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Abstract

Background

As of 2021, the National Kala-azar Elimination Programme (NKAEP) in India has achieved

visceral leishmaniasis (VL) elimination (<1 case / 10,000 population/year per block) in 625

of the 633 endemic blocks (subdistricts) in four states. The programme needs to sustain this

achievement and target interventions in the remaining blocks to achieve the WHO 2030 tar-

get of VL elimination as a public health problem. An effective tool to analyse programme

data and predict/ forecast the spatial and temporal trends of VL incidence, elimination

threshold, and risk of resurgence will be of use to the programme management at this

juncture.

Methodology/principal findings

We employed spatiotemporal models incorporating environment, climatic and demographic

factors as covariates to describe monthly VL cases for 8-years (2013–2020) in 491 and 27

endemic and non-endemic blocks of Bihar and Jharkhand states. We fitted 37 models of

spatial, temporal, and spatiotemporal interaction random effects with covariates to monthly

VL cases for 6-years (2013–2018, training data) using Bayesian inference via Integrated

Nested Laplace Approximation (INLA) approach. The best-fitting model was selected based

on deviance information criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC)

and was validated with monthly cases for 2019–2020 (test data). The model could describe

observed spatial and temporal patterns of VL incidence in the two states with widely differing

incidence trajectories, with >93% and 99% coverage probability (proportion of observations
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falling inside 95% Bayesian credible interval for the predicted number of VL cases per

month) during the training and testing periods. PIT (probability integral transform) histo-

grams confirmed consistency between prediction and observation for the test period. Fore-

casting for 2021–2023 showed that the annual VL incidence is likely to exceed elimination

threshold in 16–18 blocks in 4 districts of Jharkhand and 33–38 blocks in 10 districts of

Bihar. The risk of VL in non-endemic neighbouring blocks of both Bihar and Jharkhand are

less than 0.5 during the training and test periods, and for 2021–2023, the probability that the

risk greater than 1 is negligible (P<0.1). Fitted model showed that VL occurrence was posi-

tively associated with mean temperature, minimum temperature, enhanced vegetation

index, precipitation, and isothermality, and negatively with maximum temperature, land sur-

face temperature, soil moisture and population density.

Conclusions/significance

The spatiotemporal model incorporating environmental, bioclimatic, and demographic fac-

tors demonstrated that the KAMIS database of the national programmme can be used for

block level predictions of long-term spatial and temporal trends in VL incidence and risk of

outbreak / resurgence in endemic and non-endemic settings. The database integrated with

the modelling framework and a dashboard facility can facilitate such analysis and predic-

tions. This could aid the programme to monitor progress of VL elimination at least one-year

ahead, assess risk of resurgence or outbreak in post-elimination settings, and implement

timely and targeted interventions or preventive measures so that the NKAEP meet the target

of achieving elimination by 2030.

Author summary

In India, VL has been endemic in four states (Bihar, Jharkhand, Uttar Pradesh, and West

Bengal), having over 165 million population. The national programme achieved elimina-

tion (<1 case / 10,000 population/year per ‘block’) in 625 of the 633 endemic blocks in

2021. While sustaining elimination level, the programme needs to target other blocks yet

to reach elimination to achieve the WHO 2030 target. We fitted a variety of spatiotempo-

ral models to 72-monthly reported VL cases (2013–2018, training period) from 491

endemic and 27 non-endemic blocks in Bihar and Jharkhand. The best fitting model was

validated with 24-month reported cases (2019–2020, test period). Model predictions agree

with>93 and 99% of the monthly-observations for the periods. Forecasting for 2021–

2023 showed that incidence is likely to exceed elimination threshold in 16–18 and 33–38

historically high endemic blocks of Jharkhand and Bihar. Fitted model showed that VL

incidence is positively associated with mean temperature, minimum temperature,

enhanced vegetation index, precipitation, and isothermality, and negatively with maxi-

mum temperature, land surface temperature, soil moisture and population density. Fore-

casting VL incidence at block level can aid to monitor elimination progress, target the

blocks yet to reach elimination and long-term monitoring of risk of resurgence during

post-elimination.
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1. Introduction

Leishmaniases are neglected tropical diseases caused by Leishmania protozoa transmitted to

humans by the bites of infected female phlebotomine sand flies [1]. In India, visceral leishman-

iasis (VL) is caused by Leishmania donovani and transmitted by the infective bites of Phleboto-
mus argentipes. As of 2021, over 165 million people [2] from 633 blocks (subdistricts) in 54

districts of the four endemic states, Bihar (458/534 blocks in 33 districts), Jharkhand (33/34

blocks in 4 districts), Uttar Pradesh (22/133 blocks in 9 districts) [3] and West Bengal (120/204

blocks in 11 districts) remain at risk of VL infection. The National Health Policy-2002 set the

goal of Kala-azar elimination as a public health problem (less than 1 case per 10,000 population

per year at block level) in India by the year 2010 which was revised to 2015 and again to 2030.

The National Kala-Azar Elimination Programme (NKEP) has aimed to achieve the goal of

elimination of VL by detection and treatment of cases and reducing vector density by indoor

residual spraying with synthetic pyrethroids. The programme has made significant progress

and achieved elimination in 625 of the 633 endemic blocks in the four states. Only 8 blocks in

6 districts were above the elimination threshold in 2021 [2]. The disease continued to decline

from 29,000 cases in 2010 to less than 2000 cases in 2021 [4,5]. Under NKEP it is mandatory

for all the states to report kala-azar cases every month, including ‘zero’ cases, to a repository

centrally administered by National Vector-Borne Diseases Control Programme (NVBDCP,

now renamed as ‘National Centre for Vector Borne Diseases Control, NCVBDC), Ministry of

Health and Family Welfare (MOHFW), Government of India, called Kala-Azar Management

Information System (KAMIS). The KAMIS database is being used to monitor the spatial and

temporal trends in VL incidence. The data can further be potentially used to predict / forecast

VL outbreak or resurgence especially during post elimination. This is important to rule out the

possibility that the observed down-trend being accelerated by the “natural” fluctuation of the

disease (disease incidence in India is cyclic) [6,7] rather than entirely due to the effect of inter-

ventions [8], as well as to prevent potential outbreaks when herd immunity is in weakening

phase [9].

There has been growing interest on the application of statistical–spatial, temporal and spa-

tiotemporal models to quantify spatial, temporal and spatiotemporal patterns of vector-borne

diseases, e.g. lymphatic filariasis [10,11], malaria [12–15], dengue [16] and health outcomes

[17]. While spatial models account for correlation and draw strength across neighbouring

areas to produce more stable estimates of disease risk (areas close together tend to have more

similar risks than areas far apart) [18], temporal models account for correlation over time lag

and indicate how risk evolves over time. These models are valuable to assess the effect of pre-

vention or intervention measures. However, investigating only spatial or temporal pattern of

disease may not able to demonstrate how a disease is changing over time and space. Spatiotem-

poral models overcome these limitations by enabling identification of how disease risk varies

over both space and time.

A few studies in the countries endemic for cutaneous leishmaniasis (CL) (Costa Rica,

Colombia, Brazil, and Sri Lanka) have investigated association of spatial and temporal distri-

bution of CL incidence with climate and environment variables [19–25]. These studies have

applied either spatial models or geostatistical models to determine the predictors of CL inci-

dence. To our knowledge, only two studies in Brazil [26] and Ethiopia [27], have applied spa-

tiotemporal models to identify the underlying risk factors of human VL incidence. The study

in Brazil used GAM (generalized additive models) and showed that quality of life in an urban

area (a composite index related to income, education, housing, and environmental sanitation)

was inversely related to VL incidence. Godana et al. [27] in Ethiopia followed a stochastic par-

tial differential equation approach using Integrated Nested Laplace Approximation (INLA)
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and confirmed the association of VL incidence with meteorological, demographic, sociodemo-

graphic, and geographic covariates at health facility level.

