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A B S T R A C T

Background: The search for new antimalarial treatments is urgent due to growing resistance to existing
therapies. The Open Source Malaria (OSM) project offers a promising starting point, having extensively
screened various compounds for their effectiveness. Further analysis of the chemical space surrounding these
compounds could provide the means for innovative drugs.
Methods: We report an optimisation-based method for quantitative structure–activity relationship (QSAR)
modelling that provides explainable modelling of ligand activity through a mathematical programming
formulation. The methodology is based on piecewise regression principles and offers optimal detection of
breakpoint features, efficient allocation of samples into distinct sub-groups based on breakpoint feature values,
and insightful regression coefficients. Analysis of OSM antimalarial compounds yields interpretable results
through rules generated by the model that reflect the contribution of individual fingerprint fragments in
ligand activity prediction. Using knowledge of fragment prioritisation and screening of commercially available
compound libraries, potential lead compounds for antimalarials are identified and evaluated experimentally
via a Plasmodium falciparum asexual growth inhibition assay (PfGIA) and a human cell cytotoxicity assay.
Conclusions: Three compounds are identified as potential leads for antimalarials using the methodology
described above. This work illustrates how explainable predictive models based on mathematical optimisation
can pave the way towards more efficient fragment-based lead discovery as applied in malaria.
1. Introduction

Malarial represents a current unmet medical need. The World
Health Organisation estimated 247 million cases across 84 endemic
countries, leading to 619,000 deaths [1] in 2021. New therapeutics
are urgently required due to the high prevalence of parasite resis-
tance to the existing approved drugs [2,3]. The development of new
antimalarial drugs, however, is a complex and expensive process com-
prising multiple stages with many potential points of failure. Machine
learning (ML) strategies can reduce the cost and time requirements
associated with early-stage drug discovery by excluding unsuitable
compounds and directing the search towards the most promising drug
candidates [4,5].

Identification of active antimalarial compounds relies on a blend
of experimental and computational strategies. High-content imaging
can be used to screen large compound libraries effectively, but has
limitations relating to chemical diversity and high resource needs. On
the computational side, Quantitative Structure–Activity Relationship
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(QSAR) modelling [6] is prevalent and popular in antimalarial drug
research [7]. QSAR methods predict the biological activity of chemical
compounds based on their structural properties and can link different
functional groups to the relevant activity [8].

Nowadays, AI methods to train QSAR models have gained popular-
ity, as models to predict the activity of new compounds can accelerate
the virtual screening process. In antimalarial drug discovery examples,
an SA-SVM-based model was used to predict the activity of fusidic acid
derivatives as antimalarial agents [9], we note a GA-SVM-based predic-
tor used to model falcipain inhibitors [10], a standard protocol built
with Support Vector Machine (SVM), K-Nearest Neighbours (KNN) and
Navier Bayes (NB) to develop molecular descriptor-based predictive
models [11], as well as MAIP, a consensus model that combines the
prediction of eleven ‘‘partner’’ models trained on a large dataset [12].

Explainable AI (XAI) has become an important research target
that aims to provide informative explanations alongside ML models
to aid human decision-making and reasoning [13]. XAI is particularly
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Fig. 1. The pipeline of data processing and analysis in modSAR. (A) The OSM dataset was pre-processed following the steps specified in the OSM Github issue, and the Extended-
Connectivity Fingerprints (ECFP) [19] of each OSM compound were obtained. (B) The 𝑇𝑐 similarity between compounds was computed using ECFP, and a representative graph
was obtained by linking compounds with respect to their similarity. (C) A threshold of similarity was applied to the graph, and network modules were identified. (D) For each
module, a bit of ECFP was identified as breakpoint. Each module was then subdivided into two regions according to the values of the breakpoint feature. (E) A regression equation
was determined for each region.
important in the pharmaceutical domain due to its potential to support
rational molecule design and compound optimisation, as well as to
accommodate safety concerns. Therefore, XAI is an integral component
of trustworthy AI-based drug discovery and is required to complete the
data-information-knowledge-wisdom spectrum [14]. In the application
of drug discovery, XAI models allow inference of how a model makes a
particular prediction (transparency), elucidation of why the prediction
is acceptable (justification), extraction of knowledge from the model to
guide human decision-making (informative) and investigation of how
reliable the prediction is (uncertainty estimation) [15]. In this work, we
attempt to engage the concept of XAI with white-box QSAR modelling
based on mathematical optimisation to obtain informative knowledge
for wet-lab experiment guidance and compound screening.

This study centres on explainable QSAR modelling for antimalarials,
specifically focusing on the chemical space from the Open Source
Malaria (OSM) [16] project and modelling the inhibition activity
(𝑝𝐼𝐶50) of compounds against P.falciparum. Amongst the compounds
present in the OSM database, there is particular interest in developing
accurate prediction of anti-PfATP4 activity among a set of series of
promising compounds [16]. To perform this task, we build upon
previous work on development of an interpretable model based on
mathematical optimisation, modSAR [17]. We have previously applied
modSAR to an earlier version of the OSM data using pre-defined
molecular descriptors [18], and here we develop this work further,
offering improved understanding of these antimalarial candidates, as
well as prioritising and validating potential lead compounds as in-
hibitors of asexual growth in P.falciparum and demonstrating parasite
selectivity. This study could pave the way for future SAR explorations,
lead optimisation and new de novo drug design efforts for malaria, as
well as in leveraging high-content screening relating to other disease
indications.

