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Abstract

This thesis is concerned with improving methods for cost-effectiveness analyses (CEA).
Real-World Data (RWD), for example, from routine data sources such as electronic
health records, is used to generate comparative effectiveness and cost-effectiveness
evidence in settings where appropriate evidence from Randomised Controlled Trials
(RCTs) is not available. However, studies using RWD face fundamental issues
pertaining to the study design, in particular around the risk of bias due to confounding
and treatment effect heterogeneity. The aim of this thesis is to contribute to the
literature on CEA methods for those settings. The thesis considers recent advancements
in the causal inference and econometrics literature to examine the following objectives:
(i) to identify challenges for comparative- and cost-effectiveness studies in applying the
‘target trial’ framework, (ii) to evaluate a novel local instrumental variable (LIV)
approach in a CEA, (iii) to evaluate the performance of the LIV approach according to

varying levels of instrument strength in a simulation study.

The first paper in the thesis considers the main challenges in applying the target trial
framework in comparative effectiveness and cost-effectiveness studies that use RWD,
and offers recommendations, in particular around the interrelated issues of defining the
study population and the comparator groups. The second paper is concerned with
methods to address unmeasured confounding and heterogeneity, which are major
challenges in CEA that use RWD. In this paper, I evaluate LIV methods in the context
of a CEA that uses routine data from the ‘Emergency Surgery OR noT’ (ESORT)
study. In the third paper, I extend this assessment of LIV methods with a simulation
study that assesses the performance of LIV in realistic scenarios, defined by varying
levels of instrument strength, and different forms of heterogeneity and sample sizes. The
findings from these papers suggest that, in addressing both confounding and
heterogeneity, LIV methods can provide accurate estimates of treatment effects of direct
decision-making relevance. I find that, provided the instrument is strong, or the sample
size is at least moderate, the LIV approach reports estimates with low bias and that are
statistically efficient, regardless of the form of treatment effect heterogeneity that is

present.

The thesis concludes that by directly addressing confounding and heterogeneity the
proposed methods can mitigate concerns about studies using RWD. Findings from this
thesis can help future CEA that use RWD, to provide more useful evidence for decision-

making.
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Chapter 1. Introduction

1.1 Cost-effectiveness analysis for decision-making in health

care

The primary goal of most health systems worldwide is to improve population health
(World Health Organization, 2000). In budget-constrained settings, decision-makers
and reimbursement agencies have to make difficult decisions about how to assign
limited health resources to alternative uses. In many countries, reimbursement
agencies draw on evidence from health economic evaluations which compare relative
outcomes from alternative interventions, programs or technologies (herein referred to
as ‘interventions’) against their relative costs (i.e., the value of the health forgone
elsewhere in the system as a result of the adoption of the intervention) (Drummond

et al., 2005).

The most widely adopted form of economic evaluation is cost-effectiveness analysis
(CEA), which contrasts the additional cost per additional unit of health outcome,
generally defined according to measures such as quality-adjusted life years (QALYSs)
or disability-adjusted life years (DALYs) (Culyer, 2010)." A common metric in CEA
is the incremental cost-effectiveness ratio (ICER). The ICER lends itself to a decision
rule to judge ‘value for money’, whereby if the ICER is below a particular cost-
effectiveness threshold representing the opportunity cost,? then the intervention may
be deemed relatively cost-effective and, pending consideration of other issues, such as
the level of uncertainty, or the value of innovation, the intervention may be

recommended for adoption.?

Evidence from CEA can inform resource-allocation decisions in public health and
social care, but is most commonly used in recommendations about adoption and use
of health interventions in health technology assessment (HT'A) (Claxton et al., 2010;
Ochalek et al., 2020; Rudrapatna and Butte, 2020; Sorenson et al., 2008). While other

factors such as equity may well be important considerations in the development and

! This thesis considers CEA in its widest context, so the definition of ‘health outcome’ adopted includes clinical
outcomes but also health-related utility measures.

2 See Eckermann and Pekarsky (2014) for a review of methods for evaluating a threshold value for the effects of

new health interventions.

3 Alternatively, cost-effectiveness can be assessed looking at the incremental net monetary benefit (INB), which is
the difference between the incremental costs and the incremental health outcomes, expressed in monetary terms.
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formulation of HTA guidelines, cost-effectiveness has been shown to be the main
determinant of previous HTA decisions by the National Institute for Health and Care
Excellence (NICE) in England and Wales (Dakin et al., 2015).

Given the central role of economic evidence in HT'A decision-making, it is important
that CEA use robust analytical methods for assessing the relative effectiveness and
costs of health interventions. To that end, NICE publishes its own methods and
processes manuals which set out the type of evidence required and how to ensure it is
of ‘the highest standard possible and transparent’ (NICE, 2022). According to NICE’s
methods guidance for HT A, there are three main requirements for evidence generated
in CEA: (i) the included population, comparators and outcomes should be relevant to
the evaluation, (ii) the study should use appropriate methods to minimise bias, and
(iii) the evidence should be generated in a transparent and reproducible way (NICE,
2022).

Such evidence might come from CEA with various study designs, which raise different
issues. Many CEA use Randomised Controlled Trials (RCTs) for the assessment of
short-term effectiveness, and the random assignment of the comparators can balance
all confounding factors (Willan and Briggs, 2006). However, the availability of RCT
evidence in many decision contexts and disease areas is limited. For the evaluation of
non-pharmaceutical technologies (e.g., devices or diagnostics), or the introduction of
changes to health services, health policy of public health interventions, there are major
challenges in generating RCT evidence, which may not be mandated for introduction
of the intervention into the health system. By contrast new pharmaceutical agents
often require RCT evidence on safety and efficacy prior to marketing authorisation
(Skivington et al., 2021). However, RCTs designed for the purposes of marketing
authorisation, may have strict eligibility criteria and a short duration of follow-up,
which limits the relevance of the evidence generated for the purposes of HT'A. Hence,
CEA are almost always required to use observational (non-randomised) data within a
general modelling framework, in particular for the estimation of parameters pertaining
to longer term utilities and resource use, which are unlikely to be appropriately

estimated within the limited follow-up period of most RCTs (Briggs et al., 2006).

For the assessment of new health technologies, NICE and other HTA agencies are
moving away from the exclusive reliance on RCT evidence for the assessment of
relative effectiveness, and towards further use of Real-World Data (RWD) in their
evaluations. In this thesis, the definition of RWD is data ‘generated through routine

clinical practice and without any intervention by the researcher’ (Garrison et al., 2007;
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Makady et al., 2017b). This definition of RWD encompasses data from a broad variety
of sources that is routinely collected for purposes not limited to research, such as the
reimbursement of health service providers.* Under this definition, both registry data
and administrative data including electronic health records (EHR) are considered
RWD. In this thesis the main interest is in the form of RWD that is collated for
administrative purposes, which can also be referred to as ‘routine data’ (Garrison et
al., 2007). Following precedents in the literature, I will refer to real-world evidence as

‘evidence generated in observational studies through the analysis of RWD’ (Garrison
et al., 2007; US FDA, 2018).

The latest methods guidance from NICE highlights the general use of RWD as a
priority methods research area, stating “we aim to harness the principles of data
science to further our knowledge, using big data and real-world data (RWD) for the
benefit of the wider health and social care system”. The recently-published NICE real-
world evidence framework described potential uses of RWD, good research practices
and recommendations for improving transparency and trustworthiness of real-world
evidence (NICE, 2022). However, some challenges remain, in particular around the
design and conduct of CEA in settings with unmeasured confounding and
heterogeneity (see definitions in section 1.2). This thesis seeks to address this gap, by
improving methods for assessing comparative effectiveness and cost-effectiveness that
use RWD.

The next section describes the potential uses of RWD in HTA processes, and in
particular, for the purposes of generating evidence on comparative effectiveness and
cost-effectiveness. I outline some common methods for generating this type evidence

using RWD, and identify important gaps in these literatures.

1.2 The use of Real-World Data in Cost-effectiveness
Analyses

The increased availability of RWD has created opportunities for informing HTA
processes in settings where RCT evidence is unavailable or inadequate. A recent review

of the policies of six HTA agencies on use of real-world evidence showed that there is

4 In this thesis, I use the terms ‘real-world data’ and ‘routine data’ interchangeability to emphasise that focus is
on data is collected in routine care. While some forms of RWD such as genomic data or patient reported outcomes
are collected outside of routine clinical care, for practical purposes, I don’t make a distinction between these two
definitions.
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substantial variation in the extent to which international HT A agencies rely on real-
world evidence for assessment treatment effectiveness, and for estimating other
requisite parameters for CEA (Makady et al., 2017a). NICE’s real-world evidence
framework describe how it has expanded its criteria for evidence, and how RWD might

be used to inform guidance. Table 1.1 provides a non-exhaustive list of current uses
of RWD by NICE.

Table 1.1. Uses of real-world data (RWD) for Health Technology Assessment
(HTA) and examples from previous guidance from the National Institute of Health

and Care Excellence (NICE) - adapted from NICE’s real-world evidence framework

Uses of RWD in HTA Example of NICE
guidance
Describing the decision context HST15 (NICE, 2021)
Informing parameters in economic models NG115 (NICE, 2019)

Supplementing network meta-analyses in settings where TA383 (NICE, 2016)
the network is ‘incomplete’
Generating comparative- or cost-effectiveness evidence HST14 (NICE, 2021a)
within uncontrolled studies such as single-arm trials
Generating comparative- or cost-effectiveness evidence TA524 (NICE, 2018)
exclusively from RWD sources.

Current uses of RWD in technology evaluations include gaining an understanding of
the particular decision context (row 1 in Table 1.1), as well as informing parameters
in economic models (row 2 in Table 1.1). Uses of RWD in generating comparative
effectiveness or cost-effectiveness evidence are not limited to one design. Applications
include settings in which RWD is used to generate external comparison groups for
single arm trials, settings in which relative costs and outcomes need to be evaluated
over a time-horizon beyond the RCT follow-up period, or where the RCT population
does not represent the target population of interest (rows 3 and 4 in Table 1.1). A
final setting in which RWD could be particularly important is if, in the complete
absence of relevant RCT evidence, individual-level RWD is used directly to estimate

comparative effectiveness and cost-effectiveness (row 5 in Table 1.1).

This thesis is concerned with this last use of RWD, that is, generating comparative-
effectiveness and cost-effectiveness evidence using only RWD, and in the specific
setting where individual participant data is available for all the comparison groups of
interest. This type of evidence is particularly useful in those settings in which RCT

evidence 1is often unavailable, including public health interventions, non-
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pharmacological interventions such as surgical procedures, or pharmacological

interventions such as treatments for orphan diseases or complex interventions.

Observational studies, including those that use RWD, have the potential to meet
NICE’s requirement (i) for evidence generated in CEA that ‘the included population,
comparators and outcomes should be relevant to the evaluation’ (NICE, 2022a).
However, the reliance on non-randomised designs for assessing comparative
effectiveness raises concerns around the risk of bias (requirement ii), and about
whether the findings have been generated in a transparent and reproducible way
(requirement iii). These concerns were acknowledged in NICE’s real-world evidence
framework, where the risk of bias from confounding, and the lack of trust in evidence
from RWD studies were described as two of the three main barriers to a wider
adoption of real-world evidence in HT'A decision-making (NICE, 2022). This thesis is
concerned with improving methods to help address the first two barriers to the better
use and broader adoption of real-world evidence in HTA decision-making. The third
barrier alluded to by NICE pertaining to concerns around the quality of the data, is
not directly addressed by the thesis, but I will consider issues pertaining to the data

quality within the case studies included in the thesis.

Tackling the ‘trust barrier’ requires that studies improve the transparency and
traceability of study design choices. Previous good practice recommendations include
using reporting checklists as well as facilitating access to data to help evidence users
judge the quality of the evidence. Several checklists and quality assessment tools have
been developed for CEA, but they are insufficient for evaluating study design choices
in studies using RWD. Most checklists have focussed on related but different issues
pertaining to RCTs and decision models (Drummond et al., 2005; Husereau et al.,
2013; Philips et al., 2006). While some checklists have been developed that relate to
RWD (Kreif et al., 2013), further consideration of broader issues of study design,
analysis and interpretation are required. Other recommendations such as pre-
registering the study protocol and health economics analysis plan (HEAP), and using
structured reporting templates, should also be adopted as they are well-known good
research practices, but they are unlikely to help evaluate the risk of confounding in a
given study. More recently, NICE’s 2022 real-world evidence framework recommended
that the notions of the ‘target trial’ framework should be adopted in observational

studies.

The target trial framework was developed in the epidemiological literature as a tool

to help minimise the risk of bias and design flaws in observational studies (Hernan
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and Robins, 2016). The target trial is a hypothetical trial that the researcher would
design to evaluate the research question. The target trial framework requires
researchers to specify crucial standpoints to the analysis of RWD, such as stating the
study eligibility criteria, and defining the comparator groups. By encouraging
researchers to apply the design principles of RCTs, the target trial framework can
help reduce the risk of bias from using inadequate study designs to assess comparative
effectiveness (Dickerman et al., 2019; Petito et al., 2020). The application of the
notions of the target trial can also allow evidence-users judge the design choices made
in the study by formally evaluating how closely the study design emulates that of an
analogous RCT (Dahabreh et al., 2020; Garcia-Albéniz et al., 2017; Lodi et al., 2019).
Gomes et al., (2022) describes ways the target trial framework could be applied to
alternative study designs and uses of RWD in HTA, but there is a lack of guidance
and exemplar applications in CEA that use RWD to evaluate treatment effectiveness

and cost-effectiveness.

While the target trial framework offers some general principles for the design of
observational studies, on its own, this framework is insufficient to mitigate the
inevitable concerns about confounding in observational studies (second barrier).
Confounding arises when baseline covariates associated with the outcome are not
balanced between treatment strategies (Hernan et al., 2002). In studies using RWD,
treatment strategies are not randomised and have a high risk of unmeasured
confounding (or residual confounding), that is, confounding due to unmeasured
baseline characteristics. A key purpose of the study design and methods of analysis
for assessments of comparative effectiveness and cost-effectiveness that use RWD is

to minimise the risk of confounding.

An advantage of RWD is that it can target the population of interest for decision-
making purposes, that is, patients who present for the health care interventions in
question in routine clinical practice. However, the inclusion within the RWD of a
broader population than those who would enrol in an RCT, may raise concerns about
‘treatment effect heterogeneity’ in addition to those of confounding (Bell et al., 2016;
Sarri et al., 2022). In particular, if drivers of treatment effect heterogeneity are also
associated with the choice of treatment strategy, and the outcome of interest, then
the study needs appropriate methods to account for the confounding effect of those
variables. In health care, both measured and unmeasured prognostic factors such as
the patient’s age or the stage of the disease may be expected to influence treatment
selection and also explain the individual’s response to treatment. In this thesis, I

describe ‘overt (treatment effect) heterogeneity’ as heterogeneity that is according to
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measured characteristics within the RWD. I refer to ‘essential (treatment effect)

heterogeneity’ as heterogeneity according to unmeasured prognostic variables.?

This thesis is concerned with evaluations of comparative effectiveness and cost-
effectiveness in presence of essential heterogeneity. This is a common phenomenon in
health care research, and raises important concerns for observational studies
evaluating treatment effects, as treatment choice is often according to patient
characteristics such as the patient’s capacity to benefit from either treatment strategy
which is unlikely to be measured within RWD. However, although this problem is
common, methods to tackle both confounding and heterogeneity due to unmeasured
characteristics have not been well-developed, in the setting of comparative

effectiveness and cost-effectiveness studies.

1.3 Methods for evaluating treatment effects in Cost-

Effectiveness Analyses

In the general causal inference, biostatistics and econometrics literature, numerous
methods have been developed to address the risk of confounding inherent in
observational studies (Hernan and Robins, 2020; Pearl, 2000). In CEA, some progress
has been made in the transfer of methods from these general literatures to address
specific issues raised in this context such as the joint distribution of endpoints (Nixon
and Thompson, 2005; Polsky and Basu, 2012; Sekhon and Grieve, 2012). Broadly,
these methods can be grouped into methods that assume ‘no unmeasured confounding’
(this is often referred to as the ‘unconfoundedness’ assumption), and those that do
not rule out the possibility of unmeasured confounding. Methods in the first group
such as regression adjustment have been widely adopted in CEAs (see, for example,
Kreif et al. (2012); Nixon and Thompson (2005); Willan et al., (2004)). These methods
are generally appropriate for estimating policy-relevant treatment effect parameters
such as the Average Treatment Effect (ATE) in settings where the treatment
assignment mechanism is well-understood, and it is plausible to assume that the

important confounding factors are measured in the data.

In settings where the adjustment for observed prognostic factors is unlikely to provide
sufficient protection against bias due to confounding, using Instrumental Variable (IV)

methods might be advisable. IV methods can provide reliable estimates of treatment

5 This terminology is used for consistency with the existing health econometrics literature.
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effects even in presence of unmeasured confounding provided some requisite
assumptions about the validity and relevance of the instrument hold (Baiocchi et al.,
2014; Brookhart et al., 2015; Rassen et al., 2009). The properties of IV methods under
these assumptions have been discussed in the econometrics literature (Baiocchi et al.,
2014; Brookhart et al., 2015), and they have been extensively adopted in the applied
economics literature. However, their use is still relatively uncommon in health care,

including in CEA (see, for example, Prentice et al., 2014; Saramago et al., 2020).

The appropriateness of traditional IV methods for estimating treatment effects of
decision-making relevance such as ATE or CATEs, largely depends on the form of
treatment effect heterogeneity that is present (Angrist et al., 1993; Angrist and
Ferndndez-Val, 2011). For instance, in presence of essential heterogeneity, the Two-
Stage Least Squares (2SLS) estimator can provide consistent estimates of the Local
Average Treatment Effect (LATE), which is the average treatment effect among an
unidentifiable subgroup of individuals in the population, but not necessarily the ATE
for the population (Basu et al., 2007). Instead, Local instrumental variable (LIV)
methods can provide robust estimates of comparative effectiveness that apply to
policy-relevant populations in presence of essential heterogeneity, provided some
assumptions hold (Heckman and Vytlacil, 2001). In Chapter 2, I provide an overview
of the IV methodology, including the identification assumptions, with particular

attention to LIV, which is the primary focus of this thesis.

1.4 Case study: the ESORT study

The methodological contributions of this thesis were motivated and informed by the
‘Emergency Surgery OR noT’ (ESORT) study. This was a study funded by the
National Institute for Health and Care Research (NIHR) that sought to evaluate the
outcomes, costs and cost-effectiveness of emergency surgery (ES) for patients with
common acute conditions (ESORT Study Group, 2020). This section provides: an
overview of the ESORT study, focussing on the aspects that are relevant to the thesis;
a description of my contribution to the ESORT study; and a brief explanation of the
ESORT study to help define some of the specific objectives of the thesis.

1.4.1 Overview of the ESORT study

The ESORT study was a retrospective cohort study that used routine data from
hospital episode statistics (HES) for emergency admissions to NHS hospitals in

England to evaluate the effectiveness and cost-effectiveness of ES compared to
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alternative non-emergency surgery (NES) strategies, such as delayed surgery or
antibiotic therapy, for patients with five common acute conditions: acute appendicitis,
diverticular disease, acute gallstone disease, abdominal wall hernia, and intestinal

obstruction.

For these conditions, RCT evidence on the benefits, risks and costs associated with
the provision of ES is scarce (Azhar et al., 2021; Flum et al., 2020; Javanmard-
Emamghissi et al., 2021; Thornell et al., 2016). Observational studies have failed to
address the major concern of unmeasured confounding (Koumarelas et al., 2014;
Saverio et al., 2014). Clinical advisors to the ESORT project raised the concern that
the decision as to whether patients have ES or the NES alternative is associated with
baseline factors that are prognostic of outcomes such as all-cause mortality at 90 days.
Hence unless these differences between the comparison groups are measured, and
allowed for, the study would provide biased estimates of the effectiveness of ES, due
to confounding by indication. These baseline factors may also modify the relative
effectiveness of ES, and include some that are measured within the data, such the
patient’s age, which can lead to overt heterogeneity. However, other baseline factors
that are not measured in HES, such as the severity of the disease, which can modify

the effectiveness of ES, i.e., essential heterogeneity is a major potential concern.

The lack of evidence to inform clinical guidelines pertaining to the choice of strategy
for patients presenting as emergency admissions with these acute conditions has
resulted in wide variation in rates of ES across NHS hospitals in England
(Abercrombie, 2017). The ESORT study sought to address this gap in the literature
by exploiting this natural variation in use of ES. The ESORT study built on a
precedent study that used an IV design to address confounding in evaluating the
effects of ES versus non-operative strategies in the United States (Keele et al., 2018).
The precedent study found that there were no substantial differences in clinical
outcomes following ES versus NES strategies at the aggregated population level, but
that for some pre-specified subgroups of patients, NES could lead to better outcomes
(Keele et al., 2018). However, while this precedent study was useful in supporting the
IV design taken in the ESORT study it did not consider the cost-effectiveness of ES

nor did it consider an LIV approach to address essential heterogeneity.

1.4.2 Study data

This thesis used HES admitted patient care data on emergency admissions to 175
NHS hospitals in England (Herbert et al., 2017). Data was provided to the ESORT
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study team under a data-sharing agreement with NHS Digital. The data comprised
emergency admissions and any subsequent readmissions of adult patients between 1
April 2009 and 30 June 2020. Mortality data was obtained from linkage of Office for
National Statistics (ONS) death records with HES. The data included rich clinical
and sociodemographic information, including the patient’s age, gender and index of
multiple deprivation (IMD). Information on medical interventions and surgical
procedures was also available, as well as administrative information such as dates of
surgical procedures and ultimate hospital discharge. Health-related quality of life and

unit cost data were derived from the literature (see Chapter 4 for further details).

1.4.3 Contribution of the candidate to the ESORT study

Prior to the start of the thesis, the ESORT study had not started, and as aspects of
the study design and analysis plans had not been specified, I was able to contribute
in the following areas, pertaining to the thesis. First, I was able to develop and apply
the target trial framework to the ESORT study. This required me to identify issues
raised in adapting the general target trial framework to the HTA setting, to work with
the project team to devise solutions, and to draft the resulting paper (see Chapter 3).
Second, the application of the LIV framework to the ESORT study, required me to
consider carefully the requisite assumptions pertaining to IV in general, and LIV in
particular. I conducted the LIV analyses, alongside one of my supervisors, led the
interpretation of the CEA results, and drafted the accompanying paper (Chapter 4).
Third, motivated by the initial findings of the ESORT study, I led an extensive
simulation study looking at the properties of the LIV approach in settings with
different forms of heterogeneity, and with scenarios motivated by the ESORT study.
I interpreted the results and drafted the resulting paper (Chapter 5). For each of the
three empirical papers for the thesis I include a statement which clearly delineates my
own contribution from those of other ESORT team members including my PhD

supervisors (see chapters 3, 4 and 5).

1.5 Aims and objectives of the thesis

The main aim of this thesis is to help address some of the gaps in methods for CEA
that use routine data. The broad research question that this thesis sought to answer
is: “Can Local Instrumental Variables methods inform CEAs with reliable estimates

of relative effectiveness and cost-effectiveness in the presence of unmeasured
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confounding and treatment effect heterogeneity?” To be able to answer this question,

I defined the following three research objectives of this thesis:

1.

Critically examine the application of the principles of the target trial framework
to the HTA context, identify the main challenges, and provide recommendations
to address them.

This was a novel application of the target trial framework within the HTA
context. In Chapter 3, I provide an illustration of how this methodology can
help to minimise concerns about confounding and design flaws in CEAs. I
describe some of the main challenges for studies using RWD, and
recommendations to address them. This study, in its paper format, is currently

being considered for publication in Value in Health (March 2023).

Fvaluate and implement an LIV approach for addressing unmeasured
confounding and heterogeneity in CEA.

Chapter 4 includes an application of LIV in a CEA using routine data on
emergency surgery admissions to NHS hospitals in England. The study formally
evaluates the identification assumptions for LIV, and contrasts this
methodology with alternative regression adjustment and IV approaches.
Chapter 4 was published in Medical Decision Making (May 2022).

Fvaluate the performance of different IV approaches in terms of bias and
statistical efficiency according to alternative levels of IV strength, sample sizes
and forms of heterogeneity in a simulation study.

To achieve this objective, a study was conducted using Monte Carlo simulation
methods to measure the bias and efficiency implications for LIV of different
levels of instrument strength, sample sizes, and forms of treatment effect
heterogeneity. The results of this study can be found in Chapter 5 of the thesis.
This study is currently being considered for publication in Health Economics

(March 2023).

1.6 Overall contribution of the thesis

All three research objectives have been met through three research papers. The three

papers have been submitted to journals, and have either been published (research

paper 2 was published in Medical Decision Making (Moler-Zapata et al., 2022) or will
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be considered for publication (research papers 1 and 3 are currently being considered

for publication in the journals Value in Health and Health Economics, respectively).

Research paper 1 describes the main challenges for comparative effectiveness and cost-
effectiveness studies that apply the target trial framework using RWD. These
challenges relate to different aspects of the target trial’s design, including the definition
of the eligibility criteria, treatment strategies and time zero. The paper also considers
the major risk of confounding, which is one of the main concerns for CEA, and
comparative effectiveness studies more generally that use RWD. I argue that carefully
evaluating the risk of these issues in the study design, and applying the
recommendations outlined in research paper 1, will not only help the study minimise
the risk of confounding, but will help evidence users to judge whether the resulting
evidence is adequate to inform the research question. These recommended practices
could help improve the trustworthiness of real-world evidence, and facilitate its timely
adoption in HT'A and policy-making. The main recommendations describe how to plug
gaps in the RWD using expert clinical judgement, for example in emulating the trial’s
treatment eligibility criteria to ensure comparable populations across treatment
groups; and how to use novel IV methods for estimation and inference on treatment

effect parameters of decision-making relevance.

Research paper 2 makes two important contributions to existing methods for CEA.
First, the paper illustrates how RWD can be used to identify continuous instruments
for use in real-world applications. LIV methods using a continuous IV constructed
using routine data are used to evaluate policy-relevant treatment effects. Second, the
study contrasts alternative IV methods that target different treatment effect
parameters, and make different assumptions about confounding and heterogeneity,

and I evaluate them in the context of the ESORT study.

Research paper 3 addresses the gap in the guidance for applied LIV studies in terms
of IV strength requirements in conjunction with different available sample sizes. The
study builds on insights from research paper 2 to evaluate how LIV performs in terms
of bias and statistical efficiency (measured by the root mean squared error, rMSE) in
estimating the ATE and CATE parameters. I consider different scenarios defined by
the strength of the instrument, the sample size and the form of treatment effect
heterogeneity. The main contribution of the study is in demonstrating that the LIV
approach provides estimates for ATE and CATE with lower levels of bias and RMSE,
irrespective of the sample size or IV strength, compared to the 2SLS method. The
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study also finds that, in general, with smaller sample sizes, both methods require

stronger instruments to ensure low levels of bias.

1.7 Structure of the thesis

The remaining chapters of the thesis are as follows. Chapters 3 to 5 comprise the three

research papers, each with a preamble within which I define my specific contribution.

Chapter 3 (research paper 1) describes the main challenges in applying the notions of
target trial framework to CEA that use routine data to inform HTA decision-making
using working examples from the ESORT study. I offer recommendations for future
studies looking to apply the target trial framework in evaluations of the effectiveness
and cost-effectiveness of health interventions. Chapter 4 (research paper 2) builds on
the preceding chapter in using the ESORT study to provide an exemplar application
of the LIV methodology within a CEA that studies heterogeneity in outcomes and
costs across patient characteristics. I describe the key methodological aspects of the
LIV methodology, including the target estimand, and the identification assumptions
underlying the methodology. I also demonstrate how RWD can be used to test some
of these assumptions. Chapter 5 (research paper 3) draws motivation from the ESORT
study to define a simulation study in which the reliability of LIV is evaluated
according to how the method performs across settings with different sample sizes,
levels of IV strength and forms of treatment effect heterogeneity. I contrast the
performance of the LIV approach against that of the method of 2SLS in the simulation
study, but also in cohorts derived using data from the ESORT study. Chapter 6
provides an overview of the main findings and contributions of the thesis. The chapter
acknowledges the limitations of the thesis, and identifies the main areas for future
research. This chapter concludes by highlighting the implications of the findings of
the thesis for applied researchers and policy makers. Appendices are available at the

end of the thesis, and references at the end of each chapter.
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Chapter 2. Methods

2.1 Overview of Instrumental Variable methods

The main goal of CEAs is to produce reliable estimates of relative effectiveness, costs
and cost-effectiveness for the overall target population of interest, the ATE. It is also
important to understand how heterogeneity can inform the stratification or
personalisation of treatment choices. Incorporating this type of evidence into decision-
making processes can result in improved patient outcomes and gains in efficiency
(Basu and Meltzer, 2007; Espinoza et al., 2014). In settings where treatment effects
are suspected to be modified by observed patient characteries, CEAs are increasingly
reporting Conditional Average Treatment Effects (CATEs) —i.e., treatment effects for
groups of patients defined by values a particular observed prognostic factor—, alongside
estimates of an overall ATE for the population. To be able to inform reliable estimates
of ATE and CATEs, studies need to use appropriate techniques for addressing

unmeasured confounding.

