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Interactions between climate change, urban
infrastructure and mobility are driving
dengue emergence in Vietnam
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Phan Thi Huong6, Vu Sinh Nam7, Vu Trong Duoc7, Do Thai Hung8,
Nguyễn Thanh Dong8, Vien Chinh Chien9, Ly Thi Thuy Trang9, Do Kien Quoc 10,
Tran Minh Hoa11, Nguyen Hữu Tai12, Tran Thi Hang13, Gina Tsarouchi14,
Eleanor Ainscoe14, QuillonHarpham 14, BarbaraHofmann14, Darren Lumbroso14,
Oliver J. Brady 1,2,3,17 & Rachel Lowe 1,2,3,15,16,17

Dengue is expanding globally, but howdengue emergence is shaped locally by
interactions between climatic and socio-environmental factors is not well
understood. Here, we investigate the drivers of dengue incidence and emer-
gence in Vietnam, through analysing 23 years of district-level case data span-
ning a period of significant socioeconomic change (1998-2020). We show that
urban infrastructure factors (sanitation, water supply, long-term urban
growth) predict local spatial patterns of dengue incidence, while human
mobility is a more influential driver in subtropical northern regions than the
endemic south. Temperature is the dominant factor shaping dengue’s dis-
tribution and dynamics, and using long-term reanalysis temperature data we
show that warming since 1950 has expanded transmission risk throughout
Vietnam, and most strongly in current dengue emergence hotspots (e.g.,
southern central regions, HaNoi). In contrast, effects of hydrometeorology are
complex, multi-scalar and dependent on local context: risk increases under
either short-term precipitation excess or long-term drought, but improve-
ments inwater supplymitigate drought-associated risks except under extreme
conditions. Our findings challenge the assumption that dengue is an urban
disease, instead suggesting that incidence peaks in transitional landscapes
with intermediate infrastructure provision, and provide evidence that inter-
actions between recent climate change and mobility are contributing to den-
gue’s expansion throughout Vietnam.

Socio-environmental and climatic changes are reshaping the dynamics
and distributions of infectious diseases worldwide, with urgent con-
sequences for public health1–3. In recent decades these impacts have
been especially pronounced for Aedes mosquito-borne arboviral
infections (e.g., dengue, chikungunya and Zika), whose vectors are
specialised for life in the emerging urbanised landscapes of the 21st

century4. Dengue is an acute febrile illness caused by any one of four
major dengue virus (DENV) serotypes and is principally transmitted by
Ae. aegypti, a human-specialist that breeds usingwater-related features
of built environments (e.g., water containers in homes, gutters, drains
and sewerage systems)5,6. The burden of dengue is rapidly growing,
with incidence doubling each decade since 19907, cases reported from
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more than 125 countries8, and extremely widespread outbreaks
increasing in frequency5. The disease is also expanding geographically
into more remote regions9,10, and to higher latitudes11,12 and altitudes13

at the margins of its historical range, which has complicated the his-
torical perception of dengue as mainly a disease of major tropical
cities14. These emergence trends are broadly thought to be driven by
increasing human mobility15,16, expansion of anthropogenic and semi-
urbanised landscapes10 and changing climatic suitability17. However,
comparatively little is knownabout how these factors interact to shape
dengue transmission and emergence patterns at the local scales rele-
vant to outbreak surveillance and response.

Although cities are important regional foci of sustained DENV
transmission and viral diversity in endemic areas18–20, transmission
patterns more locally are dependent on built environment character-
istics that influence vector populations (e.g., housing quality, drainage,
heat islands), andhumanmovements that drive viral dispersal between
locations21,22. Dengue burden is therefore highly spatially
heterogeneous23 (for example between neighbourhoods24 or between
major metropoles and smaller cities15), yet it is unclear which socio-
environmental features are most influential in driving these variations
in risk. Dengue is commonly associated with urban habitats25, which
provide both high densities of Aedes breeding habitat and amenable
microclimates6,26. Urban growth is consequently often cited as a key
driver of dengue transmission, but its effect is probably context-
dependent; for example, expansion of built environments in the short-
term may create many temporary open mosquito breeding habitats
during the construction phase, and informal settlements (where
infrastructure and services provision lag behind growth) may be more
likely to increase risk compared to longer-term planned urban devel-
opment. The link between dengue risk andwater supply and sanitation
infrastructure remains poorly understood, but thesemay be important
factors determining spatial heterogeneity in transmission. Access to
the piped water network should reduce households’ need to store
water in containers, and in household-level studies piped water access
is often (but not always) associated with lower dengue risk27–29.
Improvements in sanitation systems might similarly reduce risk by
reducing the density of water storage containers; however, if not well-
maintained, drains and septic tanks can be productive mosquito
breeding sites30. Alternatively, human mobility patterns might be the
dominant spatial driver of dengue. Well-connected hubs in interna-
tional transport networks (e.g., metropoles or regional capitals)
experience high rates of long-range DENV strain importation, seeding
transmission chains that spread among closely linked areas via local
traffic (e.g., commuter flows)16,20,31. Higher mobility might therefore be
particularly important to the maintenance of dengue transmission in
areas where epidemic fade-outs are more likely32, such as with lower
population densities or seasonally transient climatic suitability.

Climate has strong impacts on biophysical suitability for vector
populations and dengue transmission. Air and water temperature
affect numerous biological processes in mosquitoes that regulate
population dynamics and vector competence (e.g., growth, survival,
reproductive rate, extrinsic incubation period), which combined pre-
dict a nonlinear relationship between temperature and transmission
intensity26. Temperature variability can underpin dengue outbreak
seasonality31 and transmission season length33, and future warming
temperatures are projected to significantly expand dengue transmis-
sion suitability worldwide34. However, there remains little evidence for
howwarming to datemay have shaped recent dengue distribution and
expansion trends. Precipitation patterns drive the creation and flush-
ing of vector breeding sites35, but their relationship to dengue trans-
mission may often be nonlinear, delayed, and determined by how
seasonality and extremes interact with local socio-environmental fac-
tors. For example, in Brazil and Barbadosdengue risk sharply increases
several months after periods of drought36, particularly in urban areas
with unreliable water supply37, suggesting a mediating role of water

storage behaviour in response to rainfall shortages. These recent stu-
dies imply that local dengue responses to climatic drivers might differ
markedly between neighbouring areas with different socioeconomic
characteristics23,38. Further understanding such cross-scale interac-
tions might improve the predictability of spatial outbreak dynamics in
response to large-scale hydrometeorological phenomena such as
droughts.

In this study, we investigate these interacting effects of climatic
and socio-environmental drivers on dengue incidence and emergence
in Vietnam, by analysing 23 years (1998-2020) of monthly district-level
(2nd administrative level) case surveillance data. Dengue is a major
public health issue in Vietnam which has among the highest incidence
rates in Southeast Asia39, although with wide variation in transmission
intensity across its broad latitudinal and altitudinal range40. The south
has a tropical monsoon climate and experiences fairly stable, seasonal
endemic dynamics40,41. In the subtropical north, winter temperatures
are too cool to support transmission42–44 so dengue occurs in sporadic
outbreaks during warmer months (often seeded by DENV reintroduc-
tions from the south42). In recent decades, Vietnam has undergone a
major economic transformation from low-income towards middle-
income, with rapid development of major and regional cities, sharply
rising population mobility via road and air (from ~3 million to ~53
million air passengers carried between 2000-201945), and expansion of
access to hygienic water supply and sanitation infrastructure to much
of the population46. During the same period, the country has also
experienced warming temperatures and more frequent extreme
weather events such as heatwaves and drought and is considered
particularly vulnerable to health impacts of climate change47. Cur-
rently, there is still little empirical evidence for how interactions
between such rapid socioeconomic and climatic changes may impact
the distribution and burden of dengue, making Vietnam an ideal his-
torical setting to ask this question.