2. Methodology

A schematic overview of our methodology is shown in Fig. 1 and
comprises data pre-processing, QSAR modelling via modSAR and analy-
sis of the rules generated by the model. ModSAR involves first detecting
clusters of chemical compounds, and then applying mathematical opti-
misation to determine the optimal split of each cluster into appropriate
regions and yield piecewise linear regression equations to link molec-
ular descriptors to the biological activity of samples in that region.
2

Fig. 2. Initial compounds of each OSM series.

Therefore, modSAR identifies the relationship between compound fea-
tures and relevant bioactivity in a manner that is both mathematically
descriptive, as well as having similar accuracy to popular machine
learning methods [17,20]. Below, data processing and methodology are
described in more detail.

2.1. Data

Data used in this study were derived from the OSM project, a collab-
orative consortium aiming to facilitate design of new drugs for malaria
guided by open source principles [16]. Data were downloaded from
the Google Sheet of all OSM Compounds. Molecules were categorised
into four series according to chemotype: an arylpyrrole series (Series
1), the triazolourea singleton (Series 2), aminothienopyrimidine Series
(Series 3), and triazolopyrazine series (Series 4). The compounds that
characterise each series are shown in Fig. 2.

Although targets of Series 1–3 compounds remain unknown, a
promising biological target of P.falciparum has been identified as P-type
ATPase PfATP4, a parasite cell membrane enzyme which exports Na+
ions and imports H+ ions [21,22]. Based on previous studies, PfATP4
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has been implicated as target for Series 4 compounds [23], as well as
two experimental antimalarial drugs, Cipargamin (KAE609) [24], (+)-
J733 [25]. The first three series were derived from the Tres Cantos list
f hits against P. falciparum released by Glaxo Smith-Kline in 2010 [26]
ut, although several potent drug candidates were found, structural
ifficulties have hindered progress.

In Series 1, a labile ester created stability concerns, with potency
f compounds decreasing whenever changes were made to the central
tructure. Series 2, on the other hand, presented low solubility [27],
nd in Series 3, the mechanisms of action of the initial compound are
till under active investigation, as it is believed to inhibit one or more
inases [28,29]. However, the analogues derived and evaluated in the
eries have not exhibited high potency.

The last set, Series 4, is the current series of interest of the OSM
onsortium [30]. These triazolopyrazine analogues were initially iden-
ified in a high throughput screening performed in 2013 by Pfizer and
he Medicines for Malaria Venture (MMV) [31,32] and contain many
otent compounds, some of which have proven to be potent in vivo, and
isplay many desirable physicochemical properties [29]. A correlation
as been found between molecular potency and parasite ion-regulated
ctivity [33].

This study focused first on building a predictive model for Series
analogues [18], but as our method can inherently distinguish struc-

urally heterogeneous chemical sets, all series and assays were then
onsidered for a more comprehensive analysis. A raw dataset contain-
ng all OSM compounds from Series 1 to 4 and their respective assay
ata was downloaded from the Master List of chemicals provided by
SM. Pre-processing (Fig. 1(A)) was performed as outlined in [34]: (i)
ompounds with no SMILES or P.falciparum 𝐼𝐶50 values were removed;
ii) molecular structures were normalised using RDkit [35] with salts
tripped, canonical tautomer calculated and charges normalised; (iii)
ata were deduplicated by recalculating each compound’s InChiKey;
nd (iv) 𝑝𝐼𝐶50 values were computed by taking the negative logarithm
f the 𝐼𝐶50 values to obtain an easy-to-read, intuitive form of data. The
inal dataset included 386 unique compounds, each with a respective
MILES string and an associated binding activity (𝑝𝐼𝐶50).

For each compound, circular molecular fingerprints were generated
y RDKit [35] using the Morgan algorithm [36]. Specifically, each atom
n a molecule was viewed as the centre of a radius of perception. The
ubstructures of a molecule were iteratively gathered and recorded by
ncluding the immediate neighbours and the neighbours of each centre.
n preliminary tests, we observed similar performance of the modSAR
lgorithm for fingerprints produced with radius = 2 (ECFP4) and radius

4 (ECFP8) parameters, so we selected the version with a smaller
adius. Our final configuration consists of Morgan circular fingerprints
f radius = 2 collapsed to 1024 bits, closely resembling the ECFP4
ingerprint algorithm commonly used in cheminformatics studies [19].

.2. The ModSAR algorithm for network-based piecewise linear regression

ModSAR (Fig. 1(B)-(E)) combines modularity clustering [37] and
egularised piecewise linear regression [20] to learn the quantitative
tructural–activity relationships (QSAR) relationship of compound ac-
ivity [17]. The algorithm involves two main stages: first modules of
olecules that share similar structures are identified, and then each

uch module is modelled to derive piecewise linear equations through
he OPLRAreg optimisation model. An overview of the computational
rocedure is illustrated in Fig. 1 and described below.