IV designs can be used to address the concern of unmeasured confounding in CEAs
using RWD (see Baiocchi et al., 2014; Brookhart et al., 2006 and Martens et al., 2006
for reviews). A good instrument should meet the following criteria: (i) it is associated
with treatment receipt (relevance condition), (ii) it affects the outcome only through
its association with the treatment (exclusion restriction condition), (iii) it is not
associated with unmeasured confounders (exchangeability condition), and (iv) the
direction of the association with the treatment must be the same, irrespective of the
level of the IV (monotonicity). Provided the existence of a valid and sufficiently strong
instrument, IV methods can provide reliable estimates of treatment effect parameters
(Angrist et al., 1993; Baiocchi et al., 2014). However, the likely risk of bias in settings
with essential heterogeneity is problematic, and evaluating treatment effect

parameters often involves trading off different assumptions by different methods.

In this chapter, I introduce notation and describe the main IV approaches considered
in the thesis. This intends to be a brief overview of the key standpoints of the IV
methodology. For further details about how these methods were applied in the thesis,
I refer the interested readers to Chapters 3, 4 and 5.
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2.2 Notation and structural models

Following Heckman and Vytlacil (1999, 2001), I consider a model for the outcome
based on the Neyman-Rubin potential outcomes framework and define model a latent
variable discrete choice model for selection into treatment (Neyman, 1990; Rubin,
1974). T let treatment be a binary variable, D,, take values 1 and 0, depending on
whether the individual receives the treatment. Y, = po(Xo, Xy, 9) and Y, =
U1 (Xo, Xy, 9) represent the potential outcomes under treatment and control, where X,
is a vector of observed confounders, X is a vector of unmeasured confounders, and 9
captures any remaining unobserved variation. A = Y; — Y, is the individual treatment

effect.
I consider the following model for treatment assignment,

D," =y(X,,Z) = Up and,
D, =1if D, > 0and D, = 0, otherwise

Where D," is the ‘latent’ propensity for treatment, Z is a vector of instruments, and
Up reflects ‘distaste’ for treatment, and captures the effect of X;; and other variables
that discourage treatment assignment. Following Heckman and Vytlacil (1999), and
without loss of generality, we can express this model in terms of probabilities as, D,” =
P(Xo,Z) =V, where P(Xo,Z) = Fyp,x,.[¥(X0,Z)] is the propensity for treatment
based on the observed characteristics, and where V = Fy [Xy,|Xo = x,Z = z] with V
1 (Z,X,) reflects the degree to which unobserved variables discourage treatment, and

is uniformly distributed between 0 and 1.

2.3 Conventional IV methods

Imbens and Angrist (1994) and Angrist et al. (1993) introduced the Local Average
Treatment Effect (LATE) parameter. The LATE can be defined as AT (x,,z,2") =
E[Y; —Yy|Xo =x,,D, < D,], and under the assumptions listed above, it can be

identified by the IV estimand:

E[Y|Xy =x,, Z =2]—-E[Y|Xy = x,, Z = 2]
E[D|Xp = xo, Z =2'| — E[D|Xo = x,, Z = 2]
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The LATE is the average effect for the subgroup of individuals in the population
whose treatment status changes as the IV shifts from z to z’. The subpopulation for

whom D, < D,, holds are often referred to as ‘compliers’ (Baiocchi et al., 2014).

The 2SLS (Wald) estimator is the most widely used method for estimating linear
models. It is implemented in two stages. In the first stage (or reduced form), D, is
regressed on X, and Z to obtain estimates of E[D;|X,,Z]. In the second stage, Yp is
regressed on X, and E[D,|X,,Z] to obtain an unbiased estimate of E[Yp|D,, X,, Z].
When the instrument is continuous, pairwise combinations of z and z’ will produce
different LATEs. However, as discussed in section 1.3, for 2SLS to inform policy-
relevant treatment effects such as the ATE or CATESs, it is required that there is no
essential heterogeneity (Heckman et al., 2006).

Alternatively, the Two-Stage Residual Inclusion (2SRI) method can retrieve estimates
of the ATE even in presence of essential heterogeneity, similar to the control function
approach (Terza et al., 2008; Wooldridge, 2010). The main difference compared to
2SLS, is that this estimator uses the residuals from a first-stage regression for
treatment assignment when fitting the model for Y, , which is regressed on the D,, X,
and the residuals, which might be included in different forms (Basu et al., 2018). This
approach is analogous to 2SLS when both stages are linear, but has been mostly
applied in non-linear settings (Basu et al., 2018). It is unclear whether 2SRI offers
additional benefits in terms of bias reductions in estimates of ATE or LATE
parameters compared to 2SLS. As discussed in Basu et al., (2018), while logit or probit
models might offer a better fit to real-world data, 2SRI estimates could be biased if

the functional form of the residuals is misspecified.

Novel LIV methods constitute an attractive alternative for estimating treatment effect
parameters of decision-making relevance when a continuous or multi-valued IV is

available.

2.4 Local Instrumental Variables methods

Heckman and Vytlacil (1999, 2001, 2005) showed that LIV methods can identify
effects for “marginal” patients, that is, patients who are in equipoise with respect to
the treatment assignment decision, provided a valid, continuous instrument is
available. These individuals are in equipoise because the propensity for treatment,
given their observed levels of covariates and IV, just balance with a normalized version
of the unmeasured confounders (V) discouraging treatment, such that a small

(marginal) change in the IV is sufficient to nudge them into the treatment group.
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Then, by contrasting individuals with marginally different values of the IV, but who
are otherwise identical in measured and unmeasured covariates, the Marginal

Treatment Effect (MTE) can be identified (Bjorklund and Moffit, 1987).

2.4.1 Marginal Treatment Effects

The MTE can be defined as,
AMTE(X(), 17) = E(AlXO = xo,V = V)

The MTE is the most nuanced treatment effect parameter. MTEs can be seen as
building blocks that can be used to compute the ATE or LATE. When the MTE is
constant in Up —i.e. patients do not act upon the unobserved confounders—, then
AMTE = AMATE= ALATE Jpder essential heterogeneity, the different treatment effects can

be computed as weighted averages of AMTE,

Under standard IV assumptions, streams of MTEs can be estimated as (Heckman and
Vytlacil, 2001),

_ aE(Yl - Y0|X0 = xo,Z = Z)

AMTE (xO, p)

LIV recovers MTEs for all the values in the support of the distribution of P(Z)

conditional on Xy, = x,.

2.4.2 Person-centered Treatment effects

Basu (2014) extended the LIV framework to consider personalised treatment effects
known as Person-centered Treatment (PeT) effects. PeT effects can be derived from
MTEs by using information on the observed patient characteristics, and the likely
distribution of unobserved characteristics given the patient’s observed treatment
status. The underlying insight is that for each individual patient, some levels of the
normalized unobserved confounder would be inconsistent with the observed treatment
decision for that individual, given their observed characteristics and the level of the
IV (Basu, 2014). For patients in the treatment group (D = 1), the propensity to choose
treatment based on X, and Z outweighs the propensity to choose the comparator
strategy based on V, i.e. P(z,x,) > v, whereas the opposite is true for patients in the
comparator strategy (D =0). MTEs that imply a lower level of unobserved

confounding can thus be ‘ruled out’, narrowing the set of MTEs which could plausibly
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represent the individual’s effect. The person-centered treatment (PeT) effect for an

individual is obtained by aggregating the remaining MTEs.

Hence,
APeT (xo,p, D) = E(Y; — Yo|Xo = x0, P(2z,x9) > V) for individuals with D = 1
APeT (xo,p, D) = E(Y; — Yo|Xo = x0, P(2,x5) < V) for individuals with D = 0

PeT effect averages MTEs with the same level of X, and Z over those values of the
unobserved confounders that are compatible with that patient’s treatment assignment.
For individuals with D = 1, PeT effects can be derived as,

P(z)

E(Yl_Yole =xO,P(Z,x0) > V) = P(Z)_l MTE(XO,U)dU

0
All treatment effect parameters, including CATEs, can be derived by taking averages
of PeT effects. This is therefore a well-suited approach exploring treatment effect
heterogeneity, but requires that a valid, continuous or multi-valued IV is available
(Basu, 2014).

2.4.3 Estimation of MTEs and PeT effects

In this thesis, I follow the approach described in Basu (2014, 2015) to estimate MTEs
and PeT effects using the LIV methodology. Briefly, D, is regressed on Z and X,,
using appropriate methods for binary outcomes, to obtain an estimate of the
propensity for treatment, or propensity score, p(xy,z). At this stage, an F statistic®
test should be performed to evaluate the strength of the IV. Next, Y, is regressed on
X, and a function of p including interactions with X,. The approach outlined in Basu
(2014) involves differentiating the outcome model g(Yp) by p(xp, z). Next, PeT effects
for each individual can be obtained by performing numerical integration, with MTE
(0g(Yp)/0p (xp,2)) evaluated by replacing pusing 1,000 random draws of
u~unif (min(p(xo, z)), max(p(xy,z))). Then, D* = @ Hp(xy,2)} + @ 1(1 — u) can
be computed. PeT effects can then be computed by averaging 0§ (Yp)/0p (x¢,z) over
values of u for which p(xp,z) > v if D = 1; or over values of p(xy,z) <v if D = 0.

Finally, averaging PeT effects over all of the observations provides an estimate of the

¢ The F statistic can be computed as F = N*(7/6;), with T and &, as the estimated
value of the coefficient of Z in the first stage and its associated standard error.
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ATE for the population, and over strata of X, gives the CATE for the subpopulation
of interest. Standard errors can be computed using bootstrap methods (Basu, 2015).
The Stata developed “petiv” command was used in this thesis to estimate PeT

effects.

2.5 Problems with weak IVs

The advent of RWD has created opportunities for adopting LIV methods in
comparative effectiveness and cost-effectiveness studies. One important barrier for a
wider adoption of LIV methods is that it might have poor estimation and inference
properties if the IV is only weakly associated with treatment assignment (Staiger and
Stock, 1997, Andrews et al., 2019).

The implications this might have for practice have not yet been formally evaluated.
Some recently published papers in the weak identification literature have
demonstrated the shortcomings of relying exclusively on the ‘rule of thumb’ that the
F-statistic in the first stage needs to be above the threshold value of 10 in the case of
binary IVs. These studies have shown that even when IVs are considered ‘strong’ by
conventional standards, 2SLS can have low power (Keane and Neal, 2021), as well as
size distortions in t-tests (Lee et al., 2021). These findings suggest that even when IVs
meet conventional thresholds for ‘strength’, 2SLS might be unreliable. However, no
studies have formally evaluated the IV strength required for LIV methods to perform
well, nor whether requirements change according to the sample size, or the form of

treatment effect heterogeneity that is present.

The next chapter considers the target trial framework in the context of the ESORT
study using LIV. In doing so, this work constitutes a novel application of the target

trial paper in a IV study.
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Chapter 3. Emulating Target Trials with Real
World Data to inform Health Technology
Assessment: findings and lessons from an

application to emergency surgery

3.1 Preamble to research paper 1

The target trial framework was developed to help improve the design of comparative
effectiveness studies using observational data, by emulating the design principles of
RCTs with respect to, for example, the eligibility criteria or the comparator strategies
(Herndn and Robins 2016). Since then, there has been a rapid increase in the number
of studies, mainly in the biostatistics and pharmaco-epidemiological literature, that
have used the methods described in Herndn and Robins (2016) and, Herndn et al.
(2016). Previous studies, including early efforts from the RCT DUPLICATE initiative
have sought to apply the target trial framework in the design and analysis of
observational studies to replicate RCTs. These studies have found that while RCTs
can be replicated using RWD, further research is needed to better understand the
circumstances or contexts in which this real-world evidence will align with RCT
evidence (Franklin et al. 2021; Danaei et al. 2018).

Applications of the target trial framework to RWD for the purposes of informing HT A
decision-making are uncommon. Recently, Gomes et al. (2022) described the potential
uses of the framework for informing HTA processes. However, this paper did not offer
an exemplar application, or give recommendations for future studies on how to address

the challenges that might arise in CEA of health interventions using RWD.

Research paper 1 paper aims to fill this gap by evaluating the challenges raised for
CEA using individual-participant RWD, when no relevant RCT evidence is available.
[ draw from the main findings of the paper to offer recommendations for how to
address these challenges in future studies. My role in this paper included reviewing
the relevant literatures, developing and applying the target trial framework in the
study, and conducting the analyses, guided by my supervisor, RG. I led the
interpretation of the results. I wrote the draft version of the manuscript and
incorporated comments from co-authors, SON, AH, RS and RG, into the manuscript.
The analysis received ethical approval from the LSHTM Ethics Committee
(ID:21776).
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Abstract

Objective: International Health Technology Assessment (HTA) agencies continue to
advocate for the use of real-world data (RWD) for informing decision-making in health
care. There is potential for the ‘target trial’ framework to encourage further uptake of
this type of evidence by helping to alleviate concerns about bias and design flaws in
these studies through the application of the design principles of randomised controlled
trials. So far, its adoption in HTA has been modest, arguably due to the lack of

guidance and exemplar implementations in this particular setting.

Methods: We apply the two-stage (definition and emulation) target trial emulation
approach in a study assessing the cost-effectiveness of emergency surgery for two acute
gastrointestinal conditions (acute appendicitis and acute gallstone disease). We use
hospital episodes statistics (HES) data for emergency hospital admissions with acute
these conditions to 175 acute hospitals in England from 2010 to 2019. We highlight
and describe the main challenges in applying the target trial framework in studies

using RWD, and discuss how these were addressed in this particular application.

Results: Our study identifies four main challenges for RWD studies applying the
target trial framework. These are: (i) defining the study population, (ii) defining the
treatment strategies, (iii) establishing time zero (baseline), and (iv) adjusting for
unmeasured confounding. We exemplify how these challenges were addressed within
the ‘Emergency Surgery OR noT’ (ESORT) study and, drawing on these findings, we
outline a series of recommendations for how they can be addressed more widely when

using the target trial framework alongside RWD.

Conclusion: Studies using the target trial framework are likely to face similar issues
to those that that arose in the ESORT study, and discussed here. The
recommendations outlined in this study could help future studies, and should be
considered complementary to design tools developed for economic evaluations to
inform HTA, as well as those developed for informing choices about the adequacy of

alternate statistical approaches for estimating treatment effects.

Keywords: real-world data, target trial framework, health technology assessment,

comparative effectiveness, emergency surgery.
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3.2.1 Introduction

Health Technology Assessment (HTA) agencies require robust effectiveness and cost-
effectiveness evidence to support decision-making in health care. Studies using Real
World Data (RWD) such as disease registry data or electronic health records (EHR)
can help build an evidence base, given their ability to include patients from large,
heterogenous populations, and offer results for interventions of decision-making
relevance and broad ranges of outcomes (Garrison et al., 2007; Makady et al., 2017a).
However, the risk of bias from confounding and other design flaws in these studies
constitute a major barrier to a more widespread adoption of real-world evidence in
HTA decision-making (Bell et al., 2016; Faria et al., 2015).

Good research practices recommendations by HTA agencies like the UK’s National
Institute for Health and Care Excellence (NICE) include the use of checklists and
other quality assessment tools, or the reporting health economic analysis plans, but
these offer limited guidance on how to address fundamental issues pertaining to study
design of studies using RWD (Husereau et al., 2013; Thorn et al., 2016). Recently,
NICE’s latest manual of methods and processes for technology evaluation formally
recognised the importance of RWD in informing decision-making and emphasised the
need for studies that consider how the principles of the ‘target trial’ framework could
be applied to HTA (Hernan et al., 2016; Herndn and Robins, 2016).

The target trial framework can help mitigate concerns about the study design in
observational (non-experimental) studies by applying the design principles of
Randomised Controlled Trials (RCTs) (Dickerman et al., 2019; Hernan et al., 2016).
This approach requires the definition of a (hypothetical) pragmatic trial protocol,
which is then emulated using observational data. The target trial framework can help
to better identify and minimise the risk of bias in the study, and make methodological
assumptions and design choices transparent for evidence users. In settings with high
quality observational data analyses, emulating the target trial principles has been
found to help replicate the results of published RCTs (Caniglia et al., 2018; Franklin
et al., 2021; Petito et al., 2020). More recently, Gomes et al., (2022) described the
potential uses of the target trial framework in HTA, but did not actually use the
methods in an application. In general, there is a lack of guidance on the apply the
notions of the target trial framework in the HTA context, which raises major
challenges, in particular around the interrelated issues of defining from RWD the

study population, time zero (baseline) and the intervention and comparators.
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The aim of this paper is to critically examine the application of the target trial
framework principles to the HTA context when assessing the effectiveness of health
interventions from RWD. We draw on a case-study, the ‘Emergency Surgery OR noT’
(ESORT) study, to describe common challenges in applying the target trial framework
to assess comparative effectiveness from routine data and offer a series of
recommendations for future studies (ESORT Study Group, 2020a). Unlike previous
publications of the ESORT study (Hutchings et al., 2022; Moler-Zapata et al., 2022),
here we define and emulate the key elements of the target trial protocol, in evaluating
the cost-effectiveness of emergency surgery (ES) for patients admitted to hospital with
acute gastrointestinal conditions (section 3.2.2), and report the results of the CEA
(section 3.2.3). In section 3.2.4, we draw on these findings to offer general

recommendations for future studies.

3.2.2 Methods

3.2.2.1 Overview

The ESORT study exemplifies the challenges that arise for HTA when there is little
evidence from RCTs to inform routine clinical practice. In this setting there were few
published RCTs and economic evaluations that evaluated ES versus alternative non-
emergency surgery (NES) strategies for common acute conditions (ESORT Study
Group, 2020a). The ESORT study helped address this gap in the literature by using
information on 2010-19 hospital admissions from the Hospital Episode Statistics (HES)
database, linked to Office for National Statistics (ONS) mortality data, to assess the
cost-effectiveness of ES for five acute gastrointestinal conditions, including acute
appendicitis and acute gallstone disease, which are the two conditions with the highest
prevalence, and the focus of this paper. The evaluation of costs and outcomes was
from a hospital perspective, over a one-year time horizon, and applied the key
principles of the target trial framework as described in the following sections (Moler-
Zapata et al., 2022).

3.2.2.2 Target population for the decision problem

The application of the target trial framework to the HTA context, requires that
eligibility criteria for the study population are defined to represent the target
population of interest and that it only includes those subgroups for whom there is
equipoise about the choice of intervention versus comparator strategies (i.e., clinical

uncertainty about which treatment alternative is the best option for them). Only
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patients who would in practice be eligible to receive either intervention, even if one is

more likely than the other, should be included.

In the ESORT study, these considerations informed the choice of inclusion and
exclusion criteria (Table 3.1). Some inclusion criteria, such as the patient’s age and
the requirement to be assessed by a surgeon, were intended to ensure equipoise and
were emulated directly from the HES data. The clinical panel was asked to identify
subgroups of patients who, according to unobserved as well as observed prognostic
characteristics, would not be eligible to receive ES or NES. For example, by specifying
an inclusion criterion that the patient must be at some point under the care of a
consultant surgeon, the study deliberately excluded patients whose prognosis was so
‘severe’ or ‘mild’ according to unobserved, as well as observed, characteristics, that
they would not be considered for ES. Including patients for whom there is no equipoise
could result violations of the positivity assumption if there is insufficient or no
variability in treatment within strata of confounders (Petersen et al., 2012). For other
criteria, such as the reason for admission, the information from the routine data and
the available evidence were insufficient to define which patient subgroups to include
(Table 3.1) lists those criteria that could not be directly emulated using RWD).
Specifically, while there was information on the patients’ diagnosis according to ICD-
10 codes, it was unclear which of the subcategories of ICD-10 corresponded to patient
subgroups that would be eligible for ES in routine practice, and for whom there was

equipoise between the comparison strategies.

The ESORT study addressed the challenge of defining those elements of the target
trial protocol that could not be specified from the routine data, by convening two
panels of 12 clinicians with relevant expertise that followed a modified Delphi process
(see ESORT Study Group (2020b) for details). The panellists were required to judge
which inclusion and exclusion criteria were appropriate, given the requirement for
equipoise between the comparison groups, and to define the interventions of interest
(see next section). The consensus of the panel required at least nine from 12 responses
in favour of the inclusion of the category, and five (appendicitis) and three (gallstone
disease) ICD sub-categories were designated for inclusion (see Appendix B.1) for full
list). The panel’s consensus also designated that for patients with acute appendicitis
those with ICD-10 codes corresponding to appendiceal cancer and pregnancy should
be excluded due to lack of equipoise, but for patients with gallstone disease none of

the subcategories should be excluded.
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Table 3.1. Protocol of the target trial of emergency surgery (ES) versus non-emergency surgery (NES) for acute appendicitis and acute

gallstone disease

Description of Target Trial of ES

How was the protocol element emulated in the ESORT?

Eligibility  Inclusion criteria: Inclusion criteria:
criteria — Patient was at least 18 years old at admission. — Emulated directly from HES data.
— Emergency admission, via emergency department or primary — Emulated directly from HES data.
care.
— The condition was the reason for admission into hospital. — Expert panel defined diagnostic (ICD-10) codes with equipoise
between comparator strategies. *
— The diagnosis was confirmed by consultant surgeon. — Emulation directly from HES data.
Exclusion criteria: Exclusion criteria:
— According to clinical condition-specific exclusion criteria. — Expert panel designated exclusion criteria with (ICD-10) codes. f
— Emergency admission for the condition in the previous year. — Emulated directly from HES data.
— Surgery for the condition within the previous 90 days. — Emulated directly from HES data (using definitions of treatment
strategies below).
— Patient transferred between hospitals before surgical assessment.  — Emulated directly from HES data.
Additional criteria according to data availability:
— Patient was admitted to an ineligible hospital for ESORT. I
— Admission lacked information on admission or discharge status or
date.
Treatment — ES defined as urgent, expedited or immediate surgery for the — Expert panel defined the two criteria for ES: (i) the procedure
strategies condition (NCEPOD, 2004). constituted ‘surgery for the condition’ according to selected

OPCS codes, § (ii) to be considered ‘emergency’, the panel
designated a time window of seven days from the date of

assessment (see below).
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Description of Target Trial of ES

How was the protocol element emulated in the ESORT?

— NES: (i) medical management with no surgery for the condition;
(ii) surgery that did not meet the criteria for ES, either because
not relevant procedure, or after the seven-day time window,
possibly preceded by medical management.

— Emulation assumed patient assigned NES if they did not meet
ES criteria

Time zero — Time zero is analogous to the time of randomisation, and is when — Emulation assumed time zero was the start date of the first
and all the eligibility criteria are met, the assignment to ES or NES finished consultant episode for the first admission, in which the
follow-up occurs, and follow-up starts. specialty code was general surgery, colorectal surgery or upper-
period gastrointestinal surgery.
— Follow-up ends at the earliest of one year, death, or end of study — Emulation censored patients at the date of death, if that was
period. within one year from day zero. Complete follow-up data were
available for all patients.
Treatment — Individuals are randomly assigned to a strategy at baseline. — Treatments groups were assumed to be balanced after adjustment
assignment for differences in measured and unmeasured prognostic factors in
the statistical analysis.
Outcomes — Life years at 1 year from randomisation. — Emulated directly from HES data (linked to ONS death data).

— QALYs at 1 year from randomisation.

— Total costs at 1 year from randomisation.

— Net monetary benefit at 1 year from randomisation.

— Emulation required adjusting life years using published age- and
gender-adjusted HRQoL scores from similar populations.

— Emulation required calculating resource use for categories
considered to be main drivers of total costs (length of stay,
including critical care; operative and diagnostic procedures and
readmissions up to one year) and valuing resource use data using
relevant estimates of unit costs taken from national unit cost
databases.

— Emulated combining cost and QALY data.
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Description of Target Trial of ES How was the protocol element emulated in the ESORT?

Causal — ITT effect (effect of assignment of patients to interventions at — ITT effect could not be emulated since information on the initial
contrast of  baseline) treatment assignment was not available from HES.
interest ~ — PP effect (effect of complying with the trial protocol) — Emulation of the per-protocol effect required taking differences

between the treatment groups in estimated total costs, life years,
QALYs and net monetary benefits at one year.

Analysis  — I'TT analysis and PP analysis with adjustment for baseline — Emulation of the PP analysis required using a LIV approach to
plan prognostic factors. mitigate the risk of confounding due to unmeasured prognostic
factors associated with ES receipt. The IV was the hospital’s
tendency to operate. Models were adjusted for a wide range of
case-mix measures (age, gender, frailty level, comorbidity profile,
ethnicity, index of multiple deprivation), fixed effects for each
financial year and proxies of quality of acute care (rates of
emergency admission and mortality for each hospital and acute
condition in 2009-10, and in the year prior to the admission).
— Subgroup analyses by baseline age, sex, frailty and number of — Emulated directly from HES data.
comorbidities.

*See Appendix B.2 for full list ICD10 codes for the two conditions. ICD-10 codes for acute appendicitis: Pregnancy (O00-O9A; Z00-Z99) and appendiceal
cancer (C00-D49). ICD-10 codes for acute gallstone disease: none. I Of all eligible acute general hospitals with at least 200 emergency general surgery
admissions per year, those that ceased activity in five years prior to 31 December 2019 were excluded. § See Appendix B.2 for full list of procedure codes
included in definition of ES the two conditions (ESORT Study Group, 2020b). FCE: Finished Consultant Episode, HES: Hospital Episode Statistics,
HRQoL: Health-related Quality of Life, ICD: International Classification of Diseases, ITT: Intention-to-treat, LIV: Local Instrumental Variables, ONS:
Office of National Statistics, OPCS: Office of Population Censuses and Surveys, PP: Per-protocol, QALY: Quality-adjusted Life Years.
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3.2.2.3 Definition of treatment strategies

The main challenge in defining the treatment strategies from the RWD is ensuring
that these represent how the intervention is used in routine clinical practice. In the
ESORT study, the treatment strategies under assessment were complex, combining
different surgical and non-surgical procedures. ES involves operative management that
is immediate, urgent or expedited (NCEPOD, 2004). To operationalise the ES
definition, the expert panel were asked to consider which of the Office for Population
Censuses and Surveys (OPCS) procedure codes listed within the HES data met the
definition of ES, and to define the appropriate time window. The panel’s consensus
was that 21 (appendicitis) and 45 (gallstones) procedure codes (see Table 3.1 and
Appendix B.2), respectively, met the definition for ES, and that for both conditions
the time window for ES should be within seven days of assessment (baseline/time

zero, see below).

The definition of the comparator strategy should consider whether the information in
the RWD is sufficient to ensure the comparator strategy is defined in enough detail
to evaluate the causal contrast of interest (Hernan, 2004; Hernan and Taubman, 2008).
In the ESORT study, any patient who didn’t receive one of the designated procedures
within the 7-day period was assigned to the NES strategy. This definition includes
management with antibiotic therapy and either no surgery within the one-year time
horizon, or surgery that does not meet the ES criteria (i.e., either an OPCS procedure
code not considered to be ES within the designated ES window or an OPCS procedure
code considered to be ES but outside the window). The proposed definition of the
comparator strategy in ESORT, reflects the variation in the provision NES strategies
in routine clinical practice, but also the limited availability of granular information in
HES on specific NES treatments (e.g., duration or dosage for antibiotic therapy),
which meant that the study could evaluate the cost-effectiveness of ES against not

providing NES, but not against specific NES strategies.

3.2.2.4 Definition of time zero and follow-up

The careful definition of the emulated target trial’s ‘point of randomisation’ or ‘time
zero’ can help minimise the risk of bias in the study (Emilsson et al., 2018; Hernan et
al., 2016). In an RCT, time zero is defined as the time when eligibility is met, the
alternative treatment strategies commence, and the follow-up begins. In RWD studies,
it is often impossible to establish temporality from events recorded in the data, and if

eligibility and treatment assignment are not aligned with the start of follow-up, then
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selection bias (if patients are excluded according to events that occurred after the
onset of treatment) and immortal time bias (if there is a period of the follow-up over
which outcomes of interest cannot occur) can emerge (Lévesque et al., 2010; Maringe
et al., 2020). The criteria for time zero are: (i) it does not precede the time when the
eligibility criteria are met, (ii) it must be identified for all patients regardless of the
assigned treatment arm strategy, (iii) it should minimise the time window used to

define treatment initiation to reduce the possibility of immortal time bias.

In ESORT, emulating time zero was not straightforward. The study considered using
the date of hospital admission or the date either strategy was initiated, but both were
deemed inadequate. For many patients, the date of admission preceded the date
diagnosis was confirmed by a surgeon which was an inclusion criterion (violation of ).
Also, for the NES comparator, a date of treatment initiation was not available
(violation of ii). A third alternative, the date that the patient was first under the care
of a consultant surgeon was judged to be the most appropriate definition of time zero.
After this initial surgical assessment, patients with these acute conditions would be
assigned to either treatment strategy, without delay. Given the study’s eligibility
criteria, once the patient had the surgical assessment all the eligibility criteria were
met. This definition of time zero could still lead to bias, if during the seven-day time
window for defining receipt of ES (rather than NES), the risk of the outcomes of
interest differed between the comparison groups. For patients with acute appendicitis
and acute gallstone disease, this would seem unlikely as patients are at very low risk
of adverse outcomes, such as death, over that period (Di Saverio et al., 2020). When
assessing ES for other conditions with higher rates of in-hospital mortality, methods
like ‘cloning, censoring and weighting’ could help to reduce the risk of immortal time
bias (Herndn and Robins, 2016).