We used Bayesian hierarchical models and block cross-validation
experiments to infer relationships between socio-environmental and
climatic covariates and dengue incidence (Table 1), and explore their
effects on spatiotemporal patterns of disease.We aimed to answer two
main questions. Firstly, what are the most influential spatial and tem-
poral drivers of dengue incidence across Vietnam, and how might
these have contributed to recent dengue trends? Secondly, does local
urban infrastructure modify the effect of hydrometeorological
dynamics on dengue incidence?

Results
Surveillance data show a recent expansion of dengue incidence
across much of Vietnam
Vietnam is administratively divided into 58 provinces and 5 major
urban municipalities including its two main economic centres: Ha Noi
and Ho Chi Minh City (Fig. 1). Since 1999 the country has maintained a
national dengue passive surveillance system, with monthly reported
case counts recorded at district-level (administrative level-2) (Meth-
ods, Supp. Fig. 1). Dengue incidence typically peaks between June and
November (Supp. Fig. 1), so our analyses defined transmission years as
running fromMay to April. The dataset included 174,936monthly case
counts totalling 2,038,380 clinically diagnosed (i.e., suspected) den-
gue cases, collected via passive surveillance from667districts between
May 1998 and April 2021 (Methods). The highest country-wide counts
were in 2019 (294,707) and 2018 (170,600), and the lowest in 2014
(34,258) and 2002 (35,386). Surveillance data show regional differ-
ences in transmission settings, with the south experiencing endemic
dynamics, and the north sporadic outbreaks mainly restricted to Ha
Noi and the Red River Delta (Fig. 1a and Supp. Fig. 1). Large synchro-
nous outbreaks occurred nationally in 1998, 2010, 2017 (mainly in the
north) and 2019 (mainly central and south) (Supp. Fig. 1). We mapped
directional trends in dengue incidence at district-level by estimating
the slopes of annual log incidence using linear regression (Fig. 1b). This
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shows strong evidence (p < 0.01) of upward trends throughout the
southern central regions (South Central Coast, Central Highlands; up
to a 45% year-on-year increase in some districts), Red River Delta, and
parts of the Southeast (Fig. 1b). Standardised WHO dengue diagnosis
guidelines and lab-confirmation practices were applied nationally
throughout the study period, with no obvious step change in the data
in 2009 when the WHO definitions were changed (Methods), sug-
gesting that these trends are unlikely to be driven by a specific change
in surveillance or diagnostic practices. The trends may still in part be
driven by reporting factors, such as increased clinical awareness or
healthcare access, although the pronounced geographical pattern and
visual indications of a shift towards endemic dynamics in southern
central regions (Supp. Fig. 1) are strongly suggestive of true expansion.

National and regional trends in urbanisation, infrastructure,
mobility and climate
We derived district-level covariates to represent key hypothesised
drivers, from census sources, remote sensing data48, human mobility
models and climate reanalysis (ERA5-Land temperature and bias-
corrected ERA5 precipitation49,50; Table 1, Methods, Supp. Text 1).
These included annual population density, built-up land extent, short-
term and long-term urban expansion rates, improved water access

(piped or borehole-derived), hygienic toilet access (indoor or outdoor
flush), mobility metrics (per-capita road travel rates, mobility flux
predicted from naïve gravity and radiation models), annual tempera-
ture metrics to represent thermal constraints on dengue persistence
(mean andminimum in the same dengue year), and monthlymeans of
air temperature (Tmin, Tmean and Tmax), precipitation, and multi-scalar
drought indicators (Standardised Precipitation Evapotranspiration
Index, SPEI51, in 1-, 6-, and 12-month time windows) at lags of 0 to 6
months. SPEI measures accumulated hydrological surplus or deficit
relative to the long-term historical average for the same period of the
year52,53. Its multi-scalar nature enables measurement of hydro-
meteorological dynamics at timescales ranging from transient
(affecting surface water) to long-term (affecting reservoir and
groundwater levels), and thus different potential causal influences on
dengue transmission (Table 1). Covariates, their definitions and
hypothesised relationships are summarised in Table 1, with data
sources and processing described in Methods and Supp. Text 1.

The study period saw nationwide upward trends in urbanisation,
mobility and infrastructure improvement, although with regional
variation (Fig. 2 and Supp. Fig. 2). Urban extent and urban growth,
population density, mobility, and improved water and sanitation
access are generally highest in the regions containingVietnam’s largest

Table 1 | Climatic and socio-environmental covariates as hypothesised drivers of dengue incidence

Covariate Type Source Rationale

Annual temperature (Tmean, Tmin, Tmean of
the coolest month)

Climate (temperature) ERA5-Land49 Geographical limits on dengue virus persistence and
transmission by mosquitoes34. Warmer annual tem-
peratures are expected to facilitate year-round
transmission.

Monthly temperature (Tmean, Tmin, Tmax) Climate (temperature) ERA5-Land49 Impacts spatial and seasonal biophysical suitability for
DENV transmission26. Relationshipmaybenonlinear and
depend on time delay. Tested at lags of 0 to 6 months.

Precipitation (monthly mm) Climate
(hydrometeorology)

WFDE5 v2.1.50 Impacts seasonal creation and flushing of Aedes
breeding sites. Relationship may be nonlinear and
depend on time delay. Tested at lags of 0 to 6 months.

Standardised Precipitation Evapo-
transpiration Index (SPEI) in 1-month,
6-month and 12-month windows

Climate
(hydrometeorology)

Derived from WFDE5 using ‘spei’
package52

Measures deviations from historical average hydro-
meteorological conditions for reference period
1981–2020 (i.e., excess or deficit), from short- to long
timescales, so may be more sensitive to local context
than simple precipitation. Relationship may be non-
linear and depend on timedelay36. Tested at lags of 0 to
6 months.

Built-up land (proportion cover) Urbanisation ESA-CCI land cover (annual) More built-up land is expected to increase availability of
highly suitable Aedes habitat.

Urban expansion rate (km2/year over
3-year and 10-year window)

Urbanisation Landsat urban dynamics48 (annual) Short-term (i.e., construction phase) and rapid or infor-
mal longer-term expansion of built environment may
increase availability of suitable Aedes habitat.

Hygienic toilet access (proportion of
households with indoor/outdoor flush
toilet)

Infrastructure Vietnam census 2009 and 2019
(interpolated to annual values)

Improved sanitation systems may reduce density of
standing water for vector breeding sites, and therefore
reduce transmission.

Improved water access (proportion of
households with piped or borehole-
derived water)

Infrastructure Vietnam census 2009 and 2019
(interpolated to annual values)

Higher access may reduce propensity to store water
around homes, reducing vector breeding sites and thus
transmission.

Population density (persons per km2) Population Gridded Population of the World
2000 and Vietnam census 2009
and 2019 (interpolated to annual
values)

Higher population density is expected to lead to
increasing contact rates and potential for long-term
persistence of transmission chains, so may increase
incidence.