Statistical scanning techniques have been employed in Bangladesh to describe the spatial-

temporal heterogeneity or clustering of VL cases at regional scale. However, the study neither

considered any risk factors to identify the clusters nor to forecast incidence [28]. In India, anal-

yses of the association of VL incidence with climatic factors, and vector density have been

done but are mostly limited to small geographical areas [9,29–31]. The studies focused towards

identifying drivers of hotspots at the village or household level [9,30,31]. Deb et al. [7], applied

a negative binomial regression model to the state level annual VL incidence data from Bihar

and showed significant negative associations of VL incidence with maximum temperature,

and average temperature. Bhunia et al. [29], analyzed district level VL incidence data and

observed VL incidence in the Gangetic plain of Bihar is positively associated with environmen-

tal (presence of water bodies, woodland and urban, built-up areas, soil type) and climatic (air

temperature, relative humidity and annual rainfall) factors.

Nightingale et al. [32], applied a spatiotemporal model to the block level monthly VL cases

reported in Bihar and Jharkhand from 2013–2018, and showed that VL incidence at block

level can be predicted three or four months ahead with similar accuracy and precision as one-

month ahead. However, the analysis did not consider other factors that could have potentially

impacted the spatial and temporal patterns of VL incidence. The population dynamics of sand

flies, the vectors of VL, depend on environmental, demographic, and human behavioral fac-

tors, and hence the diseases caused by Leishmania parasites and transmitted by sandflies are

dynamic [33]. With the elimination of visceral leishmaniasis targeted for 2030, it is necessary

to understand the spatial and temporal dynamics of the disease incidence and its relationship

with potential risk factors so that preventive / effective control strategies can be targeted

appropriately.

In this paper, we extend the work of Nightingale et al. [32] by incorporating potential risk

factors (environment, bioclimatic and demographic covariates) of VL incidence in to spatial,

temporal and spatiotemporal models, using the Integrated Nested Laplace Approximation

(INLA), which is computationally less challenging than MCMC (Markov chain Monte Carlo)

methods for Bayesian inference. We validate the best fitting model with observations not

included in model building and predict the incidence trends beyond the period of

observations.

2. Methods

2.1. Ethics statement

The VL case data were collected as part of routine programme activities conducted by the

NCVBDC and therefore no ethical clearance was required for secondary data analysis. The

ICMR-VCRC (Indian Council of Medical Research–Vector Control Research Centre) has

obtained approval to use the secondary data from the NCVBDC and the proposal was cleared

by the Health Ministry Clearance Committee, Govt of India. Ethical clearance was also

obtained from the Observational/Interventions Research Ethics Committee at London School

of Hygiene and Tropical Medicine (LSHTM) (ref: 14674). As all data were analyzed anony-

mously, individual consent was not required.

2.2. Study area

Fig 1 shows the map of study areas (Bihar and Jharkhand states) and their Geographic location

in India. Bihar is a state located in eastern India, bordered by Nepal, West Bengal, Uttar Pra-

desh and Jharkhand. According to 2011 Census, it is the third-largest state by population and

PLOS NEGLECTED TROPICAL DISEASES Modelling spatiotemporal patterns of visceral leishmaniasis in India

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011946 February 5, 2024 4 / 29

https://doi.org/10.1371/journal.pntd.0011946


the 12th largest by land which lies between 21˚58’02”N to 25˚08’32”N latitude and 83˚19’05”E

to 87˚55’03”E, longitude with an average elevation above sea level of 173 feet (53 m). The state

is divided into 38 districts, 534 blocks, 8471 panchayats, and 45,103 villages for administrative

purposes. Bihar has a total land area of 94,163 km2, with 91,838.28 km2 (97.5%) being rural

and 2,324.72 km2 (2.5%) being urban.

Jharkhand is another state located in eastern India, adjacent to Bihar. It was carved out of

the southern part of Bihar on 15 November, 2000. Jharkhand shares its border with the states

of Bihar to the north, Uttar Pradesh and Chhattisgarh to the west, Odisha to the south, and

West Bengal to the east. The state has a land area of approximately 79,714 km2 and is located

between latitude 21˚57’ N to 25˚14’ N and longitude 83˚ 19’ 05” E to 87˚ 55’ 03” E. Jharkhand

has 24 districts and 260 blocks, 32,615 revenue villages, and a population of 33 million people,

making it the 13th most populous state in India.

Fig 1. Map of study area and its geographical location in India. Endemic blocks (peach shade) in the states of Bihar and Jharkhand along with non-endemic

blocks (green shade) bordering endemic blocks in the two states. The base layer map for India state boundary were downloaded from https://onlinemaps.

surveyofindia.gov.in. Block level shapefile for Bihar and Jharkhand were developed in ArcGIS software (https://www.arcgis.com) by digitization tool using base

layer from the India village directory, Census of India 2011, download from https://lgdirectory.gov.in.

https://doi.org/10.1371/journal.pntd.0011946.g001
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A block is the second level administrative unit after a ‘district’, and there are several blocks

in each district. Fig 1 depicts the map of the blocks in the states of Bihar and Jharkhand under

investigation. The blocks were chosen as the unit of analysis as the national programme aims

to achieve elimination at block level, defined as 1 VL case per 10,000 population per year at

block level.

According to the 2011 Census data, 88.7% of population in Bihar live in rural blocks, while

11.3% of population reside in urban blocks of Bihar. The population density in the state is

1102.4 people per km2, with 1005.4 in rural (range: 829 to 40801) and 5057.8 in urban blocks

(range: 62 to 3056). In Jharkhand around 76% of population lives in rural blocks and the bal-

ance of 24% in urban blocks. The state level population density is about 414 per km2, with

323.4 in rural (range: 60 to 1955) and 3527.5 per km2 in urban (range: 539 to 29017) blocks.

For the present study, we have included 469 of the 534 blocks in the state of Bihar (all the

458 VL endemic blocks spread over 33 districts, and 11 non-endemic blocks bordering the

endemic blocks in Aurangabad district (Fig 1). Of those included, 330 blocks (includes 11

non-endemic) are rural settlements with populations ranging from 30777 to 4,35,676 and 139

being a mix of urban and rural settlements with populations ranging from 4406 to 16,87,828.

The population density ranged from 199.3 to 10512.4/Km2 in different blocks. The total num-

ber of non-endemic VL blocks in Bihar was 65, with 63 being rural and 2 being urban

settlements.

In Jharkhand state, we have included a total of 49 of the 260 blocks (all the 33 VL endemic

blocks in 4 districts and 16 non-endemic blocks bordering the endemic blocks were chosen

from Jamtara, and Deoghar districts) (Fig 1). Out of 49 blocks, 14 blocks are occupied by

mixed urban and rural villages with populations ranging from 5868 to 2,03, 123, while the

remaining 35 blocks (includes 16 non-endemic blocks) are rural blocks with population rang-

ing from 42,063 to 2,60,403. The population density in the state ranged from 377.3 to 1393.9/

km2 in different blocks. In Jharkhand, the total number of non-endemic blocks was 227, with

207 being rural and 20 being urban settlements.

