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Abstract 
Background: Life-saving emergency major resection of colorectal cancer (CRC) is a high-risk 

procedure. Accurate prediction of post-operative mortality for patients undergoing this procedure is 

essential for both healthcare performance monitoring and pre-operative risk assessment. Risk-

adjustment models for CRC patients often include patient and tumour characteristics, widely 

available in cancer registries and audits. We investigated to what extent inclusion of additional 

physiological and surgical measures, available through linkage or additional data collection, improves 

accuracy of risk models. 

Methods: Linked, routinely-collected data on patients undergoing emergency CRC surgery in England 

between December 2016 and November 2019 were used to develop a risk model for 90-day 

mortality. Backwards selection identified a 'selected model' of physiological and surgical measures in 

addition to patient and tumour characteristics. Model performance was assessed compared to a 

'basic model' including only patient and tumour characteristics. Missing data was multiply imputed. 

Results: 846 of 10,578 (8.0%) patients died within 90 days of surgery. The selected model included 

seven pre-operative physiological and surgical measures (pulse rate, systolic blood pressure, 

breathlessness, sodium, urea, albumin, and predicted peritoneal soiling), in addition to the ten 

patient and tumour characteristics in the basic model (calendar year of surgery, age, sex, ASA grade, 

TNM T stage, TNM N stage, TNM M stage, cancer site, number of comorbidities, emergency 

admission). The selected model had considerably better discrimination compared to the basic model 

(C-statistic: 0.824 versus 0.783, respectively). 

Conclusion: Linkage of disease-specific and treatment-specific datasets allowed the inclusion of 

physiological and surgical measures in a risk model alongside patient and tumour characteristics 

which improves the accuracy of the prediction of the mortality risk for CRC patients having 

emergency surgery. This improvement will allow more accurate performance monitoring of 

healthcare providers and enhance clinical care planning.  

 

Keywords 
colorectal cancer; emergency surgery; risk model; post-operative mortality; record linkage; 

electronic health records.  
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Introduction 

Major resection is a common treatment for patients diagnosed with colorectal cancer (CRC), and is 

associated with a high risk of death when undertaken in the emergency setting.[1] Comparisons of 

post-operative mortality among hospitals, teams or surgeons, or over time, are important for quality 

assessment and quality improvement of CRC services and risk-adjustment is needed to ensure fair 

comparisons. Risk models are also important for pre-operative risk assessment, which can aid clinical 

care planning and inform the counselling of patients for emergency CRC surgery. Clinical guidelines 

recommend that all high-risk surgical patients should receive certain standards of care, such as 

direct transfer to critical care and presence of a consultant surgeon and anaesthetist in theatre.[2] 

Accurate risk prediction is therefore vital to ensure the highest risk patients receive appropriate 

care. 

There are four major arguments to develop a new extended risk model for emergency CRC surgery. 

The first argument is that recent reviews have identified a substantial number of models for CRC 

surgery,[3] and for emergency bowel surgery,[4,5] but only a few models for the intersection 

between these two groups. Using either a CRC risk model or an emergency bowel surgery risk model 

may lead to inaccurate predictions of risk for patients undergoing emergency CRC surgery.  

Second, the available models that focus on emergency CRC surgery were specifically developed using 

data from a single provider,[6,7] or from a limited geographical area.[8] A risk prediction model 

developed in a national population of patients undergoing emergency CRC surgery will have 

increased  precision in the model estimates and will be more widely applicable. 

Third, risk models for CRC surgery tend to include patient and tumour characteristics, which are 

widely available in cancer registries and audits of care for patients with CRC. For this new risk model, 

we also considered the inclusion of physiological measures (e.g., measurements of organ function 

and overall health, such as serum creatinine level, breathlessness history, etc.) and surgical 

measures (e.g., peritoneal soiling, intraoperative blood loss, etc.), which are less readily available. 

Their inclusion may improve accuracy of risk prediction in the emergency setting.  