Similarities among compounds are calculated by the pairwise Tani-
oto coefficient 𝑇 𝑐 [38] applied to the circular fingerprints [19]. Pairs

f compounds are connected by an edge in the network, if chemical
imilarity is above a threshold 𝑇 𝑐 ≥ 𝑡𝛼 , which is identified by modSAR
nd corresponds to the value that optimises the average clustering
oefficient of the network [17,39]. Given the chemical similarity net-
ork, compounds are clustered in distinct modules by maximising the
3

odularity metric [40–43] with each module reflecting compounds
ith a common structural core or scaffold.

The second stage derives the structure–activity mapping, through
ndependent piecewise linear regression equations using the OPLRAreg
lgorithm [20,44]. Here, one of the features is optimally determined
o act as a breakpoint, thereby separating the data into 𝑛 disjoint
ub-groups called ‘‘regions’’, each of which is then modelled by inde-
endent linear equations. OPLRAreg identifies all of these properties
imultaneously (i.e. optimal feature, number of regions and regression
oefficients), maximising the mean absolute error (MAE) of 𝑝𝐼𝐶50
alue through a mixed integer linear programming (MILP) optimisation
odel.

At each iteration, the breakpoint values are ordered for the selected
umber of regions 𝑅 and breakpoint feature 𝑓 ∗:

𝑟𝑓∗ ≥ 𝑋𝑟−1,𝑓∗ ∀𝑟 = 2, 3,… , 𝑅 − 1 (1)

here 𝑋𝑟𝑓∗ denotes the breakpoint value of region 𝑟 on breakpoint
eature 𝑓 ∗. Each sample 𝑠 is assigned to a region 𝑟 corresponding to
he breakpoint values:

𝑠𝑓∗ ≥ 𝑋𝑟−1,𝑓∗ − 𝑈1(1 − 𝐹𝑠𝑟) + 𝜖 ∀𝑠, 𝑟 = 2, 3,… , 𝑅 (2)

𝑠𝑓∗ ≤ 𝑋𝑟𝑓∗ + 𝑈1(1 − 𝐹𝑠𝑟) − 𝜖 ∀𝑠, 𝑟 = 1, 2,… , 𝑅 − 1 (3)

where 𝐴𝑠𝑓∗ denotes the numeric value of sample 𝑠 on breakpoint
feature 𝑓 ∗, 𝑈1 is a large positive number, and binary variable 𝐹𝑠𝑟
is introduced to decide whether a sample 𝑠 belongs to a region 𝑟.
Parameter 𝜖 is added to the model to ensure that no values of the
dataset will equal any of the breaking points.

Each sample is restricted to belonging in only one region:
∑

𝑟
𝐹𝑠𝑟 = 1 ∀𝑠 (4)

For any sample, the predicted value 𝑃𝑠𝑟 for a sample 𝑠 in region 𝑟 is
given by Eq. (5):

𝑃𝑠𝑟 =
∑

𝑓
𝑊𝑟𝑓𝐴𝑠𝑓 + 𝐵𝑟 ∀𝑠, 𝑟 (5)

where 𝑊𝑟𝑓 and 𝐵𝑟 are the regression and intercept for feature 𝑓 in
region 𝑟. For each sample 𝑠, the training error is equal to the absolute
error 𝐸𝑠 between the observed value 𝑂𝑠 and predicted value 𝑃𝑠𝑟 of the
assigned region (i.e. 𝐹𝑠𝑟 = 1):

𝐸𝑠 ≥ 𝑂𝑠 − 𝑃𝑠𝑟 − 𝑈2(1 − 𝐹𝑠𝑟) ∀𝑠, 𝑟 (6)

𝐸𝑠 ≥ 𝑃𝑠𝑟 − 𝑂𝑠 − 𝑈2(1 − 𝐹𝑠𝑟) ∀𝑠, 𝑟 (7)

where 𝑈2 is an arbitrarily large positive number.
The objective function of OPLRAreg is shown in Eq. (8) below,

𝑧 = 𝑀𝐴𝐸 + 𝜆 ⋅ 𝑅𝐸𝐺 (8)

where 𝜆 is a positive user-defined parameter that controls the influence
of regularisation. Variables 𝑀𝐴𝐸 and 𝑅𝐸𝐺 are defined by the set of
equations below,

𝑀𝐴𝐸 =
∑

𝑠 𝐸𝑠

|𝑠|
(9)

𝐸𝐺 =
∑

𝑓
𝑊 +

𝑟𝑓 (10)

+
𝑟𝑓 ≥ 𝑊𝑟𝑓 ∀𝑟, 𝑓 (11)

+
𝑟𝑓 ≥ −𝑊𝑟𝑓 ∀𝑟, 𝑓 (12)

The summary of the mixed integer linear programming model,
PLRAreg, is given by:

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑧 (13)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 Eqs. (1)–(12)
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The model is formulated as MILP problem which can be solved to
global optimality, and derives an optimal subset of features to be used
in each equation, as controlled by a regularisation parameter 𝜆 ≥ 0.
or 𝜆 = 0, no regularisation is enforced and the linear equation can
ave as many features as possible, which incurs a risk of overfitting
he data. Larger 𝜆 values reduce the number of features included
n the equation while reducing the risk of overfitting. In order to
dentify the most common scaffold in relevant groups of compounds
he rdScaffoldNetwork algorithm was employed [45].