Road traffic per inhabitant (km travelled
per inhabitant per year)

Mobility VGSO (annual, province-level) Higher rates of within-province population movements
are expected to increase local dengue spread.

Potential populationfluxes (meangravity
and radiation flux)

Mobility Gravity and radiation models
(applied to annual population)

Mean of pairwise predicted population fluxes between
focal district and all other districts in Vietnam, based on
population size and distance. Model-based proxy for
relative attractiveness of districts for population move-
ment (e.g., commuting). Higher movement rates are
expected to increase rates of influence dengue intro-
duction and spread.

The table lists covariates used in models, their broad class, data sources, and rationale for testing. A fuller description of covariate sources, original data resolution and processing are provided in
Supp. Table 1, Methods and Supp. Text 1.
ERA5-Land ECMWF Reanalysis v5 over land, WFDE5 bias-adjusted ERA5 reanalysis precipitation data with reference to GPCC and CPC station data, VGSO Vietnam General Statistics Office.
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Fig. 1 | Geographical distribution and trends in dengue incidence at district-
level in Vietnam. a Mean annual dengue incidence rates across all dengue years
(May to April) within each 5–6 year time period between 1998 and 2020 (cases per
100,000 persons, log+1 transformed for visualisation purposes) for districts with
dengue time series available (n = 667). Surveillance time series commenced
between 1998 and 2001depending on the region (seeMethods).b Estimated slopes
of annualdengue incidence rates between the earliest yearof surveillanceand2020

(% change per year) are shown for districts with strong evidence (p <0.01) of
increasing (red) or decreasing (blue) trends, with Vietnam’s 5 major urban muni-
cipalities labelled. Slopes were inferred using ordinary least squares regression
without adjustment for multiple comparisons (as districts were not spatially inde-
pendent from each other and the principal purpose was visualisation). The latitu-
dinal gradient in seasonal dynamics is shown in Supp. Fig. 1.
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observed years, which are shown as dotted lines (Methods, Supp. Text 1). For all
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and mobility are highest in the subregions with the two largest municipalities: Ha
Noi (Red River Delta) and Ho Chi Minh City (Southeast).
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economic centres, Southeast (Ho Chi Minh City) and Red River Delta
(Ha Noi). Per-capita road traffic rates (reported annually at province-
level54) increased rapidly nationwide between 1998 and 2019—ranging
from 4.5-fold growth in the Mekong River Delta and Northwest to 14-
fold in the Red River Delta—and declined in 2020 reflecting COVID-19
associated movement restrictions. Census estimates also showed a
nationwide expansion in the proportion of households reporting
access to improved water supply (piped or borehole-derived water)
and hygienic toilet facilities (indoor/outdoor flush toilet; this rose
sharply from 2009 to 2019). Temperature becomes cooler and more
seasonally variable along the south-to-north gradient, while pre-
cipitation is generally highest and most variable in the central regions
(Fig. 2 and Supp. Figs. 2–4). Hydrometeorological extremes at short
timescales (SPEI-1) are relatively variable among neighbouring districts
(i.e., at small spatial scales), whereas at longer timescales (SPEI-6) they
tend to be more spatially synchronised at the regional level
(Supp. Fig. 3).

Urban infrastructure, temperature and hydrometeorology are
important spatial and seasonal drivers of dengue incidence
We fitted Bayesian spatiotemporal regression models to the surveil-
lance dataset, with monthly case counts modelled using a negative
binomial likelihood (Methods). Seasonality was represented with a
province-specific temporally-correlated effect of calendar month
(‘seasonal random effect’). Unexplained spatiotemporal variation, for
example, due to immunity and DENV serotype dynamics or changing
surveillance sensitivity, was accounted for with dengue year-specific
district-level spatially-structured and unstructured effects55 (‘district-
level random effects’). A random effects-only (‘baseline’) model

captured declines in dengue relative risk (RR) and greater seasonal
variability with increasing latitude (Supp. Fig. 5). We then tested whe-
ther socio-environmental covariates (specified as either linear, loga-
rithmic or nonlinear terms) andmonthly climate variables (at lags from
0 to 6 months) improved model adequacy metrics and reduced
unexplained variation indistrict-level randomeffects, compared to the
baseline (Methods, Supp. Fig. 6). There were greater improvements
from including gravity rather than radiation model-based mobility
flux; long-term urban expansion (in the preceding 10-year window)
rather than short-term (3-year window); SPEI metrics rather than pre-
cipitation; and Tmean of the coolest month rather than other annual
temperature metrics (Supp. Figs. 6 and 7).

We developed a full multivariable model (Fig. 3, Methods)
including fixed effects of Tmean coolest month, built-up land cover, 10-
year urban expansion rate (log), gravity flux (log) and road travel per
inhabitant (log), and nonlinear effects of hygienic toilet access,
improved water access and monthly Tmean (1-month lag), SPEI-1 (1-
month lag) and SPEI-6 (5-month lag). The full model substantially
improved all information criteria (Supp. Table 2 and 3). Structured
predictive experiments can provide insights into the generality of
drivers, through identifying variables that improve predictive accuracy
in unobserved locations and times56,57. To estimate the individual
predictive influence of each covariate, we used 5-fold cross-validation
to estimate model prediction error (out of sample mean absolute
error, MAEOOS) under 3 block holdout designs, in turn excluding one
covariate at a time from the full model (Methods, Supp. Fig. 8). We
defined a variable’s ‘predictive influence’ as the change in MAEOOS
when it is excluded (Fig. 4). We measured covariates’ influence on
predicting spatial heterogeneity in incidence using ‘spatial’ and
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‘spatiotemporal’ block designs (5-fold blocked by district and district-
year, respectively), and on predicting temporal dynamics using ‘sea-
sonal’ block design (5-fold by district-quarter; monthly climate vari-
ables only) (Supp. Fig. 8). The full model significantly reduced
prediction error compared to the baseline under all block designs
(Fig. 4 and Supp. Fig. 9).

The most influential local spatial drivers of dengue risk related to
infrastructure and urban expansion, followed by temperature and
SPEI-1 (Fig. 4a, b). Increasing access to hygienic toilets had a positive
marginal relationship with dengue risk (Fig. 3c) with the highest pre-
dictive influence (Fig. 4a, b). The effect of population access to
improved water supply was nonlinear, with risk peaking at a low-to-
intermediate level (around 25% of households) and declining there-
after (Fig. 3d). Urbanisation metrics had generally protective effects,
with a strongly negative relationship between dengue risk and long-
term urban expansion (in the preceding 10 years) with a high pre-
dictive influence (Figs. 3b and 4a, b), and a weaker negative effect of
built-up land cover. Mobility metrics (per-capita road traffic rates and
gravity flux) had positive relationships with dengue risk (Fig. 3b) but
little overall predictive influence (Fig. 4). All inferred socio-
environmental effects were robust to sensitivity analysis by census-
defined level of urbanisation (Supp. Fig. 10).

