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The burden and dynamics of hospital- 
acquired SARS-CoV-2 in England

Ben S. Cooper1,2 ✉, Stephanie Evans3, Yalda Jafari4, Thi Mui Pham5, Yin Mo1,2,6,7, Cherry Lim1,2, 
Mark G. Pritchard1,8, Diane Pople3, Victoria Hall3, James Stimson3, David W. Eyre9,10,11,12, 
Jonathan M. Read13, Christl A. Donnelly8,14,15, Peter Horby8, Conall Watson8, Sebastian Funk4, 
Julie V. Robotham3,12,17 & Gwenan M. Knight4,16,17

Hospital-based transmission had a dominant role in Middle East respiratory 
syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome 
coronavirus (SARS-CoV) epidemics1,2, but large-scale studies of its role in the 
SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to  
the most vulnerable individuals and can have wider-scale impacts through hospital–
community interactions. Using data from acute hospitals in England, we quantify 
within-hospital transmission, evaluate likely pathways of spread and factors 
associated with heightened transmission risk, and explore the wider dynamical 
consequences. We estimate that between June 2020 and March 2021 between 95,000 
and 167,000 inpatients acquired SARS-CoV-2 in hospitals (1% to 2% of all hospital 
admissions in this period). Analysis of time series data provided evidence that 
patients who themselves acquired SARS-CoV-2 infection in hospital were the main 
sources of transmission to other patients. Increased transmission to inpatients was 
associated with hospitals having fewer single rooms and lower heated volume per 
bed. Moreover, we show that reducing hospital transmission could substantially 
enhance the efficiency of punctuated lockdown measures in suppressing community 
transmission. These findings reveal the previously unrecognized scale of hospital 
transmission, have direct implications for targeting of hospital control measures and 
highlight the need to design hospitals better equipped to limit the transmission of 
future high-consequence pathogens.

Hospital transmission had a central role in the spread of Middle East res-
piratory syndrome coronavirus (MERS-CoV) and severe acute respira-
tory syndrome coronavirus (SARS-CoV) in human populations1,2, and 
multiple reports have indicated that SARS-CoV-2 is capable of spreading 
efficiently in healthcare settings3–11 and is associated with poor out-
comes12,13. However, attempts to fully document the extent of hospital 
transmission using systematically collected national data or to take a 
data-driven approach to quantifying the drivers of such transmission 
are lacking. Addressing these knowledge gaps is important: hospital 
transmission directly affects patients likely to have multiple factors 
associated with poor outcomes; it puts healthcare workers (HCWs) 
at risk and compromises their ability to provide safe patient care; it 
disrupts service delivery; and it can have a major role in disseminating 
infection to vulnerable groups in the community. Moreover, because 
non-pharmaceutical interventions in the community do not affect rates 
of transmission from infected patients and HCWs in hospitals, hospital 

transmission can have notable effects on epidemic dynamics during 
lockdown periods. Understanding such transmission has implications 
for both continuing epidemics and threats from new variants even in 
highly vaccinated populations. We use data from 145 English National 
Health Service (NHS) acute hospital trusts (organizational units con-
taining one or more acute care hospitals), excluding only those caring 
exclusively for children. These trusts contained 356 hospitals, had a 
combined bed capacity of about 100,000 (over 98% of the total NHS 
general and acute care bed capacity in England in 2020) and employed 
859,000 full-time equivalent HCWs, 2.5% of the working-age population 
of England. From 20 March 2020, all such trusts completed a daily situ-
ation report that included essential information on the prevalence and 
incidence of SARS-CoV-2 infection, the number of patients admitted 
with SARS-CoV-2 infection and staff absences due to SARS-CoV-2. From 
5 June 2020, a classification of the likely source of SARS-CoV-2 infection 
on the basis of European Centre for Disease Prevention and Control 
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(ECDC) criteria was also required14. This was determined by the inter-
val between hospital admission and date of onset of PCR-confirmed 
infection in hospitalized patients: community-onset infections were 
defined as those with an interval of 2 d or less; an interval of 3–7 d led 
to a classification of indeterminate healthcare-associated; intervals of 
8–14 d were classified as probable healthcare-associated; and intervals 
of 15 d or more were classified as definite healthcare-associated. As 
few patients have hospital stays exceeding 7 d and many nosocomi-
ally infected patients will be discharged before testing positive, such 
definitions necessarily capture only a proportion of hospital-acquired 
infections15.

We make use of these data, linked with other national datasets, to 
infer the number of hospital-acquired infections in England between 
June 2020 and February 2021, the pathways of nosocomial transmis-
sion and factors potentially modulating such transmission, including  
hospital characteristics, vaccination coverage and prevalence of 
relevant variants. Using a model coupling hospital and community 
dynamics, we then explore the consequences of such nosocomial 
transmission for the effectiveness of community lockdown measures 
in averting infections.

Between 10 June 2020 and 17 February 2021, a total of 16,950 and 
19,355 SARS-CoV-2 infections in hospital inpatients met the criteria 
for definite and probable healthcare-associated infections, respec-
tively, corresponding to a median (interquartile range) of 1.7 (1.1, 2.5) 
detected infections per 1,000 occupied bed days. To estimate the total 
number of hospital-acquired infections, we multiply the recorded 
number of definite healthcare-associated infections by the reciprocal 
of the proportion of hospital-acquired infections that we expect to 
meet these ‘definite healthcare-associated’ criteria. Using the empiri-
cal length-of-stay distribution, the estimated incubation period dis-
tribution and the profile of PCR test sensitivity as a function of time 
since infection16 (Fig. 1a–c), we estimate that a policy of PCR testing 
of symptomatic patients would detect 26% (90% credible interval 
(90% CrI) 21%, 30%) of hospital-acquired infections, with 12% (10%, 
14%) of all hospital-acquired infections meeting criteria for definite 
healthcare-associated infection (Fig. 1d–f). Adding asymptomatic PCR 
testing on days of stay 3 and 6 (as recommended by national screening 
guidance in England at the time) increases the proportion detected to 
33% (26%, 38%) but does not substantively alter the proportion classified 
as definite healthcare-associated. Augmenting symptomatic PCR tests 
with testing for all patients at 7 d intervals (a policy adopted by some 
hospitals in England) increases the proportion of hospital-acquired 
infections detected to 44% (39%, 47%), and the proportion classified as 
definite healthcare-associated to 17% (16%, 18%). These low probabilities 
for detection and classification as definite healthcare-associated are a 
consequence of the typically short lengths of patient stay and low PCR 
sensitivities early in the course of infection (Fig. 1b,c).

