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Identification of Burkholderia cepacia strains that express a 
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ABSTRACT Burkholderia pseudomallei and Burkholderia cepacia are Gram-negative, 
soil-dwelling bacteria that are found in a wide variety of environmental niches. While 
B. pseudomallei is the causative agent of melioidosis in humans and animals, members 
of the B. cepacia complex typically only cause disease in immunocompromised hosts. In 
this study, we report the identification of B. cepacia strains isolated from either patients 
or soil in Laos and Thailand that express a B. pseudomallei-like 6-deoxyheptan capsular 
polysaccharide (CPS). These B. cepacia strains were initially identified based on their 
positive reactivity in a latex agglutination assay that uses the CPS-specific monoclonal 
antibody (mAb) 4B11. Mass spectrometry and recA sequencing confirmed the identity 
of these isolates as B. cepacia (formerly genomovar I). Total carbohydrates extracted 
from B. cepacia cell pellets reacted with B. pseudomallei CPS-specific mAbs MCA147, 3C5, 
and 4C4, but did not react with the B. pseudomallei lipopolysaccharide-specific mAb 
Pp-PS-W. Whole genome sequencing of the B. cepacia isolates revealed the presence of 
genes demonstrating significant homology to those comprising the B. pseudomallei CPS 
biosynthetic gene cluster. Collectively, our results provide compelling evidence that B. 
cepacia strains expressing the same CPS as B. pseudomallei co-exist in the environment 
alongside B. pseudomallei. Since CPS is a target that is often used for presumptive 
identification of B. pseudomallei, it is possible that the occurrence of these unique B. 
cepacia strains may complicate the diagnosis of melioidosis.

IMPORTANCE Burkholderia pseudomallei, the etiologic agent of melioidosis, is an 
important cause of morbidity and mortality in tropical and subtropical regions world
wide. The 6-deoxyheptan capsular polysaccharide (CPS) expressed by this bacterial 
pathogen is a promising target antigen that is useful for rapidly diagnosing melioido
sis. Using assays incorporating CPS-specific monoclonal antibodies, we identified both 
clinical and environmental isolates of Burkholderia cepacia that express the same CPS 
antigen as B. pseudomallei. Because of this, it is important that staff working in melioi
dosis-endemic areas are aware that these strains co-exist in the same niches as B. 
pseudomallei and do not solely rely on CPS-based assays such as latex-agglutination, 
AMD Plus Rapid Tests, or immunofluorescence tests for the definitive identification of B. 
pseudomallei isolates.

KEYWORDS Burkholderia cepacia, Burkholderia pseudomallei, Burkholderia thailanden
sis, capsular polysaccharide, melioidosis, monoclonal antibody

B acteria in the genus Burkholderia are widely distributed in the environment and 
commonly found in soils and surface waters worldwide (1). While many Burkhol

deria species play beneficial roles as free-living or host-associated microbes, a few 
cause disease in humans and animals. Of particular clinical importance are Burkholderia 
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pseudomallei, the causative agent of melioidosis, and members of the Burkholderia 
cepacia complex that can colonize and infect immunocompromised hosts, especially 
cystic fibrosis and chronic granulomatous disease patients (1). Melioidosis is prevalent 
in tropical countries with the highest number of cases reported in Southeast Asia and 
northern Australia. B. pseudomallei infections are typically acquired through contact with 
contaminated soils or water and predominantly occur in individuals with underlying 
risk factors who reside in endemic areas (2). The clinical presentations of melioidosis 
are diverse and range from localized skin abscesses to acute pneumonia and sepsis, 
the latter of which can be rapidly fatal. Like most Burkholderia species, B. pseudomallei 
is naturally resistant to many commonly used antibiotics and no licensed melioidosis 
vaccines currently exist (3). Because of these issues, the rapid and accurate diagnosis of 
melioidosis is critical.