Overall, there was strong evidence that temperature is a
dominant factor shaping both the broad geographical distribution
and temporal dynamics of dengue incidence across Vietnam.
Annual Tmean of the coolest month had a large positive effect on
dengue risk and contributed significantly to spatial prediction
(Figs. 3a and 4a, b), probably through impacting vector survival
during the least thermally suitable period of the year. Notably,
including this covariate alone reduced unexplained variation in the
district-level random effects by 50%, providing strong evidence that
thermal constraints on year-round DENV transmission by mosqui-
toes are a key determinant of the geographical gradient of dengue
across Vietnam (Supp. Fig. 7). Monthly mean temperature (Tmean)
had a nonlinear and delayed (1-month lag) effect, with relative risk
increasing to a peak around 27 °C and declining sharply at higher
temperatures, consistent with expectations based on dengue’s
thermal biology26. Monthly Tmean contributed significantly to spatial
prediction (Fig. 4a, b) and was the main predictor of temporal
dynamics (Fig. 4c).

Hydrometeorological dynamics haddelayed andnonlinear effects
that depended on timescale: increases in relative risk were associated
with transient excesswet conditions at short lead times (SPEI-1 1month
lag), and with long-term accumulated drought at longer lead times
(SPEI-6 5-month lag) (Fig. 3f, g). SPEI-1 had a positive predictive influ-
ence on both spatial and temporal dengue dynamics (Fig. 4). In con-
trast, SPEI-6 did not substantially contribute to spatial prediction
(Fig. 4a, b) despite improving temporal predictions (Fig. 4c). It is
possible that the regional synchrony of long-term drought (Supp.
Fig. 3) makes it less predictive of finer-scale spatial heterogeneity in
dengue incidence, in the absence of information about localmediating
socio-environmental features.

The importance of human mobility is greater in northern
Vietnam where dengue is emerging
The importance of drivers might vary between endemic contexts (i.e.,
where dengue persists year-round) and emerging settings, where
sustained transmission is constrained by factors such as remoteness or
transient climatic suitability. We examined this by fitting separate
models for Vietnam’s southern (Mekong River Delta, Southeast, South
Central Coast and Central Highlands) and northern regions (North
Central, Red River Delta, Northeast, Northwest), which broadly
delineate areas of endemic and sporadic transmission (Fig. 1; Supp.
Figs. 1 and 5). The inferred shape and directionality of socio-
environmental effects were very similar between regions, albeit with
generally larger fixed effects slope estimates in the north, reflecting
the lower incidence of dengue compared to the national average
(Supp. Fig. 11). The major notable difference is that mobility variables
(per-capita road traffic rates and gravity flux) have relatively much
larger positive effects on dengue incidence in northern Vietnam than
in the endemic south (Supp. Fig. 11). The same regional differences are
reflected in covariates’ relative predictive influence under block cross-
validation: the top-ranked spatial predictors in the north are mobility
and temperature variables, compared to infrastructure, temperature
and urbanisation in the south (Supp. Fig. 12).

Climate change is reshaping the geography of dengue
transmission across Vietnam
Ongoing climatic changes might be contributing to recent dengue
emergence trends, particularly in the central and northern regions of
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Fig. 4 | Influence of individual socio-environmental and climatic factors on
spatiotemporal and seasonal predictions of dengue incidence. Influence of
individual covariates on out-of-sample mean absolute error (MAE) was evaluated
using 5-fold cross-validation under 3 block holdout designs: spatial (entire districts;
panel a), spatiotemporal (district-year combinations; b and seasonal (quarterly
blocks within each district; c (Methods, Supp. Fig. 8). Candidate models excluding
one covariate at a time from the full model are shown on the y-axis, with the
baseline (random effects-only) model for comparison. Individual points show

change inMAE relative to the fullmodel (dashed line), across 10 repeats account for
variability due to random reallocation of cross-validation folds. Point colour
denotes broad covariate class: socio-environmental (green), climatic (blue) or
baseline model (grey). Black points and error-bars summarise the mean and 95%
confidence interval across all 10 repeats. Values above zero indicate an increase in
prediction error relative to the fullmodelwhen a covariate is excluded (i.e., positive
influence on prediction accuracy), and vice versa.
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Vietnam (Fig. 1b). To investigate this, we tested for significant changes
in monthly temperature-driven dengue risk between a historical
reference period (1951–1970) and the present-day (2001–2020) using
long-term ERA5-Land reanalysis data58 (Methods). We used the infer-
red risk function for Tmean (Fig. 3e) to predict monthly posterior
marginal mean temperature-driven risk since 1950 (i.e., just the effect
of temperature while holding all other variables constant), then used
linear models to test for differences between reference and present-
day periods, comparing 20-year averages to account for natural cli-
mate system variability (Methods, Fig. 5). Present-day projections of
temperature-driven risk reproduce the gradient of observed trans-
mission, with high risk year-round in the south, and seasonally tran-
sient risk in the north that declines during winter months (January to
April; Fig. 5a).

Increasing temperatures since the 1951–1970 reference period
have driven expansion and redistribution of predicted dengue risk
acrossmuchofVietnam(Fig. 5b, c; Supp. Figs. 13 and 14). Predicted risk
increases are particularly pronounced in southern central regions,
including during low-season months in the higher-altitude Central
Highlands provinces (up to 56% increase), suggesting that climate
change is expanding the suitable area for endemic transmission.
Similarly, much of north Vietnam has experienced sharp rises in risk
during summer months, including in more remote northern regions,
and a lengthening of the transmission season in the Red River Delta
including Ha Noi (Fig. 5b, c). Notably, these hotspots of increasing
temperature-driven risk are geographically concordant with the stee-
pest upward dengue trends during the 1998-2020 period (Fig. 1b) and

with visual indications of a transition from sporadic outbreaks towards
endemic transmission cycles in southern central regions (Supp. Fig. 1).
Overall, these results suggest that recent warming has reduced ther-
mal constraints on dengue transmission in much of Vietnam and
probably contributed to recent northward and altitudinal shifts.
Notably, however, there is also evidence of seasonal and spatial
redistribution of transmission, with rising temperatures above den-
gue’s thermal optimum slightly reducing risk during the hottest
months of the year in parts of the south (April-July) and north and
coastal areas (July–August), compared to the historical reference
period (Fig. 5b, c; Supp. Figs. 13 and 14). Far fewer climate observations
are assimilated by ERA5 during earlier years (up to the late 1960s),
which may impact the accuracy of reanalysis estimates58; as a sensi-
tivity test we, therefore, repeated this analysis using a later reference
period (1971–1990), which showed very similar overall results
(Supp. Fig. 15).

The effects of hydrometeorology on dengue incidence are
multi-scalar and modified by local infrastructure
Theory and recent empirical evidence suggest that local socio-
environmental context may be important in determining dengue’s
response to precipitation and drought patterns35,37. We investigated
the multi-scalar effects of hydrometeorological dynamics on dengue
incidence, focusing on southern Vietnam where transmission occurs
year-round (Methods). We found evidence of delayed and timescale-
dependent relationships between hydrometeorology and dengue risk:
the increase in risk driven by transient wet conditions (SPEI-1) peaks at
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a 1- to 2-month delay and declines sharply beyond 2 months, whereas
risk associatedwith long-timescale drought (SPEI-6) emerges gradually
over a longer delay period (from 4 to 6 months) (Supp. Fig. 16). This
suggests that hydrometeorological phenomena at different timescales
probably affect dengue risk via different causal pathways, one mainly
biophysical (high rainfall leading to immediate proliferation of out-
door vector breeding sites) and the other behavioural (household
water storage in response to perceived sustained shortages).