Combining these estimates with the number of reported definite 
healthcare-associated infections, we infer the number of hospital- 
acquired infections under two sets of assumptions. First, we assume 
patient testing followed national guidance at the time, which speci-
fied testing of symptomatic patients (without retesting) and included 
asymptomatic testing on two occasions in the first week but none after 
day 7 postadmission. This provides a plausible lower bound for the 
chance of identifying hospital-acquired infections and thus an upper 
bound for the estimated numbers of such infections. Second, we 
assume testing for all patients at 7 d intervals postadmission in addition 
to symptomatic testing of patients (the maximal testing policy known 
to be used in practice). This provides a plausible upper bound for the 
chance of identifying hospital-acquired infections and thus a lower 
bound on the estimated numbers of such infections. Using definite 
healthcare-associated infections only, this yields as an upper bound a 
mean (90% CrI) estimate for the number of hospital-acquired infections 
of 143,000 (123,000, 167,000) and a lower bound of 99,000 (95,000, 
104,000). During this period there were 9.2 million hospital admissions 

from 5.0 million individual patients, so we estimate that between 1% and 
2% of admissions developed a hospital-acquired SARS-CoV-2 infection. 
Similar estimates are obtained when using more granular length-of-stay 
data and in other sensitivity analyses, whereas repeating the analysis 
using probable and definite healthcare-associated infections yields esti-
mates that are 20–30% higher (Supplementary Information section 2.1).

There is considerable variation in cumulative rates of hospital- 
associated infection between trusts, with the highest rates seen in 
the North West NHS region, and the lowest in the South West and 
London regions (Extended Data Fig. 1). There is a strong positive cor-
relation between rates of definite and probable hospital-associated 
infections (r = 0.76), and weak positive correlation between definite 
hospital-associated infection and HCW infection (r = 0.31), but only a 
very weak correlation between definite hospital-associated infection 
and community-acquired infection (r = 0.16). Three hospital char-
acteristics are weakly correlated with cumulative rates of definite 
hospital-associated infection: bed occupancy (r = 0.25), availability of 
single-bedded rooms (r = −0.39) and heated volume per bed, a measure 
of the volume of heated areas of trust buildings divided by the number 
of beds (r = −0.34).

To quantify drivers of transmission to patients and HCWs we link 
these data to national datasets (Fig. 2e–l), capturing information on 
hospital characteristics potentially affecting transmission, alongside 
regional variation in HCW vaccination and prevalence of the Alpha 
variant. As no direct measurements of hospital ventilation are avail-
able, we use hospital building heated volume per bed as a proxy. This 
analysis is restricted to 96 of the 145 trusts for which complete data 
are available and uses negative binomial auto-regression models for 
which the dependent variable is either the weekly number of patients 
with healthcare-associated infections or the imputed weekly number 
of HCWs with confirmed SARS-CoV-2 infection. Independent variables 
are selected on the basis of biological plausibility. Mechanistic consid-
erations inform the parameterization of the dispersion terms and the 
inclusion of additive effects for exposures to community-acquired 
patient infections, hospital-acquired patient infections and infected 
HCWs (Fig. 2, top row), combined with multiplicative effects of trust 
characteristics (Fig. 2, middle row), HCW vaccine coverage and Alpha 
variant prevalence (Fig. 2, bottom row). Posterior predictive distri-
butions from fitted models are shown in Fig. 3 and Extended Data  
Figs. 2 and 3.

Among the additive terms, the strongest predictor of new healthcare- 
associated infections is the number of patients in the same trust with 
healthcare-associated infections the previous week (Fig. 3); thus, 
one patient with a newly identified healthcare-associated infection 
the previous week is associated with a further 1.07 (95% CrI 0.93, 1.19) 
hospital-acquired infections in patients the following week (setting 
variables representing hospital characteristics to their mean values, 
and in the absence of the Alpha variant or vaccine effects). Additive 
effects associated with patient exposures to infected HCWs and 
patients admitted with SARS-CoV-2 are smaller, although the larger 
number of such exposures increases their contribution to patient 
infections (Fig. 3f).

Considering multiplicative effects associated with trust character-
istics, increased availability of single rooms is associated with reduced 
incidence of healthcare-associated infections in patients with an inci-
dence rate ratio (IRR) for a 1 s.d. increase in single room availability 
(corresponding to a 15% increase in the percentage of beds as single 
rooms) of 0.91 (0.87, 0.97), whereas heated volume per bed is associ-
ated with a similar reduction (IRR 0.90 (0.84, 0.97)) for a 1 s.d. increase, 
corresponding to an increase per bed of 207 m3, and older hospital 
buildings were also associated with reduced hospital transmission, 
although in this case 95% CrIs include the null value of 1.00 (IRR 0.96 
(0.92, 1.00)) (Fig. 3). These effects were not seen for infections in HCWs. 
HCW vaccination was associated with substantial reduction in trans-
mission to patients linked to exposures to infected HCWs, and large 
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reductions in the overall rate of infection in HCWs. Increased Alpha 
variant prevalence was associated with large increases in the rates of 
infection in both patients and HCWs.

Negative controls can help to assess the likelihood that associations 
between exposures and outcomes in observational studies result from 
relationships that are not directly causal (Extended Data Fig. 4)17. We 
use as a negative control outcome the number of patients admitted 
meeting ECDC definitions for community-acquired SARS-CoV-2 infec-
tion. Assuming most hospital admissions with SARS-CoV-2 result from 
community transmission, this outcome would not be expected to have 
a strong association with hospital-based exposures. If associations 
between hospital characteristics (exposures) and this control outcome 
are similar to those for hospital-acquired infections, it would indicate 
that confounding is a plausible explanation for observed associations 
with hospital-acquired infections (for example, owing to differences in 
hospital characteristics not accounted for in the model). Note, however, 

that as some SARS-CoV-2 admissions from the community will result 
from the readmission of patients infected in hospital, some link is 
expected. In all models considered with this control outcome, there 
is no strong association with the number of healthcare-associated infec-
tions or with the single room provision, strengthening the evidence 
that these both play a causal role in the incidence of hospital-acquired 
infections (Supplementary Tables 15–17). However, both heated volume 
per bed and HCW vaccination coverage show similar negative associa-
tions with the control outcome, as reported for healthcare-associated 
infection outcomes, indicating the need for caution when con-
sidering whether these reported associations might reflect direct  
causal effects.

