heterogeneity of study designs and different
criteria used for diagnosing CKD. Creatinine-based estimated
glomerular filtration rate (eGFRcrea) are the most widely used
tests for assessing kidney function and considerably cheaper
than cystatin-C-based estimated glomerular filtration rate
(eGFRcys) despite evidence that eGFRcys is a better biomarker
in African populations. While CKD has both infectious and
noncommunicable causes in Africa, little is known about the
impacts of genetic, environmental, and toxin exposures. For
example, Zhang et al., 2021 estimated the heritability of
chronic kidney CKD to fall within a range of 25%–44% with
higher estimates in individuals of African ancestry. To date,
there is only one genome-wide association study (GWAS) of
kidney function in continental African populations which used
serum creatinine as the biomarker for eGFR. There were some
key limitations. First, the sample size was small (N = 3288).
Second, the biomarker used (serum creatinine) is prone to
influences from variations in muscle mass, levels of animal
protein ingestion, sex, age, and tubular secretion. In this study
we carried out a GWAS of kidney function using eGFRcys (a
more robust and sensitive kidney biomarker) in 5877
continental Africans.

Added value of this study
We identified two genome-wide significant lead single
nucleotide polymorphisms (SNPs) (rs59288815 in the ANK3
and rs4277141 in the OR51B5 intronic regions) that have not
been previously associated with eGFRcys in other populations
to the best of our knowledge. Furthermore, our study also
replicated the rs911119 SNP in the CST3 gene that was
previously associated with eGFRcys among individuals of
European ancestry.

Implications of all the available evidence
Our work shows an association between eGFRcys and three
loci (rs59288815 (ANK3), rs4277141 (OR51B5) and rs911119
(CST3)) in Ugandans. By incorporating biomarkers such as
serum cystatin-C, we can unlock previously unknown
information about kidney function and potential disease
mechanisms. Using all the available evidence, we have
uncovered genetic associations with cystatin-C among
different populations, revealing the importance of exploring
diverse populations in studying genetic diseases. These
discoveries open the door to new prevention and
personalized medicine strategies, ultimately transforming
how we approach kidney function biomarkers in genomic
studies.
Introduction
In Africa, the estimated prevalence of chronic kidney
disease (CKD) varies from 13 to 15%, compared with
the global average of 10%. It is probable that some ge-
netic factors associated with kidney function are specific
to African populations and others are shared. Since the
prevalence and severity of kidney disease varies across
different populations, it might not be reliable to gener-
alize findings from genetic studies conducted in Euro-
peans to other populations including Africans1

To evaluate kidney function, biomarkers such as
serum creatinine (Scr), cystatin-C (sCys-C), albumin-
uria, and blood urea nitrogen (BUN) can be used.2 In
clinical practice, only Scr-based estimated glomerular
filtration rate (eGFRcrea) is commonly used as a
biomarker for kidney function because it is cost-effective
and widely available. Hence, the only known genome-
wide association study (GWAS) conducted on kidney
function in Africa, used Scr as a biomarker to identify
genetic factors associated with kidney function in a
sample of 3288 individuals from Uganda.3 However,
recent literature has shown that eGFRcrea estimation is
limited in Sub-Saharan Africa, and in particular, that
eGFRcrea misses people with reduced kidney function
whilst sCys-C-based estimated glomerular filtration rate
(eGFRcys) correlated with the gold-standard iohexol
kidney function measurement.4 We know from high-
income settings that there are clinical scenarios in
www.thelancet.com Vol 95 September, 2023
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which eGFRcrea may not accurately represent kidney
function, such as in individuals with low muscle mass
or obesity.5 However, these did not explain the
discrepancy between eGFRcrea and the gold standard
kidney function test. In high income settings, sCys-C is
also more sensitive than Scr in detecting the early stages
of kidney disease. However, eGFRcys proved in Sub-
Saharan Africa to not only be better at detecting early
stages of kidney disease, but also to detect more
advanced CKD when compared to eGFRcrea.4 In high
income settings, cystatin C has been shown to be
influenced by adiposity, white blood cell count, under-
lying inflammation, thyroid disease, as well as gluco-
corticoid treatment.6 Of these, inflammation and
increased white cell count may be more prevalent in
areas with endemic infections.7 But, sCys-C levels are
less influenced by ethnicity than Scr levels, which makes
it a more accurate biomarker in individuals from diverse
genetic backgrounds.8 Thus, there is a need to add a
more sensitive and robust biomarker in Sub-Saharan
Africa, the sCys-C-based estimated glomerular filtra-
tion rate (eGFRcys),9 as well as a genetic study on
eGFRcys in Africans. In this study, we set out to identify
genetic variants that are associated with kidney function
using estimated glomerular filtration rate (eGFR) based
on sCys-C levels in samples from participants of the
Uganda Genome Resource (UGR), which is part of the
Uganda General Population Cohort (GPC).10,11