The current gold standard method for diagnosing melioidosis is the culture and 
identification of B. pseudomallei from clinical samples. This is time- and labor-intensive 
and lacks sensitivity (4). In order to reduce the time to obtain a presumptive iden
tification, various approaches have been used, including latex agglutination with a 
monoclonal antibody (mAb) 4B11 against the 6-deoxyheptan capsular polysaccharide 
(CPS) (5). This approach has been used in clinical and research laboratories in Thailand 
and Laos for many years, and although cross-reactions with other Burkholderia species 
from environmental samples have been reported, this has not previously been reported 
among clinical isolates (6). Such presumptive misidentifications are inevitably misleading 
and might result in patients being treated inappropriately for melioidosis unless the error 
is recognized.

The 6-deoxyheptan CPS expressed by B. pseudomallei is a key virulence determinant 
encoded by a 34.5-kb gene cluster located on chromosome I (7, 8). Experimental 
evidence has shown that CPS reduces phagocytosis of B. pseudomallei by host cells, 
preventing complement factor C3b deposition on the bacterial surface (9). Several 
studies indicate that CPS is a promising vaccine candidate and that antibodies against 
CPS provide protection in animal models of melioidosis (10–13). CPS is also considered 
an attractive antigen for the development of rapid point-of-care diagnostics since it 
is highly conserved among B. pseudomallei isolates and is known to be shed and 
circulate throughout host tissues during active infections (14, 15). In addition to the 
latex agglutination assay mentioned above, lateral flow immunoassays (LFIs) such as 
the Active Melioidosis Detect (AMD, InBios International, Inc.) assay that employs the 
CPS-specific mAb 4C4 have been developed and tested using a variety of Burkholderia 
isolates and clinical samples and have been shown to be highly specific for B. pseudomal
lei (16–18).

Burkholderia thailandensis is a closely related, non-pathogenic, near-neighbor species 
that co-exists in the same environmental niches as B. pseudomallei (19, 20). While lack of 
6-deoxyheptan CPS production was once considered to be a key differentiating feature 
between B. thailandensis and B. pseudomallei, several recent studies have identified B. 
thailandensis variants that express a B. pseudomallei-like CPS (21–26). B. thailandensis 
E555, a soil isolate from Cambodia, is the most well-characterized CPS-expressing variant 
strain to date. E555 has been shown to harbor a highly similar CPS biosynthetic gene 
cluster to that of B. pseudomallei and expresses a structurally identical CPS; however, 
this isolate is avirulent in mice (21, 23). Although B. thailandensis infections have been 
reported in humans, these appear to be exceedingly rare (24, 27–29).

In this study, we report the identification and characterization of three B. cepacia 
isolates that produce a B. pseudomallei-like CPS along with two previously undescribed 
CPS-expressing B. thailandensis strains. Importantly, two of the CPS-expressing B. cepacia 
strains are clinical isolates that were identified in areas where B. pseudomallei is endemic.
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MATERIALS AND METHODS

Strains

The B. cepacia and B. thailandensis strains used in this study are described in Table 1. All 
strains were obtained from the Lao-Oxford-Mahosot Hospital-Wellcome Trust Research 
Unit (LOMWRU) Microbiology Laboratory strain collection in Vientiane, Laos, or the 
Mahidol-Oxford Tropical Medicine Research Unit (MORU) strain collection at Mahidol 
University, Bangkok, Thailand. Work with B. pseudomallei strain K96243 (7) was conduc
ted in CDC-registered biosafety level 3 (BSL-3) facilities in compliance with the rules and 
regulations of the U.S. Federal Select Agent Program.

Clinical isolates

B. cepacia strain 39628 was collected in Laos as a routine diagnostic specimen in 2014 
with oral consent. B. cepacia strain 10223 was obtained from a sputum sample in 
2010 and was stored anonymously as per routine research lab practice at the time. B. 
cepacia strain U668 was collected from a patient in NE Thailand in 1990 and was stored 
anonymously as part of routine lab practice at that time. The researchers did not have 
access to information that could identify individual participants after strain collection.

Latex agglutination assays

The latex agglutination assay is based on a specific reaction between mAb 4B11 and CPS 
of B. pseudomallei. The latex agglutination reagent was prepared by Mahidol University 
and used for testing as previously described (30). Briefly, the assay was performed by 
mixing single bacterial colonies with 10 µL of latex reagent on a glass slide. Agglutination 
was observed by eye within 1–2 min after mixing.