3.2.2.5 Outcomes

The nature of RWD might pose additional challenges for the emulation of the target
trial as data on outcome measures are often unavailable or available with insufficient
detail. However, through HES, the ESORT study had access to rich resource use data
including the total duration of hospital stay (including readmissions), and survival
time from HES linked to ONS mortality data, which was used to derive life years.
While information on health-related quality of life (HRQoL) following ES and NES
for the conditions was not available from HES, it could be obtained from available
published studies reporting HRQoL weights for comparable populations. These

weights were combined with information on key events (e.g., emergency admissions),
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and survival time to derive one-year Quality-Adjusted Life Years (QALYs) (Moler-
Zapata et al., 2022). The main cost-effectiveness outcome is the incremental net
monetary benefit (INB) at one year, using NICE’s recommended threshold of £20,000
per QALY (NICE, 2013).

3.2.2.6 Causal contrast

RCTs are typically concerned with estimating the Intention-to-treat effect (ITT), that
is, the effect of being assigned to a particular treatment strategy and the per-protocol
effect (PP), that is, the effect of receiving the treatment as prescribed in the protocol.
In observational studies, where treatment received is observed but treatment
assignment is not, a PP analysis is generally favoured. In the ESORT study, the broad
protocol definition of both the ES and the NES strategies allowed us to estimate a PP
effect. Here, the assumption that patients in either group adhered to their treatment

assignment is plausible and consistent with routine practice.

3.2.2.7 Analysis plan

The risk of confounding bias poses a major threat to the validity of observational
studies, and alternative methods make different assumptions, which need to be
carefully considered (Freemantle et al., 2013). The ESORT study used a Local
Instrumental Variable (LIV) approach to mitigate the concerns about unmeasured
confounding. Briefly, LIV allows for treatment selection according to measured and
unmeasured prognostic factors, and can report consistent estimates of the overall effect
for the population (i.e., the Average Treatment Effect, ATE) and subpopulations of
interest (i.e., conditional ATEs, CATESs) provided a series of assumptions hold (Moler-
Zapata et al., 2022).

The instrument in the ESORT study was the hospital’s tendency to operate (TTO),
which is a proxy for their preference for ES, calculated from historic data. The
assumptions underlying LIV are: (i) TTO only influences the outcome through its
effect on treatment assignment (exclusion restriction), (ii) TTO is associated with
treatment assignment (relevance assumption), (iii) TTO is independent of unmeasured
confounders (exchangeability condition), and (iv) TTO has the same direction of effect
on the probability of treatment receipt, irrespective of the level of the IV
(monotonicity assumption). These assumptions were judged plausible, given the
findings that the IV was sufficiently strong (assumption ii), balanced the observed

covariates (iii) and by implication and a priori reasoning also unobserved covariates
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(i) and, was unlikely to have a differential effect on the probability of ES receipt at
different levels of TTO (iv) (see Appendix B.5).

We also conducted analyses which made alternative assumptions as sensitivity
analyses. We undertook conventional risk-adjustment (using generalised linear model
(GLM) regression) approaches, adjusting for the same baseline measures as in the LIV
analysis, but that makes the alternative assumption that all the requisite confounders
have been adjusted for. For completeness we also included a naive comparison, that
assumed there were no confounders. For each approach we reported the incremental
net monetary benefit (INB) for the overall target population of interest (ATE), and
for LIV the INB according to prespecified subgroups of policy relevance (defined by

age, sex, frailty level and number of comorbidities.

3.2.3 Results

3.2.3.1 Cohort description

We identified 268,144 patients with acute appendicitis and 240,977 with gallstone
disease who met the target trial eligibility (see Figure 3.1). Of these patients, 92%
(appendicitis) and 22% (gallstone disease) met the definition of ES, and the baseline
characteristics of the comparison groups are given in see Table 3.2. In each cohort,

those patients who had ES were on average younger, fitter and with fewer
comorbidities (Table 3.2).
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Figure 3.1. (a): Flowchart of eligibility for a target trial of emergency surgery

versus non-emergency surgery for acute appendicitis, emulation using Hospital

Episodes Statistics data

753,704 admissions
assessed for eligibility

436,550
398,121
27,374

92

161
10,802

Admissions failed to meet the inclusion criteria
Appendicitis was not the reason for admission
Admission was not an emergency

Admission belonged to under-18 patient
Admission was to ineligible trust for ESORT
Appendicitis diagnosis was not confirmed by a

surgeon

317,154 admissions

met the inclusion

49,010
258

1,400
4,422
2,255

724

2,876

394

36,681

admissions met the exclusion criteria

Patient had appendiceal cancer

Patient was pregnant

Admission preceded by another admission for
the condition within the previous year
Admission to ineligible hospital for ESORT or
for calculating TTO

Patient was transferred within hospitals before
surgical assessment

Patient had surgery at a date prior to the date of
surgical assessment

Admission lacked information on admission
discharge status

Admission started before 1/12/2010 or after
31/12/2019

268,144 eligible

admissions

A&E: accident and emergency, GP: general practitioner, ESORT: emergency surgery or not;

TTO: tendency to operate
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Figure 3.1 (b): Flowchart of eligibility for a target trial of emergency surgery
versus non-emergency surgery for gallstone disease, emulation using Hospital

Episodes Statistics data

2,310,797 admissions
assessed for eligibility

1,986,155 Admissions failed to meet the inclusion criteria
1,716,899 Acute gallstone disease was not the reason for
admission

201,796 Admission was not an emergency

78 Admission belonged to under-18 patient
298 Admission was to ineligible trust for ESORT
67,084 Appendicitis diagnosis was not confirmed by a

surgeon

324,642 admissions met

the inclusion criteria

83,665 admissions met the exclusion criteria
45,349 Admission preceded by another admission for
the condition within the previous year
3,076 Admission to ineligible hospital for ESORT or
for calculating TTO

691 Patient was transferred within hospitals before

surgical assessment
456 Patient had surgery at a date prior to the date
of surgical assessment
317 Admission lacked information on admission
discharge status
33,776 Admission started before 1 April 2010 or after 31
December 2019

240,977 eligible

admissions

A&E: accident and emergency, GP: general practitioner, ESORT: emergency surgery or not;
TTO: tendency to operate
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Table 3.2. Patient characteristics of the two cohorts of patients by emergency

surgery (ES) and non-emergency surgery (NES) groups

Acute appendicitis

Acute gallstone disease

(N=268,144) (N=240,977)
ES NES ES NES

(n=247,506) (n=20,638)  (n=52,004)  (n=188,973)
Gender: n (%)
Male 134,270 (54) 10,409 (50) 15,140 (29) 63,046 (33)
Female 113,224 (46) 10,228 (50) 36,864 (71) 125,927 (67)
Age: mean 38 (16) 47 (20) 51 (18) 56 (19)
IMD quintile: n (%)
1 — Most deprived 40495 (20) 4,319 (21) 11,774 (23) 44,650 (24)
2 ATR18 (20) 3,808 (19) 9,586 (19) 34,792 (19)
3 49203 (20) 4,128 (20) 10,641 (21) 37,561 (20)
4 50,337 (21) 4,024 (20) 10,881 (21) 39,759 (21)
5 — Least deprived 46,636 (19) 3,907 (20) 8,686 (17) 30,285 (16)
SCARF index: n (%)
Fit 206,796 (84) 15,015 (73) 34,056 (66) 114,973 (61)
Mild frailty 34,544 (14) 4,052 (20) 13,608 (26) 52,629 (28)
Moderate frailty 5041 (2) 1,155 (6) 3,385 (6) 16,175 (9)
Severe frailty 1,125 (0) 416 (2) 955 (2) 5,196 (3)
Ethnicity: n (%)
Black/Black mixed 5,771 (2) 627 (3) 827 (2) 3,923 (2)
Asian/Asian mixed 11,592 (5) 1,122 (5) 2,204 (4) 9,124 (5)
White 194,968 (79) 16,371 (79) 44,396 (85) 162,727 (86)
Chinese and other 9,054 (4) 708 (3) 997 (2) 4,092 (2)

Charlson index: n (%)

0 — comorbidities 207,525 (84) 15,321 (74) 36,737 (71) 120,748 (64)
1 35721 (14) 3,989 (19) 12287 (24) 49,863 (26)
2 3,715 (2) 1,035 (5) 2,544 (5) 14,503 (8)
3+ — comorbidities 545 (0) 293 (1) 436 (1) 3,859 (2)

*SCARF: Secondary Care Administrative Records Frailty.

3.2.8.2 Cost-effectiveness results

The LIV approach reports overall INB estimates for ES versus NES of -£86.2 (95%
CI -1,163, 991) and #£221 (-450, 892) for appendicitis and gallstone disease,
respectively (Table 3.3). The regression adjustment reported similar estimates for the
INB of -£223 (95% CI -342, -104) for acute appendicitis and -£220 (95% CI -316, 124)
for gallstone disease (see also Appendix B.3 for estimated effects on costs, life years
and QALYs). By contrast, the unadjusted INB estimates were £1,431 (95% CI 1,259,
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1,603) and £1,002 (95% CI 832, 1,171) for acute appendicitis and gallstone disease,
respectively (see also Appendix B.3 for estimated effects on costs, life years and
QALYSs). When considering population subgroups, the LIV analysis suggests that ES
was not cost-effective for patients with severe frailty (for both conditions) and patients
with two, three or more comorbidities (acute appendicitis) (Figure 3.2, see also

Appendix B.4).

Table 3.3. Estimated group means and incremental costs (£GBP 2019/20),
quality-adjusted life years (QALYs) and net monetary benefit (£GBP 2019/20,
INB) at one year of emergency surgery vs non-emergency surgery strategies using

the Local Instrumental Variable (LIV) approach

Emergency Non-emergency Mean differences (95%

surgery surgery CI)

Acute appendicitis (N=268,144)

Costs 3,366 3,475 -109 (-1,130, 913)
Life years 0.996 0.999 -0.003 (-0.006, -0.001)
QALYs 0.942 0.952 -0.010 (-0.024, 0.003)
Net benefit 15,475 15,561 -86.2 (-1,163, 991)

Acute gallstone disease (N=240,977)

Costs 5,477 5,554 -76.8 (702, 548)
Life years 0.970 0.978 -0.009 (-0.022, 0.005)
QALYs 0.877 0.870 0.007 (-0.001, 0.015)
Net benefit 12,059 11,838 221 (-450, 892)

Variables used for adjustment in models: age (years), sex, ethnicity, index of multiple
deprivation (quintiles), number of comorbidities (Charlson index), frailty level (SCARF
index), method of admission, year fixed effects, proxies for the quality of acute care within
the hospital.
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Figure 3.2. Forest plots of estimated incremental net monetary benefit (INB) of emergency surgery (ES) versus non-emergency surgery

(NES) for acute appendicitis (panel A) and acute gallstone disease (panel B) across population subgroups

(A): Acute appendicitis

(B): Acute gallstone disease

Subgroup Diff. in means (95% CI) Subgroup Diff. in means (95% CI)
All -86.2 (-1163.1, 990.8) All 220.9 (-449.8, 891.6)
<45 542.3 (-582.3, 1667.0) =45 114.6 (-330.3, 559.6)
45-49 -440.4 (-2286.2, 1405.4) 45-49 511.4 (-1.2, 1024.0)
50-54 -757.5(-2724.7, 1209.7) 50-54 932.8 (293.9, 1571.6)
55-59 --r -1229.4 (-3252.1, 793.3) 55-59 1046.7 (56.2, 2037.2)
60-64 - -1831.4 (-3774.6, 111.8) 60-64 172.4 (-941.8, 1286.7)
65-69 - -919.7 (-3291.7, 1452.3) 65-69 1039.1 (-19.3, 2097.5)
70-47 — -2349.3 (-5118.3, 419.6) 70-47 446.2 (-1091.5, 1983.9)
75-79 —t -2514.8 (-6561.1, 1531.5) 75-79 627.8 (-1261.4, 2517.0)
80-84 —— -4893.8 (-9622.4, -165.1) 80-84 -1639.0 (-4398.3, 1120.3)
84+ —_— -3840.5 (-9362.1, 1681.1) 84+ -1924.7 (-4923.8, 1074.3)
Male 1076.7 (-172.6, 2326.0) Male 324 .8 (-566.8, 1216.4)
Female * -1441.5 (-2409.8, -473.1) Female 171.1 (-466.0, 808.3)

Fit 369.2 (-728.4, 1466.7) Fit 717.9 (294.1, 1141.8)
Mild frailty -1030.0 (-2355.3, 295.4) Mild frailty 242.7 (-609.3, 1094.7)
Moderate frailty - -5751.0 (-7810.0, -3691.9) Moderate frailty -1127.2 (-3312.3, 1057.9)
Severe frailty —_—— -18723.4 (-23886.0, -13560.8)  Severe frailty -7701.6 (-13034.6, -2368.6)
No comorbidities 167.5 (-930.2, 1265.3) No comorbidities 488.8 (-36.6, 1014.2)
One comorbidity -505.2 (-1838.0, 827.6) One comorbidity 62.6 (-803.8, 929.0)

Two comorbidities - -6413.8 (-8352.6, -4475.1) Two comorbidities -1366.0 (-3917.1, 1185.2)
Three or more comorbidities —pe -11801.8 (-18161.7, -5441.8) Three or more comorbidities -1008.2 (-5811.8, 3795.3)
| | | |
-30000 0 30000 -30000 30000

* Values to the left (right) of the 0 axis denote that NES (ES) is cost-effective for the subgroup.
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3.2.4 Discussion

International HTA agencies are expanding their use of comparative effectiveness
evidence from RWD studies (Garrison et al., 2007; Makady et al., 2017). NICE's new
real-world evidence framework sets out recommendations to help RWD studies
provide trustworthy evidence to inform decision-making, which include using the
target trial framework to inform study design choices (NICE, 2022). This paper
illustrates how this framework can be applied to HT'A in a study evaluating the cost-
effectiveness of ES for two common acute gastrointestinal conditions, which
exemplifies common challenges in applying the target trial alongside RWD to inform
HTA. In Table 3.4, we draw on the findings from this study to outline some
recommendations for future studies looking to assess comparative effectiveness from
RWD.

This paper makes three important contributions to the literature. First, it contributes
to the literature of methods for informing HTA decision-making with robust
effectiveness evidence from RWD. NICE describes three main barriers to the adoption
of real-world evidence in their evaluations: (i) the risk of bias, (ii) the quality and
relevance of the data, and (iii) concerns about the trustworthiness of the evidence
(NICE, 2022). To tackle concerns about the trustworthiness of evidence, study design
choices need to be made traceable and transparent for decision-makers. Current good-
practice recommendations, including the reporting of checklists for economic
evaluations, provide, in general, insufficient basis for judging study design choices
outside of RCTs (Faria et al., 2015; Orsini et al., 2020). The target trial framework
allows users of the evidence generated from RWD to assess its rigorousness and
trustworthiness according to how closely the study design mimics that of an RCT.
Published RCTs estimates can be used as ‘benchmarks’ in HTA to assess choices
about aspects of the study design, including the plausibility of the assumptions
underlying the different statistical approaches (Franklin et al., 2021). A further step
would be to use the target trial framework in the design of systematic reviews and
network meta-analyses of RCTs (Zhao et al., 2020). However, in many settings, RCT
evidence for benchmarking is unavailable or unsuitable as it fails to include the target
populations, comparators or endpoints of decision-making relevance. This study shows
that RWD can still be used to support HTA decision-making in those settings. While
applying the notions of target trial framework helps ensure that groups are
comparable, thereby reducing the potential for confounding, this study highlights the

importance of considering statistical methods that make alternative underlying
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assumptions about residual confounding. In ESORT, the unadjusted comparison of
means which makes the implausible assumption of no confounding at all leads to a
different conclusion to the GLM regression and LIV approaches which make more

plausible assumptions about confounding, and lead to similar results.

Second, the paper tackles the lack of guidance on how to apply the principles of the
target trial framework in RWD studies to ensure they meet the main requirements of
HTA. We identify a series of challenges that are raised when using routine data for
emulating target trials pertaining to: (i) defining the study population, (ii) defining
the intervention and all relevant comparator strategies, (iii) establishing time zero,
and (iv) using appropriate methods to adjust for confounding. Table 4 offers point-

by-point recommendations for how to address these challenges.

The first challenge relates to the inability to emulate the target trial’s eligibility
criteria, which can result in bias due to imbalances in the distribution of patient
characteristics. To inform HTA, applying the target trial framework would require
RWD studies to emulate trials with active comparators (the ‘standard of care’) (NICE,
2014). Then, in order to minimise the risk of confounding from imbalances in
prognostic factors, the eligibility criteria need to ensure that only patients for whom
there is likely to be equipoise between treatment strategies are included. In the
ESORT study, the criterion that the patient must be ‘under the care of a surgeon’
(see Table 3.1 for definition) helped exclude patients whose prognosis was so poor
according to unobserved, as well as observed characteristics, that they would not be
considered for ES (e.g., patients in advanced stages of the disease). When defining the
eligibility criteria, another important consideration is that the population needs to
include all patient subgroups of relevance for HT A decision-making. When published
clinical guidance is insufficient to identify these populations, expert judgement should
be used to adapt the target trial’s eligibility criteria to the data available and to the
requirements of HTA (see Table 3.4). Sensitivity analyses around the different
eligibility criteria could help assess the implications of these decisions and should be
adopted (Lodi et al., 2019). In the ESORT study, the clinical panel exercise provided
a basis for this. The study could define alternative more/less strict definitions of the
eligibility criteria by varying the threshold for required number of responses favouring

inclusion of an ICD-10 code sub-category.
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Table 3.4. Challenges and recommendations for studies applying the target trial framework alongside Real-World Data (RWD) to inform
Health Technology Assessment (HTA)

Protocol Challenge for RWD Implications for HT A decision- Example from target trial of ES Recommendation
making

Eligibility Data might be Estimates of comparative effectiveness Unclear which ICD-10 diagnostic Use expert opinion to

criteria insufficient to emulate could be subject to selection bias/ subcategories describe patients with  adapt the trial’s eligibility
the trial’s eligibility confounding if the distributions of diagnoses of acute appendicitis and  criteria to the data
criteria patient characteristics are not balanced  acute gallstone disease. available
Population selected for Estimates of comparative effectiveness No equipoise for some patients with ~ Use clinical guidelines
study might include could be subject to confounding bias designated diagnostic codes for the and/or expert opinion to
patients for whom there condition (e.g., pregnant patients define and exclude patient
is no equipoise between with designated codes of subgroups for whom there
treatment strategies appendicitis) is no equipoise
Population selected for Findings could fail to inform decision- Unclear which patients are eligible Use clinical guidelines
study might fail to making if they are not generalisable to and in equipoise for ES and NES and/or expert opinion to
include subgroups of the target population, or omit relevant strategies in routine practice define subgroups of
interest for decision- subgroup analyses interest
making

Treatment  The definition of the Findings could fail to inform decision- Unclear which OPCS-4 procedure Use clinical guidelines

strategies intervention (e.g., its making if they do not reflect routine codes and timings describe ES. and/or expert opinion to

timing) might differ from
the intervention of
interest

The comparator strategy
might not be defined
with sufficient level of
detail

clinical practice

Findings could fail to inform decision-
making due to the interventions
involved in the causal contrast not
being well defined

The study could not inform the
comparative effectiveness of ES versus
specific NES treatments, but could do
S0 against not receiving ES.

define the intervention and
comparators

Carefully assess whether
the causal contrast can be
estimated given the data
available.
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Protocol Challenge for RWD Implications for HT A decision- Example from target trial of ES Recommendation
making

Time zero Start of follow-up might  Findings could be subject to selection Using the date of admission as day  Consider the likely bias
pre-date the assessment bias zero could result in bias due to post- arising from alternative
of the eligibility criteria baseline events being used to candidates for day zero.

exclude patients.

Time of treatment Findings could be subject to immortal Using the date of admission as day  Include as a criterion for
assignment might not be  time bias zero could result in bias if, during day zero that it should
aligned with that of time until treatment initiation, the minimise time to
eligibility assessment and risk of event of interest differed treatment initiation.
start of follow-up between the groups.

Statistical Residual confounding Estimates of comparative effectiveness Naive comparisons are unlikely to Consider appropriate

analysis might exist after could be biased by residual confounding provide robust estimates, whereas methods for tackling

emulating the main
components of the target
trial, from both measured
and unmeasured
prognostic factors.

Not all statistical
methods might be
appropriate for studying
the causal contrast(s) of
interest.

Findings might not be generalisable to
the target population

adjustment in LIV and GLM
regression resulted in similar
findings

Estimates of traditional IV methods
usually pertain to narrow
populations, but LIV can retrieve an

overall effect.

confounding and, where
possible, assess the
underlying assumptions in
the method used.

Carefully assess the
plausibility of the
assumptions required for
the estimation of the
causal contrast.
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The main challenge in defining the intervention and comparator strategies is to specify
the treatment(s), dosage(s) and/or timing(s) that characterise their provision in
routine clinical practice (second challenge). The definition could be informed by
clinical guidelines for management of the condition, but as in the ESORT study, these
are often unavailable. Unless the treatments of interest are specified within the RWD,
the study will be of limited use for informing HTA decision-making (Hernan, 2004).
Further to this, the study should carefully consider whether the comparators are
defined in sufficient detail to evaluate the causal contrast of interest (Herndn and
Robins, 2020; Holland, 1986). We recommend drawing on expert opinion to define the
interventions and comparators of interest from those recorded within the routine data
(Table 3.4).

The ESORT study highlights the challenges in defining time zero (baseline) from the
RWD (third challenge), which cannot precede eligibility, and must minimise any delay
prior to treatment initiation. In studies like ESORT, where treatment initiation for
one or all treatment strategies is not observed in the data, the choice of time zero
should be carefully evaluated. The ESORT study defined time zero as the date when
the patient was first under the care of a surgeon. This definition is expected to carry
low risk of bias since, (i) it is does not precede the time of eligibility assessment and,
(ii) while it may not coincide with the time of treatment initiation, the probability of
events until treatment initiation is small for these conditions. To help ensure the
definition of time zero meets the requirement above, tools that help establish
temporality from RWD, such as design diagrams (Patorno et al., 2020), and
approaches like reweighting, censoring and cloning (Hernéan and Robins, 2016) should

be adopted in settings where immortal time bias is suspected.

In relation to the fourth challenge, our paper builds on precedent work on the use of
IV methods for confounding adjustment, and in particular the combination of the
target trial framework with IV methods to reduce the risk of bias from unmeasured
confounding, which is a major concern in RWD (Swanson, 2017). ESORT uses a LIV
approach which, unlike traditional IV methods such as two-stage least squares, can

provide estimates of the ATE and CATEs that apply directly to the target population.

The application of the target trial framework should encompass the use of design tools
pertaining to the choice of statistical approaches for estimating treatment effects in
observational studies, such as the STROBE checklist (Vandenbroucke et al., 2007),

and as this paper illustrates, a fundamental element of this is that the plausibility of
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the underlying assumptions is assessed, and alternative approaches that make

contrasting assumptions are considered.

The third contribution of this paper is to illustrate how the target trial framework can
be applied and used to make treatment recommendations in settings where
appropriate RCT evidence is not available. The assessment of the relative cost-
effectiveness of ES for acute appendicitis and acute gallstone disease in ESORT
contributes to the scarce evidence on the effects of providing ES versus alternative
strategies for patients with acute gastrointestinal conditions. For these conditions,
studies conducted so far have evaluated ES against NES in relation to patient
outcomes like mortality, HRQoL and length of hospital stay (Flum et al., 2020;
Hutchings et al., 2022), but this paper contributes to the limited available evidence
on relative cost-effectiveness (Javanmard-Emamghissi et al., 2020). In particular,
while the ESORT study finds that overall, it is highly uncertain whether ES is cost-
effective for treating patients with these three conditions, the results clearly suggest
that for patients who have severe frailty ES is not cost-effective. This finding has
direct implications for clinical decision-making, emphasises the importance of
perioperative frailty assessment for patients presenting with these common conditions,
and that alternative NES strategies including medical management or later surgery

are more cost-effective for these patients

While the ESORT study exemplifies key issues that arise in undertaking emulations
of target trials for HT'A using individual patient data from routine sources, it cannot
consider all the issues that may arise when using RWD in HTA. In ESORT, given the
completeness and accuracy of HES data (ESORT Study Group, 2020c), there were no
concerns around the risk of attrition bias or reporting bias, which can result from
imbalances in the duration of follow-up and reporting of outcome data, but could be
present in other studies. A related limitation of this study is that the application of
the target trial framework was to the endpoints available within the routine data,
namely survival time and health service utilisation. In other settings, lack of data on
broader outcome measures could add another layer of complexity to the study. Finally,
the ESORT study directly addresses the use of RWD for HTA purposes when
individual patient data are available from a single study. More generally, greater
consideration is needed on how the principles may expand to settings where individual
patient data are not available for any, or all the comparators of interest (e.g., creating

external controls in single arms trials).
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In conclusion, this paper addresses common challenges that arise when applying the
target trial framework to assess comparative effectiveness and cost-effectiveness for
the purposes of HTA, when using RWD. The paper provides recommendations for
improving the study design pertaining to the definition of the study population,
comparators, and analytical approaches to help address concerns about the use of

RWD in decision-making.
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Chapter 4. Local instrumental variable methods to
address confounding and heterogeneity when using
electronic health records: an application to

emergency surgery

4.1 Preamble to research paper

This chapter presents an application of the LIV methodology to a CEA using routine
data from England. The paper was published in Medical Decision Making by open access
on May 24, 2022, as part of the special theme issue on “The use of electronic health record

(EHR) data in health decision research”. The full reference for the article is:

Moler-Zapata S, Grieve R, Lugo-Palacios D, et al. (2022) Local instrumental variable
methods to address confounding and heterogeneity when using electronic health
records: an application to emergency surgery. Medical Decision Making 0(0). DOL:
10.1177/0272989X221100799.

Prior to this work, the LIV methodology developed by Heckman and Vytlacil (1999,
2001, 2005) and further extended by Basu (2014) had not been used in a CEA. This
research, conducted within the ESORT study, sought to address the gap in the
evidence on the relative the benefits, risk and costs of ES compared to alternative
NES strategies for treating patients with common acute gastrointestinal conditions
who are admitted into hospital as an emergency. This setting exemplifies how LIV
methods can be used to expand the evidence base with real-world evidence (e.g., by
considering broader study populations). Published RCTs for some of these conditions
have, included highly selective patient samples, reported outcomes over short follow-
up periods or failed to consider economic outcomes of relevance for policy-makers and
health care providers such as resource use and costs (Azhar et al., 2021; Flum et al.,
2020; Javanmard-Emamghissi et al., 2021). For other acute conditions, such as
abdominal wall hernia, no RCTs of ES have been conducted. Some published studies
have had non-experimental designs but they have failed to address the fundamental

concern of unmeasured confounding (Koumarelas et al., 2014; Saverio et al., 2014).

The study describes the target estimand and main assumptions required for
identification with LIV. The paper illustrates how LIV can be used to evaluate

heterogeneity of treatment effects over population groups, it also contrasts LIV against
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alternative IV approaches which make alternative assumptions, and offers guidance
for future CEA on how to interpret any discrepancies between the different methods.
My role included designing the CEA, collating resource use data from HES, collating
unit cost data from national databases, conducting literature searches to identify
HRQoL data, evaluating the identification assumptions, and conducting the LIV
analyses, jointly with my supervisor, SON. I led the interpretation of the results. I
wrote the draft version of the manuscript, and incorporated comments from co-authors
into the manuscript. I also addressed the comments raised during the peer-review

process.

The analysis received ethical approval from the LSHTM Ethics Committee
(ID:21776).
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Abstract

Background: Electronic health records (EHRs) offer opportunities for comparative
effectiveness research to inform decision making. However, to provide useful evidence,
these studies must address confounding and treatment effect heterogeneity according
to unmeasured prognostic factors. Local instrumental variable (LIV) methods can help
studies address these challenges, but have yet to be applied to EHR data. This article
critically examines a LIV approach to evaluate the cost-effectiveness of emergency

surgery (ES) for common acute conditions from EHRs.

Methods: This article uses hospital episodes statistics (HES) data for emergency
hospital admissions with acute appendicitis, diverticular disease, and abdominal wall
hernia to 175 acute hospitals in England from 2010 to 2019. For each emergency
admission, the instrumental variable for ES receipt was each hospital’s ES rate in the
year preceding the emergency admission. The LIV approach provided individual-level
estimates of the incremental quality-adjusted life-years, costs and net monetary benefit
of ES, which were aggregated to the overall population and subpopulations of interest,

and contrasted with those from traditional IV and risk-adjustment approaches.

Results: The study included 268,144 (appendicitis), 138,869 (diverticular disease),
and 106,432 (hernia) patients. The instrument was found to be strong and to minimize
covariate imbalance. For diverticular disease, the results differed by method; although
the traditional approaches reported that, overall, ES was not cost-effective, the LIV
approach reported that ES was cost-effective but with wide statistical uncertainty.
For all 3 conditions, the LIV approach found heterogeneity in the cost-effectiveness
estimates across population subgroups: in particular, ES was not cost-effective for

patients with severe levels of frailty.