2.3. Data

2.3.1. VL case data. This study used the block level monthly VL cases reported from the

two VL endemic states, namely Bihar and Jharkhand. The data were collected by the NCVBDC

facilitated by CARE India using KAMIS. KAMIS data base has details of individual case rec-

ords by date of diagnosis and geo-coordinates. We downloaded Individual case records for

Bihar and Jharkhand for the period from 01 January 2013 to May 2021, which were then aggre-

gated by block, and month of diagnosis. The block wise monthly data were then merged with

environment, bioclimatic and demographic data set.

2.3.2. Covariates data. A description of the block-level covariates considered in this study

to evaluate their possible association with VL incidence is given in S1 Table.

Environment, climate and bioclimatic data

We have extracted remotely sensed monthly covariates data available for eight variables, for

each of 518 endemic and non-endemic blocks (Bihar:458 endemic and 11 non-endemic blocks

in 33 districts; Jharkhand: 33 endemic blocks in 4 districts and 16 non-endemic blocks in 2 dis-

tricts) for the period from Jan 2013 to Mar 2023. The eight variables are related to bio-climatic,

environment and climatic factors. The bioclimatic variables include BIO-1(mean tempera-

ture), BIO-3 (isothermality) and BIO-12 (precipitation) with spatial resolution of 1 km were

extracted from the WorldClim database (ver. 2.1, released in Jan 2020, https://www.worldclim.

org/) (S1 Table) using Biovar’ function in R. The environment variables such as land surface
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temperature (LST, 6 km resolution), enhanced vegetation index (EVI, 1 km resolution) were

extracted from MODIS (Moderate-resolution Imaging Spectroradiometer) data base using

‘MODISTools’ package in R [34] https://github.com//seantuck12/MODISTools) and soil

moisture (0.25˚ x 0.25˚ resolution) extracted from Copernicus (https://cds.climate.copernicus.

eu/). The two climatic variables, maximum and minimum temperature (1 km resolution) were

extracted from WorldClim database. Block level estimates for each covariate were obtained by

specifying the latitude and longitude of a block representing the centroid.

As the covariates data were remotely available only up to March 2023, the data for the

period April 2023 –December 2023 were derived by averaging the values for each covariate per

month over the period from April 2013—Dec 2022.

Demographic data

Block wise population data and decadal growth rates for 2011 were obtained directly from the

2011 national census [35]. The block level population data for the period from January 2013 to

December 2023 were estimated according to estimated decadal growth rates for each block.

The estimated population per month for each block was then used to calculate the population

density per km2.

2.4. Statistical analysis

2.4.1. Selection of covariates. We calculated the Pearson’s correlation coefficient (r)) for

each year (temporal correlation) to identify the covariates that significantly correlated with

monthly VL incidence (combined for all blocks). Similarly, ‘r’ was also calculated for each

block to assess the spatial correlation between covariates and monthly VL incidence (com-

bined for all years). Covariates with P< 0.2 at least in one of the years during 2013–2020 or in

one of the blocks are considered for subsequent Bayesian spatiotemporal modelling analysis.

2.4.2. Standardized incidence ratio (SIR). We calculated the SIR in block i (i = 1,. . .,

518) and month j (1, 2, . . .., 12) in year t (t = 2013, 2014,. . ., 2020) as the ratio of the number of

observed cases Oijt to the number of expected cases Eijt in the ith block in month j and year t:

SIRijt ¼
Oijt

Eijt
;

with the expected number of cases calculated as,

Eijt ¼ Nijt � r2013;

Where Nijt is the population in the ith block in month j and year t, and r2013 is the reference

rate based on all blocks and months in the base year 2013 and is calculated as,

r2013 ¼

P12

j¼1

P518

i¼1
O2013

ij
P12

j¼1

P518

i¼1
N2013

ij

Where O2013
ij and N2013

ij are the reported number of VL cases and projected census popula-

tion in block I, in month j in year 2013 respectively.

Areas with ‘SIR’ values higher than 1 will stand for an excess of risk, while values lower than

1 mean a lower risk for the population in that unit. However, these measures are extremely

variable when analyzing rare diseases or low-populated areas, as is the case of high-dimen-

sional data. In order to manage this situation, statistical models that stabilize the risks (rates)

borrowing information from neighboring regions are being considered. Generalized linear
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mixed models (GLMM) are typically used for the analysis of count data within a hierarchical

Bayesian framework.

We evaluated the progress towards the targeted reduction of VL incidence in the years

2013–2023, by considering the incidence in the year 2013 as the reference rate for the respec-

tive block. This will make it possible to compare incidence rates in subsequent years. The

expected counts therefore represent the total number of VL cases that one would expect if the

population in block i had the same per capita as in 2013.

2.4.3. Model description. We considered non-parametric models with different space-

time interactions [36] to study the risks of VL incidence by incorporating fixed effects (covari-

ates), main spatial, and temporal random effects, and space-time interactions. The spatiotem-

poral models are flexible to assess the effects of covariates, to describe spatial relationships

between blocks, to capture temporal trends that may be or may not be linear and to account

for the block-specific characteristics.

As the reported VL cases are variable over time within blocks, we assumed the negative

binomial probability distribution to describe the number of reported cases Oijt in block i,
month j and year t with mean μijt and a constant dispersion parameter k:

Oijt � Negbinðmijt; kÞ

and

logðmijtÞ ¼ logðEijtÞ þ logðyijtÞ

Where Eijt (expected number of cases in block i in month j and year t) is an offset to control

for the population size and θijt is the mean relative risk (RR). The log-relative risk is modelled

as

logðyijtÞ ¼/ þ
X8

k¼1

bkXk þ ðxi þ liÞ þ ðgjt þ φjtÞ þ dijt ð1Þ

Where α is the intercept or global rate, βk are the ‘fixed effects’ of the covariates Xk, ξi and λi

are the structured and unstructured spatial random effects, γjt and φjt are temporally struc-

tured, and unstructured random effects capturing the global spatial and temporal patterns

associated with unobserved and unknown covariates, and δijt is the spatiotemporal interaction

random effect dealing with specific temporal trends in each block or changes in the global spa-

tial pattern with time. The spatiotemporal interaction term concerns the interaction between

one of the spatial components (structured or unstructured) with one of the temporal compo-

nents (structured or unstructured), leading to four types of interactions (Blangiardo and

Cameletti, 2015): (i) the simplest is the interaction between the unstructured components of

space and time (Type I), (ii) Interaction between unstructured spatial component and struc-

tured temporal component (the structured temporal component is independent of spatial

neighborhoods, Type II), (iii) interaction between structured component of space with

unstructured component of time (the spatial structure is independent between the other time

points, Type III), and (iv) interaction between structured component of space interacts with

structured component of time (temporal dependent structure of each neighbourhood depends

on the temporal pattern of adjacent neighborhoods, Type IV).

2.4.4. Model fitting. The spatiotemporal model (Eq 1 has been fitted considering one of

the priors for space (ICAR, BYM2, LCAR) and RW1 or RW2 prior for time, and four types of

interaction. For comparison, we also fitted the additive models, i.e., Eq (1) without
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spatiotemporal interaction random effects for the ICAR, and BYM2 and LCAR priors.

logðyijtÞ ¼/ þ
X8

k¼1
bkXk þ ðxi þ liÞ þ ðgjt þ φjtÞ ð2Þ

Thus altogether, we have fitted a total of 37 models with covariates, which include (i) main

spatial and temporal random effects [9 additive models, combination of different priors for the

structured spatial effect (LCAR. BYM2 and ICAR), and structured temporal effect (iid, RW1

and RW2)], (ii) spatiotemporal interactions (27 models) and (iii) a fixed effect. The 27-interac-

tion models include nine type I interaction models (3 structured spatial priors x 3 structured

temporal priors), and six each of type II-IV interaction models [3 structured spatial priors x 2

structured temporal priors (RW1 or RW2) for each]. All the models were fitted to data cover-

ing the period from 2013–2018 (training period).