.3. Model inference

Piecewise linear regression equations identified by modSAR can
orm the basis for structure–activity interpretation. It is noted that, as
egression equations are fitted independently for each module, data can
e further split into as many sub-clusters (i.e. regions) as required to
inimise regression error [17,20]. In practice, the algorithm selects
single feature to serve as breakpoint for defining regions in each

teration, and as we are handling binary data, there are typically two
isjoint regions for each module.

An advantage stemming from the methodological basis of our work
nd the associated use of circular fingerprints, is that we can reverse
ach fingerprint bit to the relevant chemical fragment. As certain bits
re selected by the optimisation procedure in modSAR and incorpo-
ated to the regression equation, a latent association of the relevant
ubstructure to the binding activity can be generated. We take ad-
antage of the bit–fragment relationship to evaluate the presence and
revalence of certain fragments in network modules and piecewise
egions to hypothesise on their contribution to the compound activity.

In addition to fragment prioritisation by modSAR, SHapley Additive
xPlanations (SHAP) value [46] analysis is used to further inspect
ragment contributions [47]. SHAP values interpret the output of a
achine learning model by connecting optimal credit allocation with

ocal explanations using the classic Shapley values from game theory.
n this work, we applied SHAP barplot [48,49] for computing feature
mportance, in addition to results generated by modSAR.

.4. Tuning 𝜆

To identify a suitable hyper parameter setting, five-fold cross vali-
ation was performed for different 𝜆 values. For each 𝜆, the dataset was
plit into five sets, and each set was used separately as test set while
he other four portions were used for training in each round of model
raining. The mean Root Mean Squared Error(RMSE) of the five-fold
ross validation for each 𝜆 was utilised as evaluation metric to provide
n indication of model fitness [50].

.5. Plasmodium falciparum asexual growth inhibition assay (PfGIA)

To validate the compounds selected by the modSAR algorithm, a
.falciparum asexual growth inhibition assay, similar to the one used in
he original screens that was performed on the OSM derived data. The
ssay used P.falciparum 3D7 strain parasites maintained in complete
ulture medium (RPMI supplemented with 25 mM HEPES, 50 μg ml−1
ypoxanthine, 2 gl−1 NaHCO3, 0.3 gl−1 glutamine, 1% Albumax II) at
7 ◦C under a 5% CO2 atmosphere at 4% haematocrit in whole human
lood (National Blood and Transfusion Service).

Flat-bottomed 96-well assay-ready plates were prepared by auto-
ated dispensing of 10 mM DMSO stock solutions of the compounds
sing a Tecan D300 Digital Dispenser to give appropriate dilutions.
MSO alone was used as a negative control and dihydroartemisinin at a

inal concentration of 100 nM was used as a positive control. Parasites
ere synchronised with 5% sorbitol and cultures containing ring stage
arasites were diluted to 2% parasitaemia and 1% haematocrit. 100 μl
f diluted culture was dispensed into each well of the assay plates (𝑛 = 3
ndependent replicates) and incubated in a humidified chamber within
4

37 ◦C incubator. After 72 h, plates were removed and frozen at −20 ◦C
vernight to aid lysis. The next day, plates were thawed and duplicate
lates containing 100 μl lysis buffer (20 mM Tris 𝑝𝐻 7.5, 5mM EDTA,

0.008% w/v saponin, 0.08% w/v Triton X-100, 1:5,000 SYBR green)
were prepared. Resuspended thawed parasite culture from each well
(85 μl) was added to the corresponding well of plates containing lysis
buffer and incubated in the dark at room temperature for 1 h. SYBR
green fluorescence was then read in a fluorescence plate reader with
490 nm excitation and 520 nm emission settings. Emission values for
the positive and negative controls were used to normalise the data
and convert values to percentage inhibition. 𝐼𝐶50 values were then
alculated using GraphPad Prism 5.

.6. Cytotoxicity assays

To assess whether compounds that showed activity against
.falciparum in the asexual growth inhibition assay had parasite speci-
icity, a cytotoxicity assay was conducted. HeLa cells were seeded into
6-well microtiter plates at 2.5×104 m L−1 in 200 μL of growth medium,
nd compounds added at a range of concentrations. Plates were incu-
ated at 37 ◦C in a 5% CO2 atmosphere for 5 days, then resazurin (20
L at 0.125 mg m L−1) was added and the plates incubated for a further
h. Fluorescence was determined using a BMG FLUO star Omega plate

eader (excitation 488 nm, emission 525 nm), and the data analysed
sing GraphPad Prism 8 software. Values are expressed as 𝐼𝐶50 ± 𝑆𝐷
nd are the average of three replicates.

. Results

The performance of modSAR is first evaluated using five-fold cross
alidation and selection of hyper-parameter 𝜆 by grid search. After
btaining the best-performing model, we discuss the properties of the
etwork modules derived from modSAR and the relevant piecewise
inear equations. We then demonstrate the process of inferring rules
ia the trained modSAR model and prioritising antimalarial fragments
ased on their contribution to the compound binding activity.

.1. Cross validation

The result of five-fold cross validation at 20 different 𝜆 values is
hown in Figure S1a. The result shows that the RMSE in the test set
s almost always slightly higher than the training set, at approximately
.85, indicating that modSAR fits the OSM dataset well with no indi-
ation of overfitting. Overall, the modSAR model performs best around
= 0.06. Similar results between training and testing sets were found
hen performance was assessed via Mean Absolute Error (MAE) (S1b).
verage running time for each parameter is shown in Figure S1c.