To help to interpret estimated regression coefficients we perform 
a series of simulation studies, generating synthetic transmission 
datasets from a multitype branching process model, applying an 
observation model to obtain partially observed infection data and 
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Fig. 1 | Quantifying the probability of observing hospital-acquired infections 
and estimating the total number of such infections. a–c, Model inputs are 
shown in the top row and include the incubation period distribution32 (a), the 
PCR sensitivity profile16 (b) and the length-of-stay distribution (c) for patients 
who were not admitted with COVID-19 between June 2020 and February 2021 
(solid lines in a and b show expected values and shaded regions show 95% CrIs). 
In c, the minimum lengths of stays needed to be classified as a probable or 
definite healthcare-associated infection are shown by dashed and solid vertical 
lines. d–f, Estimates of the probabilities that patients with hospital-acquired 
SARS-CoV-2 infections have a PCR positive test while in hospital under different 
screening policies (d), and estimates of the probabilities that they both screen 
positive and meet the post-14 d onset criteria to be considered a ‘definite’ 
healthcare-associated infection (e) or the post-7 d criteria to be classified as  
a probable or definite healthcare-associated infection (f) are shown in the 

middle row. Panels d–f are on the basis of 1,000 Monte Carlo samples, with 
violin plots showing median values (points), interquartile ranges (rectangles) 
and densities. The Public Health England screening recommendations are 
highlighted in green and the policy of screening all patients at 7 d intervals  
after admission is highlighted in blue (note that in contrast to this policy, 
weekly and 2× and 3× weekly policies screen on fixed days of the week). g, The 
estimated total number of hospital-acquired infections across adult acute NHS 
trusts in England linked to observed weekly number of detected post-14 d 
onset infections, assuming the screening policies highlighted in the middle 
row on the basis of recorded ‘definite healthcare-associated infections’; week 
numbers are counted as 1 plus the number of complete 7 d periods since  
1 January 2020. Green and blue shaded regions indicate 90% CrIs and white 
lines are posterior means.
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replicating the above analysis (Supplementary Information sec-
tion 2.3). This analysis indicates that when the outcome is patient 
hospital-acquired infections, regression coefficients typically under-
estimate the expected number of secondary cases per case when only 
a proportion of hospital-acquired infections are observed, although 
represent good approximations as the proportion approaches 1 
(Extended Data Fig. 5).

We use estimates from these analyses and the wider literature on 
hospital-acquired SARS-CoV-2 transmission to inform a dynamic 
model coupling hospital and community dynamics (Methods and 
Supplementary Information section 1.2). We consider three sce-
narios: high hospital transmission, corresponding to self-sustaining 
within-hospital transmission; and intermediate and low hospital trans-
mission, in which all hospital transmission rates were reduced by 25% 
and 50%, respectively, compared with the high hospital transmission 
scenario (Fig. 4). Community transmission rates were identical in  
all scenarios.

The level of hospital transmission has little overall impact on an 
unmitigated epidemic or an epidemic controlled by a single lock-
down, modelled here as a policy that substantially reduces commu-
nity transmission (Extended Data Fig. 6). However, when community 
transmission is controlled through punctuated lockdowns, the extent of 
hospital transmission can have a profound impact on overall epidemic 
dynamics. If lockdowns are put in place for a fixed time period and then 
released in a stepwise manner (Fig. 4a–i), the total infected population 
in the community decreases from 27% in the high hospital transmis-
sion scenario to 12% and 7% in the intermediate and low transmission 
scenarios (Fig. 4g–i), with corresponding decreases in the percentages 

of HCWs infected from 91% to 52% and 21% (Fig. 4d–f). Conversely, if 
instigation and release of lockdowns is driven by threshold infection 
rates in the community (Fig. 4j–u), the total number infected does not 
depend strongly on levels of hospital transmission (Fig. 4m–o), but 
the time spent in lockdown is reduced (Fig. 4p–r) and the efficiency 
with which lockdown averts infections compared with an unmitigated 
epidemic (Fig. 4s–u) is enhanced by reducing hospital transmission. 
These effects can be substantial despite the fact that, at any one time, 
the number of patients and HCWs is less than 2% of the total population.

Discussion
Between 1% and 2% of hospital admissions are likely to have acquired 
SARS-CoV-2 infection while in hospital during the ‘second wave’ 
in England, with only a minority of these infections correctly clas-
sified as ‘healthcare-associated’ based purely on the time elapsed 
between admission and positive test. Investigation of the time series 
of hospital-acquired infections with a regression model indicated that 
patients who themselves acquired SARS-CoV-2 infection in hospital were 
the main drivers of transmission to patients, whereas transmission from 
both HCWs and nosocomially infected patients were of similar impor-
tance for transmission to HCWs (Fig. 3f,g). HCW vaccination was associ-
ated with large reductions in infection rates and there was evidence that 
aspects of hospital building design could modulate such transmission; 
in particular, a higher proportion of beds in single rooms was associated 
with decreased transmission risk, as was increased hospital building 
heated volume per bed, consistent with predictions from theoretical 
models for the spread of airborne infections in enclosed spaces18.
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location of the largest hospital in each trust are shown).
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Although lack of genomic data means we cannot conclusively 
demonstrate transmission, our findings accord with focused local 
investigations with densely sampled viral genome sequences. Such 
studies indicate that many hospital-onset infections not meeting ECDC 
definitions for healthcare-associated infection are hospital-acquired 
and highlight the importance of superspreading5,19. Such superspread-
ing is implicit in our negative binomial models, which attribute 80% 
of detected patient–patient transmission events from nosocomially 
infected patients to about 20% of infected patients (Extended Data 
Fig. 7). Also aligned with our findings are conclusions from local stud-
ies that hospital-acquired infection in patients was primarily due to 
transmission from nosocomially infected patients, whereas sources 
for HCW infections came from patients and HCWs in approximately 
equal proportions9,19,20.