Conclusions: EHRs can be combined with LIV methods to provide evidence on the
cost-effectiveness of routinely provided interventions, while fully recognizing

heterogeneity.
Keywords

Cost-effectiveness analysis, emergency surgery, heterogeneous treatment effects,

instrumental variable, personalized medicine
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Highlights

This article addresses the confounding and heterogeneity that arise when assessing
the comparative effectiveness from electronic health records (EHR) data, by
applying a local instrumental variable (LIV) approach to evaluate the cost-
effectiveness of emergency surgery (ES) versus alternative strategies, for patients
with common acute conditions (appendicitis, diverticular disease, and abdominal
wall hernia).

The instrumental variable, the hospital’s tendency to operate, was found to be
strongly associated with ES receipt and to minimize imbalances in baseline
characteristics between the comparison groups.

The LIV approach found that, for each condition, there was heterogeneity in the
estimates of cost-effectiveness according to baseline characteristics.

The study illustrates how an LIV approach can be applied to EHR data to provide
cost-effectiveness estimates that recognize heterogeneity and can be used to inform

decision making as well as to generate hypotheses for further research.
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4.2.1 Introduction

Electronic health records (EHRs) offer important opportunities for comparative
effectiveness research that can directly inform medical decision making (Kuo et al.,
2018; Russell, 2021). EHRs offer the possibility of evaluating interventions as provided
in practice to all eligible patients. Agencies, such as the National Institute for Health
and Care Excellence (NICE), recognize the potential of EHRs (NICE, 2013), but to
provide useful evidence about comparative effectiveness, two major concerns must be
addressed. First, treatment selection according to unmeasured baseline prognostic
measures (e.g., disease severity) can make results subject to unmeasured confounding
(Kreif et al., 2013; Kyriacou and Lewis, 2016). Second, there may be treatment effect
heterogeneity according to patient and contextual characteristics. While approaches
for handling heterogeneity according to measured covariates (effect modification) are
commonly used, less attention has been given to ‘essential heterogeneity’, that is,
heterogeneous gains according to unmeasured characteristics that influence selection

into treatment (Basu et al., 2007; Heckman et al., 2006).

The first challenge is unlikely to be addressed by studies that apply traditional risk
adjustment methods to provide estimates of comparative effectiveness, as EHRs tend
to have inadequate information on case severity (Keele and Small, 2019; Sttirmer et
al., 2011). A valid instrumental variable (IV) design can provide accurate estimates
of treatment effectiveness, even when there are unmeasured differences between the
comparison groups (Baiocchi et al., 2014). If the IV is valid, it encourages receipt of
the treatment, but does not have an effect on the outcome, except through treatment
receipt. However, a major concern with applying traditional IV approaches, such as
2-stage least squares (2SLS) in the presence of essential heterogeneity, is that the
resultant estimates are unlikely to apply to the overall populations or subpopulations
of decision-making interest (Angrist et al., 1993; Angrist and Krueger, 1999; Baiocchi
et al., 2014; Imbens and Angrist, 1994).

Local instrumental variable (LIV) approaches can provide estimates of comparative
effectiveness that apply to policy-relevant populations (Heckman and Vytlacil, 1999,
2001, 2005). LIV methods can estimate individual-level treatment effects, known as
person-centered treatment (PeT) effects, which can then be aggregated over relevant
subgroups. LIV methods make the same underlying assumptions as all IV methods
but also require that the instrument be continuous (Heckman and Vytlacil, 2005).
LIV approaches have been used for comparative effectiveness research as part of

bespoke observational studies of educational reforms (Basu, Jones, et al., 2018),
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cardiovascular and bariatric surgery (Coleman et al., 2020; Reynolds et al., 2021), and
transfers to intensive care units (Grieve et al., 2019), but they have not been applied
to EHR data, nor to an economic evaluation. In EHR settings, it is particularly
challenging to identify and assess the validity of an IV, given that the data are

collected for clinical or administrative rather than research purposes.

These major challenges of using EHRs for comparative effectiveness research are
exemplified by the ESORT study (ESORT Study Group, 2020), which aims to
evaluate the effectiveness and cost-effectiveness of ES versus nonemergency surgery
(NES) strategies, which include antibiotic therapy, nonsurgical procedures (e.g.,
drainage of abscess), or surgery deferred to the elective (planned) setting. The question
as to whether ES or NES strategies are more cost-effective is important, given the
high burden of emergency general surgical services and the lack of evidence to inform
clinical decision making (Abbott et al., 2017; Abercrombie, 2017; Stewart et al., 2014).
Here, an unmet challenge is to identify those patient groups for whom ES is most
cost-effective, and conversely those for whom NES alternatives, such as later surgery,
may be more worthwhile. Randomized controlled trials (RCTs) have been undertaken
for some acute conditions such as acute appendicitis and diverticular disease, but these
have included highly selective or small patient samples, whereas for other acute
conditions, such as abdominal wall hernia, no RCTs of ES have been conducted (Azhar
et al., 2021; Flum et al., 2020; Javanmard-Emamghissi et al., 2021; Thornell et al.,
2016).

Faced with this evidence gap, the ESORT study uses records from England’s Hospital
Episode Statistics (HES) database on emergency admissions to acute National Health
Service (NHS) hospitals from 2009 to 2019, for common acute conditions, including
the 3 considered in this article, acute appendicitis, diverticular disease, and abdominal
wall hernia (ESORT Study Group, 2020) HES for admitted patient care is a database
containing administrative, patient, and clinical details of all admissions to hospitals
in England’s NHS (Herbert et al., 2017). Clinical data on diagnoses and procedures
are routinely extracted from discharge summaries for inclusion in local patient
information databases, and transferred to HES. The HES database is primarily used
for administrative and payment purposes. HES lacks detailed clinical data held locally
but has been used widely for research purposes. The ESORT study previously used
HES data and found no evidence of differences in the overall clinical effectiveness of
ES versus NES strategies (Hutchings et al., 2022). However, this earlier article did not

consider alternative approaches for tackling the confounding that arises with HES
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data or provide the estimates of relative cost-effectiveness that are essential for

decision making.

The aim of this article is to critically examine LIV methods for addressing unmeasured
confounding and heterogeneity in evaluating the cost-effectiveness of ES for patients
with these 3 conditions from EHR data. The article is structured as follows. First, we
provide an overview of the ESORT study. Second, we define the main aspects of the
LIV methodology, including application to the ESORT study. Third, we present the
results. Fourth, we discuss the key findings, strengths, and limitations of the article

and the implications for further research.

4.2.2 Methods

4.2.2.1 Essential features of the ESORT study

Data sources and study population. The ESORT study uses HES data to evaluate the
relative effectiveness and cost-effectiveness of ES versus alternative strategies from the
hospital perspective over a 1-y time horizon. The study protocol and statistical
analysis plan were developed following the principles of the target trial emulation
framework (ESORT Study Group, 2020a; Herndn and Robins, 2016). Briefly, the
ESORT study includes patients aged 18 y or older, admitted as an emergency
admission via an accident and emergency department, or primary care referral, who
were admitted to 175 NHS hospitals in England from April 1, 2010, to December 31,
2019; had the relevant ICD-10 diagnostic codes; and met other inclusion criteria
(see Appendix C.6).

Comparator strategies. Admissions were defined as receiving the ES strategy if,
according to Office of Population Censuses and Surveys (OPCS) codes, they had a
relevant operative procedure within time windows designated by a clinical panel of 3
d (hernia), 7 d (appendicitis), or any time within the emergency admission
(diverticular disease) (ESORT Study Group, 2020). The NES strategies included
medical management, interventional radiology, and operative procedures that did not

meet the ES criteria (see Appendix C.6).

Covariates. Baseline covariates were extracted from HES and included age, sex,
ethnicity, the Index of Multiple Deprivation, the Charlson Comorbidity Index
(Armitage and Van Der Meulen, 2010), the secondary care administrative records
frailty (SCARF) index (Jauhari et al., 2020), and teaching hospital status. The
SCARF index uses ICD-10 codes to define 32 deficits that cover functional

81



impairment, geriatric syndromes, problems with nutrition, cognition and mood, and
medical comorbidities, with severe frailty defined as the presence of 6 or more deficits.
Information was taken from HES data to derive proxy measures of the quality of acute
care in each hospital according to rates of 90-d all-cause mortality and emergency
readmissions in preceding periods. Subgroups of interest were defined ex ante, drawing
on clinical judgment to define those strata anticipated to modify the relative
effectiveness and cost-effectiveness of ES. Subgroup definitions were based on the
following baseline characteristics: age group, sex, Charlson comorbidity index, SCARF

index, diagnostic subcategories, and year of admission.

Outcomes. The CEA took an intention-to-treat approach, whereby all patients
contributed to the treatment group to which they were assigned at baseline,
irrespective of the subsequent treatments received (e.g., planned or unplanned
surgery). We reported the mean (95% confidence interval) incremental costs, quality-
adjusted life-years (QALYs), and net monetary benefit (INB) at 1 y. Individual-level
resource use was extracted from HES data for the index emergency admission and for
all subsequent hospital readmissions up to the end of follow-up (death or December
31, 2019). Resource use included the length of the hospital stay, including time in
intensive care units, and the use of diagnostic and operative procedures. Resource use
items were combined with unit costs (£ GDP, 2019/20) to calculate total costs per
patient (see section 1 and Appendix C.7., C.8., and C.9.). All unit costs were inflated
to 201920 prices (£ GBP) using UK’s GDP deflator published by HM Treasury (HM
Treasury Department, 2020).

Survival time up to 1 y was calculated for all patients from HES records linked to the
Office for National Statistics death data. Health-related quality of life (HRQoL) data
were not available from HES, and so QALYs were calculated by combining the
survival time with HRQoL estimates from the literature (see Appendix C.2, C.3, C.10
and C.11). We derived each patient’s QALYs at 1 y using the area under the curve
approach (Manca et al., 2005), which allowed HRQoL to decrease to baseline levels
following an emergency readmission, but assumed that HRQoL levels recovered
following hospital discharge. HRQoL levels were adjusted to reflect the patient’s age
and gender, and were assumed to be zero for patients who died over the follow-up
period (see Appendix C.18) (Ara et al., 2017; Ara and Brazier, 2010). The study’s
cost-effectiveness metric was the INB of ES versus NES, calculated by multiplying the
incremental QALYs by a NICE recommended willingness-to-pay threshold of £20,000
per QALY and subtracting from this the incremental cost (NICE, 2013).
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We now present the main elements of the LIV design (in the following section). We
then discuss how PeT effects, average treatment effect (ATE), and conditional ATEs
(CATEs) were estimated using LIV and contrast the results against 2 alternative
methods for estimating the ATE—2-stage residual inclusion and GLM regression—

which make different assumptions about confounding and heterogeneity.

4.2.2.2 Instrumental Variable estimation

4.2.2.2.1 OQverview

A wvalid instrument must be associated with treatment assignment (relevance
condition) (i), the IV must be independent of unmeasured confounders
(exchangeability condition) (ii), the IV must influence the outcomes only through
treatment assignment (exclusion-restriction assumption) (iii), and the IV must have
the same direction of effect on the probability of which treatment is received,
irrespective of the level of the IV (monotonicity) (iv) (Angrist et al., 1993; Baiocchi
et al., 2014). The most widely used IV approach, 2SLS, estimates the average
treatment effect (ATE) when effects are homogeneous. If there are heterogeneous
treatment effects, and the IV is binary, 2SLS reports a local ATE (LATE) or a
weighted average of LATEs with a continuous IV (Angrist and Imbens, 1995;
Cornelissen et al., 2016), requiring careful interpretation of the estimated effects in
light of the LATE estimand.

Two-stage residual inclusion

2-stage residual inclusion (2SRI) is an IV approach that relies on concepts that support
control function methods in an attempt to control for unmeasured confounding (Terza
et al., 2008). This approach uses residuals from a first-stage regression for treatment
assignment, in a second-stage outcome model (Terza et al., 2008). Unlike 2SLS, the
2SRI approach, when applied to a binary treatment, aims to estimate the ATE rather
than LATEs. However, concerns have been raised that this approach may provide
biased estimates of the ATE due to the necessity to extrapolate the residuals when
constructing counterfactuals, and that it is sensitive to misspecification of the
functional form underlying the residuals (Basu, Coe, et al., 2018). Here, we address
the latter concern by using generalized residuals, which have been shown to minimize
the bias in estimating the ATE (Basu, Coe, et al., 2018). Nonetheless, although 2SRI
can, in some circumstances, provide accurate estimates of the ATE, it is not

specifically recommended for exploring heterogeneity (Terza et al., 2008).
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4.2.2.2.2 Estimating person-level effects using Local Instrumental Variable Methods

We also consider an LIV method that can estimate ATEs, subgroup effects, and
personalized treatment effects, in the presence of unmeasured confounding and
heterogeneity, and can extend to nonlinear outcomes such as costs and QALYs (Basu,
2014; Basu et al., 2007).

Heckman and Vytlacil (1999, 2001, 2005) showed that LIV methods can identify
effects for “marginal” patients, those who are in equipoise with respect to the
treatment assignment decision, provided a valid, continuous instrument is available.
These individuals’ propensity for treatment (PS), based on the levels of their observed
covariates and IV, just balance with a normalized version of the unmeasured
confounders (V) discouraging treatment, such that a small (marginal) change in the
IV is sufficient to nudge them into the treatment group (where D=1 [i.e., ES] if PS >
V and 0 [NES| otherwise). Contrasting outcomes for individuals with marginally
different values of the IV, but who are otherwise identical in measured and
unmeasured covariates at different levels of the IV, identifies a series of marginal
treatment effects (MTEs). The MTE is equivalent to the conditional LATE for
infinitesimally small changes in the normalized unobserved confounder, V (Huber and
Wiithrich, 2019). MTEs can then be aggregated to obtain the ATE and CATEs for
subgroups (Heckman and Vytlacil, 2005).

The LIV method relies on correctly modeling the relationships of the covariates and
the IV with both the treatment and the outcome, typically using parametric models
(Kennedy et al., 2019; Ogburn et al., 2015). If the treatment assignment model is
misspecified, the second-stage model will use biased estimates of the PS, thus
introducing bias into the subsequent effect estimates. Similarly, if the outcome model
is misspecified, the estimated MTEs may not represent the true MTEs, as they will

have been derived as the derivative of an incorrect outcome model MTE =
E’Emz—::z:z). While the “true” model specifications are unknown, considering
alternative specifications, visually inspecting the models’ predictions versus actual
values, and considering the root mean squared error (rMSE) of the predictions, in
addition to using standard model diagnostic approaches such as Hosmer and
Lemeshow (2000) and Pregibon (1980) tests for Generalised Linear Models (GLMs),

can be helpful in minimising risk of misspecification.

Basu (2014) extended the LIV approach by using the individual patient’s observed

treatment status to obtain personalized effect estimates. The key insight underlying
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this approach is that for each individual patient, some levels of the normalized
unobserved confounder would be inconsistent with the observed treatment decision
for that individual, given their observed characteristics and the level of the IV (Basu,
2014). For instance, if an individual with high propensity for ES according to
observables (e.g., age) were observed to receive NES, it is reasonable to assume that
the discouragement according to unobserved confounders must have exceeded the
propensity for ES (i.e. PS < V if D=0). MTEs that imply a lower level of unobserved
confounding can thus be ‘ruled out’, narrowing the set of MTEs which could plausibly
represent the individual’s effect. The person-centered treatment (PeT) effect for an
individual is obtained by aggregating the remaining MTEs and, are therefore more
nuanced or ‘personalized” than MTEs and CATEs. These effects can then be
aggregated to obtain higher level estimands (e.g., ATE and CATEs (Basu, 2014,
2015)). (For full details and implementation in this study, see Appendix C.4.).

4.2.2.2.8 Developing IV and LIV approaches within the ESORT study

The ESORT study adopted an IV approach to evaluate ES from US claims data
(Keele et al., 2018), following pharmaco-epidemiological research in taking clinician
preference as an instrument for treatment receipt (Brookhart and Schneeweiss, 2007;
Widding-Havneraas et al., 2021). In the ESORT study, the IV was the hospital’s
tendency to operate (TTO), which reflects practice variation across hospitals in ES
rates for these conditions (see Appendix C.15.). For each qualifying emergency
admission, the TTO was defined as the proportion of eligible emergency admissions
in that specific hospital who received ES in the previous 12 mo, thus requiring that
the hospital’s past preference for ES strongly predicts treatment choice for the current
patient. The rationale for the IV design is that, after adjustment for observed
characteristics, the patients’ baseline prognosis is similar across hospitals with
different TTO levels (Widding-Havneraas et al., 2021). Hence, the patients can be
“randomized” between the ES and NES strategies according to the hospital’s TTO.

While Keele et al. (2018). validated this IV within US claims data, we carefully
considered whether each of the above underlying assumptions were met within the
EHR data for the ESORT study. We assessed the relevance of the hospital’s TTO
with a weak instrument test that is robust to heteroscedasticity and clustering (Olea
and Pflueger, 2013). Assumptions (ii), (iii), and (iv) are untestable. The IV would fail
the exclusion-restriction condition (assumption iii) if patients admitted to hospitals
with high TTO received better care (e.g., postoperative care) leading to lower

mortality or shorter stays (and hence costs), regardless of the treatment received,
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which seems unlikely. However, to increase the plausibility of assumptions (ii) and
(iii), we adjusted for a rich set of potential confounders, including proxies for the
quality of acute care in each hospital (see Appendix C.5). We assessed the extent to
which observed prognostic covariates differed across levels of the instrument
(see Figure 4.1). Imbalances observed in measured covariates across levels of the TTO
would raise concerns about assumptions (ii) and (iii). We also observed a strong
positive, linear relationship between the hospital-level TTO and receipt of ES for all

3 conditions, providing support for assumption (iv).

4.2.2.3 Statistical and sensitivity analyses

LIV estimated PeT effects of ES versus NES on costs and QALY for each individual
allowing for treatment effect heterogeneity and confounding (Armitage and Van Der
Meulen, 2010; ESORT Study Group, 2020b; Hernan and Robins, 2016; Jauhari et al.,
2020). These were aggregated to report the effects of ES overall and for each
prespecified subgroup of interest. Probit regression models were used to estimate the
initial propensity score (first stage), whereas GLMs were applied to the cost and
QALY data, with the most appropriate chosen according to rMSE (see Appendix
C.12). Hosmer-Lemeshow and Pregibon tests were also used to check the model fit
and appropriateness (Hosmer and Lemeshow, 2000; Pregibon, 1980). For the QALY
endpoint, the logit link and binomial family were selected (all 3 conditions) and, for
costs, the log link and Gaussian family (appendicitis and diverticular disease) and the
identity link and gaussian family (hernia). Models at both stages adjusted for the
above baseline measures, time period, and proxies for hospital quality, defined by rates
of emergency readmission and mortality in 2009 to 2010 (time constant) and in the

year prior to the specific admission concerned (time-varying; see Appendix C.5).
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Figure 4.1. Mean level of rescaled baseline covariates according to the level of the
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Overall estimates of incremental costs, QALYs, and INB were reported with standard
errors and confidence intervals (CIs) obtained with the nonparametric bootstrap (300
replications), allowing for the clustering of individuals within hospitals and the
correlation of individual-level costs and effects. The individual-level estimates of
incremental costs and QALYs were also plotted on the cost-effectiveness plane,

stratified by subgroups of policy relevance.

The 2SRI and risk-adjustment (GLM regression) approaches took the same approach
to model specification and selection (including covariates used for confounding
adjustment) to report overall estimates of incremental costs and QALYs and INB.
The proportion of missing data across the 3 cohorts was low, with less than 5% missing
values for all baseline covariates, other than ethnicity (10% in the appendicitis cohort);

thus, a complete case analysis was performed.
Sensitivity analyses

Sensitivity analyses were undertaken to assess whether the results from the main
analysis were robust to alternative definitions and assumptions. First, the study
adjusted for “quality of care” using external hospital performance measures from the
National Emergency Laparotomy Audit (NELA) (NELA Project Team, 2016, 2017,
2018). Second, we considered the sensitivity of our findings to the potential for under-
or overestimating costs from EHR data by increasing all costs by 10% (SA2) and to
reducing them by 10% (SA3). Third, we considered an alternative approach to QALY
calculation that used linear interpolation between the baseline admission, and 1-y
follow-up (SA4). Fourth, we considered a longer time horizon of 5 y, by restricting the

sample to those patients who were admitted from 2010 to 2014 (SA5).
Ethics approval

The research was approved by the London School of Hygiene and Tropical Medicine
ethics committee (Ethics Reference no: 21687). The study involved the secondary
analyses of existing pseudo anonymised data and did not require UK National Ethics

Committee approval.
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4.2.3 Results

The study included 268,144 (appendicitis), 138,869 (diverticular disease), and 106,432
(hernia) patients. The proportions of patients who had ES were 92.3% (appendicitis),
11.4% (diverticular disease), and 58.8% (hernia). The patients with acute appendicitis
who had ES were on average younger and more likely to be fit and without
comorbidities as compared with those who had NES strategies. For patients with
diverticular disease, patients who had ES were less likely to be fit but were of similar
age and comorbidity profile to those in the NES groups. For patients with hernia, a
higher proportion of women had ES. Other baseline characteristics were similar

between the comparison groups (Table 4.1).

The most prevalent forms of ES are listed in Appendix C.13. Most patients in the

NES strategy groups did not have an operative procedure.

Table 4.2 presents the unadjusted costs of ES and NES. For patients with diverticular
disease, the average total costs for the ES group at 1 y were higher than for the NES
group (£16,498 v. £4673), reflecting the higher initial admission costs, including
operative costs. For the other 2 conditions, the average 1-y costs of ES versus NES
were similar, with the higher operative costs of ES offset by higher readmission costs
following the NES strategy (see Appendix C.13). For patients with diverticular
disease, before any case-mix adjustment, the proportion of patients who had died by

1 y was higher in the ES versus NES group (see Appendix C.16).

4.2.3.1 1V diagnostics

The hospital’s TTO was strongly correlated with ES receipt for all 3 conditions, after
case-mix adjustment (see Table 4.3). For the 3 conditions, the F statistic ranged from
135 (appendicitis) to 735 (hernia) versus the commonly applied threshold of 10
(Staiger and Stock, 1997). Thus, the hospital’s past preference for ES strongly predicts
treatment choice for the current patient. The mean levels of the baseline covariates
(rescaled) were similar across the TTO levels (Figure 4.1), which makes it more

plausible that the IV also balances unobserved covariates.
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Table 4.1. Baseline characteristics of patients in the cohorts

Acute appendicitis

Diverticular disease

Abdominal wall hernia

(n=268,144) (n= 138,869) (n=106,432)
ES NES ES NES ES NES
(0=247,506)  (1=20,638) (n=15772)  (0=123,097)  (n1=62,559) (n=43,873)
Gender: n (%)
Male 134,270 (54) 10,409 (50) 7,074 (45) 49,922 (41) 37,522 (60) 31,341 (71)
Female 113,224 (46) 10,228 (50) 8,698 (55) 73,172 (59) 25,035 (40) 12,530 (29)
Age: mean 38 47 64 64 63 62
SCARF index: n (%)
Fit 206,796 (84) 15,015 (73) 6,197 (39) 65,911 (54) 33,014 (53) 23,871 (54)
Mild frailty 34,544 (14) 4,052 (20) 5,631 (36) 38,851 (32) 19,608 (31) 13,104 (29)
Moderate frailty 5,041 (2) 1,155 (6) 2,706 (17) 13,433 (11) 7,360 (12) 4,987 (11)
Severe frailty 1,125 (0) 416 (2) 1,238 (8) 4,902 (4) 2,577 (4) 1,911 (4)
Charlson index: n (%)
0 — comorbidities 207,525 (84) 15,321 (74) 9,789 (62) 73,457 (60) 30,216 (63) 26,207 (60)
1 35,721 (14) 3,989 (19) 4,482 (28) 35,106 (29) 17,494 (28) 12,163 (28)
2 3,715 (2) 1,035 (5) 1,222 (8) 11,454 (9) 4,792 (8) 4,169 (10)
3+ — comorbidities 545 (0) 293 (1) 279 (2) 3,080 (3) 1,057 (2) 1,244 (3)

ES: Emergency surgery, IMD: Index of multiple deprivation, NES: non-emergency surgery, SCARF: secondary care administrative records frailty
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Table 4.2. Unadjusted costs of ES and NES strategies (£GBP 2019/20)

Acute appendicitis Diverticular disease Abdominal Wall Hernia
(N=268,144) (N=138,869) (N=106,432)
ES NES ES NES ES NES
(N=247,506)  (N=20,638) (N=15,772)  (N=123,097)  (N=62,559)  (N=43,873)
Index admission
Bed-day costs (£): mean (SD) 1,613 (2,080) 1,850 (3,147) 10,637 (12,919) 1,880 (2,511) 2,249 (7,036) 1,181 (3,853)
Cost diagnostic procedures (£): mean (SD) 28.0 (54.2) 57.8 (69.1) 108 (104) 86.5 (81.4) 20.3 (52.3) 18.2 (45.1)
Cost operative procedures (£): mean (SD) 1,132 (127) 192 (429) 1,947 (938) 1.68 (32.8) 809 (244) 42.3 (209)
Total costs index admission (£): mean (SD) 2,774 (1,974) 2,101 (3,213) 12,690 (13,124) 1,967 (2,537) 3,079 (7,066) 1,242 (3,938)
Readmissions up to 1 year
Patients with 1+ readmissions: n (%) 66,446 (26.8) 10,805 (53.0) 10,100 (64.2) 90,300 (74.4) 25047 (41.5) 31,997 (72.9)
Bed-day costs (£): mean (SD) BAL (2,594) 1,408 (4,208) 3,444 (8,028) 2422 (6,167) 1,786 (5,998) 2,581 (7,413)
Cost diagnostic procedures (£): mean (SD) 22.5 (80.2) 70.2 (142) 94.4 (149) 146 (174) 33.5 (100) 45.7 (120)
Cost operative procedures (£): mean (SD) 18.5 (139) 178 (419) 270 (628) 137 (496) 62.7 (242) 406 (457)
Total costs readmissions: mean (SD) 582 (2,650) 1,656 (4,338) 3,808 (6,374) 2,706 (6,743) 1,882 (6,061) 3,033 (7,468)
Total costs at one year: mean (SD) 3,355 (3,519) 3,757 (5,658) 16,498 (16,027) 4,673 (7,145) 4,961 (9,666) 4,275 (8,680)

ES: emergency surgery, NES: non-emergency surgery, SD: standard deviation.
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Table 4.3. Instrumental Variable strength for the hospital-level tendency-to-operate
(TTO) within the HES data (2009-19) for emergency admissions that met the

ESORT study inclusion criteria for each of the three conditions

Condition Montiel-Pflueger robust weak instrument test F-
Statistic
Acute appendicitis 135
Diverticular disease 206
Abdominal wall hernia 735

4.2.3.2 Overall cost-effectiveness results by method

Table 4.4 reports the estimated incremental costs and QALYs and the INB according
to the intention-to-treat principle for the overall population using regression
adjustment, 2SRI, and the LIV approach. For patients with appendicitis and hernia,
all 3 methods reported mean INBs close to zero. For patients with diverticular disease,
the results differed by method. The regression adjustment and the 2SRI approaches
reported that ES has positive incremental costs, negative incremental QALYSs, and
negative INBs with 95% Cls below zero (Table 4.4). By contrast, the LIV results show
that there was considerable uncertainty in the overall cost-effectiveness estimates for
all 3 conditions, with 95% ClIs around the INBs that included zero (Table 4.4). For
acute appendicitis, the incremental QALYs and costs were also close to zero (Table
4.4). For patients with diverticular disease, the LIV approach reported that, on
average, ES led to a cost reduction (—£1724), QALY gain (0.047), and a positive INB
(£2664). For patients with abdominal wall hernia, the LIV approach reported that
the positive incremental costs of ES (£891) were offset by moderate QALY gains
(0.0386; see Appendix C.17).