Biochemical tests and antibiograms

Isolates in Laos were presumptively identified as species using the API 20NE (bioMérieux) 
kit according to the manufacturer’s instructions, and antimicrobial susceptibility tests 
were conducted by disk diffusion according to the methods of the Clinical Labora
tory Standards Institute that were current at the time, interpreted according to local 
guidelines (31).

DNA sequencing and polymerase chain reaction

16s RNA sequencing

For the 16s RNA assay, primers 16SU17F and 16s 1541R (PH) were used and adapted from 
Edwards et al. (32). Purified (Qiagen, Germany) amplicons of ~1.5 kbp were sequenced 
(Macrogen, Korea) and analyzed using NCBI databases to confirm the species.

TABLE 1 B. cepacia and B. thailandensis strains used in this study

Species Strain Sample type Country of isolation Latex agglutination result Purified total carbohydrate yield (from 
1 L of culture)

B. cepacia LNT40 Environment Laos + 27.1 mg
B. cepacia 39628 Clinical Laos + 10.2 mg
B. cepacia 10223 Clinical Thailand + 20.4 mg
B. cepacia 2.1B Soil Thailand − 25 mg
B. cepacia U668 Clinical Thailand − 26.8 mg
B. thailandensis E555a Soil Cambodia + 8.8 mg
B. thailandensis SBXCC001 Soil Thailand + 9.5 mg
B. thailandensis SBXPR001 Soil Thailand + 8.8 mg
B. pseudomallei K96243 Clinical Thailand NDb NDb

aPreviously described by Sim et al. (23).
bND, not determined in this study.
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recA sequencing

For the recA polymerase chain reaction (PCR) assay, primers BCR1 and BCR2 were used, 
as described by Mahenthiralingham et al. (33). For recA sequencing, these primers were 
combined with two others: Bcc seqF1 and Bcc seqR2, as described by Turton et al. (34). 
BioNumerics was used to analyze the sequences, which were clustered with type and 
reference strains using the neighbor-joining method.

Matrix-assisted laser desorption/ionization biotyping

Bacterial isolates were prepared and analyzed by the matrix-assisted laser desorp
tion/ionization (MALDI) Biotyper system as previously described (35). Briefly, all isolates 
were cultured on Columbia agar at 37°C under aerobic conditions for 24 h, extracted 
with formic acid, and 1 µL of supernatant was spotted onto an MSP-384 polished 
steel target plate (Bruker Daltonics, Germany) and dried. Following this, 1 µL of a 
saturated solution of MALDI matrix, α-cyano-4-hydroxycinnamic acid (Bruker Daltonics, 
Germany) was applied to each sample and dried. Measurements were performed with 
the Bruker MALDI Biotyper system using FlexControl software (version 3.4.135; Bruker 
Daltonics, Germany). Spectra ranging from 2,000 to 13,000 m/z were analyzed using 
the MALDI-Biotyper software (version 3.1; Bruker Daltonics, Germany) and a reference 
database supplemented with a Burkholderia library (35). An identification score of ≥2.3 
indicated reliable species identification, a score of 2.0–2.29 indicated probable species 
level identification, a score of 1.7–1.9 indicated probable genus level identification, and a 
score of <1.7 indicated no reliable identification (35).

Carbohydrate purification

B. cepacia and B. thailandensis strains were grown overnight in 1 L of Luria Bertani-Lennox 
(LBL) broth at 37°C with aeration. Bacterial cultures were pelleted by centrifugation 
(10 min at 8,000 × g) and the resulting cell pellets were extracted using a modified 
hot aqueous-phenol procedure essentially as previously described (36, 37). Following 
extraction, the phenol and aqueous phases were combined and dialyzed against distilled 
water to remove the phenol. The dialysates were clarified by centrifugation (10 min at 
10,000 × g) and the supernatants were concentrated by lyophilization. The samples 
were then treated with RNase A, DNase I, and proteinase K (50 µg/mL), and the 
resulting carbohydrates were isolated as precipitated gels following successive rounds of 
ultracentrifugation. The gel-like pellets were resuspended in ultrapure water, lyophilized, 
and weighed to determine the yield of total carbohydrate.