National infection prevention and control (IPC) guidance in England 
at the start of June 2020 emphasized respiratory and hand hygiene, use 
of face masks for patients and HCWs, cohorting of patients and staff, 
environmental decontamination, ventilation and staff social distanc-
ing. Screening of all patients for SARS-CoV-2 during the first 7 d of their 
hospital stay was recommended throughout the period, but some 
trusts went beyond these requirements by performing weekly testing. 
Records of such measures were not kept at a national level and lack of 
centrally collected data on trust-specific IPC measures means that 
effective interventions may have gone unrecognized and may poten-
tially confound observed associations. Simulation studies, however, 
indicate that high-frequency asymptomatic screening and rapid isola-
tion of patients with suspected SARS-CoV-2 can substantially reduce 
SARS-CoV-2 transmission in healthcare settings21,22, and highlight the 
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Fig. 3 | Factors associated with healthcare-associated SARS-CoV-2 in 
patients, HCWs and predictive distributions. a,b, Additive effects 
associated with categories of host infections and multiplicative effects  
of vaccine coverage in HCWs, Alpha prevalence and trust characteristics 
(posterior means and 50% and 90% CrIs are shown and results are on the basis 
of 1,661 hospital trust weeks of data from 96 different hospital trusts). For 
multiplicative effects, values below 1 indicate an association with reduced 
infection rates. Note that in the model for infections in patients (a), HCW 
vaccine coverage acts by modulating transmission associated with infected 
HCWs, whereas in the model for infections in HCWs (b) it has a global effect, 
modulating the overall rate of infection. c,d, Associated posterior predictive 
distributions for the number of detected infections by week in the 20 largest 

trusts are shown for infections in patients (c) and in infections in HCWs (d). 
Bold solid lines correspond to observed values, shaded regions correspond  
to 50% and 90% CrIs and the central lines within the shaded regions are median 
values from the posterior sample. e–g, For all trusts, classifications of detected 
infections by week (e) and contributions to predicted hospital-acquired 
infections in patients (f) and HCWs (g) from the three categories of infected 
hosts predicted by the full negative binomial regression models accounting for 
HCW vaccination and Alpha variant effects are shown. When the dependent 
variable is healthcare-associated SARS-CoV-2 infection in patients, these 
results use the ECDC definitions of definite and probable healthcare-associated 
infection (see Supplementary Information section 2 and the Supplementary 
Results for models using other definitions).
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importance of contact tracing23. Further limitations include the lack of 
PCR sensitivity estimates specific to the Alpha variant or conditioned 
on symptoms, and lack of consideration of vaccination in the patient 
population for which we lacked data. Although vaccine rollout to the 
over 70s and clinically extremely vulnerable began on 18 January 2021 
in England, residents in care homes for older adults and their carers and 
those aged 80 and over were first eligible for vaccination on 8 Decem-
ber 2020; we estimate that 18% of those aged 80 and over and no more 
than 10% of those aged 70–79 may have had some degree of vaccine 
protection by the last week of the study (Supplementary Information 
section 2.4). We did not consider outpatients in this work as they are 
typically cared for in separate outpatient clinic settings distinct from 
the wards of acute hospitals.

The factors that make it hard to prevent SARS-CoV-2 transmission 
are relevant for hospitals everywhere. Although some well-resourced 
hospitals avoided large-scale nosocomial transmission in early 2020 
(refs. 24–26), even in high-income settings the extent of such transmis-
sion showed considerable variation between hospitals8. Seropreva-
lence data before vaccination in HCWs also indicate a high degree of 
heterogeneity between hospitals even in the same countries and are 
consistent with high levels of nosocomial transmission in many settings 
(Extended Data Fig. 8). Hospitals in resource-limited settings face par-
ticular challenges due to poorly funded IPC activities, lack of capacity 

to carry out routine testing, lack of isolation facilities and high levels of 
patient crowding, but attempts to systematically quantify the extent of 
such transmission outside high-income countries are currently lacking.

Our findings have implications for control policies. First, they high-
light the importance of early identification and prompt initiation of 
control measures for patients with new hospital-acquired infections 
and for other patients they may have infected. Second, they reinforce 
the need for measures that reduce transmission from patients with 
asymptomatic infection in non-COVID-19 hospital areas, including 
improved ventilation, use of face coverings by patients and staff, 
increased distancing between beds, minimizing patient movements 
within and between wards and promotion of hand hygiene27,28. Third, 
our findings support efforts to prioritize HCWs for COVID-19 vaccina-
tion both due to direct protection to HCWs and due to indirect pro-
tection offered to patients. Fourth, the findings highlight the need 
to prioritize research into effective methods of reducing hospital 
transmission of airborne pathogens for which evidence is currently 
lacking29, including ward design and air filtration systems30. Although 
our analysis focuses on nosocomial transmission early in the pandemic 
and before widespread vaccine coverage, the emergence of the highly 
contagious Omicron variants of SARS-CoV-2 has presented further 
infection control challenges, with high rates of hospital-onset infection 
reported despite high vaccine coverage, universal masking, admission 

Fig. 4 | Dynamics of community and hospital infections. a–i, Results from 
simulation runs showing infected patients under high (a), intermediate (b) and 
low (c) rates of hospital transmission, in which rates of hospital transmission in 
intermediate and low scenarios are, respectively, 25% and 50% lower than the 
high hospital transmission scenario without altering parameters related to 
community transmission. Corresponding numbers of infected HCWs (d–f) 
and total numbers infected in the community (g–i) under the same scenarios 
are also shown. Assumed population sizes for community, hospital inpatients 
and HCWs are 500,000, 1,000 and 4,000, respectively. Solid vertical lines 
correspond to initiation of ‘lockdown’ measures, which are assumed to reduce 
person-to-person transmission rates in the community by 80% for the first 
lockdown and 70% for the second. The two broken vertical lines correspond  
to progressive release of lockdown measures, here assumed to result in 
transmission rates in the community that are reduced by 70% (after 100 d)  

and 40% (after a further 50 d) compared with the pre-intervention rate.  
j–u, The same three hospital transmission scenarios are used when considering 
threshold-driven lockdown measures ( j–u), when lockdown measures are 
initiated and released on the basis of per capita infection rates in the community 
being above or below prespecified thresholds. In these scenarios, when 
lockdown is in place person-to-person transmission rates in the community are 
assumed to be reduced by 90% compared with pre-intervention levels, whereas 
release of lockdown is followed by community transmission rates that are 50% 
of those before the first lockdown. Outputs shown are number of lockdowns 
under high ( j), intermediate (k) and low (l) hospital transmission scenarios,  
the total proportion of the population infected (m–o), total days in lockdown 
(p–r), and infections averted per day in lockdown (s–u) under the same three 
scenarios.
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testing and symptom-based screening; anecdotal reports indicate that 
heightened control measures may be needed to suppress nosocomial 
spread31.