If the long-term drought effect is mainly mediated by water sto-
rage behaviour, we hypothesised that increasing population access to
improved water supply (i.e., more reliable than rainwater59) would
reduce the dengue risks associated with sustained drought but not
with short-term excess (Methods). We also expected that, at this fine
spatial scale, including an interaction with water supply would explain
observed patterns better than an interaction with urbanisation (which
was found to significantly modify drought effects in a recent coarser-
scale study37). We tested this by stratifying the effects of either SPEI-1
(1-month lag) or SPEI-6 (5-month lag) by low (<25%), intermediate
(25–75%) and high (>75%) levels of either improved water supply
(proportion of households) or built-up land cover, within the full
model retaining all other covariates (Methods). Consistent with our
expectations, models including an interaction between SPEI-6 and
water supply substantially improved model fit, whereas interactions
with urban land andwith SPEI-1 did not improvemodels (Supp. Figs. 17
and 18). The interaction model showed a complex, nonlinear rela-
tionship between sustained drought, improved water supply and
dengue risk (Fig. 6a). Increasing access to improved water supply
reduces the delayed dengue risk associated with near-normal to
moderately dry conditions (SPEI-6 between 0 and –1.5), but sharply
increases the risk under moderate to extreme drought conditions
(SPEI-6 < –1.5). In contrast, where improved water supply is low,
increasingly dry conditions are associated with linear increases in risk
except during rare periods of severe drought, when risk slightly
declines (SPEI-6 < –2, 1.5% of observations). Long-term wet conditions
(SPEI-6 > 0) are protective across all strata (Fig. 6a). Notably, including
this interaction substantially reduced prediction error under spatio-
temporal and seasonal holdout designs compared to a non-interaction

model (Supp. Fig. 18), providing evidence that accounting for cross-
scale climatic and socio-environmental interactions can help topredict
spatial variation in dengue risk.

To visualise how interactions between drought and improved
water supply couldproduce spatial heterogeneity in denguedynamics,
we projected monthly SPEI-6 associated relative risk for an example
time series from the Mekong River Delta (2002–2020), under scenar-
ios of low, intermediate and high improved water supply (Fig. 6b).
Over two decades, SPEI-6 oscillates between periods of near-normal to
moderately dry and wet, with rarer extremes (droughts in 2003–4 and
2016–17, excess in 2018–19; Fig. 6b, top panel). Under low-to-
intermediate improved water supply (<75% of households), dengue
relative risk is closely linked to these oscillations, significantly
increasing during regular dry periods. In contrast, when improved
water supply is high (>75%) risk is effectively dampened during these
lower amplitude dry periods, instead only increasing sharply during
sporadic periods of severe drought (Fig. 6b, bottom panel).

Discussion
Despite recognition of the growing threat of dengue under global
change5, understanding of how key socio-environmental and climatic
drivers shape both local patterns of transmission and broader emer-
gence trends remains patchy. By analysing 23 years of dengue sur-
veillance data across a gradient of transmission intensity in Vietnam,
we found that urban infrastructure-related metrics (water supply,
sanitation and long-term urban growth) are the most influential pre-
dictors of local heterogeneity in incidence (Figs. 3 and 4). Notably,
temperature is a key driver of dengue’s distribution and dynamics, and
long-term reanalysis data indicates that recent climate change has
already expanded temperature-driven dengue risk across Vietnam
(Fig. 5). In contrast, effects of hydrometeorology depend on timescale
and socioeconomic context, with drought effects mediated by access
to improved water supply (Fig. 6). These socio-environmental findings
complement existing household- and subregional-level evidence for
dengue risk factors in Vietnam29,40,41,60, with the benefit that the data-
set’s long-term nature, spatial granularity and national coverage
allowed for inference across the full range of many hypothesised
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drivers—from rural to urban, remote to highly connected, and tropical
to cooler subtropical climates.

Decomposing the roles of urbanisation and infrastructure as
spatial drivers of dengue incidence
The coarser surveillance data commonly used in large-scale dengue
analyses makes it difficult to disentangle the effects of local socio-
environmental factors from closely correlated metrics such as popu-
lation density. Our study at finer-scale avoids this issue, and provides
evidence that water and sanitation infrastructure are more important
spatial determinants of dengue risk than availability of urban habitat
per se. Increasing hygienic toilet access was the strongest positive
predictor, which was unexpected as sanitation improvements are
thought to decrease household-level risk. It is possible that this metric
may instead index “urban-like” water-related infrastructure that pro-
vide amenableAedes breeding habitat, such as stormdrains, septic and
water storage tanks (although this relationship was robust in a model
fitted only to data from rural districts; Supp. Fig. 10), and/or proxy for
economic improvements and associated increases in healthcare access
that could increase case detection. Alternatively, increasing flush toilet
access could itself drive population-level risk: indoor flush toilets in
Vietnam are conventionally linked to septic tanks with storm drain
overflows46, and outdoor latrines often contain stored water contain-
ers, both of which provide vector breeding sites30. Indeed, previous
studies in Vietnam have identified outdoor latrine access41 and proxi-
mity to sewage discharge sites61 as significant household-level risk
factors for DENV exposure; our results suggest these effects might be
more general, and highlight the need for further research to under-
stand the role of changing sanitation systems in dengue emergence.
We also found evidence for protective effects of high coverage
of improved water supply in both south and north Vietnam, even
though ourmetric was coarse (including both piped and groundwater-
derived sources) due to limitations of census data (Fig. 3 and Supp.
Fig. 2). This is consistent with evidence from Vietnam and
elsewhere62,63 and is likely mediated by the ability and propensity to
store water around homes when water supply is low or unreliable
(see below).

Notably, the negative effects of long-term urban expansion and
built-up land suggest that—after accounting for mobility and infra-
structure—dengue incidence declines in increasingly urbanised land-
scapes. This appears counterintuitive given that urban growth is
typically considered a key dengue driver (although systematic reviews
have not shown clear empirical consensus for this relationship6,25).
However, our satellite-based metrics are probably better indicators of
formally planned urban developments than of more informal or per-
ipheral settlement expansion, which can be harder to detect from
space64. Such developments may generally have better provision of
water, sanitation and vector control services; as such, these results are
consistent with our infrastructure findings in suggesting that socio-
environmental characteristics are the key determinants of hetero-
geneity in risk across large areas. Taken together, these results suggest
that dengue incidence in Vietnamprobably peaks in semi-urbanised or
peri-urban areas—i.e., relatively well-connected localities with exten-
sive landscape modification for essential sanitation, water and drai-
nage, but lacking higher-quality infrastructure and services that could
otherwise reduce vector densities. This conclusion is supported by an
earlier cohort and modelling study from Vietnam, which suggested
susceptibility to large dengue outbreaks is highest in areas with
intermediate population densities and low piped water access62.