Methods
The Uganda genome resource study
The individuals included in this study were selected
from the UGR which is part of GPC, that has been
described by previous studies.11 Briefly, GPC is a
population-based cohort comprising around 22,000
residents from 25 neighbouring villages in Kyamulibwa
sub-county, part of Kalungu district in rural Southwest
Uganda. The GPC was established in 1989 to primarily
investigate the incidence and prevalence of HIV infec-
tion in Uganda. It has since expanded its scope to
investigate the genetics and epidemiology of various
communicable and non-communicable diseases. Dur-
ing a survey conducted in the research study area,
samples were collected from the research participants.
The study area is clustered into villages defined by
governmental borders and ranges in size from 300 to
1500 inhabitants and includes numerous households.
In 2011, the University of Cambridge, Wellcome Sanger
Institute (WSI), and MRC/UVRI in Uganda collaborated
on the GPC Round 22 study to provide aetiological in-
sights into the genetic variation of communicable and
non-communicable diseases. It was contained within
one annual survey round of the longitudinal cohort. It
involved five primary stages in 2011: mobilization
(recruitment and consent), mapping, census, survey,
and feedback of results and clinical follow-up. The
census consisted of two questionnaires, one for families
www.thelancet.com Vol 95 September, 2023
and one for individuals, which collected information on
socio demographics data and household members,
respectively. A standard questionnaire was used to
collect lifestyle and health information, including bio-
physical measurements and blood samples. In this
study, 5000 samples were genotyped, and 2000 samples
were sequenced from nine ethnolinguistic groups from
the GPC. Therefore, the genetic data from GPC is
referred to as the UGR.3,12

Ethics statement
The Uganda GPC was approved by the Science and
Ethics Committee of the Uganda Virus Research Insti-
tute Research (UVRI-REC -#HS 1978) and the Uganda
National Council for Science and Technology (UNCST
-#SS 4283).

Genotyping and quality control
Genotyping and quality control were performed in pre-
vious studies.3,12 In brief, 5000 individuals were geno-
typed on the Illumina HumanOmni2.5-8 array and 4772
remained after quality control.

The genotyped data underwent imputation using the
1000 Genomes Project Phase 3 reference panel, which
contains genotypes for approximately 37 million SNPs.
Imputation was performed using the Michigan Impu-
tation Server and the Minimac3 software. 2000 Ugan-
dan samples underwent low-coverage whole-genome
sequencing on the Illumina HiSeq 2000 using 75 bp
paired-end reads, at low coverage of 4× for each sample.
After quality control, 1978 sequenced samples
remained; including the 343 individual samples that had
been genotyped and sequenced. Genotyped data was
excluded for 343 samples that were both genotyped and
sequenced. The quality-controlled imputed genotype
and the sequence data were then merged to create a
single pooled dataset for analysis. In the merged dataset,
we looked for any systematic differences between ge-
notype and sequence calls. After doing quality control
on the merged genotyping and sequence data, we per-
formed principal component analysis to examine if any
main components represented systematically different
aspects of the chip and sequence data. For this analysis,
the genotyping and sequence data were merged, and
only overlapping variants were used. Principal compo-
nents (PC) were then estimated on unrelated individuals
(IBD< 0.10) for variants with frequencies greater than
5%, and those results were projected onto the remaining
cohort. When we looked at the first 10 PCs, we found no
evidence suggesting systematic differences between
chip and sequence data. In addition, for the 343 in-
dividuals who had both sequence and genotype data, we
plotted PCs principal components by projecting prin-
cipal components from the genotype data onto the
sequence data. The points were found to coincide, with
no separation along PCs 1–10, indicating the absence of
systematic differences between these data (Fig. 1).
3