Finally, our findings show that hospital transmission can have a 
substantial impact on epidemic dynamics in the wider community. In 
particular, the role of hospital transmission in seeding COVID-19 into 
care homes and other vulnerable groups in the community must be 
further investigated in light of the finding that much of the hospital 
transmission is likely to be unobserved.
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Methods

Quantifying the number of hospital-acquired infections
Inferential approach. We estimate the total number of hospital- 
acquired infections in trust i (combining observed and unobserved 
infections), zi, by applying Bayes’ formula:

P z y P y z P z P y( | , π′ ) = ( | , π′ ) ( )/ ( |π′ )i i i i i i i i i

where π′i , represents the probability that an infection acquired by a 
patient in trust i is both detected by a PCR test and meets the definition 
of a hospital-acquired infection (which requires the first positive sam-
ple to be taken 15 or more days after the day the patient is admitted to 
the trust and before patient discharge), assumed independent of zi. 
Here, P y z( | , π′ )i i i  represents the binomial likelihood of observing yi 
identified hospital-acquired infections, P z( )i  is the prior distribution 
for the total number of infections, which we take to be uniform 
(bounded by 0 and 20,000), and we calculate P y( |π′ )i i  using the law of 
total probability P y P y z l P z l( |π′ ) = ∑ ( |π′ , = ) ( = )i i l i i i i .

Effect of testing policy. The probability that a new hospital-acquired 
infection in trust i is detected is given by γ Pπ = ∑i m d imd imd, , where Pimd  
is the probability that a patient admitted to trust i with length of stay 
m and infected on day of stay d (where d ≤ m) has a positive PCR test 
while in hospital and γimd  is the probability that, given a new 
hospital-acquired infection in trust i occurs, it occurs in a patient with 
length of stay m on day of stay d. Similarly, the probability that a new 
hospital-acquired infection is both detected and meets the definition 
of a hospital-acquired infection is

∑ γ Pπ′ = ′i m d imd imd,

where P ′imd  is the probability that an infection in a patient admitted to 
trust i with length of stay m infected on day of stay d is both detected 
and meets the definition of a hospital-acquired infection.

Consider an infection that a patient acquires d days after the day the 
patient is admitted to the hospital. The testing policy in place in the 
trust during the patient’s stay, the day of infection and the incubation 
period distribution together determine the probability that a patient 
is tested on day k after the patient is infected (for k = 0, 1, 2, 3 …). We 
assume the test has a specificity of 1. Let ϕk represent the sensitivity of 
a PCR test taken k days after the date of infection, and let τik represent 
the probability that such a test is performed k days after the infection 
event, assumed to be independent for each value of k of whether a test 
is performed on any other day. Then, P τ φ= 1 − ∏ (1 − )imd k d m i k d k d= … ( − ) −

.
The corresponding probability, P ′imd , is zero for m < 15 (because in 

that case the definition of hospital-acquired infection is not met); oth-
erwise, it is given by the probability that there is no positive test before 
day 15 and at least one positive test after. For d ≥ 15 this probability is 
identical to Pimd; otherwise, it is given by

∏ ∏P τ φ τ φ′ = (1 − )(1 − (1 − )).imd k d i k d k d k m i k d k d= ...14 ( − ) − =15... ( − ) −

If λim represents the probability that a patient at risk of nosocomial 
infection with SARS-CoV-2 admitted to trust i has a length of stay of m 
days, then, on a given day, the expected proportion of patients who 
both have a length of stay of m days and are currently on day of stay  
d is given by ψ I m d= ( ≥ )imd

λ m
λ n m∑

1im

n in







, where I m d( ≥ )  is the indicator 

function, λ m
λ n∑

im

n in







 is the probability that on a randomly chosen day a 

randomly chosen patient has a length of stay m and 
m
1  is the probability 

that this randomly chosen day is day d of stay. Analysis of individual-
level patient data indicates that although daily risk of infection changes 
over calendar time, it does not vary appreciably with day of stay d for 
typical lengths of stays9, and we therefore approximate γimd  by ψimd  
which we estimate on the basis of the reported lengths of stays of 

completed episodes of patients admitted to each trust over the time 
period considered. This will represent a reasonable approximation 
provided that the infection hazard is small and roughly constant over 
a patient’s hospital stay.

Testing policies considered. We consider several different testing 
policies, which determine the probability values that the test is per-
formed on day k after infection in trust i τ( )ik , as exact data on what 
policies were available in each trust are unavailable.

The minimal testing policy, which involves the fewest tests, requires 
only that patients displaying symptoms of COVID-19 are tested, and 
we assume all such patients are tested on a single occasion, the date 
of symptom onset. When this policy is in place, the time of testing of 
patients with hospital-acquired infections, in relation to the time of 
infection, is determined by the incubation period and such a test is 
assumed to be performed if and only if the patient develops symptoms 
on or before the day of discharge. A second testing policy extends this by 
assuming that in the event of a negative screening result from a patient 
with symptoms, daily testing will continue to be performed until patient 
discharge, the first positive test or three consecutive negative tests 
(whichever occurs first). We consider further testing policies which 
combine symptomatic testing (without retesting if negative) with rou-
tine asymptomatic testing. In these policies all patients who have not 
already tested positive are screened at predetermined intervals using 
the same PCR test. We consider weekly, twice weekly, three times weekly 
and daily testing of all in-patients as well as a policy of testing twice in 
the first week of stay (in accordance with national guidance in England).

Accounting for uncertainty in test sensitivity, incubation period 
distribution and the proportion of infections that are symptomatic. 
For a given length-of-stay distribution, incubation period distribution, 
PCR sensitivity profile and probability that infection is symptomatic, 
the calculations outlined above to determine the probability that an 
infection is detected or both detected and classified as a hospital- 
acquired infection are deterministic, and require no simulation. We 
account for uncertainty in these quantities through a Monte Carlo 
sampling scheme, at each iteration sampling new values for PCR sen-
sitivities, the incubation period distribution and the proportion of 
infections that are symptomatic. For PCR sensitivities, we directly 
sample from the posterior distribution reported by Hellewell et al.16. 
For the incubation period we assume a lognormal distribution, and 
sample the parameters from normal distributions with means (s.d.) of 
1.621 (0.064) and 0.418 (0.069) as estimated by Lauer et al.32. Estimates 
of the proportions of infections that are symptomatic are taken from 
Mizumoto et al.33 and this quantity is sampled from a normal distribu-
tion with mean (s.d.) of 0.82 (0.012). Length-of-stay distributions are 
directly obtained from the Secondary Uses Service for NHS acute trusts, 
excluding: (1) patients who were admitted with PCR-confirmed 
COVID-19; (2) patients who had samples taken in the first 7 d of their 
hospital stay that were PCR positive for SARS-CoV-2; and (3) patients 
with a length of stay of less than 1 d. In the primary analysis we use  
aggregate length-of-stay data for all trusts taken from the 12 month 
period from 1 March 2020. We also present results from two sensiti vity 
analyses: in the first we use trust-specific λim values; in the second we 
allow for the possibility that length-of-stay distributions change over 
time and use period-specific empirical length-of-stay distributions 
from the periods: June to August 2020; September to November 2020; 
and December 2020 to February 2021.