Interacting effects of the climatic and socio-environmental
drivers on dengue dynamics
We found strong evidence that temperature drives the spatial limits
and temporal dynamics of dengue across Vietnam. The nonlinear
effect of monthly Tmean, peaking around 27 °C, is consistent with

evidence from vector biology26 and modelling studies37. Notably,
temperature of the coolestmonth of the year explained the gradient in
transmission intensity across Vietnam (Supp. Fig. 7), strongly sug-
gesting that constraints on viral and mosquito persistence in cooler
months are barriers to endemic establishment in the north. Indeed,
phylogeographic studies have shown that transmission chains rarely
persist over winter, and that yearly case surges in northern Vietnam
(including Ha Noi) are mainly seeded by reintroductions from the
south42. Consistentwith this, we foundmarkedly larger effect sizes and
predictive influence of humanmobility in the north, whichmay reflect
the importance of higher connectivity in facilitating annual DENV
reintroductions. Smaller effects of mobility in the south might reflect
that populations are sufficiently large, and the climate consistently
suitable, to support sustained local transmission. More generally,
these results suggest that highly connected localities in climatically
marginal regions may be useful targets for early surveillance, as den-
gue expansion is likely to proceed via establishment in these areas
before radiating outward65,66. Our analyses were constrained by
imprecise mobility metrics (Table 1), and more detailed data sources
(such as transport networks or mobile phone data) could provide
further insights into these expansion dynamics15.

There is a need to understand how climatic variability and
extreme weather events interact with local socioeconomic contexts to
drive outbreak dynamics, rather than considering climate hazards as
independent drivers38,67. Our finding that hydrometeorological
dynamics are significant, multi-scalar drivers of dengue risk in Vietnam
(Fig. 3) adds to an emerging evidence consensus for general effects of
drought on dengue, as similar long-lag drought effects have also been
observed in Latin America and the Caribbean36,37. Expanding on those
studies, we found that high improved water supply coverage changes
the functional shape of the dengue-SPEI-6 relationship, buffering
against risk during low amplitude dry periods and sharply increasing
risk during severe drought (Fig. 6). This is strongly indicative of a
mediating role of water storage practices. During slightly dry periods,
piped or borehole-derived water supply may decrease the need to
store water in containers, and/or increase the frequency of stored
water replacement, both of which reduce vector production rate68. In
contrast, improved supply during drought may increase the avail-
ability and propensity to store water in containers, whereas house-
holds with lower access might switch to alternative sources such as
bought water (as suggested by past research in the Mekong Delta59).
Our water infrastructure metric did not include service reliability or
sociocultural perceptions of water quality and reliability, all of which
impact water usage and storage norms59,69, and the inference of
extreme drought effects by definition relied upon a relatively small
number of observations (Fig. 6). Nonetheless, including this interac-
tion improved spatial and temporal predictive accuracy, particularly in
the highest-burden southern provinces (Supp. Fig. 18). This has
implications for spatial prioritisation of interventions (e.g., vector
control) to localities where water storage is highest during dry or
drought periods, as well as highlighting that developing accurate local-
scale dengue forecasts will likely need to account for complex climate-
socioeconomic interactions.

The role of environmental change in driving long-term dengue
emergence in Vietnam
Reported dengue burden has grown in many regions of Vietnam over
the last two decades, including northward expansion into central
regions and the Red River Delta11 (Fig. 1b). Our findings strongly sug-
gest that recent socio-environmental and climatic changes have sub-
stantially contributed to this emergence trend, although our approach
does not attribute observed trends to changes in specificdrivers, and it
is feasible that changing patterns of clinical awareness or healthcare
access also played a role (Methods, Supp. Fig. 19). In future, age-
stratified incidence or seroprevalence surveys could provide
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additional evidence to further disentangle the drivers of these trends;
relatively few such studies have been published over the last decade
from Vietnam. Recent evidence is consistent with the patterns we
observed (suggesting slight declines in transmission in the south70 and
increases in central areas40), but inference of changing force of infec-
tion from age-stratified data is challenging71, highlighting this as an
important future research area to understand dengue emergence
trajectories in Vietnam.

Notably, while most studies of dengue and climate change have
focused on future scenario-based projection34,72, we instead used his-
torical reanalysis data which suggests that climate change in recent
decades has already expanded and redistributed transmission risk,
likely facilitating dengue’s northward spread (Fig. 5 and Supp. Fig. 15).
In the north, the combined effects of a lengthening transmission sea-
son and rapid rises inmobility (up to 14-fold since 1998) have probably
contributed substantially to the emergence of dengue as an annual
problem in Ha Noi and the Red River Delta. Evidence of reductions in
risk during the hottest months, however, suggest that future climate
change will have complex effects on spatiotemporal patterns of den-
gue burden. Our approach stops short of attributing these effects to
anthropogenic climate forcing, instead comparing present-day risk
patterns to a reference period preceding the recent global tempera-
ture uptick; applying a formal detection and attribution frameworkwill
be an important next step towards quantifying the anthropogenic
fingerprint on dengue burden73.

Recent changes in infrastructure may have had complex effects
on the landscape of dengue, with transmission risk simultaneously
increased viawidespreadexpansion of sanitation systems and reduced
via the growth of cities and improvements in water supply. Indeed,
rather than a simple positive dengue–urbanisation relationship,
localities most vulnerable to outbreaks are probably peri-urban and
transitional landscapes with increasingly dense populations but rela-
tively weak infrastructure and services. Our findings consequently
support improvements in hygienic water supply infrastructure as a
pillar of climate adaptation to increasing mosquito-borne arboviral
risks, but also highlight potential limits to this adaptation. Climatic
changes are stressing water security in much of Southeast Asia,
including Vietnam which has recently experienced severe droughts
and saltwater incursion, and regional drought risks are projected to
increase in future74,75. Expanding access to improved water supply
infrastructuremaymitigate dengue risks during dry periods, butmight
be insufficient to reduce dengue risks following severe droughts
without additional improvements to household water security. More
broadly, our study shows the value of integrating explanatory
(hypothesis-driven) and predictive methods to understand the inter-
acting effects of climate and socioeconomic factors on emerging
diseases.

Methods
Dengue surveillance data
Since 1998 Vietnam has maintained a dedicated national dengue pas-
sive surveillance system. Data on monthly dengue case counts from
May 1998 to April 2021 at administrative level-2 (“districts”) were col-
lected and collated at the Pasteur InstituteHoChiMinhCity (Southeast
and Mekong River Delta provinces), Pasteur Institute Nha Trang
(Central coastal provinces), Tay Nguyen Institute of Hygiene and Epi-
demiology (Central Highlands provinces) and National Institute of
Hygiene and Epidemiology in Ha Noi (Northern provinces), with time
series beginning between 1998 and 2001 depending on the region
(Supp. Fig. 1). Case counts comprised clinically diagnosed (i.e., sus-
pected) cases from the passive surveillance system. Diagnostic
guidelines followed the standardised WHO guidelines for dengue
diagnosis (using the 1997WHOdefinitions prior to 2009, andusing the
revised 2009 classifications from 2009 onwards), and were applied
nationwide throughout the study period. Following the Vietnam

national guidelines for dengue prevention and control, 3% of clinically
diagnosed cases were laboratory-confirmed using viral isolation tech-
niques for DENV serotype monitoring, and additionally between 5%
and 7% of cases were confirmed using serological tests (IgM antibody
capture enzyme-linked immunosorbent assay (MAC-ELISA)). District-
level data on lab-confirmation rates were not available so were not
included in our analyses. Other arboviral infections, particularly Zika
and chikungunya, could be clinically misdiagnosed as dengue; how-
ever, reported case numbers and seroprevalence estimates have been
low (e.g., only 265 reported Zika cases between 2016-19)76,77, so this
would be unlikely to substantially impact inference. Currently, there
are 713 districts in Vietnam, although a substantial number of these
were established through redrawing of administrative boundaries
since 1998; to ensure geographical comparability throughout the
study period, we combined dengue case counts for 46 districts to
match their 1998 boundaries, creating a final dataset of
174,936 monthly case counts from 667 districts (Fig. 1a and Supp.
Fig. 1). Case counts were assigned to a dengue transmission year (from
April to May) for modelling.