Fourth, increasing the number of measures included in a risk model may also limit the model’s utility 

in clinical practice given the potentially greater impact of missing data, mismeasurement, and 

misclassification. We therefore used an explicit model development approach to ensure that the 

improvement in prediction accuracy by including physiological and surgical measures is balanced 

against utility of the model. 



3 
 

The development of such an extended risk model for patients undergoing major emergency CRC 

resection is possible due to availability of detailed patient, tumour, surgical, and physiological 

information from a large cohort of patients recorded in linked electronic health databases.[9] In the 

study described in this paper, we investigated whether accuracy of a basic risk model including only 

patient and tumour characteristics was improved by inclusion of physiological and surgical 

measures. We aimed to develop and validate such an extended risk model that can be used for both 

risk-adjustment for performance monitoring of healthcare providers, and risk prediction for clinical 

care planning. 

 

Methods 

Datasets and linkage 

Data from disease, treatment and administrative hospital databases for patients in England were 

linked in a national cohort study. For information on patient characteristics, hospital admissions and 

outcomes, we used an administrative hospital database, Hospital Episode Statistics Admitted Patient 

Care (HES), which contains information on all hospital admissions in the English National Health 

Service (NHS).[10,11] For information on patient and tumour characteristics, we used a disease-

specific dataset collected by the National Bowel Cancer Audit (NBOCA), containing data on patients 

diagnosed with CRC.[1] For physiological and surgical measures, we used a treatment-specific 

dataset collected by the National Emergency Laparotomy Audit (NELA), containing data on patients 

having emergency bowel surgery.[12] Each of these datasets contains information on mortality 

provided via national UK mortality statistics.[13] 

The three datasets were linked using a spine linkage approach, where the administrative hospital 

database was designated the 'spine dataset' and the other two datasets were linked to it.[9] Linkage 

used deterministic rules regarding agreement on patient identifiers (NHS number, sex, date of birth, 

and residential post code).[9,14]  

Patients were eligible for analysis if they were in the spine dataset, were recorded as undergoing an 

emergency major resection for CRC between 1 December 2016 and 30 November 2019 in at least 

one dataset (Appendix: Table A.1, Figure A.1), and had complete data for mortality. 

The eligible cohort was split into development and validation datasets based on date of surgery. The 

development cohort included patients having surgery between 1 December 2016 and 30 November 

2018. The validation cohort included patients having surgery between 1 December 2018 and 30 

November 2019. 
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Identification and definition of variables 

The risk model for 90-day mortality was developed to be used for both risk-adjustment and for 

clinical care planning. For both risk-adjustment and clinical care planning, variables need to capture 

a patient's risk immediately before surgery. For risk-adjustment, variables included need to be 

factors outside of the control of the provider, so that due merit is given to providers with high-

quality care. For clinical care planning, information that is reflected by the included variables needs 

to be available before surgery. Variables to be considered for inclusion were identified from existing 

risk models for CRC surgery or emergency bowel surgery.[3-5,15-21]  

A 'basic model' included all patient and tumour characteristics included in these models that met the 

inclusion criteria and were routinely available in electronic health records (i.e., without any variable 

selection). Physiological and surgical measures included in models identified in the literature were 

candidate variables for selection if they met the inclusion criteria, and were available through 

linkage to external databases. Candidate surgical measures were pre-operative estimates of 

operative severity (i.e., type of procedure to be undertaken), expected peritoneal soiling, and 

expected intraoperative blood loss, as these variables reflect clinicians' assessments of patients' 

health just before surgery.[16]  

For continuous variables, we used fractional polynomials with functional forms established in an 

existing model developed and validated in 38,830 patients (e.g. age was modelled as linear plus 

quadratic).[16] To reduce the influence of outliers, continuous variables were Winsorised, by setting 

observed values beyond the 1st and/or the 99th percentile as the value of that percentile (Appendix 

Table A.2). Levels of categorical variables were combined if any categories had <10 patients with 

complete data in either the development dataset or validation dataset. We considered all 

interactions that had been identified by existing models: an interaction between age and 

metastases, an interaction between age and ASA grade, and an interaction between ASA grade and 

respiratory history.[15,16] 