2.4.5. Prior distributions used for model fitting. We used the intrinsic conditionally

autoregressive (ICAR, also called as Besag model and IGMRF, the intrinsic Gaussian Markov

random field model) [37], or Besag-York-Mollie (BYM2) [38] or Leroux conditionally auto-

regressive (LCAR) [39] priors for describing the spatial random effects. The ICAR prior mod-

els the effect of structured (ξi) and unstructured components together (λi), which cannot be

identified independently [40]. Whereas, the BYM2 or LCAR priors, models both spatially

structured (ξi) and unstructured (λi) random effects, independently.

We used the ‘besag’, ‘bym2’ and the ‘generic1’ models to implement respectively the ICAR,

BYM2 and LCAR prior distributions available in R-INLA package[41] (Integrated Nested

Laplace Approximation) and implemented in ‘R’ software. The ‘generic0’ model, available in

R-INLA, was used to describe the structured spatiotemporal interaction effect (δijt). The ‘rw1’

and ‘rw2’ models available in R-INLA were used to define first (RW1) and second (RW2)

order random walk priors for the temporally structured random effect (γjt). In all the models,

an independent and identically distributed (i.i.d) Gaussian prior was assigned to temporally

unstructured random effect (φjt).

All the models were fitted within a Bayesian framework using the Integrated Nested Laplace

Approximation (INLA) developed by Rue et al. [41] and implemented in the R-INLA package

23.11.26 built in 2023-11-26. (www.r-inla.org). INLA algorithm [41] is a deterministic

approach to approximate Bayesian inference for latent Gaussian models (LGMs), including

the Bayesian generalized linear mixed (GLMM) models [42]. INLA is both faster and more

accurate than Markov chain Monte Carlo (MCMC) alternatives for LGMs and can be used for

quick and reliable Bayesian inference in practical applications [41].

In the Bayesian framework we need to specify prior distributions for the fixed parameters

and the hyperparameters. INLA makes use of a normal diffuse priors with zero mean and a

precision equal to 0.001. We have used the default diffuse priors for all the fixed parameters.

For random effects, we have used uniform prior distributions on the positive real line for the

precisions (LCAR or RW1 or RW2 models) and a standard uniform distribution for the hyper-

parameters of the random effects (LCAR). For the ICAR and BYM2 models, we have used the

default logGamma (1,0.00005) for the log-precisions.

2.4.6. Model selection. We selected the best model based on the Deviance Information

Criterion (DIC), a Bayesian measure for model performance and complexity [43], and the

‘Watanabe-Akaike Information Criterion’ (also known as ‘widely applicable information crite-

rion ‘, WAIC [44]. The DIC is the sum of the posterior mean of the deviance �D� (a measure of

goodness of fit) and the number of effective parameters PD (a measure of model complexity),

i.e.

DIC ¼ �D�þ PD
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Models with the lowest DIC and WAIC value provide the best trade-off between model fit

and complexity.

2.4.7. Model validation and predictive performance. The best fitting model was vali-

dated with a test data set (2019–2020) and was further used to forecast VL incidence beyond

the period of observations (2021–2023). The monthly data on covariates extracted for the

period, January 2021 –March 2023 and the data derived for the period from April 2023 to

December 2023 were used for model prediction. The VL case counts from June 2021- Decem-

ber 2023 were not available for comparison with model prediction.

We assessed the explanatory performance of the best fitting model by examining how much

the model estimated number of cases agree with observations by calculating the Pearson’s cor-

relation coefficient between observations and predictions at block level, cumulated over

months for the training period (2013–18). A value of one indicates perfect correspondence

between the model predictions and observations. The fit of the model was also assessed by cal-

culating the proportion of times (block x months = 518 x 12 months = 6216 block-months,)

the 95% Bayesian credible interval (BCI) for the predicted total number of VL cases that could

capture the observed VL cases per month in each year.

We also assessed the predictive performance of the best fitting model by calculating the

adjusted version of the probability integral transform (PIT) histograms for discrete data. The

PIT evaluates the statistical consistency between the probabilistic forecast and the observation

for the test period [45,46]. An adjusted PIT is defined as,

PITijt ¼ PrðOnew
ijt < OijtjO� ijtÞ þ 0:5� PrðOnew

ijt ¼ OijtjO� ijtÞ

where, O−ijt being the observation vector with ijtth component omitted. The PIT is the value

(lie between 0 and 1) that the cumulative predictive distribution function attains at the

observation. Deviations from uniformity in a PIT histogram indicates model deficiencies:

U-shaped or inverted-U shaped histograms indicate under or over dispersed predictive

distributions.

2.4.8. Assessing significance of predictors. The significance of the fixed effects parameter

estimates was assessed comparing the posterior mean and 95% BCI. The 95% BCI is inter-

preted as the interval that covers the true parameter value with a probability of 95%, given the

evidence provided by the observed data. The 95% BCI for a fixed effect that does not include

‘zero’ is considered as a significant predictor.

3. Results

3.1. VL incidence in Jharkhand and Bihar

Fig 2A shows the temporal evolution of crude VL incidence rates (per 10,000 persons per year)

in the states (blue dashed lines) of Jharkhand and Bihar and the blocks (grey) of respective

states. The state level incidence rates showed a declining trend over the years from 2013 to

2020 in both states, although the rates are above 1 per 10,000 population until 2020 in Jhar-

khand, and below 1 after 2015 and continued to decline steadily over time in Bihar. The inci-

dence rates tend to decline in most of the blocks over the years within each state and are highly

variable among blocks within the respective states. Clearly most of the blocks present crude

rates that are higher than the average for the respective states. The affected blocks of Jharkhand

on average (3.2 per 10,000 population-year) have much higher incidence than Bihar (0.59 per

10,000 population-year). Further, the rates are highly variable among blocks in the state of

Jharkhand (range:0.0–15.8 per 10,000 population-year) when compared to Bihar (range: 0.0–

6.8 per 10,000 population-year).
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Fig 3 shows the status of elimination in Jharkhand and Bihar. In Jharkhand, the percentage

of blocks below the elimination threshold was nil in 2013, around 20% until 2017 and thereaf-

ter started increasing to reach 60% in 2020. In Bihar, the percentage of blocks with incidence

below the elimination threshold was 70% in 2013 and>90% in 2020.

Fig 2. Evolution of the crude rates of VL incidence in (A) Jharkhand and (B) Bihar in the period 2013–2020. Dotted

line: state average. Solid grey: lines block wise incidence per year. Thick solid (red, green, and pink) lines: blocks

with> 12 cases (Jharkhand) and> 6 cases (Bihar) per 10,000 population in 2013.

https://doi.org/10.1371/journal.pntd.0011946.g002
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3.2. Association of VL incidence with covariates

The spatiotemporal patterns of environment, climatic and bioclimatic variables, and spatial

pattern of population density are depicted in S1 Fig. Fig 4 shows the spatial and temporal pat-

terns of correlations of crude VL incidence with each covariate. The spatial correlations range

Fig 3. Percentage of endemic blocks in Bihar (blue) and Jharkhand (red) with incidence below the elimination

threshold (<1 per 10,000 population) in each year.

https://doi.org/10.1371/journal.pntd.0011946.g003

Fig 4. Boxplots showing the (A) spatial (518 blocks) and (B) temporal (2013–2020) patterns of correlations between VL incidence with each covariate: monthly

temperature (X1), isothermality (X2), precipitation (X3), maximum temperature (X4), minimum temperature (X5), soil moisture (X6), population density (X7),

enhanced vegetation index (X8) and land surface temperature (X9). The boxes show the 25th and 75th percentiles of the distribution of the correlation values,

the horizontal line across the box is the median and the ’x’ is the mean. The whiskers extend to 1.5 times the height of the box (i.e. the interquartile range, IQR).