.2. Network modules

The chemical similarity network of the dataset as partitioned into
lusters, is shown in Fig. 3. Edges represent pairwise Tanimoto similar-
ty that exceed the optimal threshold, calculated by the algorithm to be
𝛼 ≥ 0.20. Nodes are coloured according to their cluster membership.

To provide a first visual inspection of structure–activity relation-
hips, the node (compound) with the highest within-module degree is
elected as the representative compound of each module, thus depicting
he structural characteristics of neighbouring compounds. The most
ommon scaffold in each representative compound for each module is
ighlighted in red (Fig. 3). It is important to note that the highlighted
caffold represents the most dominant structure, and it may be that not
ll compounds in the module contain that substructure.

The clustering procedure captures the chemical properties of the
ataset in terms of molecular properties reflecting the OSM compound
eries. The five modules as partitioned by algorithm, closely match
he analogue series present in the OSM dataset (see Table S1 and the
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Fig. 3. Compound network modules identified by modularity optimisation. Edges indicate Tanimoto similarity, 𝑡𝛼 ≥ 0.20, and colours signify cluster membership. Representative
compounds and dominant scaffolds for each cluster are also shown.
comparative visualisation in Figure S2). OSM Series 1 and Series 3
compounds are members of Modules m01 and m04, respectively, while
Series 4 compounds have been allocated to three distinct modules: m02,
m03 and m05. The Series 2 structure (OSM-S-66) was assigned to m02,
as it shares structural similarities to two compounds in that module,
namely OSM-S-359 and OSM-S-570. There were two singletons, OSM-
S-89 and OSM-S-69 (not shown in the figure) as these two structures
differ significantly from the rest in the dataset.

A closer inspection of modules related to OSM Series 4 (m02, m03
and m05) and their associated highlighted scaffold in Fig. 3 allows for
further insight into this dataset. Each module represents core substruc-
tures that are more specific than the Series 4 triazolopyrazine core, and
it is assumed that each detected module would have their structure–
activity relationships modelled individually. Therefore, the subsequent
sections below describe how the predicted equations of each of these
modules compare, and how the molecular fragments that relate to
bioactivity within the core are represented by each module.

3.3. Analysis of modules via regression equations

A summary of rules and equations is shown in Table 1, where
the breakpoint features and the equations identified for each cluster
are shown. The distribution of 𝑝𝐼𝐶50 under different subsets and the
presence of certain bits can be seen in Figure S3. All bits selected
by modSAR are visualised in Figure S4. A detailed description and
interpretation of each module is discussed below.

Module related to OSM series 1. The structure–activity relationship of
compounds in OSM Series 1 derived by modSAR, is represented by
module m01 and the equations shown in Table 1. Most chemical
compounds in this module share a common scaffold, with 43 of the
52 compounds containing the fragment highlighted in Fig. 3.

Deriving from regression equations, activity of compounds in this
module is predicted by one of two linear equations depending on
presence or absence of fragment Bit_0350. When the fragment corre-
sponding to Bit_0350 is not present (i.e. Bit_0350 = 0), the activity
of that compound is predicted by the presence of eleven fragments
(Bit_0350 included). On the other hand, if a compound includes this
fragment (Bit_0350 = 1), the model predicts a bioactivity 𝑝𝐼𝐶50 =
4.30, thus the compound is inactive against P.falciparum (assuming an
activity threshold 𝑝𝐼𝐶50 ≥ 5.80 [18]. By exploring the m01 (Region 01)
equation, we can also see which of the remaining fragments selected by
5

the algorithm make positive or negative contributions to the bioactivity
of these compounds.

Beyond the observation of signal and magnitude of regression co-
efficients, we rank the importance of fingerprint bits according to
their relative SHAP values (Figure S5a). In decreasing order of impor-
tance, the presence of fragments Bit_0290, Bit_0036, Bit_0703, Bit_0332,
Bit_0031, Bit_0175, and Bit_0961 are predicted to make a positive con-
tribution, while Bit_0745, Bit_0350, Bit_0080, Bit_1017, and Bit_0790
have a negative contribution to activity. Indeed, we can observe the as-
sociation of the most positive and negative bits (Bit_0290 and Bit_0745
respectively) to the 𝑝𝐼𝐶50 activity of compounds in Fig. 4 and Figure
S3a. Comparing the activity of compounds in this module, the com-
pounds which only contain Bit_0290 is much higher than the ones
which only contain Bit_0745. The combination of positive and negative
contributing fragments is illustrated in Figures S6a and S6b.

Modules related to OSM series 3. Module m04 describes the binding
activity of compounds in OSM Series 3. The regression equations in
Table 1 suggest that the Series 3 compounds are not likely to be active,
as the maximum activity values calculated from the two equations
are either 𝑝𝐼𝐶50 = 5.47 (when Bit_0484 = 1) or 𝑝𝐼𝐶50 = 4.60 (when
Bit_0484 = 0 and Bit_0179 = 1), lower than our defined threshold of
𝑝𝐼𝐶50 ≥ 5.80 [18]. This is also supported by the distribution of the
true 𝑝𝐼𝐶50 values of Series 3 compounds. As shown in Figure S3c, the
median and mode value of Series 3 are both less than 5, and only 2 out
of 49 compounds are predicted to be active, namely OSM-S-106 and
OSM-S-590. Importance ranking of the two bits can be seen in Figure
S5e and combination of positive and negative contributing fragments
can be seen in Figure S6g and S6h.