 

Handling missing data 

Multiple imputation with chained equations was used to handle missing data, under the assumption 

of missing-at-random conditional on mortality and other observed information.[22] The imputation 

procedure was undertaken separately in the development and validation datasets, and for the full 

dataset as a whole. The number of imputations was set at 20. Year of procedure, sex, and procedure 



5 
 

type were complete for all patients. 8 patients with missing mortality were excluded from analysis 

(Appendix Figure A.1). Binary variables were imputed using logistic regression, categorical variables 

were imputed using multinomial logistic regression, continuous variables were imputed using 

predictive mean matching with values drawn at random from a pool of k=3 observations with similar 

predicted values.[23,24] 

Parameters and performance measures (on the appropriate scale) were pooled over imputed 

datasets using Rubin's rules.[25] As the χ2 statistic from Hosmer-Lemeshow (HL) tests cannot be 

pooled using Rubin's rules, we calculated a F-statistic to account for between-imputation 

variation.[26] 

Potential bias from non-linkage, the main source of missing data, was assessed by comparing patient 

characteristics (recorded in the administrative spine dataset) and 90-day mortality between linked 

and unlinked patients.[27] 

 

Model development 

Using the development dataset, a 'full model' was fitted including all patient and tumour 

characteristics in the basic model and all candidate physiological and surgical measures. To assess 

whether a simpler model could achieve similarly high prediction performance, backwards selection 

was used with criteria defined by model R2 (measure of variation in outcomes explained). At each 

step, R2 values were pooled over the imputed datasets using Rubin's rules.[25,28] Candidate 

physiological and surgical variables were excluded in turn, with those resulting in the smallest 

reduction in model R2 excluded first,[29] until the basic model was reached.  

The R2 value from the full model was used to define a threshold for choosing a model containing 

only the most important additional physiological and surgical variables. The 'selected model' was the 

simplest model with an R2 value greater than 95% relative to the full model R2 value .  

Once the selected model was finalised in the development dataset, this model was refitted using the 

full dataset (i.e., both developmental and validation datasets). Estimated model coefficients were 

reported in the form of an equation and the corresponding odds ratios (ORs) were also reported. 

 

Model performance and validation 

Other performance measures calculated were the C-statistic, and the scaled Brier score (SBS). The C-

statistic quantifies the discrimination of the model, ranging from 0.5 (non-informative) to 1 (perfect 
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discrimination).[30-33] The Brier score quantifies the average prediction error (accuracy) of the 

model predictions, compared to a naïve non-informative model. We calculated SBS ranging from 0 

(non-informative) to 100% (perfect predictions).[30,34,35] Verburg et al. gave the following rule-of-

thumb for interpreting a SBS for binary outcomes: <0.04 representing very weak predictions, 0.04-

0.15 weak, 0.16-0.35 moderate, 0.36-0.62 strong, and >0.63 very strong.[36]  

Using the development dataset, we calculated the R2 value, C-statistic, and SBS for the full model, 

selected model, basic model, and all models in between.  

Using the validation dataset, we refitted the full model, selected model, and basic model and 

assessed calibration of the selected model compared to the full model and basic model by plotting 

observed versus predicted mortality by deciles of risk.  We also calculated the R2 value, C-statistic, 

and SBS for the three models.  

Using the full dataset, we used funnel plots to visually explore hospital trust-level variation in 90-day 

mortality for the basic and selected models to determine whether variation between hospital trusts 

was greater than expected by chance alone.[37] A hospital trust is an organisational unit in the 

English NHS that can include more than one hospital.  