If the data are distributed normally, approximately 95% of the data are expected to lie between the inner fences. Values more than 1.5 IQR’s but less than 3

IQR’s from the end of the box are labelled as outliers (o). The values in square boxes show the number of blocks or years in which the correlations are

significantly different from zero at P<0.2.

https://doi.org/10.1371/journal.pntd.0011946.g004
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between -0.7 and 0.8 for all the covariates. Conservative assessment showed that correlations

of VL incidence with monthly temperature (X1), isothermality (X2), precipitation (X3), maxi-

mum temperature (X4), minimum temperature (X5), soil moisture (X6), population density

(X7), enhanced vegetation index (X8) and land surface temperature (X9) are significantly dif-

ferent from zero (P<0.2) in at least 67 of the 518 blocks (Fig 4A). The correlations of VL inci-

dence with each covariate is highly variable between blocks and its magnitude is in the same or

opposite direction depending on the covariate.

Fig 4B shows the temporal correlations of VL incidence with each covariate. The correla-

tions range between 0.4 and 0.9, -0.26 and 0.45, -0.26 and 0.49, -0.11 and 0.87, -0.09 and 0.67,

-0.7 and 0.07, -0.79 and 0.98, -0.34 and 0.43, and -0.17 and 0.78 for X1, X2, X3, X4, X5, X6, X7,

X8, and X9 respectively. Conservative assessment showed that correlations of VL incidence

with each covariate are significantly different from zero (P<0.2) in at least one of the 8 years

(2013–2020) (Fig 4B). The temporal patterns of correlations indicate that the association of VL

incidence with each covariate is relatively less variable over years compared to spatial

variability.

Since all the nine covariates were significantly associated with incidence conservatively at

P<0.2, at least in one of the 518 blocks or years (2013–2020), we included all of them in the

subsequent Bayesian spatiotemporal modelling of the VL incidence.

3.3. Model comparison and performance

The model selection criteria (DIC, and WAIC) for the complete set of models are displayed in

S2 Table. A comparison of DIC and WAIC for the 37 models showed that all additive and

interaction models provided better fit than a fixed effect model (both DIC and

WAIC > 20,000 points). All the random effects models with RW1 prior for time provided bet-

ter fit than models with RW2. The DIC and WAIC values were remarkably lower for Type II

and IV interaction models than Type I and Type III models with RW1 prior for time, irrespec-

tive of the priors used for structured spatial component (DIC or WAIC > 2500 points for

Type I and > 1900 points for Type III than for Type II or Type IV). Further, comparison of

Type II and Type IV interaction models with RW1 prior showed that Type IV interaction

models with covariates with any of the priors for space (LCAR, BYM2, and ICAR) was found

to perform better than Type II interaction models (at least 300 points less for Type IV interac-

tion model). Among the priors for space in combination with RW1 prior for time, Type IV

interaction models with LCAR, BYM2, and ICAR for space in combination with RW1 prior

for time (Models: 32, 34, and 36; S2 Table) provided better fit than their combination with

RW2 prior: DIC about 3000 points lower for type IV with LCAR, BYM2, and ICAR priors for

spatial and RW1 for time. Among the three models, models 34 and 36 are relatively compara-

ble (difference in DIC: 16) and better than model 32 (DIC > 130 points).

S2 Fig displays the PIT (probability integral transform) histograms for the models with

fixed effects (worse fit, Model No. 1), and type IV interaction models (32–37). The type IV

interaction models include the significant covariates and LCAR or BYM2 or ICAR prior for

space and RW1 or RW2 prior for time. Clearly, the forecasts by type IV interaction model with

BYM2 or ICAR and RW1 priors, are reasonably consistent with observations (PIT histograms

approximately uniform) compared to that by type IV interaction models with BYM2 or LCAR

and RW2, and LCAR and RW1 priors for space and time and covariates. Further, the PIT his-

tograms demonstrate that the type IV interaction model (with BYM2 or ICAR and RW1) with

the addition of environmental, climatic and bioclimatic covariates led to a better fit of the

model to the data when compared to the fixed effect model. Although, the BYM2 and ICAR

models with RW1 prior are comparable, the BYM2 can be more useful to provide independent
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estimates for the structured and unstructured random effects than the ICAR model. Therefore,

in all subsequent sections we have presented the results based on type IV interaction model

with BYM2 prior for space and RW1 prior for time with covariates.

Fig 5 compares the model predictions for the entire training period (2013–2018) with

observed total VL cases reported for each block. The Pearson correlation coefficient was 0.99

(95% CI: 0.988–0.992, P<0.0001) indicating a high degree of correspondence between model

predictions and observations over block.

Fig 6 compares the predictive power of models with only fixed effect, and type IV interac-

tion model (BYM2 prior for space and RW1 for time) with covariates for the training (2013–

2018) and test (2019–2020) periods. The predictive powers increased with calendar year for

the type IV interaction model but for the fixed effect model the increase was at a lower level: 53

vs 91% in 2013 to 50 vs 95% in 2018 (training period), and 57 vs 98% in 2019 and 39 vs 99.9%

in 2020 (test period, Fig 6). The overall predictive power was 52.0% for fixed effect model and

94.3% for type IV interaction model.

3.4. Predictors of VL incidence

Fitting the fixed effect model showed that VL incidence is positively associated with minimum

temperature, enhanced vegetation index (EVI), isothermality, and precipitation, and negatively

with monthly mean temperature, maximum temperature, land surface temperature (LST), soil

moisture and population density (Table 1, 95% credible intervals do not include zero). However,

the best fitting model (Type IV interaction with BYM2 for space and RW1 for time with fixed

effects) showed that LST and population density were the only two variables negatively associated

Fig 5. Comparison of observed the and predicted cases in each block, showing the model’s goodness of fit. The solid

diagonal line indicates where values should lie for a perfect correlation between predictions and observations. The predicted

number of cases for each block is an aggregate of cases for all the months during the training period, 2013–2018.

https://doi.org/10.1371/journal.pntd.0011946.g005
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with VL incidence (Table 1, 95% credible interval does not include zero). Consequently, the

blocks with low LST or population density tend to have high incidence of VL and vice versa.

3.5. Overall spatial risk pattern and exceedance probability

Fig 7 maps the block-specific relative risks (Fig 7A) and the probabilities that these block-spe-

cific risks are greater than 1, (Fig 7B). After adjusting for the fixed covariate effects and time

Fig 6. Model predictive power, calculated as the proportion of 95% credible intervals that could capture the true VL cases

per month in each calendar year during training (2013–2018) and test (2019–2020, inside the shaded rectangle box) periods.

https://doi.org/10.1371/journal.pntd.0011946.g006

Table 1. Posterior mean, SD, and 95% credible intervals for the fixed effects based on the model with covariates alone and the best fitting type IV spatiotemporal

interaction model with covariates.