4.2.3.3 Subgroup analysis of cost-effectiveness of ES

Figure 4.2 reports that beneath the overall LIV results, there is underlying
heterogeneity in the INB estimates according to subgroup. For patients with acute
appendicitis, ES appears less cost-effective for women, older patients, and those with
2 or 3 comorbidities. For each condition, ES is less cost-effective on average, according
to increasing frailty levels. For example, for appendicitis, the estimated INBs for
patients with moderate and severe frailty were —£5750 (—£7810, —£3692) and
—£18,723 (—4£23,886, —4.13,561) versus £369 (—£728, £1467) for patients who were
fit (see also Appendix C.17).
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Table 4.4. Estimated incremental net monetary benefit (INB), costs, and QALYs of ES vs NES strategies

Acute appendicitis
(N=268,144)

Diverticular disease
(N=138,869)

Abdominal Wall Hernia
(N=106,432)

INB

Unadjusted differences

1,431 (1,259, 1,603)

-13,088 (-13,509, -12668)

-303 (-469, -137)

GLM -165 (-287, -42) -12,381 (-12,848, -12,058) -50.1 (-241, 141)
GLM-2SRI 281 (-743, 1,306) -7,496 (-12,230, -2,763) ~1,474 (-3,038, 2,995)
LIV -86.2 (-1,163, 991) 2,664 (-4,298, 9,626) “119 (1,282, 1,043)

Incremental costs

Unadjusted differences

-413 (-513, -312)

11,857 (11,486, 12,228)

674 (548, 800)

GLM 318 (213, 424) 11,266 (10,905, 11,626) 483 (318, 649)
GLM-2SRI 762 (-73.5, 1,598) 5,990 (1,371, 10,609) 1,645 (295, 2,995)
LIV -109 (-1,130, 913) -1,724 (7,878, 4,430) 891 (20.7, 1,762)

Incremental QALYs

Unadjusted differences

0.0509 (0.0462, 0.0556)

-0.0616 (-0.0672, -0.0559)

0.0186 (0.0150, 0.0221)

GLM 0.00767 (0.00550, 0.00983) -0.0594 (-0.0653, -0.0534) 0.0216 (0.018, 0.0253)
GLM-2SRI 0.0522 (0.0294, 0.0750) -0.0753 (-0.116, -0.0343) 0.0085 (-0.0240, 0.0411)
LIV -0.00973 (-0.0226, 0.00316) 0.0471 (-0.0829, 0.177) 0.0386 (0.00430, 0.0729)

2SRI: two-stage residual inclusion, GLM: generalised linear model, LIV: local instrumental variable, QALYs:
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Figure 4.2. Estimated Incremental Net monetary Benefit (INB) of ES versus NES

strategies for acute appendicitis (panel A), diverticular disease (B) and abdominal
wall hernia (C)

(A): Acute appendicitis

Category and Subgroup

Full sample
All (N = 262313)

Age

<45 (N = 175345)
4549 (N = 18417)
50-54 (N = 17079)

difference in means (85% CI)

B.16 (-1163.13, 980.81)

542.33 (-582.33, 1666.99)
440.38 (-2286.17, 1405.42)
757.48 (-2724.68, 1209.73)

55-50 (N = 13538) — 1229.41 (-3252.12, 793.30)
60-64 (N = 10944) —— 1831.39 (-3774.59, 111.81)
6560 (N = 9258) — 919.71 (-3201.73, 1452.30)
70-74 (N = 6858) —— 2349.32 (-5118.28, 419.63)
75-79 (N = 4849) —p—t— 2514.79 (-6561.13, 1531.55)
80-84 (N = 2378) —— 4863.77 (-9622.43, -165.12)
B4+ (N = 2247) ——p—— 3840.49 (-9362.06, 1681.08)
Gender

Male (N = 141182) L 1076.86 (-172.64, 2325.97)
Female (N = 121131) <+ 1441.47 (-2409.80, -473.14)
SCARF Index

Fit (N = 216777) -»> 369.15 (-728.43, 1466.73)
Mid frasilty (N = 37912) -# 1029.97 (-2355.32, 295.36)

Maderate frailty (N = 6103)

5750.95 (-7809.96, -3691.94)

Severe fraitty (N = 1521) —p— 190404 (-2.40404, -1.40404)
Charlson Index
No comarbidities (N = 217847) 167.53 (-930.20, 1265.28)
One comarbidity (N = 38004) : 505.16 (-1837.96, 827.64)
Two comorbidities (N = 4640) —— 6413.85 (-8352.55, -4475.14)
Three or more comorbidities (N = 622) —pe 120404 (-1.80404, -5441.63)
Sub-Diagnoses
K350 - Acute sppendictis with generalized peritonitis (N = 11684) 611.36 (-626.81, 1849.53)
K351 - Acute sppendictis with pertaneal abscess (N = 2481) 429.59 (-528.31, 1387.49)
K352 - Acute sppendictis with generalized peritonitis (N = 10280) 388.49 (-1746.43, 969.45)
K353 - Acute appendictis with localized peritonitis (N = 58138) 745.88 (-1916.56, 424.80)
K358 - Acute sppendictis, other and unspecfied (N = 115598) 175.08 (-1322.52, 972.37)
K359 - Acute sppendictis, unspedfied (N = 28128) 922.84 (-216.27, 2061.95)
K37 - Unspecified appendicitis (N = 35734) 207.58 (-544.92, 1140.09)
Yoor
2010711 (N = 24779) 1451.95 (-252.73, 3156.63)
2011112 (N = 25356) 261.38 (-718.83, 1241.60)
201213 (N = 25368) 359.75 (-874.53, 1504.04)
2013114 (N = 26845) 289.43 (-1847.78, 2446.64)
2014/15 (N = 26640) 188.98 (-1541.00, 1918.85)
2015/16 (N = 27345) 1052.77 (-1252.38, 3197.92)
2018/17 (N = 27463) 186.39 (-1548.72, 1171.85)
2017/18 (N = 27845) - 1505.85 (-2628.34, -363.38)
201819 (N = 28748) 1311.96 (-2441.41, -182.50)
2019720 (N = 21928) L 1430.61 (-2453.69, -407.93)
| | | |
30000 20000 10000 Q0 10000

94



Figure 4.2. (cont.) Estimated Incremental Net monetary Benefit (INB) of ES

versus NES strategies for acute appendicitis (panel A), diverticular disease (B) and

abdominal wall hernia (C)

(B): Diverticular disease

Category and Subgroup

Full samgle
ANl (N =137028)

e
<45 (N = 15850)
11324)
13812)
13844)
13483)
14108)
14448)
(N = 13015)
20-24 (N = 12733)
84+ (N = 13504)

Gender
Male (N = 56196)
Female (N = 80832)

SCARF Index

Fit (N = 71038)

Mild frailty (N = 43942)
Moderate fraity (N = 15870)
Severe frailty (N = 6020)

Charlson Index

No comorbidities (N = 82115)

Cne comorbidity (N = 39067)

Two comorbidities (N = 12526)

Three or more comorbidities (N = 3320)

Sub-Diagnoses
K572 - Diverticular disease of large intestine with parforation and abscess (N = 32207)
K573 - Diverticular disease of large intestine without perforation or abscess (N = 104821)

Year

2010/11 (N = €878)
2011/12 (N = 10858)
2012/13 (N=11473)

*

difference in
means (95% CI)

2663.98 (-4207.86, 9625.81)

-888.53 (-7640.08. 5367.02)
73.00 (-6042.82, 6301.02)
-740.48 (-9763.87. 8264.90)
2568.07 (-4350.59, 9496.72)
2673.95 (-4004.98, 9952.88)
4852.99 (-1810.15, 11118.13)
5700.93 (-885.46, 12315.43)
6260.13 (-1077.88, 14516.12)
3007.44 (-5421.57. 13418.45)
2101.04 (-7938.08, 12141.17)

3000.76 (-2045.86. 8947.38)
2420.84 (-5328.07. 10187.75)

5170.90 (683.80, 9876.00)
2649.41 (-5682.39, 10891.20)
-3058.87 (-1.8e+04, 8500.05)
-0220.77 (-2.4e+04, 5283.41)

1142.82 (-5456.78, 7742.42)
3803.70 (-3703.78, 11511.20)
8378.77 (-2163.39, 14920.83)
11683.81 (1884 44, 21503.17)

-4753.73 (-0047.36, -460.10)
4984312 (-2887.95, 12774.19)

8324.70 (3010.72. 13838.67)
5541.20 (-044.13, 12026.53)
5818.28 (83.38, 11572.20)

201314 (N = - 4286.70 (-2683.88, 11257.23)
2014/15 (N = —_— 3233.21 (-3482.10, 0948.62)
201516 (N ——— 006.22 (:
201817 (N ) . 1106.18 (-7099.10, £311.45)
2017/18 (N = 18223) —_—d— 1216.19 (-6614.77, 0047.14)
2018/10 (N = 18262) —e 518,52 (-7380.41, 8426.45)
2019120 (N = 14554) —— 45.07 (-8537.01, 8820.85)
T T T I T
30000  -20000  -10000 0 10000 20000 30000
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Figure 4.2. (cont.) Estimated Incremental Net monetary Benefit (INB) of ES
versus NES strategies for acute appendicitis (panel A), diverticular disease (B) and

abdominal wall hernia (C)

(C): Abdominal wall hernia

Category and Subgroup difference in means (95% CI)
Full sample

All (N = 104913) 118,45 (-1281.76, 1042.86)
Age

<45 (N = 19845) 576.45 (-818.82, 1971.72)
4549 (N = 7628) R 3 2089.25 (504,98, 3581.51)
50-54 (N = 8061) e 2393.56 (716.02, 4071.10)
5559 (N = 7811) 195.36 (-1620.15, 2010.87)
6064 (N =81%4) 128822 (-3354.47, 778.04)
6569 (N = 8038) £97.35 (-1396.66, 2593.36)
70-74 (N = 10167) 94.79 (-2137.57, 1847.99)
7579 (N = 10624) 1628.33 (-3857.10, 588.45)
80-84 (N = 10718) 853.61 (-3173.47, 1466.25)
84+ (N = 12831) 2193.90 (-4694.20, 306.41)
Gender

Male (N = 87815) » 753.41(-277.41, 1884.23)
Female (N = 37098) 1715.04 (-3288.77, -141.31)
SCARF Index

Fit (N = 55996) L J 2040.80 (995.62, 3085.96)
Mild frailty (N = 32268) -»> 480.91 (-989.18, 1951.02)

Moderate frailty (N = 12208)
Severe fraity (N = 4441)

Charlson Index

Na comorbidities (N = 64570)

One comorbidity (N = 29262)

Two comarbidities (N = 8825)

Three or more comarbidities (N = 2256)

Subr-Diagnases
Inguinal (N = 50261)
Femoral (N = 13280)
Usmnbilical (N = 39227)
Ventral (N = 2145)
Bilateral (N = 3290)
Obstruction (N = 46583)
Gangrene (N = 3279)

Year

2010V11 (N = 8022)
2011/12 (N = 8415)
2012/13 (N = 9649)
201314 (N = 10018)
2014/15 (N = 10118)
2015/16 (N = 10327)
2016/17 (N = 11380)
2017/18 (N = 11753)
2018/19 (N = 12948)
2019720 (N = 10285)

5631.41 (-8151.19, -3111.62)
1.70+04 (-2.10+04, -1.20+04)

442.58 (-676.24, 1561.29)
71.25(-1584.93, 1737.44)
347376 (-€028.63, -918.69)
5657.76 (-8938.07, -1177.48)

318.32 (-819.94, 1456.58)
847.59 (-3158.89, 1463.72)
329.51 (-1405.38, 746.36)
2027.77 (-3506.34, -548.19)
354.41 (-1540.39, 831.58)
367.35 (-1978.30, 1243.59)
1121.82 (-3148.33, 904.69)

2093.86 (-226.34, 4416.08)
£84.52 (-1634.52, 3003.56)
885.14 (-1627.49, 3357.76)
1534 81 (-392.48, 3462.08)
258.47 (-2169.92, 1656.97)
114.40 (-1781.20, 2010.00)
953.54 (-2640.51, 733.42)
538.71 (-2432.85, 1355.44)
400.25 (-2222.54, 1422.03)
3676.49 (-6503.22, -849.76)
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4.2.3.4 Estimated Individual-level effects of ES on costs and outcomes

Figure 4.3 reports the individual-level estimates of incremental costs and QALY for
the 3 conditions. Here, for illustration, the results are stratified by frailty level. For
those with severe frailty, the proportion of patients for whom ES is estimated to be
cost-effective is 0.0657% (appendicitis), 46.9% (diverticular disease), and 0.00%
(hernia), whereas for patients who were fit, the corresponding proportions were 59.0%

(appendicitis), 87.1% (diverticular disease), and 82.0% (hernia).

Figure 4.3. Cost-effectiveness plane of person-centered treatment (PeT) effects on
costs and QALYs for appendicitis (panel A), diverticular disease (B) and abdominal
wall hernia (C)

(A): Acute appendicitis

40000

20000

Incremental Costs

0

-20000

0
Incremental QALYs

Fit = Mild frailty
+ Moderate frailty + Severe frailty
INB=0
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Figure 4.3. (cont.) Cost-effectiveness plane of person-centered treatment (PeT)
effects on costs and QALY for appendicitis (A), diverticular disease (B) and

abdominal wall hernia (C)

(B): diverticular disease

Incremental Costs
100000 200000 300000
1

0

-100000

0
Incremental QALYs

Fit Mild frailty
+ Moderate frailty + Severe frailty
INB=0

(C): abdominal wall hernia

20000 30000
1 1

Incremental Costs
10000
1

0

T T I T T T
-4 -2 0 2 4 .6
Incremental QALYs

-10000
1

Fit Mild frailty
+ Moderate frailty + Severe frailty
INB=0

Legend Figure 3: PeT effects of ES on costs and QALY for appendicitis, diverticular disease
and abdominal wall hernia, where each data point relates to one patient in the dataset and
each colour to one band of the secondary care administrative records frailty (SCARF) index
(fit is light grey, severe frailty is black).
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4.2.4 Sensitivity analyses

The overall results were robust to alternative assumptions (see Appendix C.14),
including alternative definitions of hospital quality of care (SA1), higher (SA2) or
lower (SA3) unit costs, and the use of linear interpolation for calculating QALY
(SA4). The extension to a 5-y time horizon resulted in a negative INB for appendicitis
and diverticular disease (SA5), but the sample size was much reduced (~50%), and
the CIs surrounding the INB estimates over this extended time horizon were wide and,

like the base case, included zero.

4.2.5 Discussion

This article critically examines LIV methods for comparative effectiveness research
using EHRs in the context of a CEA. We evaluate the cost-effectiveness of ES
compared with NES alternatives for emergency admissions with common acute
conditions. The IV design exploited the wide variations in ES rates across hospitals.
The LIV method was chosen because it can address confounding and treatment effect
heterogeneity, and provide cost-effectiveness estimates for the overall population as
well as subpopulations of decision-making relevance, provided the models for the
outcome and the treatment assignment are correctly specified. For diverticular disease,
the results differed by method. Whereas the traditional approaches reported that,
overall, ES was not cost-effective, the LIV approach reported that the overall results
were highly uncertain. For appendicitis and hernia, all 3 approaches reported that the
overall cost-effectiveness results were uncertain. For all 3 conditions, the LIV approach
found heterogeneity in the cost-effectiveness estimates; in particular, ES was not cost-

effective for patients with severe levels of frailty.

This article makes 3 important contributions to the literature. First, we add to the
literature using IV methods for the evaluation of routinely provided interventions
(Basu et al., 2007; Brookhart and Schneeweiss, 2007; Davies et al., 2013; O’Malley et
al., 2011; Polsky and Basu, 2012). In the EHR context, given that data are not
collected for research purposes, finding a valid IV is especially challenging. This article
exemplifies the use of EHRs to substantiate and assess the underlying assumptions of
an IV design. For example, to address potential violations of the exclusion restriction,
we examined whether the hospital’s TTO could minimize imbalances in measured
covariates with balance plots and used “internal” (i.e., EHR data) and “external” (i.e.,
NELA (NELA, 2016, 2017, 2018) information to adjust for the quality of acute care,

and improve the plausibility of the exclusion restriction.
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Second, this article constitutes a novel application of LIV to a CEA that uses EHR
data. We show how EHRs can offer large sample sizes, enabling a CEA to provide
precise cost-effectiveness results at the subgroup level, and to reflect the range of
patients presenting in routine practice. This article also highlights major challenges of
using EHR data for CEA, namely, unmeasured confounding and treatment effect
heterogeneity. Although both IV methods considered rely on parametric assumptions
and the validity of IV assumptions to address confounding, 2SRI can also fail to
identify the ATE in the presence of essential heterogeneity (Chapman and Brooks,
2016; Evans and Basu, 2011). Hence, one interpretation of the differences between the
estimates from 2SRI and LIV for patients with diverticular disease is that the
estimated effects may differ between marginal patients and the overall population
(Chapman and Brooks, 2016). For patients with diverticular disease, patients may
well have been selected to receive ES according to measures that were not available
in these EHR data, such as the severity of the disease, and so the 2SRI approach may
have failed to validly identify the ATE.

Third, this article contributes to the limited previous literature evaluating the cost-
effectiveness of ES for these common acute conditions. Some previous studies have
also suggested that NES strategies can result in similar outcomes and costs for patients
with appendicitis (Flum et al., 2020; Javanmard-Emamghissi et al., 2021; Sippola et
al., 2020), whereas others have found NES to be more cost-effective than ES (O’Leary
et al., 2021). Published RCTs evaluating ES strategies for acute diverticular disease
have failed to recruit sufficiently large populations to explore heterogeneity across
population subgroups (Thornell et al., 2016), and are nonexistent for acute hernia.
Unlike previous studies (Azhar et al., 2021; Fitzgibbons et al., 2006; Flum et al., 2020;
Javanmard-Emamghissi et al., 2021; O’'Dwyer et al., 2006; O’Leary et al., 2021; Patel
et al., 2020; Salminen et al., 2015; Stroupe et al., 2006; Thornell et al., 2016; Van De
Wall et al., 2010; You et al., 2018), the ESORT study included large sample sizes
(>100,000 for each condition) and subgroups (e.g., those with severe frailty) excluded
from RCTs. These results can help decision makers identify subgroups for whom NES
strategies are relatively cost-effective (e.g., patients with severe frailty), those for
whom ES is more cost-effective (e.g., “fit” patients), and those for whom there is
residual uncertainty and for whom further research may be most valuable (Basu and

Meltzer, 2007; Espinoza et al., 2014).

This study has several strengths. First, the study extended a previously validated IV
approach, by using large-scale EHR data (Keele et al., 2018). Second, the HES data,

while having common features of EHR data (notably the potential for confounding
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and heterogeneity), were of generally high quality with baseline covariates, all-cause
mortality, and resource use data available for ~95% of patients. Third, the study
considered 3 different conditions for which it was anticipated there would be

heterogeneous treatment effects according to patient subgroups.

While we address some of the challenges of using EHRs for CEA, others remain. First,
HRQoL data were not available from HES and had to be obtained from the literature.
Granular baseline measures of disease severity (e.g., size of abscess) were not available
to provide more nuanced subgroup definitions. Second, it is possible that coding errors
within the HES data were incorporated into the estimates of cost and cost-
effectiveness, although previous research found that costs estimated from HES data
were very similar to those derived from medical records (Thorn et al., 2016). Third,
in common with any approach to address confounding, the implementation of the LIV
methods made assumptions, in particular, that the relationships of the covariates and
the IV, with both the treatment receipt and the outcomes, were correctly specified.
Here, more flexible data-adaptive approaches may be helpful, although they have not
yet been extended to this context. A further consideration is that subgroup analyses
presented here represent the average estimated effect for individuals within the group
rather than the causal effect of group membership per se. While the subgroups used
here were prespecified within a statistical analysis plan, in other contexts spurious

subgroup effects may be obtained by “P-hacking.”

This article identifies areas for future research. First, future research could build on
this work by incorporating data-adaptive methods such as generalized random forests
or lasso into the LIV estimation, or by using methods such as causal rule ensembles
for exploring heterogeneity (Lee et al., 2020), while recognizing interactions among
prognostic variables. Second, the methods used in this study could be extended to
chronic diseases by considering other preference-based instruments (e.g., tendency to
prescribe), or multiple IV such as genetic markers, which will raise new issues for the
LIV approach. Finally, our results can be used to target future trials. For instance,
for patients with abdominal wall hernia, there appears to be equipoise about the choice
of strategy (~50% in each comparison group). A future trial could collect granular
information on patient subgroups, longitudinal HRQoL measures, and be nested
within the EHR data to help ensure the results are directly applicable to clinical

decision making.
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Chapter 5. How does a local Instrumental Variable
Method perform across settings with instruments of
differing strengths? A simulation study and an

evaluation of emergency surgery

5.1 Preamble to research paper 3

In this chapter, I present a simulation study evaluating the performance of the LIV
methodology according to varying levels of IV strength grounded in motivating
examples from the ESORT study. This paper follows naturally from research paper 2
(Chapter 4), which raised hypotheses about the requirements for LIV in terms of IV
strength. This previous paper helped defined the scenarios of interest in the simulation
study, in particular, according to different sample sizes and forms of treatment effect

heterogeneity.

As discussed in Chapter 4, while LIV has the potential to inform estimates of policy-
relevant parameters when applied to RWD, like any other IV method, it relies on
assumptions. In particular, the relevance assumption, relates to the strength of the
instrument. If the instrument is not sufficiently strong, that is the correlation of the
IV with treatment assignment is insufficient, then, conventional IV approaches do not

provide unbiased, statistically efficient estimates of treatment effects.

There is an extensive literature studying the implications of weak IVs for inference.
Current practice relies on a rule of thumb, in that to be judged sufficiently strong, the
first stage F statistic should exceed a threshold of 10 (Staiger and Stock 1997).
However, Lee et al. (2021) showed that 2SLS can have low power at conventional
levels of the F statistic and suggested that in order to reduce size distortions of the t-
ratio to zero, the first-stage F statistic needs to be much larger. Other recent papers
evaluating the finite sample properties of IV methods at have been recently published
(Keane and Neal 2021; Angrist and Kolesar 2021; Andrews et al. 2019).

However, no studies have evaluated the requirements in terms of IV strength for LIV
methods. While Basu (2014) demonstrated the finite-sample properties of LIV, this
paper did not consider scenarios with IVs of moderate strength, or whether the
requirements for instrument strength differ according to sample size, or form of

treatment effect heterogeneity that is present.
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Research paper 3 helps to address this gap in the literature in designing a Monte Carlo
simulation to test the performance of LIV in settings with different levels of IV
strength. I report performance according bias and statistical efficiency, and contrast
LIV against 2SLS over scenarios in which the IV strength, sample size and form of
heterogeneity is varied. The findings can inform guidance about the design of future
IV studies.

My role involved: reviewing the relevant literatures and, I designed and conducted the
simulation study and analysed the case study together with my supervisor SON. I led
the interpretation of the main findings. I wrote the first draft version of the
manuscript, and incorporated comments from co-authors, SON, AB and RG, into the

manuscript.
The analysis received ethical approval from the LSHTM Ethics Committee (ID:21776)

The paper was accepted for presentation at the 29th European Workshop on
econometrics and health economics, which was held in September 2022, and has been
published at Health Econometrics and Data Group (HEDG) database as a working
paper. Following this, the paper is currently being considered for publication in Health

Economics.
The full reference to the working paper is:

Moler-Zapata, Silvia, Richard Grieve, Anirban Basu, and Stephen O’Neill. 2022. “How
Does a Local Instrumental Variable Method Perform across Settings with Instruments
of Differing Strengths? A Simulation Study and an Evaluation of Emergency Surgery.”
22/18. Health, FEconometrics and Data Group (HEDG) Working Papers.
https://ideas.repec.org/p/yor/hectdg/22-18. html.
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Abstract

Local instrumental variable (LIV) approaches use continuous/multi-valued
instrumental variables (IV) to generate consistent estimates of average treatment
effects (ATEs) and Conditional Average Treatment Effects (CATEs). However, there
is little evidence on how LIV approaches perform with different sample sizes or
according to the strength of the IV (as measured by the first-stage F-statistic). We
examined the performance of an LIV approach and a two-stage least squares (2SLS)
approach in settings with different sample sizes and IV strengths, and considered the

implications for practice.

Our simulation study considered three sample sizes (n = 5000, 10000, 50000), six levels of
IV strength (F-statistic = 10, 25, 50, 100, 500, 1000) under four ‘heterogeneity’ scenarios:
effect homogeneity, overt heterogeneity (over measured covariates), essential heterogeneity
(over unmeasured covariates), and overt and essential heterogeneity combined. Compared
to 2SLS, the LIV approach provided estimates for ATE and CATE with lower levels of
bias and RMSE; irrespective of the sample size or IV strength. With smaller sample sizes,
both approaches required IVs with greater strength to ensure low (<5%) levels of bias. In
the presence of overt and/or essential heterogeneity, the LIV approach reported estimates
with low bias even when the sample size was smaller (n = 5000), provided that the

instrument was moderately strong (F-statistic greater than 50, for the ATE estimand).

We considered both methods in evaluating emergency surgery across three different acute
conditions with IVs of differing strengths (F-statistic ranging from 100 to 9000), and
sample sizes (100000 to 300000). We found that 2SLS did not detect significant differences
in effectiveness across subgroups, even with subgroup by treatment interactions included
in the model. The LIV approach found there were substantive differences in the
effectiveness of emergency surgery according to subgroups; for each of the three acute

conditions, frail patients had worse outcomes following emergency surgery.

These findings indicate that when a continuous IV of a moderate strength is available,
LIV approaches are better suited than 2SLS to estimate policy-relevant treatment effect

parameters.
Keywords

Instrumental Variables, Instrument Strength, Tendency to Operate, Emergency Surgery.
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5.2.1 Introduction

The personalisation of treatment choice can be informed by comparative effectiveness
research that exploits the widespread availability of electronic health records (EHRs),
but requires methods that address confounding and heterogeneity. For conventional
linear Instrumental Variable (IV) methods, such as two-stage least squares (2SLS) to
identify policy-relevant estimands such as the Average Treatment Effect (ATE) or
Conditional Average Treatment Effects (CATEs), it is required that there is no
essential heterogeneity (Heckman et al., 2006). Essential heterogeneity arises when
treatment effects differ over levels of unmeasured confounders, in which case 2SLS no
longer identifies the ATE, even if the instrument is strong and valid (Heckman et al.,
2006). Essential heterogeneity, is a major concern in health care, as it is commonly
the case that there are biological correlations between risk factors, some of which

remain unobserved to the analyst.

In the presence of essential heterogeneity, Local Instrumental Variable (LIV)
approaches can provide consistent estimates of the ATE and CATEs (Heckman and
Vytlacil, 2005). LIV methods draw on theory about individual’s choices to identify
‘marginal treatment effects’ (MTEs) for individuals at the ‘margin of treatment choice’
(Bjorklund and Moffitt, 1983; Heckman and Vytlacil, 1999). These MTEs are
identified for individuals for whom the level of the IV is such that observed
characteristics ~encouraging treatment (including the IV) and unobserved
characteristics discouraging treatment are balanced, so there is equipoise about the
treatment decision. Here, a small change (or nudge) in the level of a valid, continuous
IV ‘tips the balance’ for the treatment decision for these marginal patients, without
changing the distribution of the underlying risk factors. Therefore, comparing mean
outcomes between two groups of patients only separated by a small change in the IV,
identifies MTEs for individuals who comply with the change in treatment, due to that
small change in the IV. A continuous instrument with sufficient support allows all
individuals to be defined as ‘compliers’” at some level of the IV (Heckman and Vytlacil,
1999). Hence, given observed covariates, MTEs can be estimated along the continuum
of the IV, and aggregated to provide CATEs and ATEs (Heckman and Vytlacil, 1999,
2001, 2005)

The theoretical properties of these LIV methods in settings with essential
heterogeneity have been discussed by Heckman et al. (2006), Basu et al. (2007) and
Angrist and Fernandez-Val (2011). However, most simulation studies of IV methods

only consider treatment effects that are homogeneous, or heterogenous according to
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measured factors (overt heterogeneity) (Martinez-Camblor et al., 2019; Terza, Basu,
et al., 2008; Terza, Bradford, et al., 2008). Studies that have considered essential
heterogeneity, have found that 2SLS provides inconsistent estimates of the ATE
(Basu, Coe, et al., 2018; Brooks et al., 2018; Chapman and Brooks, 2016), whereas
Basu (2014) reports that a LIV method could provide consistent estimates of the ATE
and CATE in finite samples. LIV methods have now been applied across a multitude
of settings including cardiovascular and bariatric surgery, universal child care
programs and transfers to intensive care units (Basu, Jones, et al., 2018; Cornelissen
et al., 2018; Grieve et al., 2019; Reynolds et al., 2021).

A major barrier to wider use of IV approaches in general is that if the instrument is
only weakly associated with treatment assignment, then IV estimators can provide
very biased and imprecise estimates (Bound et al., 1995; Nelson and Startz, 1990;
Stock et al., 2002). Weak IVs can also amplify the bias arising due to violations of the
other assumptions (Bound et al., 1995; Small and Rosenbaum, 2008). While current
practice tends to rely on the first-stage F-statistic exceeding the value of 10, (Staiger
and Stock, 1997) recent developments in the weak identification literature for IV
models have revealed the shortcomings of an unequivocal decision rule for assessing
weak identification (Andrews et al., 2019; Angrist and Kolesér, 2021; Keane and Neal,
2021; Lee et al., 2021; Moffitt and Zahn, 2022). For LIV to provide consistent, precise
estimates of ATE or CATEs, requires a strong continuous/multi-valued IV with
sufficient support to ensure that there is a level of the IV at which each unit ‘complies’
(i.e., is selected into treatment according to the level of the IV). However, no study
has assessed the levels of IV strength that are required for an LIV estimator to perform
well, nor how performance may differ according to the sample size available, in settings

with essential heterogeneity.

This paper addresses this gap in the literature by contrasting LIV with the commonly
used 2SLS estimator in Monte Carlo simulations, motivated by a case study which
highlights typical issues pertaining to heterogeneity, sample size and IV strength. We
simulate four scenarios: two of them under restrictive assumptions about heterogeneity
(A: homogeneity; B: overt heterogeneity), one where treatment effects are allowed to
be heterogenous according to an unmeasured confounder (C: essential heterogeneity),
and one where both forms of heterogeneity are present (D: overt and essential

heterogeneity). Across all scenarios, ATE and CATE are the parameters of interest.