For sensitivity analysis, we produced estimates of adjusted ORs for the selected model using 

complete case analysis instead of using multiple imputation. A further sensitivity analysis explored 

using post-operative measures of actual operative severity, peritoneal soiling, and intraoperative 

blood loss instead of their pre-operative estimates. We used Stata 17.0 for all linkage, imputation, 

and analysis of data[38] and reviewed the TRIPOD guidelines for reporting on multivariable 

prediction models (Appendix B).[39] This work has also been reported in line with the STROCSS 

criteria.[40] 

 

Results 

Overall, 846 of 10,578 (8.0%) patients died within 90 days of surgery, with 90-day mortality in the 

development and validation datasets of 8.2% and 7.6% respectively (Appendix Table A.3). 10,441 

(98.7%) of the analysis cohort linked to the disease-specific dataset (NBOCA), the treatment-specific 

dataset (NELA) or both (Appendix Figure A.1). 5,803 (54.9%) patients linked to both the disease-

specific and treatment-specific datasets, providing information on patient and tumour 

characteristics as well as physiological and surgical measures.  
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Table 1 shows the patient and tumour characteristics in the basic model and the candidate 

physiological and surgical measures, and the source of information for each variable. Where 

information on a variable was available from multiple datasets, reconciliation of conflicting 

information was undertaken (Table 1).[9]  

Patient and tumour characteristics, physiological and surgical measures, and 90-day mortality are 

summarised in Tables 2 and 3 for the whole analysis cohort. The missing categories in the tables 

include patients with missing data due to non-linkage and, to a lesser extent, patients with missing 

values in the datasets. 55.5% of the analysis cohort had at least one missing variable. Distributions of 

patient characteristics were similar for the development dataset and the validation dataset 

(Appendix Table A.3).  

The selected model included seven physiological and surgical measures (pulse rate, systolic blood 

pressure, breathlessness, sodium, urea, albumin and prediction of peritoneal soiling) in addition to 

the ten patient and tumour characteristics in the basic model (calendar year of surgery, age, sex, 

ASA grade, TNM T stage, TNM N stage, TNM M stage, cancer site, number of comorbidities, 

emergency admission).  

Figure 1 shows model performance measured at each stage of the variable selection process, using 

the development cohort only. More details can be found in Appendix Table A.4. The full model (all 

patient, tumour, surgical, and physiological variables) had an R2 of 0.235 (blue markers). The 

percentage decrease in R2 is shown for the remaining model after each variable is removed until we 

are left with the basic model (patient and tumour characteristics only).  

Of all physiological and surgical measures, serum albumin was the most predictive, contributing 

most to the R2, therefore being the last variable removed in the variable selection process.  The 

selected model had an R2 value of 0.225, 95.7% relative to the full model, whilst the basic model had 

an R2 value of 0.163, 69.2% relative to the full model (Figure 1). The selected model had a moderate 

SBS of 17.6%, [36] slightly lower than the full model SBS (18.6%), whereas the basic model had a 

substantially weaker SBS (10.9%) (Figure 1). All fitted models had good discrimination in the 

development cohort, with C-statistics, 0.84 for the full model, 0.83 for the selected model, and 0.80 

for the basic model (Figure 1).  

The measures of model performance (R2, C-statistic, HL p-value, SBS) for the full model, the selected 

model, and the basic model in the validation cohort (Table 4) were slightly lower than those in the 

development cohort. Discrimination was lower for the basic model in the validation cohort (0.78) 
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whilst the full model and selected model had similar discrimination as in the development cohort 

(0.84 and 0.83 respectively).  

Figure 2 displays calibration of the full model, selected model, and basic model using data from the 

validation cohort, by plotting observed mortality versus the model predicted risk by deciles of 

predicted risk. All three models demonstrate good calibration. There was no evidence of poor fit as 

HL test p-values were large for all three models (Table 4). 

Figure 3 explores whether the basic model lacks calibration because it does not include the seven 

physiological and surgical measures included in the selected model. It displays observed and 

predicted mortality, using the basic model and the validation cohort, by categories of the 

physiological and surgical measures that were included in the selected model.  The basic model had 

poorer calibration for patients with abnormal levels of serum albumin, urea, systolic blood pressure, 

or history of breathlessness at rest. On average across imputations, 8.3% of patients in the validation 

cohort had abnormal levels in at least one of these. 