Socio-environmental and climatic covariates
We developed spatially- and temporally explicit covariates to repre-
sent hypothesiseddriversof dengue transmission and spread (Table 1).
Covariates are visualised in Supp. Figs. 2 and 3, and data sources and
processing are summarised below (for full description see Supp.
Table 1 and Supp. Text 1). Raster data extraction and processing was
conducted using ‘sf’, ‘raster’, ‘exactextractr’, ‘dplyr’ and ‘magrittr’ in R
4.0.378–80. We accessed population data (total and density) from
census-based data, urbanisation metrics (built-up land extent, and
expansion rate in preceding 3- and 10-year windows) from satellite
data48, and infrastructure metrics (% households with access to
hygienic toilet, and % piped or borehole-derived water) from the
VietnamPopulation andHousingCensus (2009 and 2019, interpolated
and projected to annual values). We accessed province-level annual
road travel rates (km per inhabitant reported by the Vietnam General
Statistics Office) as a measure of observed levels of population
movement. In the absence of detailed mobility data such as mobile
phone records, we used parameter-free gravity and radiation models
to predict annual district-level relative connectivity (predicted mean
population flux), based on population data and pairwise travel times
between all pairs of districts16,81.

Monthly temperature indicators (monthly means of daily mean,
minimum and maximum temperature, i.e., Tmean, Tmin and Tmax) were
derived from ERA5-Land reanalysis data49,82,83. Since broad climatic
suitability gradients could confound relationshipswith other variables,
we also calculated three annual temperature indicators to represent
more fundamental constraints on dengue persistence (annual Tmean,
annual mean Tmin and Tmean of the coolest month, all from the same
dengue year). Monthly precipitation indicators were derived from
bias-adjusted ERA5 data (WFDE5; Supp. Figs. 3–4). In addition to pre-
cipitation, we used the R package ‘spei’51 to estimate multi-scalar
drought indicators (Standardised Precipitation Evapotranspiration
Index; SPEI) from 40 year timeseries of monthly WFDE5 precipitation
and ERA5-Land potential evapotranspiration in each district (reference
period 1981–2020). SPEI incorporates effects of both precipitation and
evapotranspiration on water availability52,53, with values above and
below0 indicating, respectively, surfacewater excess or deficit relative
to the long-term historical average in a given seasonal time window
(for example, a 6-month SPEI for Jan–Jun 2018 would compare to
Jan–Jun in all other years). SPEI values denote the relativemagnitude of
this deviation, from near-normal to moderate (absolute values from 0
to 1), frommoderate to severe (absolute values 1 to 2), to extremewet/
dry conditions (absolute values > 2).We estimatedmonthly SPEIwithin
1-month, 6-month and 12-month windows to capture varying time-
scales of drought (SPEI-1 as short-timescale; SPEI-6 and SPEI-12 as long-
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timescale). We considered both short- and long-timescale drought
indicators in the same model as they reflect likely different causal
influences on dengue transmission (Methods) and were not strongly
correlated (Pearsoncoefficients betweenSPEI-1 andSPEI-6 = 0.52; SPEI-
1 and SPEI-12 = 0.37). Climatic covariates were derived at lags of 0 to
6 months prior to the focal month to account for delayed effects
(Supp. Text 1).

Statistical model development
To infer relationships between covariates and dengue incidence we
fitted spatiotemporal models in a Bayesian framework (integrated
nested Laplace approximation, in INLA 21.7.10.184,85). Monthly dengue
case counts Y i,t (n = 174,936) were modelled as a negative binomial
process to account for overdispersion:

Y i,t ∼NegBinomðμi,t ,nÞ ð1Þ

where n is the size (overdispersion) parameter and μi,t is the expected
mean number of cases for district i during month t, modelled as a log
link function of the following general linear predictor:

log μi,t

� �
=α +Pi,t +ρr ið Þ,t +ui,yðtÞ + vi,yðtÞ ð2Þ

Here, α is the intercept and Pi,t is log population included as an
offset. ρr ið Þ,t is a province-specific effect of calendar month to account
for geographic variability in dengue seasonality (districts i are nested
within 63 provinces r), specified as a cyclic first-order random walk to
capture dependency between successive months. To account for
unexplained variation in spatiotemporal patterns of dengue across
Vietnam (due to unmeasured factors such as population immunity),
ui,yðtÞ and vi,yðtÞ are dengue year-specific (23 years, y) spatially struc-
tured (conditional autoregressive; u) and unstructured (i.i.d; v)
district-level random effects, jointly specified as a Besag-York-Mollie
model55.

We fitted the above random effects-only model as a baseline
(Supp. Fig. 5), and conducted model selection to develop a multi-
variable model including population, climate, urbanisation, infra-
structure and mobility covariates (Table 1). We compared models
using within-sample information criteria: Watanabe-Akaike Informa-
tion Criterion (WAIC), Deviance Information Criterion (DIC) and cross-
validated logarithmic score (log-score; calculated from the pointwise
conditional predictive ordinate, an approximation of leave-one-out
cross-validation). Comparing variation explained between different
models using metrics such as pseudo-R2 was not particularly infor-
mative, as the district-level random effects (ui,yðtÞ + vi,yðtÞ) are at the
same annual resolution as most covariates (Table 1), and thus tend to
compensate for excluded variables.We instead calculatedmeasures of
unexplained random effects variation (mean absolute error in district-
level or seasonal effects), which indicates how much these effects
attenuate towards zero when covariates are included.We first selected
eachcovariate’s best-fitting type (eitherTmean,Tmin orTmax formonthly
temperature; either SPEI-6 or SPEI-12 for long-timescale drought;
gravity or radiation; 3- or 10-year urban expansion), functional form
(linear, logarithmic or nonlinear, the latter specified as a second-order
random walk) and lag (climate variables only) by adding each indivi-
dually to the baseline model and comparing WAIC (Supp. Fig. 6).
Covariates considered for inclusion in a full multivariable model were:
fixed effects of Tmean coolest month, log population density, log
gravity flux, log road traffic per inhabitant, built-up land, log 10-year
urban expansion rate, and nonlinear effects of hygienic toilet access,
piped water access, Tmean 1-month lag, SPEI-1 1-month lag and SPEI-6 5-
month lag.

Owing to the dataset’s large size and the expectation of con-
founding relationships among covariates, it was both undesirable and
computationally unfeasible to conduct a programmatic covariate

selection process. Instead, we conducted a more limited model com-
parison procedure to develop a final multivariable model. To do this,
we first excluded covariates with evidence of substantial multi-
collinearity when tested using variance inflation factors (log popula-
tion density and log gravity flux were highly collinear, and the former
was excluded because gravity flux improved models more during
individual covariate analysis; Supp Fig. 6). We then fitted a multi-
variable model including all 10 remaining covariates and compared
this to 10 separate models each holding out 1 covariate at a time.
Covariates whose inclusion did not improve model fit according to at
least 2 of the 3 within-sample metrics (WAIC, DIC and log-score) were
excluded. All covariates improved the model by this majority rule
criterion, and were retained.