www.thelancet.com/digital-health


Fig. 1: Detailed flowchart of the study analyses.
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Laboratory testing of serum cystatin-C and
estimated glomerular filtration rate calculation
The MRC/UVRI & LSHTM CDLS Immunochemistry
laboratory conducted laboratory tests on bio-banked
serum samples from GPC round 22 to measure sCys-
C levels. The test used was the Tina-quant Cystatin-C
Gen.2, which is a latex particle-enhanced immuno-
turbidimetric assay, and it was performed using the
Roche Cobas 6000 Hitachi analyzer, Mannheim, Ger-
many. The eGFRcys was determined using the Chronic
Kidney Disease Epidemiology Collaboration.

(CKD-EPI) 2012 formula.13 After adjusting for age
and sex, the eGFRcys residuals were transformed using
the inverse rank normal method (Fig. 1).

Association analysis
A GWAS was performed on 5877 samples with eGFRcys
phenotypes out of the 6407 genotyped samples that
previously passed quality control since some partici-
pants lacked phenotypic data (eGFRcrea). The uni-
variant linear mixed model approach implemented by
the Genome-wide Efficient Mixed Model Association
algorithm (GEMMA) software version 0.9614 was
applied. The input files for GEMMA included genotypes
(BIMBAM), phenotypes (eGFR inverse transformed
residues), SNP annotation and kinship matrix files.
Subsequently, the 22 kinship matrices were generated
earlier on in the UGR study12 using the leave-one-
chromosome-out (LOCO) approach. To analyse SNPs
along a chromosome for the association, LOCO gener-
ates a kinship matrix without including the
chromosome being analysed. This was done sequen-
tially for each chromosome to ensure that any causal
SNPs on a specific chromosome are not included in the
kinship matrix used to analyse that chromosome.15

Furthermore, we also applied a minor allele frequency
(MAF) cut-off of 0.05 (imputation quality threshold) in
the association analysis (Fig. 1).

Replication of the lead single nucleotide
polymorphisms
To determine if our top SNPs have previously been
connected with Cystatin-C, we interrogated the GWAS
catalog for SNPs that were already linked to cystatin-C.
We also searched our lead SNPs in GWAS summary
statistics from previously published studies such as
Pattaro et al., 2016,16 Stanzick et al., 202117 and Sinnott-
Armstrong et al., 2021.18

Comparison of lead SNPs identified in UGR data
using eGFRcys and eGFRcrea
To investigate whether using different biomarkers led to
the identification of similar or distinct SNPs, we
compared the SNPs previously linked to kidney function
with eGFRcrea3 in the UGR dataset11 to those we iden-
tified with eGFRcys in the same dataset.

Bayesian fine-mapping
Bayesian fine-mapping to identify potential causal vari-
ants for the locus ± 1 Mb of the lead SNPs was per-
formed [15], and Z score was used to compute the Bayes
factor for each SNP (BFi).
www.thelancet.com Vol 95 September, 2023
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Below is the equation we used:

BFi= e
[zi2̂2 ]

We calculated the posterior probability of driving the
association for each SNP using the equation below.

Posterior probability = BFi

∑ jBFj
The summation in the

denominator is the total Bayes factor at SNPs at the
locus.