CPS-specific lateral flow immunoassays

Active Melioidosis Detect (AMD) Plus Rapid Tests (InBios International, Inc.) were kindly 
provided for clinical work at LOMWRU and used following the manufacturer’s instruc
tions. The AMD Plus Rapid Tests were purchased for research use at the University of 
Nevada, Reno, and used per the manufacturer’s instructions. Purified total carbohydrate 
samples (1 µg) from five B. cepacia strains and one B. thailandensis strain were individu
ally loaded onto rapid tests followed by chase buffer. Results were determined after 
incubation at room temperature for 15 min.

SDS-PAGE, Western immunoblotting, and silver staining

Purified carbohydrate samples resuspended in water were mixed 1:1 with 2× SDS-PAGE 
sample buffer and heated to 100°C for 5 min prior to electrophoresis on 12% Tris-gly
cine gels (Invitrogen). For immunoblot analysis, the antigens were electrophoretically 
transferred to nitrocellulose membranes. The membranes were blocked with 3% skim 
milk in high-salt Tris-buffered saline (HS-TBS; 20 mM Tris, 500 mM NaCl, pH 7.5) for 60 min 
at room temperature and then incubated for 60 min at room temperature with a 1/1,000 
or 1/2,000 dilution of a CPS-specific mAb (3C5, 4C4, or MCA135) or with a 1/400 dilution 
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of a type A lipopolysaccharide (LPS)-specific mAb (Pp-PS-W). To facilitate detection, the 
membranes were incubated for 60 min at room temperature with a 1/5,000 dilution of 
anti-mouse IgG or IgM horseradish peroxidase conjugates (Southern Biotech). The blots 
were visualized using Pierce ECL Western Blotting Substrate (Thermo Scientific) and a 
ChemiDoc XRS imaging system (BioRad). CPS purified from B. pseudomallei RR2683 was 
used as a positive control (11).

For analysis of LPS, the purified carbohydrate samples were electrophoresed on 
12% Tris-glycine gels as described above. Silver staining was conducted essentially as 
previously described (38).

Genomic DNA isolation, genome sequencing, and analysis

B. cepacia (strains LNT40, 39628, and 10223) and B. thailandensis (strains SBXCC001 
and SBXPR001) were grown overnight in LBL broth at 37°C with aeration. DNA was 
extracted from the strains using a Wizard Genomic DNA Purification Kit (Promega) 
as per the manufacturer’s instructions. DNA preparations were further purified by 
ethanol precipitation using a standard protocol. Sequencing of the genomic DNA 
samples was conducted at the Institute for Genome Sciences (IGS) Genomics Resource 
Center (Baltimore, MD, USA). PacBio single-molecule real-time (SMRT) sequencing was 
conducted on a PacBio RS II instrument to ~16× coverage (strains 39268 and LNT40) 
or ~24× coverage (strains 10223, SBXCC001, and SBXPR001) using 20 kb SMRTbell 
libraries and P6C4 chemistry. PacBio genomic data were assembled using the Hierarchi
cal Genome Assembly Process algorithm version 3 (10) implemented in PacBio SMRT 
Portal version 2.3.0 for (strains 39268 and LNT40) (39) or Celera Assembler version 8.2 
(strains 10223, SBXCC001, and SBXPR001) (40). Assemblies were reorganized relative to 
the B. pseudomallei K96243 genome (41).

The IGS Annotation Engine was used for structural and functional annotation of 
the sequences (https://ae.igs.umaryland.edu [42]). Manatee was used to view annota
tions (http://manatee.sourceforge.net/). Submission of the genomes to GenBank and 
comparative analysis of the annotated genomes were conducted by the IGS Informatics 
Resource Center (University of Maryland). Sequence Read Archive (SRA) and GenBank 
accession numbers for each genome are listed in Table 2.

For comparison of the CPS operons, the three B. cepacia and two B. thailandensis 
genomes including the reference genome B. pseudomallei K96243 (NC_006350) were 
run through a comparative analysis pipeline to generate protein ortholog clusters using 
Jaccard-filtered bi-directional best blast matches. Sybil (http://sybil.sourceforge.net/doc
umentation.html), a web-based graphical user interface, was used to search and view 
ortholog clusters. The genomic comparative view pictures of the clusters in the CPS 
operon region were generated by selecting the genomes of interest.