Quantifying drivers of nosocomial transmission. We used general-
ized linear mixed models to quantify factors associated with nosoco-
mial transmission. In these models the dependent variable was either 
the observed number of healthcare-associated infections in trust i 
and week j among patients, yij

, or the imputed number of infections 
in HCWs, y ′ij

. When the dependent variable was healthcare-associated 
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infections in patients, we used ECDC criteria, repeating the analysis 
using three different classifications of healthcare-associated infec-
tion: (1) definite; (2) definite and probable; (3) definite, probable and 
indeterminate. Three classes of independent variables were consid-
ered: (1) known exposures to others in the same trust infected with 
SARS-CoV-2 to account for within-trust temporal dependencies, with 
separate terms corresponding to exposures in the previous week to 
patients with community-onset SARS-CoV-2 infections z( )i j( −1) ,  
patients with hospital-acquired SARS-CoV-2 y( )i j( −1)

 and HCWs with 
SARS-CoV-2 y( ′ )i j( −1)

; (2) characteristics of the trusts that were con-
sidered, a priori, to be plausibly linked to hospital transmission: bed 
occu pancy, provision of single rooms, age of hospital buildings, 
heated hospital building air volume per bed and size (number of acute 
care beds); (3) regional data including vaccine coverage among HCWs 
and the proportion of isolates represented by the Alpha variant.  
Models were formulated to reflect presumed mechanisms generating 
the data, and we used negative binomial models with identity link 
functions, allowing the number of exposures to different categories 
of SARS-CoV-2 infections to contribute additively to the predicted 
number of weekly detected infections, while allowing for multiplica-
tive effects of the other terms. In models for which the dependent 
variable represented hospital-acquired infections in patients, the 
HCW vaccination effect was assumed to act only through a multiplica-
tive term affecting transmission related to exposures to HCWs. By 
contrast, when the dependent variable represented infections in 
HCWs, vaccine exposure was allowed to have a multiplicative effect 
on the overall expected number of infections. Formally, we define the 
full model for infections in patients in trust i and week j (which we 
refer to as model P1.1.1) as:

y µ φneg bin( , ),ij ij ij

where µij
 represents the mean and the variance is given by µ µ φ+ /ij ij ij

2 .
In the full model µ a by c y dz m n= ( + + ′ + )ij i i j ij i j i j ij ij( −1) ( −1) ( −1)





m q r s

t u

n w

c c v

φ φ k y

a N a σ

k N k σ

= exp( × single rooms + × trust size + × occupancy

+ × trust age + × trust volume per bed )

= exp( × proportion Alpha variant )

= × exp( × HCW vax )

= +
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The expression for the dispersion parameter of the negative binomial 
distribution, φij

, reflects the fact that the sum of n independent negative 
binomially distributed random variables with mean μ and dispersion 
parameter φ will itself have a negative binomial distribution with mean 
nμ and dispersion parameter nφ. Thus, in the idealized case that each 
of n nosocomially infected patients in 1 week has a fully observed 
negative binomially distributed offspring distribution the next week 
with mean μ and dispersion parameter φ, then the total number of 
nosocomial infections observed would have a negative binomial dis-
tribution with parameters nμ and nφ. The ai represents a trust-level 
random effect term to account for within-trust dependency. We also 
considered two nested models, P1.1.0 and P1.0.0, obtained by setting 
the terms q, r, s, t and u to zero in both cases (that is, removing the 
trust-level terms) and by additionally setting the terms v and w to zero 
in the latter case (that is, removing regional vaccine- and variant-related 
terms). As a further sensitivity analysis, we also considered a model 
that allowed for time-varying changes in the number of hospital-
acquired infections not accounted for by the covariates, by setting

µ s j a by c y dz m n= (1 + ( ))( + + ′ + )ij i i j ij i j i j ij ij( −1) ( −1) ( −1)

where s j( ) is a degree 3 spline with 6 equally spaced knots. We refer to 
this model as P1.1.1.tv. Similar models were used when the dependent 
variable was HCW infections, except that the HCW vaccine effect was 
included in the multiplicative term mij instead of operating only through 
the cij term.

We used normal(0,1) prior distributions by default for model para-
meters, except for variance terms σa

2 and σ k
2 for which we used half- 

Cauchy(0,1) prior distributions, and φ for which a half-normal(0,1) 
prior distribution was specified for the transformed parameter φ1/ 0

. 
All analyses were performed in Stan34 using the rstan package v.2.21.1 
in R (ref. 35), running each model with four chains using 1,000 iterations 
for warm-up and 5,000 iterations for sampling.

In the main analysis, we used weekly aggregated data, counting  
week numbers as 1 plus the number of complete 7 d periods since  
1 January 2020. We included only acute hospital trusts in this analysis, 
and excluded trusts that predominantly admitted children.

Imputation method for weekly number of infections in HCWs. Situ-
ation reports included fields allowing quantification of nosocomial 
transmission and number of HCWs isolated due to COVID-19 from  
5 June 2020, but analysis here is restricted to data from week 42  
(beginning 14 October 2020) to week 55 (beginning 13 January 2021), 
reflecting the date range for which all fields used in the analysis were 
consistently reported. Because situation reports did not explicitly 
include data on the number of infections in HCWs, only the number of 
HCWs absent due to COVID-19 on each day, we imputed the weekly 
number of infections among HCWs at each trust. We did this by first 
subtracting from the number of reported HCW COVID-19 absences in 
each trust on each day the reported number of such absences due to 
contact tracing and isolation policies (reflecting likely COVID-19 expo-
sures in the community) to give at, the number of HCWs absent on day 
t due to COVID-19 infection potentially arising from occupational  
exposure. Then, assuming that each HCW with COVID-19 was isolated 
for 10 d and assuming that durations of these absences were initially 
uniformly distributed (starting from week 36), the number imputed 
to have entered isolation on day t, xt, was taken as x a x a= + −t t t t+1 −10 . 
For each trust we performed these calculations ten times, sampling 
the initial duration of staff absences from a multinomial distribution 
assigning equal probabilities to durations of 1 … 10 d, and then took 
the average (rounded to the nearest integer) of these samples. In some 
trusts it was evident that some days with missing HCW isolation data 
had been coded as zeroes. When such zeroes fell between daily counts 
in excess of ten we treated them as missing data and replaced them 
with the last number carried forward. Any negative numbers for daily 
imputed HCW infections resulting from the above procedure were 
replaced with zeroes.