The process of determining a credible set size with a
99% level of accuracy involved sorting the SNPs at the
locus from highest Bayes’ factor to lowest Bayes’ factor
and counting the minimum number of SNPs required
to reach a cumulative posterior probability of 0.99 or
higher. We then constructed the 99% credible set of
SNPs that account for 99% of the posterior probability of
driving the association at each locus. Regional associa-
tion plots were then generated for each of our lead SNP
using the Locus zoom.19

Colocalization of eGFR association signals with
expression quantitative trait loci (eQTLs)
To determine if multiple genetic variants in the region
of our lead SNPs are associated with kidney function, we
performed colocalization analysis. We examined kidney
eQTL data from various sources, including GTEx,
NephQTL, the Human Kidney eQTL Atlas, and Reg-
ulomeDB. We compared the correlations between SNPs
and tissue-specific gene expression levels within the
regions of our lead SNPs. We evaluated genetic variation
in densely genotyped human tissues within these re-
gions. By analysing global RNA expressions within in-
dividual tissues, we treated gene expression levels as
quantitative traits and identified eQTLs that showed a
high correlation with genetic variation.20

Functional mapping and annotation
We used gene-based tests and gene-set analysis to
summarise SNP relationships at the gene level and
associated them with biological pathways. Gene-based
P-values were obtained using Multi-marker Analysis of
GenoMic Annotation (MAGMA), which employs mul-
tiple linear regression. Gene set P-value was calculated
using the gene-based P-value including canonical path-
ways and Gene Ontology (GO) terms from Molecular
Signatures Database (MSigDB) v7.2.21 The default
MAGMA v1.08 setting, which includes the SNP-wise
model for gene analysis and competitive model for
gene set analysis, was employed for both analyses, and
the Bonferroni correction (gene) was used to account for
multiple testing. We used 1000G phase 3 AFR as a
reference panel to determine linkage disequilibrium
(LD) across SNPs and genes. We utilised MAGMA gene-
based analysis and gene-set analysis on the complete
www.thelancet.com Vol 95 September, 2023
GWAS input data to conduct functional mapping and
annotation of genetic correlations with Functional
Mapping and Annotation (FUMA).22 Additionally, we
examined genes that were prioritized by SNP2GENE
and overrepresentation in various gene sets throughout
the GENE2FUNC procedure. The main goal of GEN-
E2FUNC is to provide information on the expression of
prioritized genes and test for enrichment of the set of
genes in pre-defined pathways. By integrating mapping
approaches with biological pathway and enrichment
tests, FUMA enables the prioritization of genes most
likely to be involved in the trait of interest or gene sets
associated with biological pathways involved in the
development of traits.

Phenome-wide association studies
A phenome-wide association study (PheWAS) was per-
formed to investigate potential associations between a
set of curated human phenotypes (phenome) and the
lead eGFRcys variants. The goal was to gain insight into
the relationship between our lead SNPs and various
human phenotypes using data from independent sour-
ces obtained using GWASATLAS.23 PheWAS plots for
our lead SNPs were generated by searching for their
rsID numbers in GWASATLAS, which only considers
SNPs with a P-value <0.05 for the analysis. SNPs on the
same genomic coordinate are treated as identical despite
differences in alleles across GWAS, and the chromo-
some and position of the rsID are obtained from dbSNP
build 146 when the rsID is provided. Following the
PheWAS analysis, the results of multiple hypothesis
tests were reported as P-value = 0.05/number of tests.

Gene expression analysis from previous studies
We searched the literature for studies that looked at
gene expression in the kidney. Methods for analysing
gene expression included studies that combined quan-
titative transcriptomics analysis (RNA-Seq) with
antibody-based profiling of the same tissues to classify
the tissue-specific gene expressions across major hu-
man organs and tissues (Fig. 1).

Role of funders
Funders did not have any role in study design, data
collection, data analyses, interpretation, or writing of
report.