CPS-specific immunofluorescence assay

Immunofluorescence assays (IFAs) using the CPS-specific mAb 4B11 were conducted 
essentially as previously described (43). Briefly, bacteria were cultured in LB broth at 37°C 
overnight following which 1 mL of culture was centrifuged at 10,000 rpm for 5 min, 
washed three times with PBS, and fixed with 500 µL of 2% paraformaldehyde in PBS for 
15 min. The fixed bacteria were washed again with PBS and stained with IFA reagents 
(containing mAb 4B11 and Alexa Fluor 488 conjugated-goat anti-mouse IgG at a dilution 
of 1:1,000 in PBS) for 20 min at room temperature. Bacteria were observed using a laser 
scanning confocal microscope (LSM 700; Carl Zeiss) using a 100× objective lens with oil 
immersion and Zen software (2010 edition, Zeiss, Germany).
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RESULTS

Identification of B. cepacia strains testing positive in the melioidosis latex 
agglutination test

The first cross-reacting B. cepacia isolate (LNT40) was recognized during the re-examina
tion of isolates from an environmental study undertaken in Laos in 2009 (44). Although 
this isolate agglutinated strongly with the anti-CPS monoclonal antibody-based latex 
reagent and gave a strong positive reaction with the AMD test (17), the colony mor
phology was atypical. Subsequent examination by API 20NE, antibiogram (specifically 
resistance to co-amoxiclav), 16S rDNA sequencing, and PCR to distinguish between 
B. pseudomallei, B. thailandensis, and B. cepacia (45) suggested that it was actually a 
member of the B. cepacia complex (data not shown).

In 2014, an oxidase-positive Gram-negative bacillus that agglutinated strongly with 
the latex reagent was isolated at Mahosot Hospital from the sputum of an outpatient. 
Further examination of the isolate (designated strain 39628) confirmed the agglutination 
reaction but API 20NE and antibiogram suggested that the isolate was B. cepacia (data 
not shown). Testing of 32 further clinical isolates of B. cepacia complex from the LOMWRU 
collection revealed that strains LNT40 and 39628 were the only two isolates that gave 
this cross-reaction. In addition, DNA from these 32 isolates was extracted and sent to 
the Antimicrobial Resistance and Healthcare Associated Infections Reference Laboratory 
(AMRHAI), London, UK, for the identification of specific genomovars by recA sequencing. 
Both LNT40 and 39628 were identified as B. cepacia (genomovar I) as were four of the 
other non-cross-reacting isolates. Of the other strains tested, 25 were identified as B. 
cenocepacia IIIA, one each was B. seminalis and Taxon K and one was unassignable (data 
not shown).

MALDI Biotyper analysis of B. cepacia strains

To further characterize the two cross-reacting B. cepacia isolates (LNT40 and 39628) from 
the LOMWRU collection, MALDI biotyping experiments were conducted. For comparative 
purposes, a Thai clinical isolate of B. cepacia (strain 10223) that cross-reacted with the 
latex reagent obtained from the MORU collection and B. pseudomallei strain K96243 were 
also included in this analysis. The three B. cepacia isolates (strains LNT40, 39628, and 
10223) and B. pseudomallei strain K96243 were subjected to MALDI-TOF-MS and analyzed 
using MALDI Biotyper system software with a supplemented Burkholderia reference 
database. Results showed that all of the latex-positive B. cepacia isolates were identified 
as belonging to the B. cepacia complex (score values ≥ 2.300) as opposed to the B. 
pseudomallei complex (Table 3). The three isolates of B. cepacia also demonstrated similar 
protein profile patterns. Peaks were observed at approximately m/z of 2,600, 2,880, 3,130, 
3,250, 3,770, 4,410, 4,810, 5,200, 6,250, 6,500, 7,540, 8,100, and 9,610 for all B. cepacia 
strains and B. pseudomallei (Fig. 1). Importantly, peaks that were unique to the B. cepacia 
isolates were at approximately m/z of 2,200 and 4,700 and peaks at m/z of 2,050 and 
5,800 were only observed in B. pseudomallei. In addition, a peak at m/z of 2,330 was only 
observed in B. cepacia strain LNT40 while peaks at m/z 2,180 and 5,870 were found only 
in B. cepacia strain 10223. Taken together, these data are consistent with the results of 
the latex agglutination assays, API 20NE tests, antibiograms, recA and 16S sequencing, 