Covariates Model with covariates only Type IV interaction model with covariates

Posterior

mean

Standard deviation

(SD)

95% credible interval Posterior

mean

Standard deviation

(SD)

95% credible

interval

Lower

limit

Upper

limit

Lower

limit

Upper

limit

Intercept -0.379* 0.011 -0.400 -0.357 -1.339* 0.352 -2.028 -0.650

Monthly mean temperature

(BIO 1, X1)

-0.633* 0.096 -0.821 -0.444 -0.270 0.357 -0.970 0.431

Isothermality (BIO 3, X2) 0.900* 0.044 0.813 0.987 -0.079 0.072 -0.221 0.063

Precipitation (BIO 12, X3) 0.087* 0.019 0.051 0.124 0.038 0.026 -0.014 0.090

Maximum temperature (X4) -0.527* 0.082 -0.688 -0.366 0.319 0.192 -0.057 0.695

Minimum temperature (X5) 1.799* 0.109 1.586 2.012 0.063 0.256 -0.437 0.564

Soil moisture (X6) -0.057* 0.017 -0.090 -0.024 -0.048 0.028 -0.102 0.006

Population density (X7) -0.270* 0.011 -0.291 -0.248 -0.241* 0.054 -0.348 -0.135

Enhanced vegetation index (X8) 0.105* 0.012 0.081 0.128 -0.002 0.010 -0.021 0.017

Land surface temperature (X9) -0.129* 0.017 -0.163 -0.095 -0.041* 0.020 -0.081 -0.001

* Significant variables, 95% credible interval does not include zero

https://doi.org/10.1371/journal.pntd.0011946.t001
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random effects, the residual spatial risk pattern provides evidence for a strong spatial heteroge-

neity. Many of the blocks from east to west in the central and northern part of Bihar and all the

endemic blocks in northern part of Jharkhand present a greater risk (relative risk >5.0) than

the blocks in the north-east and southern part of Bihar (relative risk <0.5).

The risk in non-endemic blocks in both Bihar and Jharkhand are less than 0.5 (Fig 7A) and

the probability that the risk greater than 1 is negligible (P<0.1) (Fig 7B). The probability risk

map could be divided into three groups: (i) blocks whose probabilities are greater than 0.9, (ii)

blocks with probability of risk falling between 0.8 and 0.9 and (iii) blocks with probabilities

smaller than 0.2. The blocks with probabilities over 0.9 are classified as high-risk blocks.

3.6. Overall temporal trend in relative risk

Fig 8 shows the temporal relative risk of VL (all blocks combined for a month) in Bihar

(Fig 8A) and Jharkhand (Fig 8B) during the training and test periods. The monthly relative

risk shows an annual peak in both states. Most of the time the risk fluctuates around one until

2020. Thereafter, it tends to increase above one and is 2 times higher in Jharkhand compared

to Bihar. However, the 95% BCI (Bayesian credible interval) indicates that the risk was above

one for the entire study period in both states; In Jharkhand, it is about 7 times higher than that

in Bihar (70 vs 10), indicating that some other factors are differently influencing the two states.

3.7. Spatiotemporal patterns in annual incidence

Fig 9 compares the observed and predicted spatiotemporal patterns of annual incidence of VL

by blocks during the training (2013–2018), testing (2019–2020) and forecasting (2021–2023)

periods. The predicted incidences agree with the observed declining trends in most of the

blocks during the training period, and in 2019 of the testing periods. In 2020, however, the

observed incidence rates were lower than that of predicted. Predictions beyond the period of

observations (2021–2023) showed that the incidence is more or less stable over time. The pre-

dictions also show that most of the endemic blocks in Jharkhand could have restored back to

Fig 7. Posterior means of the block-specific (A) relative risks zi = exp(ξi) and (B) posterior probabilities P(zi>1/O) that the relative risks are greater than

1. Relative risk is>5.0 for blocks lie within circles. Probability that relative exceeds 1.0 is>90% for most of the blocks and is across the centre of Bihar and

almost all the endemic blocks in Jharkhand. The risk in non-endemic blocks in both Bihar and Jharkhand are less than 0.5 and the probability that the risk

greater than 1 is negligible (P<0.1). Block level shapefile for Bihar and Jharkhand were developed in ArcGIS software (https://www.arcgis.com) by

digitization tool using base layer from the India village directory, Census of India 2011, download from https://lgdirectory.gov.in.

https://doi.org/10.1371/journal.pntd.0011946.g007
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Fig 8. Overall temporal trends of VL incidence relative risk (blue solid line) in (A) Bihar and (B) Jharkhand, 2013–2023. Relative risk is 1 on the

dotted horizontal line. The grey shaded area is the 95% Bayesian credible interval for the risk.

https://doi.org/10.1371/journal.pntd.0011946.g008

Fig 9. Spatial pattern in observed and predicted annual VL incidence per 10,000 population during the training (2013–2018), testing (2019–

2020) and forecasting (2021–2022) periods in the states of Bihar and Jharkhand. Model predicted incidence agree with declining trend in most of

the blocks during the training, and in 2019 of the testing periods. In 2020, however, the observed incidence rates were lower than that of predicted.

Predictions beyond the period of observations (2021–2023) showed that the incidence is more or less stable over time. Areas in circles indicate that the

incidence in these blocks are likely to exceed the elimination threshold. Block level shapefile for Bihar and Jharkhand were developed in ArcGIS

software (https://www.arcgis.com) by digitization tool using base layer from the India village directory, Census of India 2011, download from https://

lgdirectory.gov.in.

https://doi.org/10.1371/journal.pntd.0011946.g009
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the 2013 status (incidence above 10 per 10, 000 population) and that the blocks in Bihar are

with an incidence range of 1.0–5.0 per 10,000 population per year; the nonendemic neighbour-

ing blocks both in Bihar and Jharkhand, as expected, are well below the elimination threshold

(Fig 9).

Fig 10 compares the observed and predicted number of blocks exceeding the elimination

threshold in Bihar (Fig 10A) and Jharkhand (Fig 10B) by years. In Bihar, the predicted number

of blocks above the elimination threshold are in agreement with observations until 2019 (95%

CI includes the observations) but in 2020, the observations are fewer than that model pre-

dicted. Predictions for 2020 indicate that 32 blocks could have exceeded the elimination

threshold against 8 blocks that were actually reported (Fig 10A). The predictions for 2021–

2023 also indicate that 33–38 blocks could have exceeded the threshold in Bihar.

Fig 10. Observed and predicted trends in number of blocks above elimination threshold in the states of Bihar (A) and

Jharkhand (B). Values above or inside the bars indicate the observed or model predicted number of blocks exceeding

elimination threshold in each year. Error bars show the 95% confidence interval for predicted number of blocks above

the elimination threshold. The upper 95% CI for 2021–2023 show that the incidence is likely to exceed the elimination

threshold in 33, 37 and 38 blocks in Bihar and 16, 17, and 18 blocks in Jharkhand.

https://doi.org/10.1371/journal.pntd.0011946.g010
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In Jharkhand, the number of blocks above the elimination threshold are consistent with

observations (95% CI includes observation) during the training and testing periods (Fig 10B).

Predictions beyond the period of observations (2021–2023) showed that numbers of blocks

likely to exceed elimination threshold ranged from 16–18.

A list of blocks in which the annual incidence above the elimination threshold is given in

S3 Table.

3.8. Model performance in selected blocks

We have compared the best fitting model performance in two different epidemiological set-

tings: (i) blocks where the observed incidence in 2013 is well below the elimination threshold

and (ii) in those where it is above the elimination threshold. The results for a few selected

blocks from each setting are presented below.