Table 5 gives adjusted ORs and 95% confidence intervals (CIs) calculated using the selected model, 

for all variables included in the selected model. Appendix Table A.5 gives the equation for the 

selected model using the whole analysis cohort. As the effect of a continuous risk factor on mortality 

is not easily expressed when the relationship is non-linear, Table 5 presents ORs for selected values 

of the continuous factors. The adjusted odds of death within 90 days of major resection increased 

with worse breathlessness history, lower systolic blood pressure, higher pulse rate, higher urea 

levels, and lower albumin. The adjusted odds of death with serum albumin levels of 25 g/L was 1.66 

(CI: 1.48, 1.86) times the adjusted odds at serum albumin 35 g/L (reference value). The adjusted 

odds of death with urea levels of 20 mmol L-1 or 30 mmol L-1 were 1.57 (CI: 1.32, 1.88) and 2.18 

(1.54,3.10) times the adjusted odds at urea 10 mmol L-1 (reference value) respectively.  

Funnel plots of adjusted 90-day mortality by hospital trust, risk-adjusted using (i) the basic model 

and (ii) the selected model, are shown in Figure 4. Using the selected model, five hospital trusts 

were above the inner limit (i.e., identified as having outlying performance). If instead the basic 

model was used for risk-adjustment, one of these hospital trusts would not have been identified as 

having outlying performance (a 'false negative') and one further hospital trust would been 

incorrectly identified as having outlying performance (a 'false positive').  

Fewer patients would be classified as high risk and therefore receive care recommended for high-risk 

patients using the selected model compared to the basic model (22.9% of patients had predicted risk 

>0.1 and 18.5% had predicted risk between 0.05 to 0.1 using the selected model, versus 25.4% and 
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21.1% respectively for the basic model). The selected model classified 15.2% of patients into a lower 

risk category than the basic model, and 7.8% into a higher risk category. 

In sensitivity analysis, a similar pattern of associations between risk factors and mortality was seen in 

the complete case analysis, only with greater uncertainty (Appendix Table A.6). Furthermore, results 

were not sensitive to using post-operative surgical measures in variable selection instead of pre-

operative estimates of operative severity, peritoneal soiling, and intraoperative blood loss, and 

prediction did not improve substantially (results not shown). 

Appendix Table A.7 compares characteristics of patients according to which datasets they were 

linked between. Patient characteristics were broadly similar, comparing those linked from the 

administrative dataset (HES) to only the disease-specific dataset (NELA), only the treatment-specific 

dataset (NBOCA), those linked to both, and those linked to neither. However, the patients that only 

linked between the spine (HES) dataset and the treatment-specific (NELA) dataset had much higher 

mortality compared to other groups. 

 

Discussion 

We have developed and validated an accurate and relatively simple risk model for patients with 

colorectal cancer (CRC) undergoing emergency surgery, that can be used for risk-adjustment or 

clinical care planning. We identified seven important physiological and surgical measures which we 

recommend should be included along with patient and tumour characteristics to accurately predict 

post-operative mortality. These measures are either easy to capture (pulse rate, blood pressure, 

breathlessness history) or estimate (peritoneal soiling), or are completely objective (urea, albumin, 

sodium). This extended risk model, including these additional physiological and surgical measures, 

allows more accurate prediction than available basic risk models, particularly for patients with 

abnormal values of these additional measures. 

 

Comparison to other risk models 

All seven of the physiological and surgical measures included in our selected model have been found 

to be important predictors in other models, including the surgical risk score P-POSSUM.[41,42] The 

discrimination of our selected model compares very favourably to existing risk models (which have c-

statistics ranging from 0.732 to 0.861 [7,8,15-21] whilst including a relatively small set of risk factors 

that are all routinely available in patients undergoing emergency CRC surgery. 
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Of the seven measures we selected, four (serum albumin, urea, and sodium with breathlessness 

history) are composite markers of pre-existing chronic disease, and impact of current acute status. 

For example, breathlessness could be attributable to either cardiac or respiratory disease and 

cardiorespiratory insufficiency (poor functional capacity) is a known major risk factor for poor 

surgical outcome.[43] Breathlessness may also be a symptom of metabolic acidosis in an unwell 

patient with sepsis. Urea is a biomarker for kidney function, but is also affected by diet, dehydration, 

and proximal colonic bleeding.[44] Serum albumin falls in the acute phase response of sepsis but 

may also be a marker of chronic malnutrition. 