TABLE 3 Identification of B. cepacia and B. pseudomallei by Bruker MALDI Biotyper system

Species Strain Identification results by Bruker MALDI Biotyper systema Score valueb

B. cepacia LNT40 B. cepacia 2.420
B. cepacia 39628 B. cepacia 2.442
B. cepacia 10223 B. cepacia 2.516
B. pseudomallei K96243 B. pseudomallei 2.575
aExtended reference profile database for Burkholderia species.
bScore value > 2.3 indicates species identification.
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and PCR tests and support the conclusion that strains LNT40 and 39628 are isolates of B. 
cepacia rather than B. pseudomallei.

FIG 1 MALDI-TOF spectra of B. cepacia strains LNT40, 39628, 10223 and B. pseudomallei strain K96243. The characteristic spectra of the bacterial isolates were 

generated by MALDI-TOF MS. The relative intensities of ions are shown on the y axis, and the mass to charge ratio (m/z) is shown on the x axis.

FIG 2 Analysis of purified carbohydrate samples using Active Melioidosis Detect (AMD) Plus Rapid Tests. Each AMD Plus test was loaded with 1 µg of purified 

total carbohydrate from B. cepacia strains LNT40, 39628, 10223, 2.1B, U668, and B. thailandensis strain E555. The test results were captured after 15 min of 

incubation at room temperature. The control line is indicated by “C” and the test line by “T.” Samples with a line at both positions are considered positive for CPS. 

B. thailandensis strain E555 was used as a positive control.
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Reactivity of B. cepacia strains with CPS-specific mAbs

Total carbohydrate was extracted from B. cepacia strains LNT40, 39628, and 10223 along 
with one clinical and one soil isolate of B. cepacia (strains 2.1B and U668) that tested 
negative in the latex agglutination assay. In addition, three soil isolates of B. thailandensis 
(strains E555, SBXCC001, and SBXPR001) had also been found to agglutinate with the 
latex reagent and/or were known to express the 6-deoxyheptan CPS antigen (21–23). The 
yields of total carbohydrate obtained from these strains ranged from 8.8 to 27.1 mg/L 
and are shown in Table 1. To determine if the purified carbohydrate samples contained 
the CPS antigen of interest, they were tested with AMD Plus LFIs that use the CPS-specific 
mAb 4C4 (17). As expected, B. cepacia strains LNT40, 39628, and 10223, as well as B. 
thailandensis strains E555, SBXCC001, and SBXPR001 exhibited positive results on the 
AMD Plus tests while B. cepacia strains 2.1B and U668 were negative (Fig. 2).

To further characterize the total carbohydrate samples extracted from the B. cepacia 
and B. thailandensis strains, three different CPS-specific mAbs (3C5, 4C4, and MCA147) 
were used in Western immunoblot analyses. As shown in Fig. 3, B. cepacia strains 
LNT40, 39628, and 10223 and B. thailandensis strains E555, SBXCC001, and SBXPR001 
reacted strongly with mAbs 3C5 and 4C4, but B. cepacia strains 2.1B and U668 did not. 
Similar results were observed with mAb MCA147 (data not shown). These findings were 
consistent with the results of both the latex agglutination and AMD Plus immunoassays.

To examine the LPS expressed by the B. cepacia and B. thailandensis strains, SDS-PAGE 
and silver staining were conducted on all of the purified carbohydrate samples. As shown 
in Fig. 4, B. cepacia strains 2.1B and U668 displayed LPS banding patterns that were 

FIG 3 Western immunoblot analysis of purified carbohydrate samples. Purified carbohydrates from 

B. cepacia strains 10223, 39628, LNT40, 2.1B, and U668 (10 µg/lane) and B. thailandensis strains E555, 

SBXCC001, and SBXPR001 (2 µg/lane) were probed with CPS-specific mAbs 3C5 and 4C4. Purified B. 