Although data on healthcare-associated infections in patients were 
recorded consistently by all trusts throughout the inclusion period, 
in some trusts data on HCW absences due to COVID-19 were miss-
ing or had been recorded inconsistently throughout the inclusion  
period. Excluding such trusts and those with missing data for inde-
pendent variables left 96 of the original 145 trusts included in the 
analysis.

Negative control outcomes
We used as a negative outcome control the number of patients admitted 
with community-acquired SARS-CoV-2 infection as the outcome vari-
able. We performed three analyses in which we adopted this negative 
control as our dependent variable, corresponding to models P1.1.1, 
P1.1.0 and P1.0.0 as defined above.

Hospital–community interaction model
We modelled hospital–community interaction using ordinary  
differential equations for an expanded susceptible/exposed/ 
infectious/removed model (Extended Data Fig. 9). This model included 



separate compartments for people in the community (SC, E1C, E2C, I1C, 
I2C, I′C, RC), patients in hospital (SH, E1H, E2H, I1H, I2H, I′H, RH) and HCWs 
(SHCW, E1HCW, E2HCW, I1HCW, I2HCW, I′HCW, RHCW), in which the two exposed 
compartments (E1 and E2) and the two infectious compartments 
(I1 and I2) for each subpopulation correspond to assumptions of an 
Erlang-distributed latent and infectious period with shape param-
eter 2, whereas the I′ compartments represent people with severe 
disease potentially requiring hospitalization. The model allowed 
for patient–patient, HCW–HCW, HCW–patient and community–
HCW transmission, as well as movements of people between the  
community and hospital. In the interest of simplicity, we neglect hos-
pitalization of HCWs who account for about 1% of the total population.

We used the model to explore the impact of hospital transmission 
on overall epidemic dynamics with the aim of providing qualitative 
insights. We considered outcomes from high, intermediate and low 
hospital transmission scenarios in which the primary epidemic con-
trol measure was restricting rates of contact in the community (‘lock-
downs’). This community control measure was assumed to have no 
direct impact on contact rates within hospitals as hospital infection 
control measures were in force throughout the study period irrespec-
tive of efforts aiming to limit community transmission. Full model 
details are provided in Supplementary Information section 1.2 and 
Supplementary Tables 1 and 2.

Ethics approval
The study did not involve the collection of new patient data, or use 
any personal identifiable information, but used a combination of 
anonymized national aggregate data sources including C19SR01–
COVID-19 Daily NHS Provider SitRep, and regionally aggregated vac-
cine coverage data from the SARS-CoV-2 immunity and reinfection 
evaluation (SIREN)  study for which the study protocol was approved 
by the Berkshire Research Ethics Committee on 22 May 2020 with the 
vaccine amendment approved on 23 December 2020.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available as 
described below. Infection data used for this analysis were taken 
from daily situation reports between 10 June 2020 and 17 February 
2021 and shared privately with the Scientific Pandemic Influenza 
Group on Modelling (SPI-M). The start date was chosen as the first 
date that healthcare-associated infections were consistently reported 
across trusts, and the end date was taken to be 1 month after the start 
of vaccine rollout to the over 70s and clinically extremely vulner-
able (18 January 2021). COVID-19 admission data for NHS trusts are 
publicly available by direct download from https://www.england. 
nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/. 
Requests for data on healthcare-associated infections should be 
sent to J.V.R. ( julie.robotham@phe.gov.uk) who will liaise with NHS  
England to provide access to these data and will respond to requests 
within 1 month. Trust-specific data used in the analysis not related 
to infections (number of single rooms, size, age, heated volume and 
bed occupancy) were derived from the Estates Returns Informa-
tion Collection from NHS Digital (available for download at https:// 
digital.nhs.uk/data-and-information/publications/statistical/estates- 
returns-information-collection), including only the following site 
types: general acute hospital, community hospital (with inpatient 
beds), mixed service hospital, specialist hospital (acute only). The 
number of single rooms was expressed as the number of beds in single 
rooms in the trust (including single bedrooms for patients with and 
without en-suite facilities and isolation rooms) divided by the number 

of general and acute beds reported as being available in the trust in the 
last quarter of 2020. Hospital size was taken as the number of hospital 
beds available in the trust. A hospital building age score was taken as a 
weighted average of the proportion of floor area across hospital sites 
that was built before 1965, for which weights were taken as the building 
floor area. Data relating to vaccine coverage in HCWs were collected 
as part of the SIREN study (ISRCTN No. ISRCTN11041050)36. Data from 
this study are available on reasonable request and will be available 
through the Health Data Research UK CO-CONNECT platform and 
available for secondary analysis once the SIREN study has completed 
reporting. Using these data, we classified HCWs as being immunized if 
they had received at least one vaccine dose 3 or more weeks previously. 
Otherwise, they were considered un-immunized. SARS-CoV-2 variant 
data consisted of the proportion of characterized isolates that were 
attributed to the Alpha variant in each week for each NHS region. The 
prevalence of the Alpha variant by region and over time was determined 
by the proportion of tests with S-gene target failure status from PCR 
tests provided by Public Health England (accessed at https://github.
com/epiforecasts/covid19.sgene.utla.rt)37. Patient length-of-stay data 
were taken from the Secondary Uses Service (SUS)38. Data to recon-
struct the PCR sensiti vity profile are available from https://github.
com/cmmid/pcr-profile.