Modules related to OSM series 4. Modulem02, modulem03 and module
m05 describe the binding activity of Series 2 and Series 4 via the piece-
wise equations demonstrated in Table 1. Since Series 2 corresponds to
a single compound, we focus our analysis on Series 4 properties.

A common feature of these modules is the prominence of Bit_0890
in the equations, with presence of the relevant fragment predicted
to make a positive contribution in binding affinity. Interestingly, the
structure of Bit_0890 (Fig. 5(b)) is a close, albeit not exact, match to
the triazolopyrazine core of the series (Fig. 5(a)).

If all fragment bits that are predicted to make positive contributions
to the binding activity are combined, the fragment shown in Fig. 5(d)
is obtained. This visualisation suggests that, in addition to the tria-
zolopyrazine core for Series 4 which is approximately represented by
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Table 1
Equations and breakpoints identified for modules indicated in Fig. 3.

Module Region Decision Selected Equation

rule fragment

Modules relating to OSM Series 1

m01

01 if Bit_0350 = 0 𝑝𝐼𝐶50 = + 0.13 Bit_0031 + 0.30 Bit_0036 − 0.19 Bit_0080

+ 0.12 Bit_0175 + 0.53 Bit_0290 + 0.14 Bit_0332

+ 0.14 Bit_0703 − 0.81 Bit_0745 − 0.15 Bit_0790

+ 0.06 Bit_0961 + 0.38 Bit_1017 + 5.30

02 if Bit_0350 = 1 𝑝𝐼𝐶50 = +4.30

Modules relating to OSM Series 3

m04 01 if Bit_0484 = 0 𝑝𝐼𝐶50 = +0.20 Bit_0179 + 4.40

02 if Bit_0484 = 1 𝑝𝐼𝐶50 = +5.47

Modules relating to OSM Series 4

m02 01 if Bit_0875 = 0 𝑝𝐼𝐶50 = +0.03 Bit_0711 + 0.03 Bit_0890 + 5.00

02 if Bit_0875 = 1 𝑝𝐼𝐶50 = +6.15

m03 01 if Bit_0896 = 0 𝑝𝐼𝐶50 = +0.16 Bit_0890 + 4.84

02 if Bit_0896 = 1 𝑝𝐼𝐶50 = −0.04 Bit_0650 + 6.03

m05

01 if Bit_0248 = 0 𝑝𝐼𝐶50 = + 0.06 Bit_0890 − 0.06 Bit_0171 + 0.002 Bit_0333

+ 0.06 Bit_0399 − 0.12 Bit_0512 − 0.06 Bit_0715

− 0.06 Bit_0753 − 0.06 Bit_0769 − 0.16 Bit_0781

− 0.06 Bit_0785 + 0.06 Bit_0819 − 0.06 Bit_0838

− 0.12 Bit_0841 − 0.06 Bit_0939 + 5.00

02 if Bit_0248 = 1 𝑝𝐼𝐶50 = +0.50 Bit_0904 + 5.82
Fig. 4. Comparison of 𝑝𝐼𝐶50 distributions in different subsets of the data split according to fragment presence.
Bit_0890 = 1, the fragment Bit_0896 (highlighted in Fig. 5(c)) should be
retained to maximise the activity of Series 4 compounds, as suggested
by the regression equations and SHAP value analysis.

A similar conclusion can be drawn by comparing the two distribu-
tions of 𝑝𝐼𝐶 values corresponding to compounds with and without
6

50
Bit_0896, using a one-sided t-test with the following hypothesis:

𝐻0 ∶ 𝐸(𝐴) = 𝐸(𝐵),𝐻1 ∶ 𝐸(𝐴) < 𝐸(𝐵) (14)

where A denotes the population of compounds which do not con-
tain Bit_0896, B denotes the population of compounds which contain



Artificial Intelligence In Medicine 147 (2024) 102700Y. Li et al.
Fig. 5. Visualisation of relevant fragments present in OSM Series 4 modules.
Table 2
Comparison of test set error in y-randomisation. Comparative results of the original model and permutations are shown in terms of average
RMSE and standard deviation.
𝜆 Model 1 Model 2 Model 3 Model 4 Model 5 Original

y vs. rx py vs. x ry vs. x ry vs. rx py vs. rx model

0.05 0.9569 0.9480 1.2334 1.330 0.9005 0.8367
(± 0.1007) (± 0.1636) (± 0.1146) (± 0.1593) (± 0.0717) (± 0.1504)

0.06 0.9515 0.9685 1.1473 1.2064 1.0363 0.8065
(± 0.0959) (± 0.1429) (± 0.1331) (± 0.1340) (± 0.1463) (± 0.1302)

0.07 0.9092 0.9093 1.1387 1.2959 0.9208 0.8660
(± 0.0732) (± 0.0811) (± 0.14284) (± 0.1399) (± 0.0639) (± 0.1741)

0.08 0.9044 0.9192 1.1820 1.2859 0.8950 0.8591
(± 0.1279) (± 0.1035) (± 0.0851) (± 0.0953) (± 0.1135) (± 0.1442)

0.09 0.8858 0.9036 1.1464 1.2668 0.9164 0.8790
(± 0.1011) (± 0.1208) (± 0.0552) (± 0.7561) (± 0.1289) (± 0.1193)

0.10 0.9056 0.9308 1.2048 1.2224 0.8908 0.8819
(± 0.1073) (± 0.0781) (± 0.1262) (± 0.0936) (± 0.0864) (± 0.1462)
Bit_0896. The obtained 𝑝-value, 𝑝 = 2.83𝑒−16, suggests that it is safe to
reject the null hypothesis at any widely adopted confidence level (95%
or 99%).