pseudomallei RR2683 (Bp) CPS (1 µg/lane) was used as a positive control.
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similar to one another as did the three B. thailandensis strains. In contrast, the three 
CPS-expressing B. cepacia strains appeared to have unique LPS banding patterns that 
were different from the other strains tested, with strains 10223 and LNT40 appearing 
similar to one another. To determine if the LPS moieties expressed by B. cepacia and B. 
thailandensis strains could be recognized by the B. pseudomallei type A LPS-specific mAb 
(Pp-PS-W), Western immunoblotting was conducted. Results demonstrated that only the 
B. thailandensis strains reacted with the mAb (data not shown).

Genome sequencing of the latex agglutination positive B. cepacia strains

To determine whether the CPS-expressing B. cepacia isolates LNT40, 39628, and 10223 
harbored the genes necessary for CPS expression in B. pseudomallei, whole genome 
sequencing was conducted. The genomes of two CPS-expressing B. thailandensis strains 
SBXCC001 and SBXPR001 were also sequenced for comparative purposes. The genome 
characteristics of each of the strains sequenced are shown in Table 2. All three B. cepacia 
strains harbored three chromosomes each, with genome sizes totaling ~8.4 to 8.7 Mb 
with G+C contents of ~66.4% to 66.8%. Interestingly, strain 10223 also harbored a 
plasmid of ~212 kb. The two B. thailandensis strains each harbored two chromosomes 
with overall genome sizes of ~6.8 and ~7 Mb with G+C contents of ~67.7% and ~67.5%, 
respectively.

To determine if homologs of the B. pseudomallei CPS biosynthesis genes were present 
in the CPS-expressing B. cepacia and B. thailandensis strains, the K96243 CPS gene 
cluster (locus tags BPSL2787-BPSL2810) was used as a reference. The 34.5 kb region 
of B. pseudomallei K96243 containing 24 genes responsible for CPS biosynthesis was 

FIG 4 Silver stain analysis of purified carbohydrate samples. Purified carbohydrates from B. cepacia 

strains 10223, 39628, LNT40, 2.1B, and U668 and B. thailandensis strains E555, SBXCC001, and SBXPR001 

(5 µg/lane) were separated on a 12% Tris-glycine gel and visualized by silver staining.
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compared to the genome sequences of B. cepacia strains LNT40, 39628, and 10223 and 
B. thailandensis strains SBXCC001 and SBXPR001. The resulting alignments are shown in 
Fig. 5, and the location of CPS gene clusters (locus tags) for each of the strains is listed 
in Table 2. While homologs for the majority of CPS biosynthesis genes were identified in 
the B. cepacia and B. thailandensis strains, some genes were notably absent. For example, 
wzt2 and wzm2 that encode for a putative ABC transporter involved in CPS export were 
both absent from the B. cepacia strains, and were truncated in the B. thailandensis strains.

To determine if the CPS antigen was expressed on the surface of the latex-positive B. 
cepacia strains, IFAs based on the CPS-specific mAb 4B11 were conducted. As shown in 
Fig. 6, B. cepacia strains 10223, 39628, LNT40, and B. thailandensis strain E555 demonstra
ted robust fluorescence, while B. cepacia U668 did not. These findings are consistent with 
the latex agglutination assay results, the LFI and Western immunoblotting results, and 
the presence or absence of CPS biosynthetic genes in these strains.

DISCUSSION

Accurate diagnosis of B. pseudomallei infections is necessary for the prompt administra
tion of effective treatments and for improving the outcomes of melioidosis patients. 

FIG 5 Alignment of CPS biosynthesis gene clusters. Figure showing a 34.5-kb region of B. pseudomallei (Bp) K96243 containing 24 genes (BPSL2787 to BPSL2810, 

wcbT-manC) responsible for CPS biosynthesis. Similar regions in B. cepacia (Bc) strains 10223, 39628, LNT40, and B. thailandensis (Bt) strains SBXCC001 and 

SBXPR001 are aligned below the reference genome. Locus tags are shown below each of the open reading frames identified.