 

Strengths, limitations and opportunities for further work 

The model was developed in a large representative national study using linked electronic health 

records, and candidate variables were drawn from the literature. The variables identified by the 

selected model are all recorded as close as possible to the time that a patient was booked for 

theatre. During the development of our selected model, we included the physiological measures as 

continuous variables. Other risk models have categorised these variables, which leads to loss of 

information that could mask or exaggerate relationships.[45] 

We split the data into development and validation datasets by date of surgery (temporal validation), 

since this provides a stronger test of the validity of the predictions than splitting the data at 

random.[46] External validation of the selected risk model using data from other emergency CRC 

surgery populations would further increase confidence in predictive ability.[47]  

Our study period ends in November 2019, meaning that all patients in the cohort had their 

emergency CRC surgery before the start of the Covid-19 pandemic. During the early pandemic 

period, there were rapid changes in national guidelines for cancer services. and it has been shown 

that post-operative mortality increased for patients having emergency CRC surgery.[48] Due to these 

reasons, we decided against using data from the early pandemic period for model development and 

validation. The selected risk model should be recalibrated using data from after the recovery of 

cancer services in England, once this data becomes available. 

We used logistic regression to model risk of mortality. Machine learning is an alternative option, but 

a comparison of methods is not the focus of the current paper. Rigorous comparisons of machine 

learning and logistic regression have found similar performance in patients with CRC and in other 

patient groups. For example, a study comparing logistic regression and machine learning models to 

predict mortality after hospital admission using the same large national datasets demonstrated that 
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their performance was comparable.[49] This is fully in line with a recent systematic review that 

found no evidence of superior performance of machine learning over logistic regression, when both 

were applied according to recommended analysis strategies.[50] Therefore, it is very unlikely that a 

comparison between statistical and machine learning methods here would provide additional clinical 

insight into the risks for colorectal cancer patients undergoing emergency surgery. 

We have not accounted for clustering by hospital trust in our model. In order to develop a risk model 

that accounts for clustering, we would need to implement this into multiple imputation, which adds 

considerably to the complexity of the procedure.[51] Further, since the within-hospital trust 

intraclass correlation coefficient was estimated as 3.8% (95% CI: 1.2, 10.8) for the selected model 

using complete case analysis, accounting for clustering would have little impact on the model 

intercept or the weights attached to risk measures.  

We used spine linkage to construct the analysis cohort used here. In a recent paper comparing spine 

linkage with using all pairwise linkages, we have shown that this spine approach is appropriate in this 

setting.[9]  

In this study, a substantial proportion of patients had missing data, the majority of which was due to 

non-linkage. We used the same multiple imputation procedure for all missing data. Although we did 

not treat missingness in datasets differently to missingness due to non-linkage, we did compare 

characteristics of patients by linkage group to assess potential for bias due to non-linkage. Patients 

linked only between the administrative spine dataset and the treatment-specific dataset had higher 

mortality. Multiple imputation methods result in unbiased estimates of model weights, provided all 

important variables associated with missing values are included in the imputation models.[22]. By 

also including mortality in these imputation models, we allowed for differences in missing 

measurements between survivors and non-survivors, which is much more plausible than assuming 

that missing measurements are similar in survivors and non-survivors. It is also important to note 

that a sensitivity analysis, excluding patients with missing values regardless of the reason for 

missingness, produced a similar pattern of results, which provides further evidence for the validity of 

our approach. 