A similar analysis can be made for each module. For example,
Figures S6i and S6j compare the positive and negative contributing
fragments specific to Module m05. Additional plots for OSM Series 4
modules can be seen in Figures S5c, S5d, S5b, and S6.

4. Model evaluation

Having tuned the 𝜆 parameter as outlined in section Tuning 𝜆,
performance of modSAR is assessed through Sections Y-Randomisation
and Applicability Domain [51].

4.1. Y-randomisation

Y-randomisation was employed as validation to compare the per-
formance of a QSAR model with pseudo-random models trained on
permuted datasets [52]. To benchmark modSAR against predictions by
chance, pseudo-random models were implemented as follows. Three
different sets of pseudo-random data were generated via randomised
fingerprints (rx), randomised 𝑝𝐼𝐶50 (ry), and permuted 𝑝𝐼𝐶50 (py).
Randomised fingerprints, rx, were generated by assigning 0 or 1 to the
1024 fingerprints bit for each molecule, ry was generated using random
numbers within the range of real 𝑝𝐼𝐶50 value, and py was generated by
shuffling the real 𝑝𝐼𝐶50 value.

Five pseudo-random models were trained with synthetic datasets,
i.e. (1) model 1: trained with rx and y; (2) model 2: trained with 𝑥
and py; (3) model 3: trained with 𝑥 and ry; (4) model 4: trained with
rx and ry; and (5) model 5: trained with rx and py. We compared
the performance of the five pseudo-random models with the original
modSAR model using different 𝜆 (from 0.05 to 0.1) through 10-fold
cross validation. The mean and standard deviation of the model RMSE
outperforms the pseudo-random datasets as shown in Table 2.
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4.2. Applicability domain

The applicability domain (AD) defines the chemical space covered
by the model, indicating its reliability in predicting new compound
properties. In this study, the AD of modSAR is determined by the
leverage approach [50], which calculates the leverage and standard
residual of a compound, visualised via Williams plot. The training data
point with higher leverage is considered to have a larger impact during
the training process. A critical leverage value ℎ∗ is calculated by the
equation: ℎ∗ = 3𝑝′∕𝑛, where 𝑝′ is the number of model variables plus
one, and 𝑛 is the number of the objects used to calculate the model.
The data point whose leverage is higher than ℎ∗ is considered to be
outside the AD of the QSAR model. Due to the sparsity of the original
feature space, the leverage of the dataset cannot be computed directly.
Therefore, Principal Component Analysis (PCA) was applied to the
feature space before calculating the leverage, and the first two principal
components (PCs) were selected to represent the original features.

As shown in Fig. 6, all compounds were within the warning lever-
age, showing that there were no highly influential compounds struc-
turally. Seven compounds from the training set, and one compound
from the test set had residuals > 3, indicating response outliers or
potential activity cliffs.

5. Virtual screening

To validate the results gained from modSAR, virtual screening [53]
was performed on compounds commercially available from Molport,
followed by experimental validation of predictions using parasite in-
hibition and cytotoxicity assays. Compounds were selected by the
following strategy. Firstly, each positive bit prioritised by modSAR
was used to search the Molport catalogue, yielding a total of 934
compounds. Secondly, the activity of these compounds was computed
using modSAR and compounds where the predicted 𝑝𝐼𝐶50 was higher
than 5.8 were retained, resulting in 97 compounds. Thirdly, filtering
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Fig. 6. Williams Plot to evaluate the Applicability Domain of modSAR.
based on violation of the Lipinski rule of 5 and solubility properties
returned 22 compounds, which were ranked by activity score and
number of positive bits, as identified by modSAR and SHAP analysis.
Figure S7 illustrates these 22 compounds together with positive bits
and predicted 𝑝𝐼𝐶50 values. As additional step, the 22 compounds were
also assessed through the MAIP resource [12] to evaluate potency, with
results provided in Supporting Information. These compounds were
tested for their activity against the parasite in vitro, as follows.

5.1. Experimental validation

To validate the activity of the compounds predicted from the virtual
screen experimentally, the top set of compounds were sourced via
Molport from commercial providers. Each compound was evaluated by
testing for inhibition of growth in the asexual life stage of P.falciparum
using a standard assay (described in Plasmodium falciparum asexual
growth inhibition assay (PfGIA) section) at a fixed concentration of 10
μM. Three compounds (A02, A10, A22 corresponding to MolPort-047-
964-374, MolPort-047-964-639, MolPort-046-842-243) (Fig. 7) showed
some activity (see Fig. 8). These were further evaluated to obtain 𝐼𝐶50
values, with the top hit A22 obtaining an 𝐼𝐶50 of 8.29 μM (see Fig. 9).
To test if these three active compounds have parasite specificity, a
cytotoxicity assay was performed using human HeLa cells (see methods
for details). The 𝐼𝐶50 values of A02, A10 and A22 are 109±30 μM, 41±1
μM and 115 ± 4 μM respectively, with the most potent compound A22
having a near 14-fold difference in 𝐼𝐶50 between parasite and human
cell activity, demonstrating good parasite selectivity.