Results
The study participant characteristics
We performed our analysis on data from 5877 partici-
pants from the UGR12; 3373 females and 2504 males.
The mean age was 35 years in females and 33 years in
males. The average weight of females was 53 kg and for
males was 52 kg. In terms of kidney function, we found
that more females (141) than males (84) had eGFRcys
levels less than 60 ml/min/1.72 m2 (Table 1).
5
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Characteristics Sex (N = 5877)

Demographics Males Females

Age (years), mean (SD) 33 (19) 35 (18)

eGFRcys levels (min/1.72/min2),
mean (SD)

120 (79) 116 (78)

Weight (kg), mean (SD) 52 (11) 53 (11)

Number of individuals with eGFRcys <60
(min/1.72/min2)

84 141

Total 2504 3373

Table 1: GPC participant characteristics.
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Findings from the genome-wide association study
We identified 64 SNPs in our eGFRcys GWAS that were
genome-wide significant (P < 5 × 10−8 (based on LRT))
and obtained three lead SNPs from these, that is,
rs59288815 (ANK3), rs4277141 (OR51B5), and
rs911119 (CST3) (Fig. 2, Table 2 and Fig. S1). All three
SNPs are intronic variants in their respective genes.
Specifically, rs59288815 is monomorphic in both Euro-
peans and East Asians, whereas rs4277141 and
rs911119 are polymorphic in both Europeans and East
Asians (see Table 2).

Replication of the lead single nucleotide
polymorphisms
In our study, we identified the rs911119 SNP
(P-value = 3.51e-19 (based on LRT)) at the CST3 locus
to having previously been shown to be associated
Fig. 2: Manhattan plot for the UGR GWAS of eGFRcys (n = 5877). T
(P < 5 × 10−8 (based on LRT)) and the blue line indicates a suggestive g
(P-value = 2.10e-202 (based on LRT)) with eGFRcys,
with the same direction of effect in European pop-
ulations by Pattaro et al., 2016 [5] (Table 3). Second, we
found rs4277141 SNP at the OR51B5 locus to be asso-
ciated (P-value = 1.93e-08) with eGFRcys, which did not
replicate (P-value = 0.558 (based on LRT)) in the previ-
ous study by Stanzick et al., 2021 in the European
population [6]. Finally, the rs59288815 SNP at the ANK3
locus was also found to be associated with eGFRcys
(Table 3), but no prior studies have published our lead
SNP to be associated with eGFRcys.

Comparison of lead SNPs obtained using GFRcrea
and eGFRcys GWAS
Upon comparing the SNPs previously identified in the
eGFRcrea GWAS [8] with those we identified in the
eGFRcys GWAS in the same cohort (UGR), we observed
no overlap between the findings from both studies
(Fig.3a and b) and no association of our lead SNPs with
eGFRcrea (Table 4). We also compared our lead SNPs
with global GWAS studies on creatinine and found no
overlaps between the previously identified SNPs and our
lead SNPs.

Fine-mapping of loci attaining genome-wide
significance
At the ANK3 and CST3 loci, the 99% credible set con-
sisted of only one variant with a 99% posterior proba-
bility for each of the two lead SNPs. At the OR51B5
locus, the 99% credible set consisted of 34 variants, with
he red line indicates the genome-wide significance level threshold
enome-wide significance level of P < 5 × 10−6 (based on LRT).

www.thelancet.com Vol 95 September, 2023
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Lead SNP Chr BP (b37) Gene Consequences EA NEA Beta SE EAF P-value AF-EUR AF-EAS

rs59288815 10 61,846,677 ANK3 Intronic variant C T 3.06e-01 5.55e-02 0.053 3.88e-08 0.00 0.00
rs4277141 11 5,426,910 OR51B5 Intronic variant A G −1.32e-01 2.340e-02 0.21 1.93e-08 0.49 0.149
rs911119 20 23,612,737 CST3 Intronic variant C T −1.74e-01 1.94e-02 0.616 3.51e-19 0.23 0.12

chr: chromosome, BP: base position, EA: effect allele, NEA: non effect allele, SE: standard error, EAF: effect allele frequency, MAF: minor allele frequency, AF_EUR: allele
frequency in Europeans, AF-EA: allele frequency in East Asians.