Generally, the model predictions agree with the observed declining trends in many blocks

of both the settings during training and testing periods. Predictions beyond the period of

observations (2021–2023) showed that the annual incidence is more likely to exceed the elimi-

nation threshold in the blocks where the reported VL incidence was > 6 per 10,000 population

in 2013. For example, in the three blocks each from Bihar (Kusheswar Asthan Purbi, Pursani

and Basantpur_S) and Jharkhand (Gopikandar, Boarijor and Sundarpahari), where the annual

incidence was above 6 in 2013, the model predictions agree with the exponentially declining

observed trends in incidence (Fig 11) in all the blocks until 2020. However, the predictions for

2021–2023 indicate that VL incidence is likely to be above (one in Bihar and all the three

blocks in Jharkhand) the elimination threshold.

Fig 12 illustrates the model performance in (A) two of the blocks each in Bihar (Barauni

and Gopalpur) and Jharkhand (Mandro and Sahibganj) where the annual incidence in 2013

Fig 11. Spatiotemporal variation in 3-blocks each with annual incidence> 6 or > 12 per 10,000 population in 2013

respectively in Bihar (top panel) and Jharkhand (bottom panel). The predicted trends closely mimicked the declining observed

trends in all the 3 blocks for both Bihar and Jharkhand until 2020. The red vertical line indicates the period up to which VL case

data are available (up to May 2021). Predictions for 2021–2023 indicates the likelihood of exceeding the elimination threshold (1/

10,000 population) in one block Bihar and all the three selected blocks in Jharkhand.

https://doi.org/10.1371/journal.pntd.0011946.g011
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was ‘0’, and (B) in another two blocks each in Bihar (Balia and Sahepur Kamal) and Jharkhand

(Ranishwar and Barharva) well below the elimination threshold (0.1 to< 1 per 10,000 popula-

tion).The observed incidence continued to be below the elimination threshold during training,

testing and forecasting periods in both settings. The model predictions for all the blocks are in

line with observed trends but stochastic effects dominate the patterns in the blocks with ‘0’

incidence during 2013: high variability in the observed and predicted trends (Fig 12B).

4. Discussion

In this study, we have developed and validated a spatiotemporal modelling framework for pre-

dicting block level VL incidence for all the endemic blocks (491) and a few selected non-

endemic blocks (27) in Bihar and Jharkhand states. Earlier, Nightingale et al. [32] applied a sta-

tistical model on surveillance data (2013–2018) collected from the same study area and fore-

casted monthly VL incidence at the block level, which predicted the trends 1-month,

3-months and 4-months ahead. The forecasts could be used to help the programme for logis-

tics management in advance. The authors considered that the current incidence in a block is

related to (i) previous incidence in the same block (autoregressive effect), (ii) previous inci-

dence in surrounding blocks (neighbourhood effect), and (iii) intrinsic block level factors (geo-

graphical or demographic), called as‚ ‘endemic ‘. The model considered population density as

the only ‘endemic’ factor. In this study, we extended the work of Nightingale et al.[32] to

improve the predictive power of the model by (i) incorporating data on environmental,

Fig 12. Model performance in selected blocks of Bihar and Jharkhand where the annual incidence was (A) ‘0’, and (B) 0.1–1.0 per 10,000 population in

2013. Predicted trends closely mimicked the declining observed trends in all the 8 blocks, and sustained below the elimination threshold (1/10, 000

population) in all the blocks. A value of ‘0.01’ was added to blocks in which the incidence was ‘0’ to plot in the log scale.

https://doi.org/10.1371/journal.pntd.0011946.g012
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climatic, bioclimatic and demographic factors that influence VL transmission dynamics, (ii)

adding more data on monthly reported VL cases (until May 2021), and (iii) fitting spatial, tem-

poral and spatiotemporal random effects models to minimize the variability unexplained by

the fixed effect covariates using the computationally less demanding INLA approach [18, 41,

47] by means of the R-INLA package (www.r-inla.org). The best fitting spatiotemporal model

(type IV interaction model with covariates, no. 34 in S2 Table) could better explain the

observed spatial and temporal patterns of annual VL incidence in most of the blocks (99% of

observations over 24 months of testing period, 2019–2020, Fig 6), compared to the model of

our earlier study (94% of observations over 24 months testing period, 2017–2018) [32]. The

DIC values for the model with fixed effect has declined from 103,428.99 to 75,159.58 (27%

reduction) for the type IV interaction model with covariates. Further, the overall predictive

power for the years 2013–2020 was relatively higher for type IV interaction model than the

model with fixed effects only (94.3 vs 52.0%) (Fig 6). Thus, we have shown that incorporation

of environmental, climatic and demographic covariates into a spatiotemporal interaction

model improved its predictive ability highlighting the importance of these data in driving the

spatial and temporal heterogeneity in VL incidence.

The predictions using the best fitting model could also describe the observed trends in two

heterogeneous settings, i.e. in the blocks with VL incidence above elimination threshold in

2013 and in the blocks with incidence well below the threshold, in the two states with widely

differing incidence trajectories over both space and time (Figs 11 and 12). Model predictions

for non-endemic blocks bordering endemic blocks in both Bihar and Jharkhand indicates that

the risk of VL in these blocks continued to be negligible (Fig 7).

Before arriving at the final spatiotemporal model, we have fitted a fixed effects model relat-

ing covariates with VL case counts. The model identified significant positive association of VL

incidence with minimum temperature, EVI, precipitation and isothermality, and a negative

association with monthly mean temperature, maximum temperature, LST, soil moisture and

human population density. A systematic review showed that the association of VL and CL inci-

dence with climatic conditions differed among geographical regions [48]. In the Gangetic

plain of Bihar, VL incidence is positively associated with environmental (presence of water

bodies, woodland and urban, built-up areas, soil type) and climatic (air temperature, relative

humidity and annual rainfall) factors [29, 49]. In Muzaffarpur district, Bihar, the VL incidence

was positively associated with rainfall and negatively with relative humidity [50]. Studies in

Brazil reported an inverse relation of VL incidence with annual or mean of 3-year precipita-

tion, and socioeconomic factors and no association with presence of vegetation [21, 51].

Another study in Brazil found that areas with high human population density and abundant

vegetation are associated with high VL incidence [52]. Our study shows that the population

density was negatively associated with VL incidence, although there was a positive correlation

with EVI. This could be attributed to the fact that a large proportion of population at risk

(>75%) live in rural blocks having relatively low population density (Bihar: 1005.4 in rural and

5057.8 per km2in urban; Jharkhand: 323.4 in rural and 3527.5 per km2 in urban) and abundant

vegetation (as indicated by EVI), which are positively associated with VL incidence. Abun-

dance of vegetation seems to make the difference as it can affect the LST and availability of

sandfly breeding and resting habitats. Therefore, sandfly density (human-vector contact) and

VL transmission are expected to be higher in rural areas, where population density is low, and

vegetation is abundant. There were studies that demonstrated either positive or negative asso-

ciation of Phlebotomus argentipes (the vector of VL) density with climatic factors [53] includ-

ing NDVI/vegetation cover. In our model, we could not consider sandfly density as the data

collected by a standardized method were not available at block level.
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The final spatiotemporal model also showed that VL incidence is negatively associated with

LST and population density, as indicated by fixed effect models. However, the final model

showed that the association of VL incidence with all other covariates were insignificant. This

contradicts with correlation analyses of fixed effect model that showed significant positive or

negative correlations with all the covariates. Generally, in the space-time interaction models,

the associations of covariates with response variable are reported to be masked due to inclu-

sion of temporarily correlated random effects and space-time interaction effects (spatially and

temporarily correlated) [54]. Such confounding effects could have been alleviated by applying

spatiotemporal models with restricted regression or orthogonality constraints approaches

[54]. These authors, applying the above techniques, estimated association between dowry

deaths and socio-demographic covariates in the districts of UP, India and demonstrated that

both restricted regression and orthogonal constraints alleviate confounding. They provided

estimates and their standard errors similar to that of the fixed effects model. If the relative risks

/ predicting response are of primary interest, ignoring confounding is not a problem as the

estimates of classical spatiotemporal interaction model (type IV interaction model) are not

affected by confounding. Therefore, we have used the results of fixed effects model for infer-

ring associations, and the classical type IV interaction model with covariates (i.e. the final

model, No. 34, S2 Table) for all predictions.