6. Discussion and conclusion

Machine learning methodologies that incorporate explainability
principles [54] are particularly pertinent in drug discovery due to their
ability to provide a trail of reasoning for model prediction [55,56], also
noted in models for antimalarial drug discovery [57–59]. However, in
some cases such interpretation may only relate to understanding the
decision-making mechanism of the model at computational level, and
may not extrapolate to knowledge that can feed back to the discovery
process and uncover new compounds, for example via fragment-based
drug discovery (FBDD). As reported widely in literature, drug discovery
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is a notoriously difficult problem, with a small success rate despite the
rise in available methodologies from computational and measurement
sciences. Methodologies that bridge the gap between computation
and wet-lab experimental validation, such as the one reported in our
manuscript, have the potential to add significant impact to relevant
literature.

In this work, we report the use of optimisation-based regression
modelling coupled with network clustering to mine and analyse pub-
licly available data derived from phenotypic screens of potential an-
timalarial molecules. In contrast to inherently black-box models that
cannot respond to the need of pharmaceutical scientists for continu-
ous improvement of molecular screening and compound optimisation,
modSAR employs a mathematically descriptive optimisation model that
can learn from available datasets, determine optimal breakpoints for
piecewise regression and prioritise descriptors by optimal regression co-
efficients, thereby resulting in fragment-based insights and generating
rules to guide virtual screening.

We illustrated the use of the modSAR piecewise linear regres-
sion modelling method as applied to the OSM dataset using ECFP
fingerprints as features to describe each compound. Analysis of re-
sults showed that the method represented the heterogeneity among
different chemical series in the OSM dataset well, and that it was
capable of modulating separate piecewise linear equations for each
molecule group. Model performance was assessed by cross validation,
randomisation and applicability domain tests, with results indicating
promising performance and interpretable outputs. Implementation of
a deep learning QSAR method (Transformer-CNN [56]) showed com-
parative performance in terms of prediction error, but modSAR offered
superior explainability by identifying generalised substructures that can
guide FBDD (see Figure S8).

Importantly, modelling results were used to develop a screening
strategy to identify suitable compounds that could be experimentally
tested for antimalarial activity. The result indicated that the positive
fragments prioritised from modSAR analysis can constitute a loose
structure of a potential candidate to be further selected from virtual
screening. The three most suitable compounds which passed the wet-
lab tests (A02, A10, and A22) were assigned to modSAR modules
m02, m03, and m01 respectively, and corresponded to Series 4 and
Series 1 compounds in OSM. When analysed via modSAR, these three
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Fig. 7. Visualisation of the top three hits compounds.

Fig. 8. The percentage inhibition of P.falciparum asexual growth for the top-ranking compounds identified from the in silico screen using a single concentration of 10 μM performed
in triplicate. The amount of inhibition is indicated by a colour scale from green (no inhibition) to white (complete inhibition).

Fig. 9. The percentage inhibition of P.falciparum asexual growth based on serial dilutions of the compounds of each of the top three compounds identified by the initial inhibition
screen to obtain 𝐼𝐶50 values.
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compounds contained the largest number of positive bits and showed
the best (A22) and second best (A02, A10) similarity to the original
OSM compounds of the corresponding module. Moreover, A22 also
retained the common scaffold that was shared across most of Series 1
compounds, which was considered to possess antimalarial activity [33].
These compounds can be considered as potential lead compounds in the
development of antimalarial drug candidates.

In this work our attention focused on demonstrating the ability of
modSAR to provide modelling insights and prioritise useful chemical
fragments. As our methodological basis comprises modularity cluster-
ing and mathematical modelling, modSAR inherits the limitations of the
two techniques. Modularity-based community detection suffers from
resolution limit [60], which implies that communities smaller than a
certain scale cannot be resolved. Moreover, we note that mathematical
modelling can potentially suffer in handling very large datasets and
may be sensitive to noisy data. Finally, as our aim was to target
commercially available compounds for wet-lab experimental valida-
tion, future work can be envisaged aiming further towards extending
screening libraries, designing and synthesising compounds with the
prioritised fragments.

An important aspect of this work lies in the mathematical nature
of the modSAR model that offers explainable output, as molecular
fingerprint bits selected by each equation can be reverse-engineered
to match molecular fragments. This provides valuable and powerful
insights into the components that drive activity and can be leveraged
to identify potentially active compounds in a different chemical space,
driving new lines of drug discovery.
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Supplementary material related to this article can be found on-
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Information is available free of charge in supporting_information.pdf.

Mathematical details of OPLRAreg, equivalency between modSAR
modules and OSM series, average model performance of cross valida-
tion, 𝑝𝐼𝐶50 distribution of compounds related to the important bits, the
visualisation and SHAP value of each important bit, Molport ID and
molecular structure of prioritised compounds from virtual screening,
and the visualisation of feature importance comparing Transformer-
CNN and modSAR (supporting_information.pdf). MAIP prediction of the
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modSAR prioritised compounds (MAIP_results.csv)
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