Table 2: Lead SNPs from 64 genome-wide significant (P-value <5 × 10-8) SNPs.

Articles
rs4277141 accounting for 12% of the posterior proba-
bility (Table 5).

FUMA results
Enrichment of input genes in gene sets
From the examination of the enrichment of input genes
within gene sets, we identified their correlation with
several pathways. These pathways include activities such
as cysteine-type endopeptidase inhibitor activity, olfac-
tory signalling pathways, G-alpha-S-signalling events,
beta thalassemia/haemoglobin E disease, sensory
perception of smell, and oxygen transport (Fig. S2 (a, b,
and c), Table S1).

Tissue expression and expression quantitative trait loci (eQTL)
Although MAGMA Tissue Expression Analysis on GTEx
v8 for the 53 tissue types showed a high tissue expres-
sion in the kidney medulla and cortex, the association
was not statistically significant (Pbon >0.05/53) (Fig. S3).

Furthermore, eGFR association signals do not
colocalize with expression quantitative trait loci (eQTLs)
in kidney tissue.

Gene expression analysis by previous studies
Our literature search identified a study that used RNA-
seq on 27 different tissue samples from 95 human in-
dividuals in order to determine the tissue-specificity of
all protein-coding genes.20 The study showed that the
ANK3 gene was highly expressed in the kidney (RPKM
(reads per kilobase of transcript per million reads
mapped) = 9.846 ± 1.682) and had the highest expres-
sion profile in all tissues tested (including the brain)
(Fig. S4).

Functional mapping and annotation
PheWAS. The results from GWASATLAS’ PheWAS
indicate that the CST3 (rs911119) locus is significantly
involved in the metabolism of Cystatin-C (P-value <0.05/
Gene Lead SNP Chr BP (b37) EA NEA Uganda

Beta SE

OR51B5 rs4277141 11 5,426,910 A G −1.32e-01 2.340
CST3 rs911119 20 23,612,737 C T −1.74e-01 1.94e
aRepresents the P-value from Stanzick et al., 202117. bRepresents the P-value from Pat

Table 3: Replication of lead SNPs.

www.thelancet.com Vol 95 September, 2023
4756 (number of GWASs), based logistic regression)
(Fig. S5 and Table S2). For the rs59288815 SNP at the
ANK3 locus (Fig. S6 and Table S3) and the OR51B5
(rs4277141) locus (Fig. S7 and Table S4), there was no
significant (P-value <0.05/number of GWASs) associa-
tion with any trait.

Discussion
Using data from 5877 UGR participants, we conducted
this GWAS to gain an understanding of the underlying
genetic risk factors and pathophysiologic mechanisms
of kidney disease by exploring beyond traditional bio-
markers such as Scr [19]. We identify rs59288815
(ANK3) and rs4277141 (OR51B5) as loci for kidney
function. We also replicate rs911119 (CST3) that was
previously identified in European ancestry populations.
Our findings highlight that using alternative biomarkers
such as Cys-C in GWAS of kidney function can enable
the discovery of new genetic underpinnings of serum
cystatin C-based GFR, a more accurate tool for detecting
individuals with low kidney function in Sub-Saharan
Africa based on a recent gold-standard validation study
of kidney function.4

By identifying previously-unreported eGFRcys asso-
ciations in the ANK3 (rs59288815) and OR51B5
(rs4277141) genes, we have uncovered genetic factors
contributing to modulation in kidney function among
African individuals. Our research also sheds light on
pathways of these genetic variants that are linked to
eGFRcys. These findings have significant implications
for future genetic studies aimed at predicting the risk of
kidney diseases among Africans, developing new pre-
vention strategies, detecting, and treating kidney
impairments.