Code availability
All code for the data analysis and simulations in this paper is available 
from https://zenodo.org/record/8123987 (ref. 39). Code to reconstruct 
the PCR sensitivity profile is available from https://github.com/cmmid/
pcr-profile.
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Extended Data Fig. 1 | Pairs plot showing the relationships between 
cumulative trust-level infection rates and trust characteristics. Diagonal 
elements show kernel density estimates for cumulative covid infections in 
trusts from 10th June 2020 to 17th February 2021: 1) definite hospital-acquired 
infections per 100 beds (defined as those first PCR positive 15 or more days 
after hospital admission); 2) probable hospital-acquired infections per 100 
beds (those first PCR positive from 8–14 days after admission); 3) imputed 
healthcare worker (HCW) SARS-CoV-2 infections per 100 HCWs; 4) SARS-CoV-2 
infections in hospitalised patients with community onset per 100 beds; 5) bed 

occupancy; 6) age of acute hospital buildings in the trust expressed as a weighted 
average of the percentage of hospital buildings constructed in 1964 or earlier, 
where weights are the hospital gross internal floor areas; 7) number of single 
room beds per trust (including isolation rooms) as a percentage of the number 
of general and acute beds available in the last quarter of 2020; 8) heated volume 
per bed (m3). Below-diagonal elements show scatterplots, where each point 
(coloured according to NHS region) corresponds to a single NHS trust. Above 
diagonal elements show the Pearson correlation coefficients between pairs of 
variables, both nationally (in grey) and within each NHS region.
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Extended Data Fig. 2 | Infections in patients. Posterior predictive distributions for all 96 trusts included in the analysis from model P1.1.1 where the outcome is 
probable and definite healthcare-associated infection. Bold solid lines correspond to observed values and shaded regions correspond to 50% and 90% CrIs.



Extended Data Fig. 3 | Infections in healthcare workers. Posterior predictive distributions for all 96 trusts included in the analysis from model P1.1.1 where the 
outcome is infections in HCWs. Bold solid lines correspond to observed values and shaded regions correspond to 50% and 90% CrIs.
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Extended Data Fig. 4 | Directed acyclic graphs showing community-acquired 
SARS-CoV-2 (CA-SARS-CoV-2) infection as a negative control outcome for 
use in evaluating the relationship between an exposure, A, and hospital- 
acquired SARS-CoV-2 (HA-SARS-CoV-2). Measured confounders, L, are 
assumed to be adjusted for in the analysis, while unmeasured variables, U, may 
distort the estimated measure of association between exposure and hospital- 
acquired SARS-CoV-2 infection, generating a non-causal association. (a) Suppose 
that exposure, A, is a cause of HA-SARS-CoV-2 but not of CA-SARS-CoV-2, while 
unmeasured variables, U, are causes of both HA-SARS-CoV-2 and CA-SARS-CoV-2 
but not of A (for example, factors affecting susceptibility to infection). In this 
case, in an analysis that adjusts for L, the association between A and HA-SARS- 
CoV-2 is a consequence of the causal link between A and HA-SARS-CoV-2, and  
no such association would be seen between A and the control outcome, 
CA-SARS-CoV-2. b) Conversely, if U is a cause of A, HA-SARS-CoV-2 and 
CA-SARS-CoV-2, but A is neither a cause of HA-SARS-CoV-2 nor of CA-SARS-CoV-2 
then in an analysis adjusting for L associations between A and HA-SARS-CoV-2 
and between A and CA-SARS-CoV-2 are expected as a consequence of the 
confounding factors, U. If a) and b) were the only possible causal relationships 
to be considered, an association between A and HA-SARS-CoV-2 but not 
between A and CA-SARS-CoV-2 after adjusting for L would provide evidence in 
support of a), where A is a cause of HA-SARS-CoV-2, while an association 
between A and CA-SARS-CoV-2 (after adjusting for L), would support b) as the 
backdoor path through U is open. c) If A is both a cause of HA-SARS-CoV-2 and 
there are unmeasured confounders, U, an association between A and 
HA-SARS-CoV-2 after adjusting for L is a consequence of both the direct causal 
link and confounding; in this case we would also expect an association between 
A and CA-SARS-CoV-2 after adjusting for L arising entirely as a result of 
confounding.



Extended Data Fig. 5 | Results of a simulation study. Parameter estimates 
from fitting a negative binomial auto-regression model to simulated data 
under different probabilities for observing hospital-acquired infections in 
patients (a-f). The thick horizontal line indicates the component of the 
reproduction number used when simulating data (for example, in (a) each 
patient with a hospital-acquired infection infects, on average, 0.6 other 
hospitalised patients). Red dots indicate the median from 100 simulations and 
the width in the violin plots is proportional to the density. Heatmaps (g-i) show 

how estimated model parameters from a negative binomial auto-regression 
model (y-axis) map onto reproduction numbers (shown by the colour scale)  
for different proportions of hospital-acquired infections observed in patients 
(x-axis). Reproduction numbers correspond to expected numbers of 
secondary infections in patients from patients who themselves became 
infected in hospital (g), secondary infections in patients from healthcare 
workers (h) and secondary infections in patients from patients admitted to 
hospital with COVID-19 (i).
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Extended Data Fig. 6 | Additional output from deterministic model. 
Dynamics of unmitigated epidemics under scenarios of high, intermediate and 
low transmission in hospitals (a). Dynamics of epidemics under scenarios of 
high, intermediate and low transmission in hospitals when a single “lockdown” 

intervention is introduced on day 50 (grey vertical line), which has the effect  
of stopping 90% of community-based transmission but no effect on hospital- 
based transmission (b).



Extended Data Fig. 7 | Proportion of all transmission due to a given 
proportion of infectious cases, where cases are ranked by infectiousness. 
Results are obtained by simulation with 106 samples using point estimates  

from models P1.1.1, P1.1.0 and P1.0.0 where the dependent variable is the 
number of probable and definite healthcare associated infections (a), and 
definite healthcare associated infections (b).
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Extended Data Fig. 8 | Seroprevalence in HCWs against seroprevalence in 
the community reported in the papers published before 16 May 2021 
(means and 95% CIs). Dashed horizontal and vertical lines are the reported 
median values of seroprevalence in HCWs and in the community, respectively. 
The dots are coloured by the continent in which the survey was performed.  
The label for each dot shows country and survey period (i.e. 01/20 means 

January 2020). *The study from Iran surveyed 18 cities and classified the survey 
populations into high-risk populations (including HCWs, pharmacy employees, 
taxis drivers, cashiers of supermarket chains, and bank employees) and general 
populations in the same city over the same survey period. The bottom panel plot 
shows a zoomed in part of the top panel.



Extended Data Fig. 9 | Flow diagram for the compartmental model coupling 
hospital and community dynamics. Rectangles indicate infection states  
(S – susceptible to infection, E1 and E2 – infected but not yet infectious; I1 and I2 – 
infected and infectious; I’ severe disease). These compartments are duplicated 
for people in the community (subscript C, left panel), patients in hospital 

(subscript H, centre panel) and healthcare workers (subscript HCW, right panel). 
Arrows indicate permitted movements between these states and Greek letters 
correspond to parameters controlling the rate of these movements. The two 
exposed pre-infectious states (E1, E2) and the two infectious states (I1, I2), are 
used to represent Erlang-distributed latent and infectious periods.
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