This paper is structured as follows. In section 5.2.2, we outline the motivating

example. In section 5.2.3, we define the estimands and identification assumptions for
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2SLS and LIV, and present the methods for the simulation study. In section 5.2.4, we
present the results of the simulation study and the case study. In section 5.2.5, we

discuss how this study adds to the literature and the implications for further research.

5.2.2 Motivating example: the ESORT study

The ESORT (Emergency Surgery OR noT) study evaluated the effectiveness of
emergency surgery for acute gastrointestinal conditions. The primary outcome of the
study was the number of ‘days alive and out of hospital’ (DAOH) at 90-days (see
Hutchings et al. (2022) for details), which encompasses mortality and total length of
hospital stay (LOS). The study exemplifies the key issues that arise when applying IV
methods to EHR data to provide policy-relevant estimates of comparative effectiveness
(ESORT Study Group, 2020; Hutchings et al., 2021, 2022). Patients presented as
emergency admissions and were selected for either emergency surgery (ES), or
alternative interventions such as medical management or delayed surgery, according
to unmeasured characteristics such as the severity of the disease, and hence

unmeasured confounding and essential heterogeneity were major concerns.

The ESORT study followed Keele et al. (2018) and developed a continuous preference-
based IV for ES receipt to evaluate the effectiveness of ES for three acute
gastrointestinal conditions: acute appendicitis, gallstone disease and abdominal wall
hernia, using routine hospitalisation data from the hospital episode statistics (HES)
inpatient database in England. The IV was the hospital’s tendency to operate (TTO),
a proxy measure of the hospital’s latent preference for ES, defined as the proportion
of eligible emergency admissions in each of 174 hospitals who had ES in the year
preceding each admission. Given a relevant IV, two main assumptions need to hold:
(i) conditional on the variables included in the models, the hospital’s TTO was not
correlated with the patient’s outcome except through treatment assignment, (ii) it
does not increase the probability of treatment for an individual at some value of the
IV, but decrease it for higher values. The study design had some important features
to support this assumption. First, in this emergency setting patients were unlikely to
select the hospital according to quality of care. Second, the study only included direct
admissions to hospital, so there was no scope to transfer the patient according to
physician or patient choice. Third, information was collated on a rich set of proxies
for the hospital’s quality of acute care, including rates of mortality and emergency
admissions in previous years, which were included in the models as fixed effects.
Fourth, observed covariates, were balanced across all levels of the TTO, which helped

support the requisite assumption that the IV also balanced unmeasured confounders

119



(Hutchings et al., 2022; Moler-Zapata et al., 2022). The requisite assumption that the
IV has a monotonic effect on treatment receipt could not be formally tested on the
data. However, it was deemed plausible in this setting, as it seems unlikely that there
are patients who would receive emergency surgery when admitted to hospitals with

low TTO but receive NES when admitted into a hospital with high TTO.

The ESORT study highlighted several outstanding concerns pertaining to IV methods
in general, and LIV approach in particular. While the study reported estimates of the
ATE, from the outset, there was policy interest in estimating the CATEs, according
to baseline covariates including age, number of comorbidities, and levels of frailty.
While the sample sizes for each condition, were relatively large, they also differed
across conditions, from 268,144 (appendicitis) and 240,977 (gallstone disease), to
106,432 (hernia) patients. There were also differences in the strength of the IV with
F-statistics ranging from 141 (acute appendicitis), 739 (hernia) to 9,053 (gallstone
disease). Hence, the ESORT study further motivated the interest in what strength of
continuous IV was required to provide unbiased, efficient estimates of policy relevant
estimands such as CATEs in settings with essential heterogeneity, and according to

different sample sizes.

5.2.3 Methods

5.2.3.1 Instrumental variables methods

Throughout we use the Neyman-Rubin potential outcomes framework (Neyman, 1990;
Rubin, 1974). Let Y, denote the observed outcome, D, denote the treatment received,
and Z denote the instrumental variable, such that we observe (Yp, Dz, Z) for each
individual. For each patient, let Y; = y; (Xp, Xy, 9) and Y, = puo(Xp, Xy, 9) denote the
potential outcomes, where X, is the vector of observed covariates, X is a vector of
unmeasured confounders, and ¥ captures all the remaining unobserved random
variables. Throughout, we assume exogeneity of the covariates (Al), so that the
treatment assignment is the only source of endogeneity, such that (Xy,Xy) L9 and
Xo L Xy.

5.2.3.2 Identification assumptions

Angrist et al. (1993) defined a series of structural assumptions for the identification
of the LATE. Here, following Abadie (2003) and Tan (2006) we make the following
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assumptions which are the conditional version of the assumptions outlined by Angrist
et al. (1993):

(A2) Unconfoundedness of Z (Ya,, D) L Z|Xo

(A3)  Exclusion restriction Yq, = Y4 with probability 1

(A4) Relevance 0<P(Z=2)<1

(A5) Monotonicity If z' > z then D,, = D, with probability 1
(A6) Stable Unit Treatment

D=D;and Y =Y,
Value Assumption z b

Assumption (A2) requires that Z is as good as randomly assigned within levels of Xj,.
Assumption (A3) rules out the possibility that Z has a direct effect on the outcome
other than through D,. Assumptions (A2) and (A3) ensure that the only effect of the
Z on the outcome is through D,. This is sometimes called the independence
assumption. Assumption (A4) ensures that Z and D, are correlated conditional on Xj,.
Assumption (A5) requires that an increase in Z always results in a higher or equal
level of treatment assignment. Assumption (A6) requires that one individual’s
potential outcomes (Yp) and treatments (D,) are not influenced by other individuals’
levels of Z (i.e., no interference), nor by how the instrument or treatment is delivered

(i.e., no different versions of Z or D,).

5.2.3.8 Estimands

Imbens and Angrist (1994) and Angrist et al. (1993) show that, under the assumptions
outlined above, the LATE can be defined as AMTE (x,,z,z") = E[Y; — Yo|Xo = x,, D, <
D,,] and is identified by the IV estimand:.

E[Y|Xy =x,, Z =2]—-E[Y|Xy = x,, Z = 2]
E[D|Xp = xo, Z =2'| — E[D|Xo = x,, Z = 2]

Vytlacil (2002) and Tan (2006) showed that the independence (A2 and A3) and
monotonicity assumptions (A5) of the LATE framework are equivalent to those
imposed by a non-parametric selection model, where treatment assignment depends

on whether a latent index (up(Xp,Z)) crosses a particular threshold (Xy,):

D, = Hup(Xo,Z) = Xy, }

where X; is a random variable that captures X, and all other factors influencing
treatment assignment but not the outcomes. As in Heckman and Vytlacil (1999, 2001)
we can rewrite this equation as D,=1{P(X,,Z) >V}, where V = FXUD [Xu,|Xo =
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Xo,Z = z] with V L (Z,X,) and P(xp,2) = FXUD‘xO,Z[uD(XO,Z)] is the propensity for
treatment, and F represents a cumulative distribution function. Therefore, for any
arbitrary distribution of X;;  conditional on X, and Z, by definition V~Uniform[0,1]
conditional on X, and Z. Then, the MTE can be defined as, AMTE(x,,p) = E(Y; —
YolXo = x9,V = v) and Heckman and Vytlacil (1999, 2001) showed that, under the

standard IV assumptions, it can be identified by:

0Ey(Y|Xp =x,,Z = 2)
o = Eg[(11 = Yo)|Xo = %o,V = V]

MTEs can be aggregated directly to obtain estimates of the ATE as shown in Heckman
et al. (2006). Basu (2014) showed that MTEs can be used to derive personalised
treatment (PeT) effects for each individual that take into account the plausible range
of values that V may take for each patient, in addition to their observed covariates,
IV and actual treatment assignment (see Section 5.2.3.2) (Basu, 2014). The rationale
for this approach is that the treatment assignment status provides some information
on Xy,. For patients in the treatment group (D, = 1), the propensity to choose
treatment based on X, and Z must outweigh the propensity to choose the comparator
strategy based on Xy, i.e., P(xp,z) > v. For patients in the comparator strategy
(D, = 0), the opposite is true. The PeT effect for an individual is obtained by
averaging the MTEs corresponding to that individual’s level of X, and Z over those
values of unobserved variables that are compatible with that patient’s treatment
assignment. Hence, AP¢T (xo,p,D) = E(Y; — Y|Xo = x0,P(2,x) > v) for individuals
with D, =1 and AP¢T(x,,p,D) = E(Y; — Yy|Xo = X0, P(2,x0) < v) for individuals
with D, = 0.

All of the treatment effect estimands, including ATE and CATEs, can be derived by
appropriately aggregating the PeT effects since these are defined at the individual

level (see section 5.2.3.4)

5.2.8.4 Estimation methods
5.2.3.4.1 Two-stage Least Squares estimator

2SLS is a common approach to the implementation of IV methods that consistently
estimates the ATE parameter under homogeneity, or the LATE parameter under
essential heterogeneity given a binary IV. Under assumptions (A1)-(A6), the 2SLS
(Wald) estimator involves: (i) estimating E[Dy|Xo, Z] by regressing D, on X, and Z,
and (ii) estimating E[Yp|D,, Xy, Z] by regressing on X, and E[D;|Xy,Z]. When the
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instrument is continuous, 2SLS reports a weighted average of LATEs, which requires

careful interpretation (Baiocchi et al., 2014).

5.2.83.5 Local Instrumental Variables estimator: estimating PeT effects

Basu (2014, 2015) describe in detail the series of steps required to estimate PeT effects
using the LIV methodology. Briefly, D, is regressed on Z and X,, as above, using
appropriate methods for binary outcomes and the propensity for treatment p(x,, z) is
estimated. Next, Y is regressed on X, and a function of p(x,, z) including interactions
with X,. The approach outlined in Basu (2014) involves differentiating the outcome
model g(Y) by p(xp,z). Next, PeT effects for each individual can be obtained by
performing numerical integration, with MTE (0g(Y)/0p) evaluated by replacing
p using 1,000 random draws of u~unif (min(p(xp,z)), max(p(xg,z))). Then, D* =
D Hp(xp,2)} + P 1(1 —u) can be computed. PeT effects can be computed by
averaging 0gG(Y)/dp over values of u for which D* > 0 if D = 1; or over values of
D* <0 if D = 0. Finally, averaging PeT effects over all of the observations provides
an estimate of the ATE for the population, and over strata of X, gives the CATE for
the subpopulation of interest. Standard errors can be computed using bootstrap
methods (Basu, 2015). We now consider the design of the simulation study to contrast

the relative performance of the LIV and 2SLS approaches.

5.2.4 Simulation study

Motivated by the gaps in the extant literature, and the motivating example, this
simulation study was designed to consider the relative performance of 2SLS and LIV
approaches across settings that differed with respect to the form of heterogeneity, the
sample size and the strength of the IV. We report the performance of the methods in
a Monte Carlo Simulation study according to their mean bias (%) and Root Mean
Squared Error (RMSE) for each estimand (ATE and CATE).

5.2.4.1 Data Generating process

We create 5,000 datasets each containing N= {5000, 10000, 50000} units, of which
50% are assigned to the treated group. The data generating process (DGP) includes
one observed (X,) and one unmeasured (Xy) covariate. We draw Xy, Xy and the
instrument, Z from normal distributions with mean 0, and standard deviation 3. Three
subgroups of interest are defined by whether the individuals’ values for X, are more

than 0.5 standard deviations below or above its mean.
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5.2.4.1.1 Treatment model

The treatment assignment is determined by the latent variable D*, defined as:
D* = 6D + 3X0 - 3XU + SZZ + (4‘ - 62)ED

where €p has a normal distribution with mean 0 and standard deviation, 1. Treatment
is then determined as D = 1if D* > 0 and D = 0 otherwise. The parameters §; and
8p are chosen to ensure the IV F-statistic, Fj,, equals the desired level Frgpger =
{10,25,50,100,500,1000} on average, with,
Fry = (N_dfm_l)*w
O

where ¢2,,, and ¢ indicate the residual variance from regressing D on X, with or
without including the IV respectively, and df,,, is the number of parameters in the
model excluding the IV (i.e., df,, = 2 here). For a given F-statistic, a larger sample
size implies a lower compliance rate, which in turn will imply a weaker instrument.
At low compliance rates, the MSE of IV estimates can increase substantially (Little
et al., 2009). We estimate the compliance rate for each sample size and F-statistic, by

contrasting treatment uptake at the 1°* and 99" percentiles of the IV.

5.2.4.1.2 Outcome model

The outcome models under treatments (¥;) and control (Y,) can be written as:

Yo = Bo + B1Xo + B2 Xy + €y,
Y1 = (Bo +70) + (B1 +11)Xp + (B2 + 12)Xy + €y,

Implying the treatment effect is Tt = E(Y; —Yy) = 1y + 1,Xp + 7, Xy. Specifically, we

define the outcome under control as follows:
Y, = —10 — 10X, + 10X, + N(0,1)

We consider 4 scenarios for the outcome under treatment, ¥;. In Scenario A, effects
are homogeneous (T = 50). In Scenario B, effects are heterogeneous but depend only
on observed confounders (overt heterogeneity) (t = 40 + 20X,). In Scenario C, Xy
influences both the treatment assignment and the gains from treatment (t =40 +
20Xy). In this Scenario, there is essential heterogeneity but no overt effect
heterogeneity. Finally in Scenario D there is both overt and essential heterogeneity

(t =204+ 20X, +20Xy). Table 5.1 displays the parameter values for each scenario.
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The parameter combinations of interest consist of combinations of n =
{5000,10000,50000} and Fr... = {10,25,50,100,500,1000}. For each parameter
combination for each scenario, we create 5000 datasets using the DGP described above

and estimate the treatment effects as described below.

Table 5.1. Definition of the simulation scenarios

Sample size F-statistic To T1 T2
Scenario A:
50 0 0
Homogeneity

Scenario B: Overt All sample sizes All F-statistic 40 20 0

heterogeneity (n= values (F'rorger =
Scenario C: Essential {5000,10000, {10, 25,50, 10 0 50

heterogeneity 50000}) 100,500,1000})
Scenario D: Overt and 90 90 90

essential heterogeneity

5.2.4.2 Implementation of methods

For the 2SLS model, we control for X, and instrument D by Z. To capture
heterogeneity, we also include an interaction between X, with D, and instrument this
with interactions of Zand X,. To obtain effect estimates, we use the recycled
predictions approach, whereby the two potential outcomes (Y, and Y;) are predicted
from the second stage model after setting D = 0 or D = 1 and the interaction X,*D =
0 or X, (Basu and Rathouz, 2005; Stata Corp Lp, 2001). The individual level effect is
then estimated as T = Y; — Yy, allowing us to calculate the ATE, and CATEs for the
three subgroups (CATE,, CATE,, and CATEs).

For the LIV approach, we first estimate the propensity for treatment conditional on
Xpand Z, and in the second stage outcome model we include X,, D, the estimated
propensity score (p), p*X, and p 2. (Heckman and Vytlacil, 2005). We then estimate
PeT effects for each individual as described in Basu (2015) using the petiv command
in Stata. The estimated PeT effects are then aggregated to obtain estimates of the
ATE, CATE, CATE, and CATE; Before applying either method, we remove
observations at those levels of the estimated propensity score where there is

insufficient overlap (Basu, 2015).
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5.2.5 Results

5.2.5.1 Simulation study

Figures 1-4 present mean (%) bias in the ATE and CATE estimates (Figure 5.1 and
Figure 5.2, respectively) and the corresponding plots for RMSE (Figure 5.3 and Figure
5.4, respectively). The results for the three subgroups showed similar patterns, and

hence, for brevity, we only report the results for one of them.

In settings with homogenous treatment effects, or with overt heterogeneity, both
approaches reported relatively low levels of bias (<5%) in the ATE estimates, apart
from 2SLS, which reported moderate levels of bias (5-10%) in settings with F-statistics
below 100 or a smaller sample size (n = 5000) (Figure 1). In settings with essential
heterogeneity, 2SLS reports relatively high (>10%) levels of mean bias across
practically all combinations of IV strength and sample size. The mean (%) bias is
quite variable with respect to the target F-statistic (Figure 5.1). Inspection of the
distribution of percentage bias across the 5,000 simulations (not shown) suggests this
is due to the fact that the tails of the distribution are fat, particularly at lower values
of F. At very high (>100) levels of the target F, the mean and mean % bias are similar
however this is not the case at lower levels. LIV estimator reports low levels of bias
in ATE estimates across all scenarios aside from those with both a smaller sample size
(n = 5000) and a F-statistic of 10 or 25 (Figure 5.1). The distribution of bias across
simulation runs (not shown) has thinner tails for the LIV method than seen for 2SLS,

hence the mean bias is less volatile here.

The bias plots for the CATE estimates have a somewhat similar pattern, although for
this estimand the 2SLS estimator reports high levels of mean bias even in settings
with overt heterogeneity, unless the sample size is relatively large (n = 50000) and/or
the F-statistic is above 100 (Figure 2). The LIV estimator reports lower levels of bias

than 2SLS across the majority of scenarios.

In general, for both methods, across most scenarios, for a given sample size, the levels
of mean (%) bias decrease at higher levels of the F-statistic (Figure 5.2). The RMSE
in the estimates of the ATE are substantially lower for the LIV than the 2SLS
estimator, except for those settings with an F-statistic of 500 or 1000 (Figure 5.3). For
the CATE, in general, the RMSE estimates mirror the bias results, in that they are
substantially lower across all settings for LIV (Figure 5.4).
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Figure 5.1. Bias plot for Average Treatment Effect (ATE) estimates across scenarios, with sample sizes of 5000 (left), 10000 (middle) and
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Figure 5.1. (cont.) Bias plot for Average Treatment Effect (ATE) estimates across scenarios, with sample sizes of 5000 (left), 10000
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Figure 5.2. Bias plot for Conditional Average Treatment Effect (CATE) estimates across scenarios, with sample sizes of 5000 (left), 10000
(middle) and 50000 (right).

Scenario 1: effect homogeneity

Estimator Estimator Estimator
and Target and Target and Target
F-statistic Mean % Bias (95% F-statistic Mean % Bias (95%  F-statistic Mean % Bias (95% CI)
2SLS 28LS 28LS
F=10 —— -96.8 (-190.8, -2.8) F=10 - 77.3(-35.1,189.6) F=10 2.4 (-76.7,71.8)
F=25 85.0 (-27.4, 197.4) F=25 — -29.4 (-82.4, 23.7) F=25 -14.9 (-43.2, 13.5)
F=50 91.6 (-57.8, 241.0) F =50 e 3.5(-245,31.4) F =50 0.8 (-15.1, 16.6)
F =100 46.6 (7.1, 86.1) F =100 - -10.2 (-50.5,30.1)  F =100 4.7 (0.0, 9.4)
F =500 > 0.1 (-1.5, 1.6) F =500 * 0.0(-1.1,1.1) F =500 0.5 (-0.0, 1.0)
F=1000 4 0.7 (0.2, 1.2) F =1000 * 0.3 (-0.2,0.8) F = 1000 0.3(-0.1,0.7)
Liv Liv uv
F=10 4 -2.2(-2.8,-1.6) F=10 * -0.9 (-1.3, -0.5) F=10 -0.2 (-0.4,-0.1)
F=25 4 -1.9(-2.4,-1.3) F=25 4 -1.0 (-1.4, -0.6) F=25 -0.1 (-0.3, 0.1)
F=50 4 3,-0.3) F =50 4 0.8 (-1.2, -0.4) F=50 -0.1(-0.3,0.1)
F=100 * F=100 * -0.2 (-0.6, 0.1) F =100 -0.2 (-0.3, -0.0)
F =500 4 F =500 * 0.2 (0.0,0.4) F =500 -0.0 (-0.2,0.1)
F =1000 * F =1000 * 0.0(-0.1,0.2) F = 1000 0.1(-0.0,0.2)
T T T T T T T
6500 0 500 500 o 500 500 [] 800
Scenario 2: overt heterogeneity

Examator Extimuior Estirunior

ard Terget and Target and Target

F.atalate Mewn % S (5% F-statatc Mo % Sas (35% F-slatalc Meun % Blas (35% CO

2515 2518 2515

F=10 e — 1949 3.0, 3860 F=10 e ——— 1438 (831, 758 F=10 s 3311313, 137.3)

Fuih — 1634 (0681 402 Fuit > €00 (403, 1607} F=ib e (241, M3)

oy —————————— S1710 (45T 115 F=%0 g AT |04 4T9) F=% + 1.8 (303 28 8

Feidd —— FA6 (TR 124 Fei o 184659, 829) F=i) < 23 167.01)

Foo0 * 10123, 43 F =500 + 0.7 14,23 F =00 + 2%1.800)

F = 1000 ‘ Q4115807 F = 1000 4 o3 fer13) F=1000 A 24 11,02

w L L

F=10 b TT 90, 64| F=10 4 A5 (42, 28 F=10 * L3 07,.-00)

Fod 4 20192, 47 Fzis 4 3947, 20| Feas + 28|09, -03)

Fwb) L F211103. 400 F=E0 b 414533 F =0 * 96905,03)

Fuild 4 £1199,-79) F=i0) 4 44151,97) F =100 4 Q610,03

F ot 4 42|48 28 F =500 4 38 |40, 30 F =500 4 -1041.3,0.7)

F=1000 4 3.3 |28, 24} F=1000 * 26120, 22 F=1000 ‘ REIRE R

1] 1 L 1] T L]
-0 ° - -0 . e -0 ¢ tok

129



Figure 4.2. (cont.) Bias plot for Conditional Average Treatment Effect (CATE) estimates across scenarios, with sample sizes of 5000

(left), 10000 (middle) and 50000 (right)
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Figure 5.3. Root Mean Squared Error plots for Average Treatment Effect (ATE)

estimates from 2SLS (dashed line) and LIV (solid line) across the scenarios

Scenario 1: effect homogeneity
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Figure 5.3. (cont.) Bias plot for Conditional Average Treatment Effect (CATE)

estimates across scenarios, with sample sizes of 5000 (left), 10000 (middle) and

50000 (right)

Scenario 3: essential heterogeneity
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Figure 5.4. Root Mean Squared Error plots for Conditional Average Treatment
Effect (CATE) estimates from 2SLS (dashed line) and LIV (solid line) across the

scenarios

Scenario 1: effect homogeneity
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Figure 5.4. (cont.). Root Mean Squared Error plots for Conditional Average
Treatment Effect (CATE) estimates from 2SLS (dashed line) and LIV (solid line)

across the scenarios

Scenario 3: essential heterogeneity
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Compliance rates for a given F-statistic were sensitive to the sample size available.
For a sample size of 5000, increasing the F-statistic from 10 to 1000 increases the
compliance rate from 8% to 73%, while for a sample size of 50000, the compliance rate
only increases from 3% to 29% (Table 5.2).

Table 5.2. Compliance rate by sample size (N) and F-statistic

F-statistic N = 5000 N = 10000 N = 50000
10 8% 6% 3%
25 13% 9% 5%
50 18% 13% 6%
100 26% 20% 9%
500 56% 42% 21%
1000 73% 57% 29%

5.2.5.2 Case study

5.2.5.2.1 Case study: implementation of 2SLS and LIV approaches

LIV estimated PeT effects of ES versus NES on DAOH at 90 days, for each individual
allowing for treatment effect heterogeneity and confounding (Angrist and Kolesér,
2021; ESORT Study Group, 2020; Hutchings et al., 2022; Moffitt and Zahn, 2022).
These PeT effects were aggregated to report the effects of ES overall, and for each
pre-specified subgroup of interest. Since DAOH at 90 days was left skewed due to the
maximum being 90 days, we rescaled this to lie between 0 and 1 (90-DAOH)/90) and
effects were then rescaled back to the original scale. Probit regression models were
used to estimate the initial propensity score (first stage), while GLMs were applied to
the outcome data, with the most appropriate family and link function chosen
according to RMSE, with Hosmer-Lemeshow and Pregibon tests also used to check
model fit and appropriateness (Hosmer and Lemeshow, 2000; Pregibon, 1980). The
logit link and binomial family were selected for all three conditions. Models at both
stages adjusted for baseline measures, time period, and proxies for hospital quality,
defined by rates of emergency readmission and mortality in 2009-10 (time constant),

and in the year prior to the specific admission concerned (time-varying).

Estimates of mean differences in DAOH between the comparison groups, overall and
for pre-specified subgroups (CATEs) were reported with standard errors and
confidence intervals (CI) obtained with the non-parametric bootstrap (300

replications), allowing for the clustering of individuals within hospitals. The 2SLS
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approach used the same model specification and selection (including covariates used

for confounding adjustment) to report estimates overall and for subgroups.

5.2.5.2.2 Case study: results

The study reported somewhat similar that for both methods the 95% Cls surrounding
the mean differences included zero (Figure 5.5). Beneath this overall result, the LIV
approach reported evidence that the effectiveness of ES was heterogeneous according
to pre-specified subgroups. In particular, for all three conditions, ES led to lower
DAOH for patients who had severe levels of frailty, and for those with acute
appendicitis, ES was less effective for older patients (aged 80-84) or those with three
of more comorbidities. By contrast, the 2SLS approach, which failed to account for
unobserved heterogeneity (e.g., disease severity), did not report any substantive

differences in relative effectiveness according to patient subgroup (Figure 5.5).

5.2.6 Discussion

This paper formally assessed the performance of the LIV methodology developed by
Heckman and Vytlacil (1999, 2001) and further extended by Basu (2014) to provide
policy relevant estimates of ATE and CATE in settings that differed according to the
form of heterogeneity, the sample size, and level of IV strength. We contrasted the
performance of LIV with that of the widely-used 2SLS approach. The scenarios
considered in the simulation study were directly motivated by gaps in the literature
and by a comparative effectiveness study that used LIV in evaluating emergency
surgery for three acute gastrointestinal conditions for subgroups of prime policy
relevance. In the case study, overt and essential heterogeneity were important
concerns, amid differing levels of IV strength and sample sizes, and these issues
motivated the scenario of prime interest for the simulation study (Scenario D).
However, we also considered scenarios, which can, in principle provide accurate
estimates of ATE and CATEs with conventional IV methods such as 2SLS (Scenarios
A and B). We compared the performance of the two methods, according to bias and

statistical efficiency (RMSE).
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Figure 5.5. Mean differences in days alive and out of hospital (DAOH) between ES and NES for appendicitis (left), gallstone disease
(centre) and hernia (right) subgroups
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2SLS: two-stage least squares; CI: Confidence Interval; LIV: Local Instrumental variables.
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Four preliminary findings of the simulation study are worth emphasising. First, our
results suggest that while LIV performs better according to increasing levels of IV
strength and sample size, this estimator reports relatively low levels of bias in
estimates of the ATE and CATEs across all scenarios including those with essential
heterogeneity. These findings compliment those of Basu (2014) in evaluating the
reliance of the estimator on the relevance condition as well as the consistency of the

estimator, but also by considering a wider range of assumptions about heterogeneity.

Second, our results suggest that 2SLS reports biased estimates of the ATE and CATEs
in the presence of essential heterogeneity, except in those cases where the instrument
is very strong (F-statistic above 500). These results are consistent with previous
findings that 2SLS estimates cannot generally be extrapolated to broader populations
beyond the compliers unless restrictive assumptions are made about the heterogeneity
of treatment effects (Brooks et al., 2018; Chapman and Brooks, 2016).- However, our
results suggest that, even under homogenous treatment effects, 2SLS provides biased
estimates of the ATE, in scenarios where the F-statistic is low, but the requisite
magnitude of the F-statistic also depends on the sample size and the form of

heterogeneity.

This finding further emphasises the inadequacy of guidance resting solely on a ‘rule of
thumb’ for a single setting, the target F-statistic, and highlights the importance of

these wider considerations when interpreting a study’s results.

Thirdly, while 2SLS can reliably estimate CATEs in the presence of effect homogeneity
or overt heterogeneity given a sufficiently strong IV or large enough sample, in the
presence of essential heterogeneity, as theory would suggest, 2SLS can give extremely
biased estimates of CATEs, and so in settings where essential heterogeneity is
anticipated, 2SLS should not be used to estimate CATEs. In contrast, the LIV method
provided estimates with low bias in the presence of overt and/or essential
heterogeneity, provided the F-statistic was greater than 50. Interestingly, for the
estimates of the CATEs, we find that as the sample size increases, an increase in the
F-statistic is less beneficial in mitigating bias and reducing RMSE, in line with the
observation that a given increase in the F-statistic has less impact on compliance rates

at larger sample sizes.

Finally, LIV generally reported lower levels of RMSE than 2SLS, in particular for
estimating the CATEs. However, it is important to note that here the propensity score

and outcome models underlying the LIV method are correctly specified, and that

138



performance may deteriorate where this is not the case. Data adaptive approaches

could prove useful where model specification is not known.

The findings from the simulation study are informative in interpreting the CATE
estimates in the ESORT study. The results offer reassurance that in such settings
where essential heterogeneity would appear inevitable, that a LIV approach can
provide unbiased estimate of policy-relevant estimands such as CATE, with sample
sizes and F-statistics smaller than those of the ESORT study. Here, the LIV approach
was able to report relative effectiveness according to subgroup, and the finding that
for patients with high levels of frailty ES was not cost-effective (or cost-effective),
provides important evidence to inform policy, and contributes to shared decision-

making (Moler-Zapata et al., 2022).