We examined residuals and conducted posterior predictive
checks to check the model met distributional assumptions. We also
conducted a sensitivity analysis based on degree of urbanisation
because, despite relatively low collinearity overall (Supp. Fig. 2), many
large cities cluster with relatively high values for many key covariates.
Since this could affect parameter estimates, we tested sensitivity by
sequentially re-fitting the model holding out all observations in areas
with >90%, >70% or >50% of population residing in urban areas as
defined from census data (i.e., fitting the model to data from increas-
ingly rural settings). To examine whether socio-environmental effects
differ substantially between endemic and emerging dengue transmis-
sion settings, we also separately fitted the final multivariable model to
data from southern Vietnam (Mekong River Delta, Southeast, South
Central Coast and Central Highlands) and northern Vietnam (North
Central, Red River Delta, Northeast and Northwest). Although patterns
of population mixing may have substantially differed in 2020 due to
COVID-19-associated movement restrictions, any impacts on dengue
incidence should be accounted for via the district-level random effects
and traffic covariates (Fig. 2).

Measuring covariate predictive influence through block
cross-validation tests
Inference can be strengthened through combining explanatory and
predictive approaches, for example by using structured predictive
tests to challenge the ability of hypothesis-led explanatory models to
predict unseen observations56,57 (i.e., testing the generalisability of
inferred relationships). For strongly spatially dependent phenomena
such as disease incidence, block cross-validation designs—which
holdout data in spatially- or temporally structured blocks—are more
appropriate than fully randomised approaches86, and can provide
insights into how different variables contribute to predicting different
dimensions of a phenomenon (Supp. Fig. 8). To estimate the influence
of individual covariates on predicting spatial and temporal variability
in dengue incidence, we conducted block cross-validation experi-
ments to estimate out-of-sample (OOS) prediction error for the base-
linemodel, fullmodel, and 10models each excluding a single covariate
from the full model. In each run, the dataset was 5-fold partitioned
(observationswere randomly allocated to folds following a given block
holdout design, as described below) and OOS predictions were gen-
erated for each model using 80%-20% train-test splits (i.e., across
5 submodels). Prediction error (difference between observed and
predicted cases) was summarised as mean absolute error (MAEOOS),
across all observations, at district-level and, to examine differences
between regions, across all observations within either southern or
northern Vietnam (Supp. Figs. 11 and 12)

This procedure was repeated 10 times each for 3 block holdout
designs86 to account for variation associatedwith randomallocation of
folds (Supp. Fig. 8a, b). Spatial: 5-fold of complete districts, i.e., pre-
dicting full dengue incidence time series in completely unobserved
areas. Spatiotemporal: 5-fold of district-year combinations, i.e., pre-
dicting completely unobserved years in partially observed locations.
Seasonal: 5-fold of quarterly (3-month) blocks per-district, i.e.,
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predicting unobserved intra-annual epidemic dynamics. Under spatial
and spatiotemporal holdout designs, the expected magnitude of
dengue incidence in unobserved locations and years is inferred from
nearby observed locations, via the spatially structured effects ui,yðtÞ
(Supp. Fig. 8c). These designs therefore test the contribution of cov-
ariates to predicting spatial heterogeneity in dengue incidence
dynamics among nearby locations (i.e., differences from the expected
similarity to neighbouring districts). Under the seasonal block design,
the random effects contain information about the expected magni-
tude of cases in unobserved blocks, inferred from other observations
in the samedistrict and year (Supp. Fig. 8d). This design therefore tests
the contribution of monthly climatic variability to predicting depar-
tures from this seasonal expectation (Supp. Fig. 8d).

Examining the recent impacts of climate change using historical
temperature data
To examine the possible contribution of recent climate change to
dengue expansion patterns nationally, we used the inferred risk
function ofmonthly temperature (Tmean 1-month lag; Fig. 3e) to project
monthly posterior mean temperature-driven dengue risk since 1950
for all districts, using long-term Tmean data from ERA5-Land reanalysis.
To do this, we used the fitted risk function to predict the monthly
marginal effect of Tmean on dengue incidence (i.e., while holding all
other variables constant) for eachmonth across the full historical time
series. To visualise present-day risk dynamics in space and time, we
then summarised andmapped 20-yearmeans of monthly district-level
risk for the period2001–2020. To test for effects of climate change, we
compared 20-year average risk between a historical reference period
(1951–1970) and the present-day period, per-district and month, using
linear models with time period as a categorical covariate. The use of
20-year averages was to account for natural climate system variability.
The historical reference period was based on the earliest available
ERA5-Land data, and while not reflective of the pre-industrial baseline,
precedes the sharp acceleration of global temperatures that has
occurred since around 1970. Climate reanalysis is based on assimilat-
ing observational data with climate models to provide a detailed and
accurate reconstruction of historical climate dynamics, and its accu-
racy relies upon observational data. The number of observations
assimilated by ERA5 increases tenfold between 1950 and 1970, and this
lower data coverage might reduce accuracy in earlier years58; we
therefore also tested the sensitivity of results to defining a later
reference period (1971–1990) when coverage is much higher.

Examiningmulti-scalar effects of drought, and interactions with
infrastructure, in southern Vietnam
We extended the full model to investigate the effects of interactions
between extreme wetness/drought and local infrastructure on dengue
incidence, over multiple timescales and delays (from 0 to 6 months),
focusing on endemic southern Vietnam.We examined the relationship
between SPEI and dengue incidence, and improvements in model fit,
for all lags and timescales of SPEI (SPEI-1 and SPEI-6 at 0 to 6 months
delay), by including each metric individually in the full model con-
taining all covariates except SPEI. To test the hypothesis that the
effects of drought on dengue aremediated by water supply, we tested
whether models were improved by stratifying the best-fitting short-
timescale (SPEI-1 1-month) and long-timescale (SPEI-6 5-month)
drought indicator by either level of improved water access or urbani-
sation (grouped as low, intermediate, or high, defined as <25%, 25–75%
or >75%, respectively). We expected that stratification of the SPEI-6
effect by water supply would improve models more than stratifying
SPEI-1, and that stratifying by water supply would improve models
more than stratifying by urbanisation (Results). We used information
criteria as described above (WAIC, DIC and log-score) to evaluate
whether including each interaction improved model fit compared to
the full (non-interaction) model. For each model, we also tested

whether interactions reduced OOS prediction error under spatio-
temporal and seasonal cross-validation, as described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Dengue surveillance data for a subset of 4 Vietnamese provinces (Dak
Lak, Khanh Hoa, Ha Noi and Dong Nai) are provided in the study
repository to demonstrate analysis pipeline functionality (https://doi.
org/10.5281/zenodo.10159288). The nationwide dengue incidence data
underlying these results are available from Phan Trong Lan, General
Department of Preventive Medicine, MOH (phan-
tronglan@gmail.com). All other data used in analyses were accessed
from open sources. Land cover data was accessed from ESA-CCI
(https://www.esa-landcover-cci.org/), census-based population, sani-
tation, housing and mobility data from the Vietnam General Statistics
Office (https://www.gso.gov.vn/en/homepage/) and climate reanalysis
data from Copernicus (ERA5-Land https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land; WFDE5 https://cds.climate.
copernicus.eu/cdsapp#!/dataset/derived-near-surface-meteorological-
variables). Processed versions of these datasets used in analyses are
provided in the study repository.

Code availability
All data processing and modelling code used for this study are avail-
able at the study repository (https://doi.org/10.5281/zenodo.
10159288).
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