Model predictions beyond the period of observations (2021–2023) showed that the annual

incidence is likely to exceed the elimination threshold in the blocks where the reported VL

incidence was > 6 per 10,000 population in 2013. More than 54% (18/33 blocks) and 8% (38/

458 blocks) of the blocks are likely to exceed the elimination threshold in Jharkhand and Bihar

respectively in 2023 (S3 Table). The results are to be compared with observed VL incidence in

these blocks in 2021–2023. The block level data for this period were not available until comple-

tion of the study for such comparison. However, the combined data available on VL incidence

for 2021–2022 for all the four VL endemic states in India indicate a significant decline in VL

burden (1276 cases in 2021, 810 cases in 2022). In Bihar alone, the number of cases declined

from 893 in 2021 to 547 in 2022, and in Jharkhand the corresponding figures are 275 and 187

for the same period [5]. Although the national KAELP had integrated the VL case detection

and treatment with the COVID activities [1], it is likely that the cases could have been under

reported during this period and many VL cases might have been left undetected. VL cases

might have been missed as the early clinical symptoms (fever and asthenia) and laboratory

parameters (e.g., leukopenia, thrombocytopenia, and elevated transaminases) might be similar

in patients infected with SARS-CoV-2 and those with VL [55]. This might be an important

issue, which could result in resurgence, and affect the precision of model predictions, as the

model did not account for detection and treatment in the context of COVID-19 pandemic.

Therefore, it is likely that the actual number of blocks above the elimination threshold could

be more than that is being reported.

The predicted 95% credible intervals were wider for the testing and forecasting periods

than that for the training period in a few of the selected blocks (Figs 11 and 12). This suggests

that, during this period, the block level incidence was highly variable both spatially and tempo-

rally, particularly in blocks with zero incidence prior to intensive intervention in 2013. In our

model, we have considered a common dispersion parameter for all the blocks and periods to

describe the heterogeneity in incidence. Block-specific dispersion parameters could have

accounted for this highly variable incidence. However, as reported in our earlier publication, a

block-specific dispersion parameter was not a viable option as some blocks demonstrated zero

incidence for prolonged periods with sporadic cases and if used will lead to unrealistically high

predictions [32]. These patterns (cases become sparser in space and time) could partially be

due to differential intervention efforts, and also expected to be more common as elimination is
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approached, pointing to the need for focused surveillance, and interventions at village level to

stop resurgence and sustain elimination.

Although our model predictions agree with observations during training and testing peri-

ods, the study has a few limitations. In our model, we did not consider the role of PKDL cases

on VL transmission. Recent xenodiagnoses studies have indicated the role of PKDL cases on

the transmission of VL during the inter-epidemic period [56, 57]. Modelling PKDL cases in

the endemic blocks along with covariates, including sandfly density could provide more

insight on the incidence of VL cases, especially when the incidence in the blocks is maintained

below the elimination threshold.

Secondly, it is likely that other co-variate datasets (e.g., human development index, age, and

gender of humans, sandfly density, and vector control efforts such as insecticide spray cover-

age) not considered in this study could have influenced the VL incidence at block level. At the

micro level, influence of literacy level, economic status (poverty) and occupations on VL inci-

dence has been reported in India [58–62] and Nepal [58–62]. Inclusion of these covariates in

the model might add additional power to forecast incidence.

Third, our model-based analysis and the predictions solely depend on the reported VL

cases in different blocks in two endemic states over a time span of 8 years. The quality of sur-

veillance, diagnostic accuracy due to changes in the surveillance activities from only VL to VL

with other comorbidities (VL and HIV or COVID-19) might have varied over time. For exam-

ple, in east Africa, it has been reported that rapid diagnostic test (RDT) is less sensitive in

human immunodeficiency virus (HIV) positive patients than in HIV-negative patients [63],

whereas, in Indian subcontinent, its accuracy in co-infected patients is yet to be established

[64]. As discussed earlier, the diagnostic accuracy is expected to be further lowered during

COVID-19 outbreaks as many VL cases might have been undetected / missed due to coinfec-

tion of VL and COVID. Therefore, our predictions, particularly during COVID-19 outbreak

in 2020 showing higher incidence of VL than that was reported in the two states has to be

viewed in this context.

The final limitation is related to fitting type IV interaction models with restricted regression

or orthogonality constraints approaches to alleviate the effects of confounding the association

of covariates with VL incidence. We could not apply either of these two approaches due to

computational constraints to carry out simulations with large dimension of data (518 blocks x

10 years x 12 months per year = 61440 records) used in this analysis. However, as indicated

earlier, the above refined approaches with type IV interaction model are required only if one

wants to assess the association of covariates with response variable, and predict/forecast from

the same model, else if only prediction is required, the classical type IV interaction model suf-

fice. Accordingly, we measured the association of the covariates with VL incidence based on

fixed effects model, and the classical type IV interaction model for predicting, and forecasting

VL incidence at block level.

Despite the limitations, our work provides a framework that could also be applied to other

settings with anthroponotic leishmaniasis to monitor and forecast the incidence of VL. The

data for other endemic states (West Bengal and Uttar Pradesh) can also be used to inform the

model, improve and update or validate model predictions. Our modelling work demonstrated

the usefulness of KAMIS data for predicting trends in settings with non-zero and zero cases. If

KAMIS database is integrated with the modelling framework with a dashboard facility, it can

be used to predict / forecast VL outbreak or resurgence especially for post elimination periods.

The model predictions could also be used for the non-endemic blocks bordering the endemic

blocks, which could aid the programme to expand the surveillance and control operations in

advance so that the KAEP meet the target of achieving elimination by 2030. This, however,
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would require collaborative efforts of programme authorities, modelling experts and a good

programmer to make it a reality in future.

5. Conclusion

Our spatiotemporal modelling framework after accounting for environmental, bioclimatic and

demographic factors could better explain the observed spatiotemporal patterns in VL inci-

dence at block level (subdistrict) than the model without covariates. Model predictions agree

with>93 and 99% of the monthly-observations for the periods for the training and testing

periods. Forecasting beyond the period of observations (2021–2023) indicated exceedance of

elimination threshold in 16–18 and 33–38 historically high endemic blocks of Jharkhand and

Bihar, although the reported cases for the two states are declining over time. This highlights

the need for the programme to keep vigilance and target control measures in the blocks. The

model can also be used to monitor risk of resurgence / recrudescence in the blocks where the

incidence is well below the elimination threshold, and in the non-endemic blocks bordering

the endemic blocks. Model predictions for blocks in which incidence is just above or below the

elimination threshold and showing high variability indicate need for more targeted actions

such as intensified surveillance and treatment, and preventive measures focused at village

level. The model can be used effectively if the KAMIS database is integrated with the modelling

framework.
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