This study has several strengths. First, it builds on insights and hypotheses raised by
a large observational study using EHRs from England. The ESORT study illustrates
the main challenges of using LIV methods for comparative effectiveness research and
its findings in relation to IV strength, sample size requirements directly informed the
scenarios considered in the simulation study. Second, while the uptake of LIV methods
has been limited almost entirely to settings with essential heterogeneity, the
simulation study considers different forms of heterogeneity of treatment effects as well
as the scenario where treatment effects are assumed to be homogeneous in the study
population. Future work will expand the simulation study to incorporate other well-
known issues of IVs methods, including the challenges in applying IV estimation
methods to non-linear outcome data (Clarke and Windmeijer, 2010; Vansteelandt et
al., 2011). Previous research has shown that the power of 2SLS conveyed by
conventional F-statistic values is low (Keane and Neal, 2021; Lee et al., 2021). In this
future work, we will therefore consider the implications of sample size and instrument
strength for the power of LIV analyses and confidence interval coverage. Future work
will also formally assess whether imbalances in treatment assignment rates are
detrimental to consistency and power of LIV inferences. This is an important concern
for applied work using EHRs. For instance, the observed difference in the prevalence
of ES and NES in ESORT (90/10 in the cohort with appendicitis) could reduce the
power of the analysis (Walker et al., 2017).
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Chapter 6. Discussion

6.1 Introduction

Comparative effectiveness and cost-effectiveness studies that evaluate alternative
health and social care interventions have the opportunity to exploit the growing
availability of RWD, and provide evidence that can inform decision-making. However,
these studies are faced with major challenges including the risk of unmeasured
confounding and heterogeneity. A further concern and barrier to the wider use of this
form of evidence in decision-making, is the lack of transparency about choices in the
study design and analysis. These concerns may apply to any setting that uses RWD
to assess comparative effectiveness and cost-effectiveness, including pharmaceutical
interventions, other health technologies such as surgical interventions or devices,
changes to health or care services or the introduction of new health policies, or public
health interventions (Faria et al., 2015; Skivington et al., 2021). This thesis draws on
recent methods developments in the causal inference and health econometrics
literature to help improve the approaches for tackling confounding and heterogeneity

when assessing comparative effectiveness and cost-effectiveness using RWD.

The aim of this thesis was to help address gaps in the guidance on methods for CEA
that use RWD, and more specifically routine data, in settings with unmeasured

confounding and treatment effect heterogeneity. The specific objectives were to:

1. Critically examine the application of the principles of the target trial framework
to the HTA context, identify the main challenges, and provide
recommendations to address them.

2. Evaluate and implement an LIV approach for addressing unmeasured
confounding and heterogeneity in CEA.

3. Evaluate the performance of IV approaches in terms of bias and statistical
efficiency according to alternative levels of IV strength, sample sizes and forms

of heterogeneity in a simulation study.

The next section outlines the main findings from the thesis. Sections 6.3 and 6.4
discuss the main contributions of the thesis to the methodological literature, and the
literature evaluating the cost-effectiveness of ES for acute gastrointestinal conditions.

Section 6.5 summarises the main limitations of the thesis. Section 6.6 identifies areas
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for future research. Section 6.7 and 6.8 discuss the implications for applied researchers

and policy making, and section 6.9 concludes the thesis.

6.2 Overall findings

The target trial framework can be adopted in CEA to support the design of studies
that use RWD. Since the publication of the seminal papers by Hernan and Robins
(2016) and Hernan et al., (2016), the target trial framework has become a popular
tool for non-randomised health care evaluations as it can help reduce bias due to
confounding which is a perennial problem with this study design. The target trial
framework also provides evidence users, including decision-makers and service
providers, with a tool to judge methodological choices of observational studies, such
as the plausibility of assumptions made in the statistical analysis, according to how

closely they emulate the design elements of the hypothetical trial.

This thesis identified four main challenges in applying the target trial framework
within CEA that use routine data. These relate to potential data constrains affecting
the study’s ability to emulate the trial’s eligibility criteria, challenges in defining
treatment strategies and time zero, and the risk of confounding. I argue that these
four challenges are prominent in those common settings in which the analyst has no
control over the data collection process. These four challenges are important ones to
address to help reduce bias from confounding and improve the transparency and
reproducibility of methods and findings, to improve the use of RWD for informing
decision-making. While these issues are not the only challenges that studies using
RWD might face, other concerns may relate for example to missing data, censoring,
non-compliance or measurement error, but these are beyond the scope of the thesis
(DiazOrdaz and Grieve, 2019; Latimer et al., 2014; Willan and Briggs, 2006). Here,
the focus of the thesis is on approaches to address the unmeasured confounding and
essential heterogeneity that arise in estimating comparative effectiveness and cost-

effectiveness from routine data.

Research paper 1 offers an exemplar application of the target trial framework in a
CEA, and critically considers the major challenges that could arise in comparative
effectiveness and cost-effectiveness studies that use RWD. The first challenge is to
define the eligibility criteria that delineate the target population for the study. These
are patients who would be eligible to receive either the intervention or the comparator
in routine practice. However, the emulation of a trial’s design should also ensure that

the population only includes those patients for whom there is equipoise about the
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treatment comparators of interest (i.e., patients with a positive probability of receiving
each treatment option). Otherwise, if the study includes a subgroup for whom there
is a strong prior belief that they will not benefit from either of the comparators of
interest, even after adjusting for confounding factors, the treatment effect could be
estimated with bias (Petersen et al., 2010). Researchers should therefore consider the
"equipoise" principle when defining the eligibility criteria. This is can be challenging
as patient’s equipoise often cannot be assessed from the data. The paper offers some
recommendations for how to apply this principle to the available RWD, recognising
that in practice there may be gaps, omissions and challenges in applying the

framework in practice.

One related challenge is in defining treatment strategies from the RWD. If the
definition of the intervention differs from the intervention of interest, including the
setting in which they are administered or their timing, the findings of the study will
be of limited relevance for decision-making. Researchers also need to carefully consider
the definition of the comparator strategy. Ideally, it should reflect the comparator
used in routine clinical practice to be relevant for decision-making. It is also important
that the comparators are be defined in sufficient level of detail to be able the causal

contrast of interest is identified (Hernan, 2004; Hernan and Taubman, 2008).

Third, the study also exemplified the concern that, even if treatment strategies and
target population can be defined from the RWD, it is important to define time (day)
zero the analogue to the time of randomisation, as part of any strategy to reduce bias
in the estimation of treatment effects. The date or time of key events is not always
recorded in the RWD, which makes it challenging for studies to define when eligibility
is met, treatment is assigned and the treatment strategies are initiated (Patorno et
al., 2020). The paper discusses how CEA that fail to align these events could suffer

from selection bias and immortal time bias.

Lastly, the paper discusses the role that insufficient information for covariate
adjustment plays in raising concerns of residual confounding in CEA. This is a well-
known challenge for observational studies, and previous studies have considered
alternative statistical methods for tackling confound in CEA (Kreif et al., 2013; Nixon
and Thompson, 2005; Polsky and Basu, 2012; Sekhon and Grieve, 2012). However,
one important (new) finding of this thesis is that IV designs can be compatible with
the application of target trial framework in observational studies. Previous studies
had suggested that valid IVs are inadequate for emulating trials, mainly because the

estimated effect only pertains to a subset of the population (Swanson, 2017), which is
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very unlikely to represent the target population. While this is true in conventional IV
analyses, as my second research paper showed, LIV methods can, provided some
requisite assumptions hold, provide policy-relevant estimands, for example the ATE

for the whole population of interest, and CATE for subpopulations of interest.

Research paper 2 directly addresses the concern that few CEA have applied IV
methods to RWD to formally model essential heterogeneity in patient outcomes, costs
and cost-effectiveness of an intervention. Here, the concern is that unmeasured
characteristics that predict expected outcomes following either intervention also
inform treatment selection. The paper contrasts different IV approaches (2SLS, 2SRI
and LIV) in evaluating the cost-effectiveness of the alternative strategies, in this case
ES versus alternatives. These methods have different target estimands, and different
assumptions for identification, which makes comparison between the findings
challenging. However, it is still interesting that the findings from the three methods
are notably different. 2SLS, which aims to estimate the LATE, and LIV which aims
to estimate the ATE give different estimates of the overall effect, especially in the
diverticular disease cohort. The reason why estimates are so dissimilar in that cohort,
might be explained by essential heterogeneity, as surgical teams may be likely to select
patients into treatments according to expected gains from treatment given their
unobserved risk profile. Theory suggests that both 2SRI and LIV can report estimates
of the ATE, so differences in the resultant estimates are likely to reflect that in the
presence of essential heterogeneity suspected in the diverticulitis example, the
underlying assumptions are less plausible for the 2SRI versus LIV approach (Basu et
al., 2018).

In research paper 2, I exemplify the LIV approach to estimate the overall cost-
effectiveness of ES for the study population, as well as for a series of pre-specified
subgroups. The study evaluated ES using different approaches: risk-adjustment (GLM
regression), 2SLS, 2SRI and LIV. While all four study designs rely on untestable
assumptions, only the LIV design can identify causal effects in the presence of
unmeasured confounding and treatment effect heterogeneity according to unobserved
characteristics. LIV approaches do still rely on the fundamental IV assumptions, and
the presence of a continuous IV (see Chapter 2) (Basu et al., 2007). The plausibility
of these assumptions was carefully evaluated using both formal tests and clinical
judgement. The TTO was strongly associated with receipt of ES. Even though the
exclusion restriction can never be fully tested, the study found that the TTO was able

to balance the baseline covariates, which makes it more plausible that it was also able
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to balance unobserved covariates. Models were adjusted for measures of hospital

quality of care to further bolster the plausibility of the identification assumption.

One important finding of the analysis using LIV is that while the study does not
provide strong evidence that either ES or NES is cost-effective overall for any of the
acute conditions, one or other of the modalities can be cost-effective when targeted at
specific population subgroups. In particular, for patients with acute appendicitis and
abdominal wall hernia with moderate or severe less of frailty, and those who have at
least two comorbidities, the NES strategy is relatively cost-effective. NES is also cost-
effective for diverticular disease patients with perforation of abscess. ES appears to be
cost-effective for subgroups of patients with diverticular disease or hernia who are fit

(both conditions), or who are younger (hernia only).

Research paper 2 also reported differences across the acute conditions in the cohort sizes
and the strength of the IV (see Table 4.3). These findings motivated further research
questions about the requirements of IV methods with respect to instrument strength
and sample size, for estimation and inference pertaining to ATE and CATE. and helped

define the scenarios of interest for the simulation study in research paper 3.

The main findings from that paper 3 are that, first LIV methods perform well
regardless of the form of heterogeneity and confounding; second the general
requirements with respect to IV strength depend on the available sample size; third,
2SLS estimates are biased in settings with essential heterogeneity when the instrument
is not strong, fourth, levels of strength used to define sufficiency of IV strength in
applications might fail to guarantee minimal biases in the estimation of treatment

effects.

6.3 Contributions

This thesis contributes to the literature on analytical methods for CEA by drawing
on insights from the causal inference and health econometrics literature. The following

sections describe the main methodological contributions of the thesis.

6.3.1 Developing recommendations for studies that apply the

target trial framework to Real-World Data

Research paper 1 offers a series of recommendations for CEA to address the main
challenges in applying the target trial framework to studies that use routine patient-

level data (see previous section). These recommendations complement previous
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methodological guidance (Drummond et al., 2005; Faria et al., 2015; Husereau et al.,
2013; Philips et al., 2004) and checklists for economic evaluations, and expand on
them by considering aspects of the study design that are specific to studies that use
RWD. The contributions also complement previous tools developed for evaluating
statistical approaches used in observational CEA, including those that were designed
to address selection bias (Kreif et al., 2013), by considering broader aspects of the

study design of observational studies.

Research paper 1 discusses how expert opinion can help in adapting the target trial’s
eligibility criteria, and definitions of the treatment strategies to the RWD available
to minimise the risk of bias. One example of how expert judgement can be used, in
defining which of the eligibility criteria available from within the RWD are required
to ensure equipoise between treatment strategies. Previous recommendations for
aligning eligibility criteria in the study with those in the target trial include measuring
the proportion of patients included/excluded as a result of applying each criterion
(Franklin et al., 2020). Lodi et al., (2019) describes methods to ‘harmonise’ the target
trial design with published RCT, and to accompany these attempts with sensitivity

analyses to explore the impact of components that cannot be harmonised.

In considering how the target trial framework can be applied to IV designs, research
paper 1 also provides practical advice for future CEA conducted in those settings
where there is a risk of unmeasured confounding. These recommendations highlight
the importance of contrasting methods that make alternative assumptions about
confounding, as well as carefully evaluating the presence of heterogeneous treatment
effects. In these settings, even if the IV is judged valid, the requisite assumptions of
IV methods like 2SLS will not be satisfied, and the resultant inferences are unlikely

to be appropriate (see also next section).

6.3.2 Application of a Local Instrumental Variable approach
for unmeasured confounding and heterogeneity in Cost-

Effectiveness Analysis that use Real-World Data

The main contribution of research paper 2 is to the literature on CEA methods, in
illustrating how LIV methods can estimate treatment effects in the presence of
unmeasured confounding and treatment effect heterogeneity. It describes the
assumptions required for identification of relevant treatment effect parameters, and
exemplifies the issues that arise when undertaking a policy-relevant CEA that relies

on routine data for estimating comparative effectiveness. The paper contrasts LIV
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with alternative IV approaches (2SRI and 2SLS) which make alternative assumptions,

and offers guidance for future CEA on how to interpret those discrepancies.

Another contribution of research paper 2 is in demonstrating how, LIV can evaluate
treatment effect heterogeneity over pre-specified subgroups of interest. This is an
important contribution to the literature on methods for informing personalisation of
treatment choice in clinical practice. This literature has expanded rapidly in recent
years, but most methods assume that treatment selection is only according to observed
covariates (Kreif et al., 2020; Sadique et al., 2022) which in many CEA that use RWD
is an unrealistic assumption. For example, decision-making as to which intervention
patients receive may reflect ‘capacity to gain’ which is likely to reflect biological,
patient or physician preferences or organisational characteristics which are unlikely to
be measured within the data. One extension that could be considered in future studies
that use the LIV framework is to harness the myriad of covariates available from
linked datasets with advances in the machine learning literature, to select those
observed covariates that modify relative effectiveness and cost-effectiveness (see also
section 6.6) (Belloni et al., 2014)

The findings of research paper 2 on the cost-effectiveness of ES for treating patients
with acute appendicitis, diverticular disease and abdominal wall hernia (described in
the previous section) also contribute to the limited available evidence on the cost-
effectiveness of ES for acute conditions from previous RCTs and observational studies.
Compared to previous studies for the three conditions, the CEA considers broader
more heterogeneous populations (O'Leary et al., 2021) evaluates economic outcomes,
including resource use and costs (Flum et al., 2020) and reports heterogeneity in
effects, costs and cost-effectiveness of ES versus NES strategies for each of these acute

conditions (Javanmard-Emamghissi et al., 2021).

6.3.3 Evaluation of instrument strength requirements for

Local Instrumental Variables in simulation study

This thesis has demonstrated that there is great potential in applying LIV in CEA
and comparative effectiveness studies more generally. One important contribution is
to the health econometrics literature in demonstrating that, whenever a strong and
valid, continuous is available, LIV might be preferable to conventional IV methods
like 2SLS. Research paper 3 evaluates the performance of LIV and 2SLS according to
mean bias and statistical efficiency in ATE and CATE estimates. While it was

anticipated from theory that that 2SLS would not provide unbiased, efficient estimates
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of the ATE or CATE parameters under essential heterogeneity, the study also found
that compared to 2SLS, LIV reported less biased, more efficient estimates of both sets

of parameters, in settings with non-essential heterogeneity or homogeneity.

Two other key findings from research paper 3 are worth-emphasising. First, unlike
2SLS, LIV continues to perform well in settings with essential heterogeneity, but
might require stronger IVs, or larger sample sizes to report small biases (<5%) and
lower RMSE. Second, the study finds that 2SLS can be biased even in the setting
where there is effect homogeneity if the instrument is not sufficiently strong (F<100).
These findings align with previous work suggesting that without large sample sizes, if
the IV is not sufficiently strong 2SLS can provide treatment effect estimates with

substantial biases (Martens et al., 2006).

Research paper 3 also compares CATE estimates under 2SLS and LIV in three cohorts
of the ESORT study, and reveals that the choice of the method matters in practice
for the common setting in which the selection mechanism is unknown. While 2SLS
fails to detect any signal of heterogeneity across subgroup estimates, LIV finds
evidence that treatment effects of ES vary according to the patient’s age, frailty level
and number of comorbidities, which has direct relevance for policy-makers with respect

to targeting scarce surgical resources.

6.4 Other general methodological contributions

In considering the application of the target trial framework to RWD, and evaluating
the properties of IV methods across broader range of settings, including essential
heterogeneity, the findings are relevant for the general causal inference and health

econometrics literatures.

6.4.1 Insights from target trial relevant to the literature of
observational epidemiology methods using Real-World Data

in general and Instrumental Variable methods in particular

While the target trial framework has been previously applied in the epidemiological
literature studies with rich information about treatment strategies, confounders and
outcomes, there are few applications in the RWD setting that use routine
(administrative) data. The resulting lack of guidance on how to address the challenges
raised by RWD could cause bias and emulation failures to be inadvertently introduced

into the studies (Franklin et al., 2020, 2021). Research paper 1 gives insights into how
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expert judgement might be used to make decisions about study design when the RWD
is insufficient. While previous work has elaborated on methods for structured
elicitation for HTA (Soares et al., 2018), this has not considered the potential
relevance of formal or informal elicitation approaches for applying target trial
emulation to RWD. Similarly, few studies have considered IV methods for emulating
target trials (Danaei et al., 2018). Research paper 1 therefore contributes to this
limited literature in describing how the design elements of RCTs can be emulated
using LIV designs and in using expert opinion to define key standpoints of the study

with respect to the population and comparator groups.

6.4.2 Evaluation of Instrumental Variable methods wider

contexts

Most previous simulation work in the health econometrics literature evaluating IV
methods ability to identify treatment effect parameters have been limited to settings
where treatment effects had been assumed to be homogeneous (lonescu-Ittu et al.,
2012; Kang et al., 2015). The papers by Chapman and Brooks (2016) and Basu et al.
(2018) did consider heterogenous treatment effects in evaluating the consistency of
2SLS and 2SRI in estimating the LATE and ATE parameters. However, none these
studies considered LIV methods. Basu (2014) demonstrated the consistency of the LIV
approach under ‘optimal’ conditions, which assumed large sample sizes and strong
instruments, and allowed for essential heterogeneity, but that study did not formally
test the performance of the method under scenarios such as weak identification or
partial violation of the identification assumptions. Research paper 3 expands this
previous work by Basu (2014) by considering a wider range of scenarios, defined by
varying levels of IV strength and sample size, as well as across scenarios with different

forms of treatment effect heterogeneity.

6.5 Limitations

In this section, I acknowledge general limitations relating to the unverifiability of the
IV identification assumptions, and to other challenges that were not explored in this
thesis. I then consider the interesting avenues for future research that this thesis

provokes for methods for CEA using routine data.
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6.5.1 Further challenges in applying target trial framework
to Real-World Data

The list of recommendations outlined in research paper 1 does not aspire to offer
solutions to all the issues that are raised in CEA that use routine data. Instead, it
intends to offer practical recommendations for some common challenges that can arise
with respect to confounding, when applying the target trial framework to assess the
comparative effectiveness and cost-effectiveness from RWD settings in which
individual participant data are available for all the comparators of interest. While the
challenges identified in the ESORT study are common in RWD, as the analyst rarely
has control over the treatment selection or data collection process, other complexities
may well arise. For instance, there might be concerns around the accuracy of the
outcome data. Information bias could emerge if for example information on a resource
use measure, such as whether there were differences across the comparator groups in
the way events, such as the receipt of surgery were recorded in the RWD (Rassen et
al., 2021). The complex nature of RWD also means that, the recommendations
outlined in research paper 1, will be need to be adapted to the specific context of the
study. For instance, in studies that aim to evaluate complex treatment pathways,
including subsequent treatment switching, it may be necessary to consider multiple
definitions of time zero, and also forms of confounding, in particular time-varying
confounding, beyond those considered in the ESORT study (section 6.6). Likewise in
some settings, such as those where treatment switching occurs or there is non-
adherence, might pose additional challenges for studies using RWD, as this might
raise concerns about time-dependent confounding. Some papers have described how
methods like IPW might be used for evaluating dynamic treatment regimens (Hernan
et al., 2012), and recent work extending IV estimation with structural mean models

in presence of time-varying confounding might be relevant (Shi et al., 2022).

Likewise, while the approach taken to elicitation was structured, it was pragmatic and
used a modified Delphi approach to establish consensus across the panel of experts.
Further work could more formally consider the uncertainty raised by divergent views

across the expert panel (Soares et al., 2018).

6.5.2 Unverifiability of identification assumptions

Like any observational study, the CEA findings in research paper 2 rely to some extent

on some unverifiable assumptions. The study describes the assumptions required for
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identification of marginal treatment effects with LIV, namely the exchangeability
condition, the exclusion-restriction condition, the relevance assumption, and the
monotonicity assumption. For example, it seems unlikely that there were imbalances
in patients’ prognosis across different levels of the TTO. For instance, the nature of
the emergency setting, and the exclusion of patients who were referred to tertiary
referral centres is likely to reduce the risk of bias due to the “doctor (hospital)
shopping” phenomenon, which has been observed in other settings (Rassen et al.,
2009). The study found that the TTO balanced the observed covariates, which gave
some support to the requisite assumption that it was also able to achieve balance in

the unmeasured characteristics.

One important challenge for the study was the exclusion-restriction, which requires
that the IV only influences the outcome through its association with treatment
assignment. To boost the plausibility of this assumption in the ESORT study, all
analytical models included adjustment for proxies of the hospital’s quality of acute
care, for example through improved post-operative care, in addition to patient
covariates (see chapter 4). Likewise, in defining the IV at the hospital level, instead
of at the surgeon- or team-level, the study sought to minimise the risk of bias emerging
from the association of the TTO with concomitant treatments, which is typically
observed in preference-based IV settings (Baiocchi et al., 2021; Brookhart and
Schneeweiss, 2007). While, after the adjustments for quality for care the exclusion-
restriction was judged plausible, the study could have assessed this assumption more
formally. For instance, with falsification tests, such as estimating whether ES had any
effect on subgroups of always-treated patients to falsify this assumption” (Kang et al.,
2013).

6.5.3 Comparators and metrics to evaluate the performance
of Local Instrumental Variable methods in the simulation

study

The simulation study in research paper 3 evaluated LIV and 2SLS across settings with
different instruments, sample sizes and forms of treatment effect heterogeneity
according to the mean bias in estimates and the rMSE. The findings expand the weak

identification literature in finding that LIV has good estimation properties across a

7 Note that the study assumes that all patients included in the study given the eligibility criteria have a level of
their unmeasured covariates, such that they can be induced into treatment selection following a change in the level
of the IV. This rules out the existence of patients who are never-takers or always-takers.
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range of scenarios, and demonstrating that it can report estimates with less bias and
lower RMSE than 2SLS (see section 6.6.2). However, while the study deliberately
chose not to include methods that assume no unobserved confounding, as they lay
beyond the scope this thesis, the comparison could have been extended to consider a
broader range of comparators including 2SRI, which, unlike 2SLS, can in theory
retrieve the ATE for the population in presence of unmeasured confounding (Basu et
al., 2018; Terza et al., 2008). Also, the study sought to formally evaluate LIV methods
in typical settings for the use of RWD according to levels of IV strength or sample
size. However, I did not consider other issues that arise with IV approaches, including
bias from violations of the exclusion-restriction assumption. Finally, the chosen
metrics for the simulation study, bias and rMSE could have been supplemented by
other measures of performance according to power or CI coverage probability (see

section 6.6).

6.6 Areas for future research

This thesis identified a series of areas for further research.

6.6.1 Application of the principles of target trial framework
and Local Instrumental Variables in settings with time-

varying confounding

Future studies could expand on the methods described in the thesis to address related
challenges. In particular, the ESORT study exemplifies the setting in which a single
‘one-off” treatment is administered at a particular timepoint. Hence, further research
is required to evaluate relative effectiveness in those settings in which sequences of
treatment are provided across the time horizon of interest, which raises issues about
time-varying confounding according to observed and unobserved factors. Methods like
inverse probability of treatment weighting (IPW), and parametric g-computation have
been proposed for estimating treatment effects of time-varying treatments in presence
of observed confounders that are also time-dependent (see Daniel et al. (2013) for a
review). However, the theory for estimating effects of time-varying treatments using
IVs is far less developed. Recently, Tchetgen et al. (2018) considered IV estimation in
the context of Marginal Structural Models, which were introduced by Robins (1997)
for estimating joint effects time-varying treatment, but only in the context binary
instruments. Further research could evaluate whether methods can be expanded to

consider continuous IVs. This thesis did not consider other strategies for mitigating
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the risk of immortal time bias in studies using RWD and treatment strategies with a
grace period. Methods like CCW described by Hernan and Robins (2016) could be

adopted within IV designs in presence of time-varying confounding.

6.6.2 Extending simulation study design to consider
additional metrics of performance for evaluating Local

Instrumental Variable methods

While research paper 3 gives insights into the finite sample estimation properties of
LIV methods according to different levels of IV strength, the simulation study did not
evaluate the reliability of statistical inferences on treatment effects of these methods.
It is well-known that, unlike inferences based on the weak-identification-robust
Anderson-Rubin (AR) test statistic®, t-ratio-based inferences estimator are subject to
size/coverage distortions when instruments are weak (Dufour, 2003). Recent work by
Lee et al. (2021) has quantified those distortions in the case of 2SLS, and suggested
that applying a ‘95% confidence’ requires that the first stage F statistic exceeds 100.
However, it is unclear whether these findings apply to the continuous IV setting, where
identification relies on the existence of a continuous I'V that is not only valid, but also
sufficiently strong to ensure that there is a level of the IV at which all the individuals

in the sample ‘comply’ (i.e., are shifted or selected into treatment) (Basu et al., 2007).

The strength of the instrument and the sample size have also been shown to influence
the study’s power to detect true causal effects (minimise the risk of type-II errors) of
IV methods. Recently, Keane and Neal (2021) and Angrist and Koleséar (2021) showed
that the power conveyed by conventional F-statistic values (i.e., around 10) with 2SLS
can be low. While, this is likely to be the case for LIV too, power evaluations have
yet to be extended to continuous IV. Therefore, future research could extend the
simulation study design in research paper 3 to formally evaluate the reliability of
inference with LIV by considering coverage of the 95% CI, and power to detect a
causal effect based on the CI. Statistical power could also be affected by imbalances
in treatment assignment in the case of LIV, just as with 2SLS (Campbell and
Gustafson, 2018; Myers et al., 2011). Therefore, the simulation study design could also
be expanded to consider scenarios where the proportion of patients exposed (assigned)

to treatment is varied alongside the instrument strength and sample size.

8 The test has correct size regardless of sample size and strength of the IV.
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6.6.3 Use of data-adaptive methods alongside Local

Instrumental Variable methods

Consistent estimation of treatment effect parameters using the methods described in
the thesis requires that the parametric models for the outcome and treatment selection
are correctly specified. This can be a challenging task, especially in settings with high-
dimensional data, that carries a high risk of bias due to model misspecification.
Machine learning methods have already been applied for high-dimensional covariate
selection in IV designs using 2SLS methods for policy evaluation (Bakx et al., 2020;
Martin et al., 2022). Similar approaches could be adopted in the continuous/multi-
valued IV setting. Recently, a doubly robust (DR) estimator of the MTE curve was
developed by Kennedy et al. (2019). The DR estimator, together with the models for
the outcome and treatment, requires the specification and estimation of an additional
nuisance function, which models how the instrument depends on the covariates. In
this thesis, following (Heckman and Vytlacil, 1999, 2001), the estimation of target
treatment effect parameters was done defining fully parametric models. Instead,
Kennedy et al. (2019)’s proposed approach relaxes the assumption that both
parametric models are correctly specified. Another advantage of this flexible method
is that the target estimand can be made conditional on covariates of interest, and not
the full covariate space. Further work could build on this work using data-adaptive
covariate selection methods such as least absolute shrinkage and selection operator
(LASSO) for confounding adjustment in high dimensional settings (Belloni et al.,
2014).

6.7 Recommendations for applied researchers

6.7.1 Apply the set of recommendations for target trial using
Real-World Data to inform Health Technology Assessment

provided in research paper 1

The target trial emulation framework should be adopted as part of CEA designs that
use RWD. Researchers should carefully assess the sufficiency and adequacy of the data
to answer the research question, and in particular the challenges raised in research
paper 1. When the RWD is insufficient or inadequate to emulate the design elements
of the target trial, researchers should consider the recommendations provided in

research paper 1. These should be adopted alongside published questionnaires and
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checklists for economic evaluations, and other available tools for evaluating the
plausibility of underlying assumptions of statistical methods (Faria et al., 2015; Kreif
et al., 2013).