First, we found an association with rs59288815,
which is an intronic variant in the ANK3 gene. ANK3
has been shown to regulate KCNA1 channel activity in
the function of dietary Mg (2+) levels hence regulating
Replication

EAF P-value Beta SE EAF P-value

e-02 0.21 1.93e-08 3e-04 5e-04 50.44e-2 0.5588a

-02 0.616 3.51e-19 −0.07 0.23e-02 7.24e-01 2.10e-202b

taro et al., 201516.
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Fig. 3: Venn diagrams comparing kidney function results of eGFRcrea and eGFRcys from the GPC. a) Genes associated with kidney function; b)
SNPs associated with kidney function.

Gene Lead SNP

OR51B5 rs4277141
CST3 rs911119
ANK3 rs59288815

Table 4: Comparison of le
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renal Mg (2+) reabsorption.24 Consistent with our find-
ings, previous studies have shown the ANK3 gene to be
associated with the kidney.25 In 2014, Fagerberg et al.,
used quantitative transcriptomics analysis (RNA-Seq) to
classify the tissue-specific expression of genes across
major human organs and tissues, and found the ANK3
gene to be highly expressed in kidney tissue.20

Currently, the association of the ANK3 gene and kid-
ney diseases in humans is not well documented, how-
ever the ANK3 gene is associated with polycystic kidney
disease in mice.26

Second, rs4277141 is an intronic variant in the
OR51B5 gene that encodes olfactory receptor 51B5. In
our pathway analysis using GENE2FUNC, we found
OR51B5 locus to be associated with olfactory signalling.
Olfactory receptors (ORs) are mainly odour-sensors in
the olfactory epithelium although they are also
expressed in several non-sensory tissues.27 The olfactory
receptors in the kidney have been shown to be involved
in blood pressure control and glucose excretion.28 Pre-
vious studies showed that they also play an essential role
in renin secretion, regulation of glomerular filtration,
and tubular reabsorption processes.29 Despite their role
in the normal physiology of the kidney, little is known
about their potential effect on renal disorders.30 The little
we know is that ORs significantly change during the
progression of kidney fibrosis.31

Third, rs911119 is an intronic variant in the CST3
gene located on chromosome 20. It is the gene which
Chr Bp(b37) EA NEA eGFRcys (Uganda)

Beta SE EA

11 5,426,910 A G −1.32e-01 2.340e-02 0.2
20 23,612,737 C T −1.74e-01 1.94e-02 0.6
10 61,846,677 C T 3.06e-01 5.55e-02 0.0

ad SNPs obtained from the UGR GWAS eGFRcys with UGR GWAS eGFRcrea.
encodes cystatin C which is the biomarker used to
derive eGFRcys. Thus, associations between cystatin C
and polymorphisms in the CST3 locus may reflect cys-
tatin C production, rather than necessarily kidney
function. The CST3 protein is a widely available extra-
cellular inhibitor of cysteine proteases, found in signif-
icant quantities in biological fluids and is present in
nearly all body organs.32 Its main function is to regulate
protease activity, helping to maintain protein balance
and preventing excessive protein degradation in
different organs. Previous studies have also shown its
expression in kidney tissue.33 Studies carried out in mice
have shown CST3 to have anti-fibrotic activities by
inducing apoptotic cell death and reduced collagen
production.34

Similar to previous findings in European-ancestry
populations,17 we also found that the rs911119 SNP at
the CST3 locus is significantly associated with Cys-C
concentration in Africans.

In the early GWAS paper from Anna Koettgen,35 both
cystatin C and creatinine were used, and only those loci
which were associated with both were assumed to be
kidney function markers.