 

Implications 
This new accurate and relatively simple risk prediction model for patients undergoing emergency 

CRC surgery is recommended for risk-adjustment and to aid clinical care planning within the context 

of shared decision-making with patients and their families. The model is ready to be translated into a 

risk calculator that can be used to predict pre-operative risk for an individual patient. Since HES, the 



12 
 

administrative dataset used as the spine dataset to define our patient cohort, contains information 

on hospital admissions for the whole country,[11] there was no selection of patients other than the 

eligibility criteria described in the methods section. This should mean that our risk model is 

transportable to other healthcare settings with similar patients and populations. The model should 

be recalibrated periodically and also before being applied in new settings because overall mortality 

is likely to change over time and to differ by healthcare setting. For settings with very different 

prevalence, the weights for different factors should be reliable but the intercept may need to be 

adjusted to ensure good overall calibration.  

Inclusion of the seven physiological and surgical measures identified in our study in the risk 

prediction model improves the accuracy of prediction. This will for example help to ensure that the 

patients at the highest risk can be identified so that they can benefit from appropriate interventions 

such as the presence of a consultant surgeon and anaesthetist in theatre and direct transfer to 

critical care in the post-operative phase. 

Whereas patient and tumour characteristics are routinely available in national clinical datasets, this 

is not usually the case for physiological and surgical measures. Thus, for accurate risk-adjustment of 

CRC patients undergoing emergency surgery, it is important either to link to existing data, capture 

existing hospital data into databases, or to collect the key physiological and surgical measures 

identified in our model. 

We recommend using multiple imputation to handle missing data when using the risk model for 

case-mix adjustment for a cohort of patients. When using the risk model for pre-operative care 

planning for an individual patient, it may be appropriate to assume the highest risk values of 

variables that are unknown. 

Although the purpose of this exercise was to develop a model for risk-adjustment or clinical care 

planning, the findings that there are some potentially modifiable risk factors for survival may have 

implications for future research. However, we have only established associations and predictive 

ability. Further work is needed to investigate whether modifying these risk factors before surgery is 

feasible in the emergency setting and would improve patient outcomes.   

We demonstrated an approach for developing a risk model for patients undergoing emergency 

resection for CRC for which there is an intersection of two sources of national clinical electronic 

health records, and where data linkage can be used to obtain all of the required risk factors. We 

included approaches which others can follow for variable selection, dealing with missing data, and 

assessing bias from missing data due to non-linkage. In our study, there was information available on 
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the patient group of interest from a disease-based dataset and a treatment-based dataset. Similar 

situations in which both types of datasets may be available are for example solid organ 

transplantation or cardiac surgery.[52,53]  

 

Conclusion 
We showed that including seven physiological and surgical measures which are easy to measure or 

predict from pre-operative imaging, in addition to patient and tumour characteristics, improve the 

performance of models predicting risk for patients undergoing emergency CRC surgery. Inclusion of 

these additional measures, in our study available through linkage of electronic health records, will 

lead to more accurate performance monitoring of hospitals providing CRC surgery and enhance 

clinical care planning for individual patients. 
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Figure captions 
Figure 1: Pooled C-statistic and relative pooled R-squared for the full model, basic model, and all 

intermediate models.* Scaled pooled Brier score (SBS) also given for the full model, selected model, 

and basic model. Using development dataset (December 2016 to November 2018). 

*The full model includes all patient and tumour characteristics, and physiological and surgical 

measures. The basic model includes all patient and tumour characteristics. Each intermediate model 

is defined by removing one of the physiological and surgical measures from the previous model, 

according to which would result in the smallest difference in pooled R-squared. E.g., model 2 

includes all variables included in the full model except operative severity. The selected model 

includes all patient and tumour characteristics, and the physiological and surgical measures 

highlighted in bold. 

 

Figure 2: Calibration plot showing proportions of patients that died within 90 days (observed 

mortality) versus mortality predicted using the full model, selected model, and basic model, by 

deciles of predicted risk. Using validation dataset (December 2018 to November 2019). 

 

Figure 3: Calibration plot showing proportions of patients that died within 90 days (observed 

mortality) versus mortality predicted using the basic model, by categories of variables that are 

included in the selected model but not the basic model. Using validation dataset (December 2018 to 

November 2019). 

 

Figure 4: Funnel plots of adjusted 90-day mortality risk-adjusted using the basic model and the 

selected model, by hospital trust. Using full dataset (December 2016 to November 2019). 
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