FIG 6 IFAs using CPS-specific mAb 4B11. Fluorescent microscopy of B. cepacia (strains 10223, 39628, LNT40, and U668) and B. thailandensis (strain E555) stained 

with mAb-IFA reagent.
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Due to the lack of highly sensitive, specific, rapid point-of-care tests, and the time-con
suming nature of bacterial culture, the diagnosis of melioidosis can be challenging. 
The 6-deoxyheptan CPS expressed by B. pseudomallei has been pursued as a diagnos
tic target, and several tests use this antigen for the identification of bacterial isolates 
following bacterial culture and detection of the pathogen in patient samples (5, 14–18, 
43). In this study, we report the identification of clinical isolates of B. cepacia that express 
the same CPS antigen as B. pseudomallei as determined by reactivity with CPS-specific 
mAbs in multiple different assays. Total carbohydrate preparations extracted from these 
strains were positive for CPS using an LFI as well as Western immunoblots. IFAs confirmed 
the expression of CPS on the surface of the latex-positive B. cepacia isolates. Furthermore, 
whole genome sequencing revealed the presence of homologs of the B. pseudomallei 
CPS biosynthetic genes in the latex-positive B. cepacia strains.

Since there is evidence of frequent horizontal gene transfer within and between 
Burkholderia species, the occurrence of serological cross-reactivity between isolates 
within the genus Burkholderia is perhaps not surprising, nor is it unexpected to find 
that cross-reacting strains from the environment may occasionally be detected in human 
samples, although this is the first time to our knowledge that this has been reported. 
This potential cross-reactivity, even when using reagents designed to be specific for B. 
pseudomallei CPS, is an important pitfall of which anyone working on both environmen
tal and clinical samples should be aware. A failure to identify such isolates at the species 
level could lead to misleading results in environmental surveys, as it did in our previous 
study, which mistakenly reported the isolation of B. pseudomallei from the environment 
in Luang Namtha Province (44, 46).

In the context of clinical samples, the consequences can be even more significant, 
with the possibility of inappropriate treatment being given to patients. Fortunately, 
this phenomenon appears to be restricted to a minority of isolates of B. cepacia and 
B. thailandensis, although further surveillance is important to monitor this. Since the 
initial identification of this phenomenon, the Mahosot Microbiology Laboratory has only 
isolated one further B. cepacia and one B. thailandensis from clinical samples that have 
shown genuine cross-reactivity in the latex agglutination test, along with a number 
of other isolates of various species that have given non-specific agglutination (i.e., 
agglutinate with latex beads that are not coated with anti-CPS monoclonal antibody). 
Nonetheless, it is important that staff working in melioidosis-endemic areas are aware of 
this phenomenon and do not rely on CPS-based assays such as latex-agglutination, AMD, 
or IFA alone for the identification of B. pseudomallei.

Fortunately, B. pseudomallei-specific PCR-based diagnostics are available that are 
rapid, sensitive, and have high discriminatory power (47–51). The most widely used 
single target PCR assay that can differentiate between B. pseudomallei, B. thailandensis, 
B. mallei, and B. cenocepacia is based on open reading frame 2 (orf2) of the cluster 1 
type three secretion system (TTS1) (47, 49, 51, 52). TTS1-orf2 PCR is highly specific for 
B. pseudomallei and has demonstrated a specificity of 99–100% when used for testing 
clinical samples (53, 54). Recently identified targets including BPS0745, BPSS1187, and 
BPSS1498 have also been evaluated in comparison to TTS1-orf2 in real-time PCR assays, 
and all were shown to be highly specific for the detection of B. pseudomallei (50, 53, 55). 
Based on this, PCR-based diagnostics should be useful for differentiating B. pseudomallei 
isolates from CPS-expressing B. cepacia isolates.

Collectively, the results obtained in this study provide compelling evidence that 
B. cepacia strains expressing the same CPS as B. pseudomallei co-exist in the environ
ment alongside B. pseudomallei and B. thailandensis. Future studies will be necessary to 
investigate the clinical significance of the CPS-expressing B. cepacia isolates and whether 
or not CPS expression in these strains might enhance their virulence in animal models of 
infection. In addition, studies aimed at isolating the CPS from these strains for structural 
determination will be needed to confirm the exact chemical composition of the antigen.
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