Though our study size is moderate, we show the
same direction of effect for all lead SNPs identified in
eGFRcys and in eGFR serum creatinine (Table 4). We
think with larger studies’ power GWAS, we may be able
to report loci which were associated with both eGFRcys
and eGFRcrea. Unfortunately, eGFRcrea’s performance
eGFRcrea (Uganda)

F P-value Beta SE EAF P-value

1 1.93e-08 −5.71e-02 3.15e-02 0.208 6.97e-02
16 3.51e-19 −3.95e-04 2.63e-02 0.608 9.87e-01
53 3.88e-08 6.33e-03 7.16e-02 0.056 9.28e-01
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rsID chr/pos (b37) Closest gene EA NEA af beta se P value 99% Credible sets size Posterior prob

rs59288815 10:61,846,677 ANK3 C T 0.053 −3.054631e-01 5.550444e-02 3.88e-08 1 0.992
rs4277141 11:5,426,910 OR51B5 A G 0.21 1.319648e-01 2.343220e-02 1.935e-08 34 0.1223
rs911119 20:23,612,737 CST3 C T 0.616 1.741816e-01 1.937286e-02 3.51e-19 1 0.997

chr: chromosome, BP: base position, EA: effect allele, NEA: non effect allele, SE: standard error, af: allele frequency.

Table 5: Bayesian fine mapping results for the lead SNPs.

Articles
in Sub-Saharan Africa is so poor that the genetic studies
need to be very large indeed to ensure that associations
are with kidney function impairment.

No significant eQTLs were detected for any of our
lead SNPs by examining several resources for kidney
expression, such as GTEx, NephQTL, the Human Kid-
ney eQTL Atlas, and RegulomeDB. This lack of identi-
fication may be attributed to the fact that the
aforementioned eQTL resources are mainly dominated
by European populations. However, the enrichment of
input genes in gene-set was associated with G-alpha-S-
signalling-events. Interestingly, the G-protein signalling
system is biologically relevant to kidney function as it
enables the kidney to readily adapt to an ever-changing
environment.36

The strength of our study is that we have addressed
the limitations of the previous GWAS of kidney function
in Africa3 which used a less reliable biomarker (Scr) and
a smaller population size (3288) [3, 4, 8]. We used an
alternative and more reliable biomarker (Cys-C) plus a
larger sample size (5875) and discovered two plausible
independent loci (rs59288815 (ANK3) and rs4277141
(OR51B5), and replicated findings from other studies
(rs911119 (CST3)). We also found biologically plausible
secondary analysis findings using in silico pathway
analysis, tissue and gene expression analysis plus
PheWAS.

The limitation of our study is that we analysed
samples from one region in Africa, south-western
Uganda, which might not be generalisable. For
example, the missing replication of the findings from
the ANK3 locus was either because it had a mono-
morphic or very low allele frequency of the effect allele
of the lead SNP in the non-Ugandans, which could be a
reason why the lead SNP was not available in the pre-
viously published GWAS datasets for replication. We
recommend that future studies include a more diverse
African population to better represent the African
continent.

Another notable limitation of our study is the lack of
other existing genotyped biorepositories on kidney
function in Africa that use eGFRcys as a biomarker. The
absence of similar investigations in Africa limits the
comparability and generalizability of our findings to
other populations. To address this limitation, we
attempted to partially overcome the gap by performing a
replication analysis in the same population, utilizing
serum creatinine. Although serum creatinine is a
www.thelancet.com Vol 95 September, 2023
commonly used measure for kidney function, it is
important to acknowledge that it may not capture the
same variants as eGFRcys, and creatinine levels are also
driven by any aspect of the creatinine/creatinine pro-
duction pathway. Thus, while our replication study us-
ing serum creatinine adds valuable insights, it is crucial
to recognise the potential differences and limitations
associated with using an alternative biomarker. The
absence of previous investigations utilizing eGFRcys in
Africa underscores the need for future research en-
deavours to further elucidate the genetic underpinnings
of kidney function in this region, specifically utilizing
the same biomarker for a more comprehensive
understanding.

There is also a great need for multi-omics resources
in Africa to follow up on significant findings and gain
biological insights. Future studies on functional exper-
iments using model organisms in Africa are also
necessary to ensure the validation of potentially causal
variants.
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