6.7.2 When the study has access to a continuous or multi-
valued instrument, consider using Local Instrumental
Variable methods for informing treatment effects as

described in research paper 2

The thesis describes novel methods for estimating treatment effects in the presence of
unmeasured confounding and heterogeneity. It is recommended that in settings where
essential heterogeneity is anticipated, researchers consider LIV methods to report
robust estimates of treatment effects. More generally, LIV methods should be
considered in any setting in which there is interest in evaluating heterogeneous
treatment effects. Methods described in research paper 2 and 3 could be used to report

estimates at the individual-level, or aggregated over subgroups of interest.

6.7.3 Consider whether the strength of the instrument is
enough to ensure low bias and sufficient statistical efficiency
given the available sample size and form of treatment effect

heterogeneity as described in research paper 3

This thesis recommends that studies using LIV methods carefully consider the
relevance assumption. The strength of the instrument, as measured by the value of
the first stage F statistic, should not be judged according to whether it exceeds a fixed
threshold. Whether the IV is sufficiently strong should be assessed alongside the
sample size available, and the interaction between confounding and heterogeneity. For
example, moderate and small samples may require a much stronger IV, i.e., higher F
statistic, whereas if the sample size is very large, or if the treatment effects are

expected to be homogeneous across individuals, then a weaker IV may suffice.

6.8 Implications for policy-making
Real-world evidence is being increasingly adopted by HT A agencies to inform decision-

making in healthcare. The recently-published, NICE methods guidance highlights the

need for real-world evidence, but acknowledges the lack of trust in this type of evidence
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as a major barrier for its adoption (NICE, 2022). The target trial framework offers a
means to increase trust in this type of evidence from observational studies that use
RWD, and improve the use of RWD in HTA. The target trial framework can help
decision-makers and clinical experts to judge the rigour and reliability of the evidence
according to how closely the study replicates (emulates) the design elements of the
target trial. The recommendations outlined in research paper 1 could improve the
process of critical appraisal of CEA that use routine data in HTA evaluations, and
help those using the evidence to judge the appropriateness of the study design. For
example, the risk of selection bias in the CEA could be judged according to whether
the definition of time (day zero or baseline) is aligned with the time that eligibility is

assessed.

The ESORT study addressed some of the gaps in evidence evaluating the cost-
effectiveness of ES. In particular, the LIV approach found that while there is no
indication that either ES or NES are cost-effective overall, there are subgroups of
patients for which further uptake of NES strategies could result in better outcomes
and cost, albeit with uncertainty about the magnitude of these effects reflecting the
respective sample sizes. The LIV approach identified subgroups for which there may
be cost savings from the increased uptake of ES or NES strategies. It found that NES
strategies are more cost-effective for patients with moderate or severe frailty (acute
appendicitis, abdominal wall hernia), and with at least two comorbidities (hernia), or
in older age groups (appendicitis). Likewise, NES was the more cost-effective
alternative for patients with diverticular disease with perforation and abscess. These
findings suggest that currently NES (ES) might be (over)underused in some subgroups
of patients with these conditions, and that redirecting resources could result in gains
in terms of efficiency. The observed patterns of treatment effect heterogeneity across
population subgroups could help inform future guidance for emergency admissions
about triage for ES according to baseline risk profiles. However, further evidence is
required to inform how best to ‘personalise’ the choice of strategy for patients for these
conditions. These findings could help target future trials to provide more granular
evidence about which prognostic factors play a role in explaining heterogeneous

responses to ES.

6.9 Conclusions

This thesis aimed to address the lack of guidance for designing CEA that use routinely-
collected individual-level RWD in the presence of unmeasured confounding and

heterogeneity. The thesis carefully examined the challenges that could arise in
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extending the target trial framework to CEA that use RWD, and offers a series of

recommendations for future studies.

The risk of unmeasured confounding is arguably the biggest threat to providing
reliable evidence from CEA that use RWD. This thesis extends LIV methods for
tackling the risk of residual confounding and heterogeneity from unmeasured
covariates to a CEA that uses individual-level routine data from England. I formally
assess the main requirements for the LIV approach and provide guidelines for future
studies. While these assumptions must also be made assessable and carefully assessed,
these methods have the potential to use RWD to inform the personalisation of
treatment choice. The focus of the thesis is on CEA that intend to inform decision-
making within the HTA context, but the principles developed can improve how RWD

is used in comparative effectiveness and cost-effectiveness studies more generally.
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Appendix B. Chapter 3

Appendix B.1. Definition of criteria for inclusion into acute appendicitis

and acute gallstone disease cohorts based on expert clinical opinion

Acute appendicitis

Acute gallstone disease

HES ICD-10
diagnostic codes

Did the
clinical panel
favour the
inclusion in
definition of
the condition?

(% favourable)

HES ICD-10
diagnostic codes

Did the
clinical panel
favour the
inclusion in
definition of
the condition?
(% favourable)

Acute appendicitis
(K35)

Acute appendicitis with
generalized peritonitis
(K35.2)

Acute appendicitis with
localized peritonitis
(K35.3)

Acute appendicitis,
other and unspecified
(K35.8)

Unspecified appendicitis
(K37)

Yes (100)

Yes (83)

Yes (100)

Yes (100)

Yes (75)

Calculus of gallbladder
with acute cholecystitis
(K80.0)

Calculus of gallbladder
with other cholecystitis
(K80.1)

Calculus of gallbladder
without cholecystitis
(K80.2)

Calculus of bile duct
with cholangitis (K80.3)

Calculus of bile duct
with cholecystitis
(K80.4)

Calculus of bile duct
without cholangitis or
cholecystitis (KK80.5)
Other cholelithiasis
(K80.8)

Yes (100)

Yes (100)

Yes (83)

No (42)

No (58)

No (42)

No (50)

*List of HES ICD-10 diagnosis codes assessed for inclusion in definition of Acute

Appendicitis and Acute gallstone disease in ESORT study’s target trial. 12 experts in the

clinical panel were consulted in a two-round Delphi process. Panellists had the opportunity

to discuss the results of the first round before providing their responses in the second round.

A diagnostic code was included if at least 75% panellists favoured its inclusion in the second

round. The second column presents the results of the second round. HES: Hospital Episode

Statistics; ICD: International Classification of Diseases.
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Appendix B.2. Definition of Emergency Surgery for acute appendicitis and

acute gallstone disease based on expert clinical opinion

Acute appendicitis

Acute gallstone disease

OPCS code

Did the
clinical
panel
favour the
inclusion in

OPCS code

Did the
clinical
panel
favour the
inclusion in

definition of definition
ES? (% of ES? (%
favourable) favourable)
) Total cholecystectomy and
Ileectomy and anastomosis o )
) , No (0) excision of surrounding Yes (100)
of ileum to ileum (G693) ,
tissue (J181)
) Total cholecystectomy and
[leectomy and anastomosis )
, No (50) exploration of common Yes (100)
of ileum to colon (G694) )
bile duct (J182)
pnspecified excision of No (0) Total cholecystectomy Yes (100)
ileum (G699) (J183)
Emergency excision of Partial cholecystectomy
abnormal appendix and Yes (100) and exploration of Yes (100)
drainage (HO11) common bile duct (J184)
Emergency excision of ,
Partial cholecystect
abnormal appendix Yes (100) (Ja;rg;a; chofecystectomy Yes (100)
(JHO12)
Emergency eXC.iSiOIl of Yes (83) Other specified excision of Yes (92)
normal appendix (H013) gall bladder (J188)
Other specified emergency o .
. ¢ di Yes (100) Unspecified excision of Yes (92)
excision of appendix es es
> PP i gall bladder (J189)
(HO18)
Unspecified emergency
o of di Yes (100) Open removal of calculus Yes (75)
excision of appendix es es
PP from gall bladder (J211)
(H019)
Interval appendicectomy No (0) Drainage of gall bladder Yes (100)
(HO21) (J212)
Planned delayed Drainage of tissue
appendicectomy NEC No (0) surrounding gall bladder Yes (75)
(H022) (J213)
Prophylactic P ; drai ¢
ercutaneous drainage o
appendicectomy NEC No (0) & Yes (58)
gall bladder (J241)
(H023)
Incidental appendicectomy No (0) Open removal of calculus No (8)

(H024)

from bile duct (J332)
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Acute appendicitis Acute gallstone disease

Did the Did the
clinical clinical
panel panel

favour the favour the

OPCS code . L. OPCS code . . .
inclusion in inclusion in
definition of definition

ES? (% of ES? (%
favourable) favourable)
Othe ified oth
.e.r speettied o .er Drainage of bile duct
excision of appendix No (8) No (8)
(J333)
(H028)
o L Sphincteroplasty of bile
Unspecified other excision .
, No (42) duct using duodenal No (0)
of appendix (H029)
approach (J342)
Drai fab ; Unspecified plastic repair
rainage of abscess o
g, Yes (100) of sphincter of Oddi using No (0)
appendix (HO031)
duodenal approach (J349)
) ) Sphincterotomy of bile
Drainage of appendix .
(H032) Yes (100)  duct using duodenal No (0)
approach (J352)
Exteriorisati ¢ di Unspecified incision of
xteriorisation of appendix
(H033) PP No (0) sphincter of Oddi using No (0)
duodenal approach (J359)
Other specified other ) .
. . Operative cholangiography
operations on appendix No (8) , No (17)
through cystic duct (J372)
(HO38)
Extended right
hemicolect.omy .and Yes (75) Direct Puncture operative No (8)
anastomosis of ileum to cholangiography (J373)
colon (H062)
) ) Endoscopic
Right hemicolectomy and hincterot ¢
sphincterotomy o
end to end anastomosis of Yes (100) P , Y . No (17)
) sphincter of Oddi and
ileum to colon (HO71)
removal of calculus (J381)
Endoscopic
Right hemicolectomy and sphincterotomy of
§ide to side anastomosis of Yes (100) .sphin(?ter of Oddi and No (17)
ileum to transverse colon insertion of tubal
(HO72) prosthesis into bile duct
(J382)
Oth ified end i
Right hemicolectomy and . .e.r specitie . CHAoSCopIC
Yes (100) incision of sphincter of No (8)

anastomosis (H073)

Oddi (J388)
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Acute appendicitis

Acute gallstone disease

Did the
clinical
panel

favour the

Did the
clinical
panel
favour the

OPCS code . L. OPCS code . . .
inclusion in inclusion in
definition of definition

ES? (% of ES? (%
favourable) favourable)
U ified endoscopi
Right hemicolectomy and ) n.s;?em © en. OSCOPIC
leost (H074) Yes (100) incision of sphincter of No (8)
ileostom
COSTOTY Oddi (J389)
Endoscopi
Other specified other nh.oioplz ¢
sphincterotomy o
excision of right hemicolon Yes (75) P Y No (0)
accessory ampulla of
(HO78)
Vater (J391)
Endoscopic retrograde
Uns.pecified (.)ther excision Yes (67) insertion. o.f tubal No (0)
of right hemicolon (H079) prosthesis into both
hepatic ducts (J401)
Endoscopic retrograde
Unspecified opening of No (8) insertion. o.f tuba? No (0)
abdomen (T309) prosthesis into bile duct
(J402)
Oven drainage of belvic Endoscopic retrograde
: v
P e 0D Yes (100) renewal of tubal prosthesis No (0)
abscess (T342) .
in bile duct (J403)
Endoscopic retrograde
Open drainage of removal of tubal
Yes (100 No (0
abdominal abscess (T343) es (100) prosthesis from bile duct o (0)
(J404)
Endoscopic retrograde
Image controlled ] i ; di
insertion of expandin
percutaneous drainage of No (50) P .g No (0)
Ivic ab (T452) covered metal stent into
elvic abscess
P bile duct (J405)
Endoscopic retrograde
Image controlled ) y ; di
insertion of expandin
percutaneous drainage of No (50) , P _ & No (0)
) metal stent into bile duct
abdominal abscess (T453)
(J406)
I > controlled
mage:c contro ; . ¢ Endoscopic retrograde
ercutaneous drainage o
b ) ) & i No (42) extraction of calculus from No (8)
lesion of abdominal cavity bile duct (J411)
ile duc
(T454)
Irrigation of peritoneal Yes (83) Endoscopic dilation of bile No (0)

cavity (T463)

duct (J412)
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Acute appendicitis

Acute gallstone disease

Did the Did the
clinical clinical
panel panel

OPCS code favour the OPCS code favour the
inclusion in inclusion in
definition of definition

ES? (% of ES? (%
favourable) favourable)

Other specified other Endoscopic retrograde
drainage of peritoneal Yes (75) lithotripsy of calculus of No (8)
cavity (T468) bile duct (J413)

Other specified other

therapeutic endos.coplc No (0)

retrograde operations on

bile duct (J418)

Endoscopic retrograde

1nsert10n. o.f tubal . No (0)

prosthesis into pancreatic

duct (J421)

Endoscopic retrograde

cholalllglopancrea.tography No (0)

and biopsy of lesion of

ampulla of Vater (J431)

Other specified diagnostic

endoscopic retrograde

examination of bile duct No (0)

and pancreatic duct

(J438)

Unspecified diagnostic

endoscopic retrograde

examination of bile duct No (0)

and pancreatic duct

(J439)

Endoscopic retrograde

c?olanglography ano} No (0)

biopsy of lesion of bile

duct (J441)

Unspecified diagnostic

endoscopic retrograde

examination of bile duct No (0)

(J449)

Unspecified diagnostic

endoscopic retrograde No (0)

examination of pancreatic
duct (J459)
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Acute appendicitis

Acute gallstone disease

Did the Did the
clinical clinical
panel panel

OPCS code favour the OPCS code favour the
inclusion in inclusion in
definition of definition

ES? (% of ES? (%

favourable) favourable)
Percutaneous insertion of
tubal prosthesis into No (0)
common bile duct (J475)
Percutaneous transhepatic
biliary drainage single No (0)
(J486)
T tube cholangiography No (8)
(J501)
Percuta.rleous No (0)
cholangiography (J502)
Percuta.neous transhepatic No (0)
cholangiography (J505)
Unspecified endoscopic
ultrasound examination of No (0)
bile duct (J539)
Unspecified diagnostic
endoscopic examination of No (0)

peritoneum (T439)

* List of Hospital Episode Statistics (HES) Office of Population Censuses and Surveys

(OPCS) procedures assessed for inclusion in definition of emergency surgery (ES) for acute

appendicitis and acute gallstone disease. 12 experts in the clinical panel were consulted in a

two-round Delphi process. Panellists had the opportunity to discuss the results of the first

round before providing their responses in the second round. A procedure code was included

if at least 50% of the panellists (6) favoured its inclusion in the second round. The third

column presents the results of the second round.
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Appendix B.3. Estimated incremental costs (£GBP 2019/20) at one year

of emergency surgery vs non-emergency surgery strategies with unadjusted

differences, regression adjustment and the local instrumental variable

(LIV) approach

Mean Unadiusted
nadjuste
differences ) J GLM regression LIV approach
differences
(95% CI)
Acute appendicitis (N=268,144)
Costs -413 (-514, -313) 266 (177, 354) -109 (-1,130, 913)
Life years 0.014 (0.012, 0.016) 0.005 (0.004, 0.007) -0.003 (-0.006, -0.001)
QALYs 0.051 (0.046, 0.056) 0.008 (0.007, 0.010) -0.009 (-0.022, 0.003)
Net benefit 1,431 (1259, 1603) -223 (-342, -104) -86.2 (-1,163, 991)

Costs

Life years
QALYs
Net benefit

Acute gallstone disease (N=240,977)

-251 (-386, -115) 281 (170, 393) -76.8 (-702, 548)
0.013 (0.011, 0.014)  0.003 (0.002, 0.004)  -0.009 (-0.022, 0.005)
0.038 (0.035, 0.040)  0.005 (0.004, 0.006) 0.007 (-0.001, 0.015)

1,002 (832, 1171) -220 (-316, 124) 221 (-450, 892)

Variables used for adjustment in models: age (years), sex, ethnicity, index of multiple

deprivation (quintiles), number of comorbidities (Charlson index), frailty level (SCARF

index), method of admission, year fixed effects, proxies for the quality of acute care within

the hospital. CI: confidence interval; QALYs: quality-adjusted life year.
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Appendix B.4. Forest plots of estimated incremental life years (left), quality-adjusted Life Years (QALYs, centre) and costs

(right) of emergency surgery versus non-emergency surgery from the Local Instrumental Variables (LIV) approach for acute

appendicitis (panel A) and acute gallstone disease (B)

Figure 1. (A) Acute appendicitis

Life years QALYs Costs

Subgroup O, im meeans (85% CI) Subgraup . in means (95% C1) Subgroup Oiff. i means {G5% CI)
Al 0.00 {-0001, -0.00) Al 0.01 {-0.02, 0.00) All 1068 {-1130.4, 512.8)
=45 0L30 (-0.00, 0.00) =45 0.01 {-0u00, 0LDZ) =45 381.7 {-1452.0, 66A.T)
45-49 0L30 (-0.01, 0.02) 45-49 0.02 (-0.04, -0.01) 45-49 52.0 (-1823.1, 1719.2)
50-54 0.00 {-0u01, 0uD1) 50-54 0.04 (-0.08, -0.01) 50-54 349 (-1623.0, 1692.8)
55-59 0.00 {-0u01, 0LDO) 55-59 0.05 (-0.08, -0.03) 55-58 144.8 (-1775.4, 2065.1)
a0-64 0.00 {-0u01, 0LDO) B0-64 0.0 (-0.08, -0.01) E0-64 10228 (-6048.8, A54.6)
B5-69 0.01 {-0L0Z, 0LD1) 65-69 0.05 (-0.08, -0.00) E5-69 5.2 (-2060.4, H000.5)
70-47 .02 {-0u04, -0.01) T0-47 -+ 0.07 (-0.12, -0.02) 7047 947.6 (-1653.6, 3549.5)
75-T4 0.04 {-0U06, -0.02) 7579 - 0.08 (-0.14, -0.02) T5-78 851.5 (-ZA00.1, 45083.0)
A0-84 * 0.10 {-015, -0.08) 80-84 -+~ 0.13 {-0.21, -0.05) B0-84 —_— 23945 (-207B.10, 66ET.0)
A4+ .08 {-0L16, 0L01) ads 0.01 {-0.12, 0.10) Bl —— IE1B.A (-1251.5, 8485.2)
Make 0.00 {-0001, -0.00) Male 0.02 {001, 004y Male L STTA{-1T26.7, 572.2)
Fermahe .00 (<0001, -0.00) Fremale 0.05 (-0.08, -0.04) Female > 437 .4 (-811.6, 1386.4)
Fit 0L00 (-0.00, 0.00) Fit 0.01 (-0.02, 0.01) Fit L 4831 (-1525.3, 569.2)
Mild fraity 0.01 {-0u01, -0.0) Mild frasilty 0.02 (-0.05, -0.00) Ml frailty > 531.5 (-684.5, 1747.4)
Moderaie frailty 0,05 {-0U0E, -0.02) Moderate fralty 0.02 {-0.07, 0.02) Moderate frailly S3ET.5 (3458.1, TOTEG)
Sewere fraalty == .22 (<0031, 40.13) Suvere Trailty el 0.15 (-0.24, -0.06) Severe frailty 157158.1 {11181.0, 20249.3)
Hio cormorbidities .00 (<0000, 000 Mo comorbidiies 0.01 {-0.02, 0.01) Mo comarbidilies -+ 3160 {-1356.7, T24.8)
One comorbidity 0.01 {0001, -0.009 One comorbidity 0.01 (-0.03, 0.01) Oner comurhidiby L 2436 (-1002.9, 1480.4)
Two comarbidiies * .06 (<0010, -0.03) Twva comorbidilies 0.08 (-0.10, -0.01) Two comorbidifies 5308 4 (16486, 89883
Thres or more comarbidiies e .28 (<0040, -0.18) Thires ar mare comorbidilies i 0.21 (-0.33, -0.09) Thres or more comorbidities 757001 (20068, 13133.3)

I I I I I I

:] 5 3] -] 26000 o 25000

*Values to the left (right) of the 0 axis

the subgroup.
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Appendix B.4. Forest plots of estimated incremental life years (left), quality-adjusted Life Years (QALYSs, centre) and costs

(right) of emergency surgery versus non-emergency surgery from the Local Instrumental Variables (LIV) approach for acute

appendicitis (panel A) and acute gallstone disease (B)

Figure 1. (b) Acute gallstone disease

QALYSs Costs

Subgroup O, in mesans (95% C1) Subgroug D, in mesans (95% CI) Subgroup Diff. i means {25% CI)
Al 0.01 {-0.02, 0000} Al Q.01 {-0.00, 0LDZ) Al TH.6 [-701.6, 548.2)
=45 0,00 {-0.00, 0000} =45 Q.00 {-0.00, 000} =45 1083 {-537.0, 316.4)
45-49 0,00 {-0.01, 0000} 45-49 0.00 (-0.01, 0.01) 45-40 533.0 {-1020.1, -45.9)
50-54 0u01 (0.00, 0.01) 50-54 0.01 {0.00, 0.02) 50-54 TEO3 {-1333.2, -187 .4)
55-59 0u01 (0.00, 0.01) 55-59 Q.01 {-0.00, 0LDZ) 55-50 8439 (-1630.2, 142.4)
a0-64 0U00 [-0.04, 0.01) 60-64 0.00 {-0.01, 0uD1} E-84 1659 (-11B5.6, B45.8)
B5-69 0L [-0.00, 0.02) 65-89 Q.01 {-0.00, 0UD3) E5-80 7902 {-1776.5, 166.1)
70-47 0.00 {-0.03, 0L0Z) T0-47 Q.01 {-0.01, 0LD3) T0-47 181.1 (-1580.1, 1226.9)
75-19 .03 {-0.07, 0L01) 7519 Q.02 {-0.01, 0u04]) 75-79 3068 (-2026.0, 1410.4)
A0-84 0.04 {-0.11, 0.02) 80-84 0.00 {-0.03, 0u0d) B0-84 17360 (-731.1, 4201.1)
A4+ .10 {-0.21, 0uD1) a4+ 0.04 {-0.02, 0U0G) Bd+ 26968 (61.2, 5332.3)
Make 0,02 {-0.04, 0000} Male 002 {0.01, 0.03) Male 289 (-804.7, BEE.S)
Female 0.00 {-0.02, 0001} Frmale 0.00 {-0.01, 0uD1} Female 127.4 (-713.9, 45800)
Fit 0000 [-0.00, 0.01) Fit Q.00 {-0.00, 0uD1} Fit 671.7 {-1083.2, -280.%)
Mild fraity 0.01 {-0.03, 0L01) Mild frailty Q.00 {-0.01, 0LDZ) Mlid frailty 176.5 (-975.7, G16.8)
Moderate frailty .03 {-0u05, 0.0} Moderabe fralty Q.05 {0.02, 0.07) Maderabe frailly 20504 (48.7, 4052.3)
Sewere frally 0,18 {0230, -0.07) Severe frailty 0.04 (<0002, 0.11) Severe frailty —— 8570.5 (AT00.1, 13458.09)
Hio comorbidities 0U00 [-0.00, 0.01) Mo comuorbidies .00 {0001, 0ud1) Mo camarbidilies 4845 (-973.1, 10.1)
One comorbidity .02 {0004, 0u00) One comarbidity 0.01 {-0u00, 0.2} Orer comartidity 138.0 [-647.4, 925.3)
Two comarbidiies 0.05 {0011, 0.01) Tava comarbidilies .04 {0.01, 0.07) Two comorbidifies 23234 (-157 .4, 4604.1)
Three ar more camarbidiies 0.07 {-0U1 8, 0U05) Thres ar more comarbidilies Q.08 {-0u00, 0U1E) Thres or more comorbidities 2B06.7 (-1450.9, BETI.4)

I I I I I

*Values to the left (right) of the 0 axis

the subgroup.

5 15000 o 15000

w

indicate that NES (ES) leads to fewer life years/QALYs (left and centre panel) or reduced costs (right panel) for
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Appendix B.5. Mean level of rescaled baseline covariates according to the level of the instrumental variable

Acute Appendicitis

2.5

]
|
ian

1.5

1
[

5
i

Mean level of bassline covariate

Wean level of baseline covariate
standardised by its standard deviation
standardised by its standard devia

1 ] I 1 | I
a 2 4 8 2] 10
Tendency To Operate [decile)

*SCARF: Secondary Care Administrative Records Frailty.

Acute galistone disease

o 2 4 i 2 10

Tendenzy To Operate (decile)
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Appendix C. Chapter 4

Appendix C.1. Costing methodology
Overview

The main cost items for emergency surgery (ES) and non-emergency surgery (NES)
strategies were the costs related to the length of stay in hospital, including the stay
on general wards (bed-day costs) and on intensive care units (ICU). These costs
covered both the index admission and any readmission (emergency or planned) up to
one year, and used patient-level resource use data from HES, that linked information
across all qualifying hospital admissions. The costs considered also included diagnostic
and operative procedures. A micro-costing approach was adopted to calculate the costs

of operative procedures in the index admission and readmissions.
Costing operative procedures

The study designated more common operative procedures as potential drivers of the
incremental cost of ES versus NES, and therefore costed each of these procedures
separately. For each of the comparison groups, the definition of ‘more common’ was
a procedure with a prevalence that exceeded 1% in the index admission. This
conservative definition of ‘more common’ was taken to reduce the risk of excluding
important cost differences between the comparison groups. The 1% rule was deemed
appropriate for also identifying ‘more common’ procedures in readmissions, which were
costed using the same methods and assumptions used for procedures performed in the
index admission. If multiple operative procedures met the criteria for ‘more common’,
only one was costed. For each comparison group, we first considered procedures that
would potentially qualify as ES (see Appendix C.6.D), and then considered operative
procedures that did not meet the ES criteria (e.g. cholecystectomy) and then other
non-operative procedures (e.g. catheterisation of bladder). For those admissions with
procedures that did not meet the threshold for a common procedure because they were
‘low-volume’ (<1% for the comparison group in the initial admission) we did not
include specific additional costs for the procedure per se, and only included the costs

associated with bed-days and diagnostic tests'.

i The same 1% rule was used for identifying the most common diagnostic procedures that were costed.
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Appendix C.13 lists the most common operative procedures for each of the comparison

groups for the three conditions.

To calculate the costs of the ‘common’ operative procedures, the expected durations
of the operations, the number and grade of staff involved were informed by the
literature and expert opinion (see Appendix C.9). The use of disposables (e.g. reload
staplers), equipment (e.g. imaging systems), surgical instruments (e.g. laparoscopic

sets), and overheads were informed by expert opinion (see Appendix C.9).
Applying unit costs

Each resource use item was valued using appropriate unit costs from recommended
national sources (see Appendices C.7 y C.8). Direct personnel costs were calculated as
the costs per hour of employing each grade of staff. The costs of overheads included
costs of drugs, direct Central Sterile Supply Department (CSSD), as well as allocated
costs (rent, property and equipment maintenance and cleaning costs, among others)
associated with the provision of the procedure (ISD Scotland, 2019). Purchase prices
of disposables, instruments and equipment for each procedure were retrieved from
different sources, including the finance department of an NHS Trust hospital. The
assignment of unit costs for each item took account of the expected number of times
the item would be used over the lifetime, recognising any additional costs of a
sterilisation process required to enable reuse (Ismail et al., 2015). All unit costs were
inflated to 2019/20 prices (£ GBP) using UK’s GDP deflator published by HM
Treasury (HM Treasury Department, 2020).

To assess the sensitivity of the results to assumptions made about unit costs, the
sensitivity analyses considered alternative scenarios. Specifically, the inclusion of the
full unit costs of operative procedures risks double counting of those items (e.g., some
consumables) that may be included within the overall costs per bed-day. Conversely,
the exclusion of the ‘less common’ operative procedures for both comparison groups
may have led to an underestimate of the absolute levels of costs for both groups. To
investigate whether either standpoint would be likely to lead to a large inaccuracy in

the estimation of incremental cost, the scenarios considered increases and decreases of
by 10% (see Appendix C.14).

Appendix C.2. Calculation of QALYs

The cost-effectiveness analysis (CEA) was designed to report QALYs up to one year

(base case) by combining individual-level survival data with appropriate health-
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related quality of life (HRQoL) estimates for acute appendicitis, diverticulitis and
abdominal wall hernia, for ES and NES strategies.

For the base case analysis, HRQoL values were required at ‘baseline’, the time of the
emergency admission, and at one-year follow-up. For survivors at one-year, it was
assumed that patients’ HRQoL was reduced for the duration of the initial emergency
hospital admission, and then following hospital discharge that the patient’s HRQoL
level recovered immediately to the average HRQoL level reported in the literature at
the one-year follow-up. For patients who had an emergency readmission recorded
within the HES data, during the one-year follow-up, it was assumed that HRQoL at
readmission reverted to the same level as that following the initial (index) emergency
admission. It was also assumed that following hospital discharge the HRQoL levels
reverted to those at one-year follow-up (see Appendix C.18). The assumption that
HRQoL reverted to follow-up levels immediately after hospital discharge, was
challenged in sensitivity analysis in which QALYs were instead calculated using linear
interpolation between the index emergency admission and one-year follow-up (see
Appendix C.18). For patients who died prior to one-year, a HRQoL score of zero was
applied.

The approach to estimating QALYSs therefore assumed that events that do not lead
to emergency readmissions (e.g. planned surgery for recurrence), have minimal impact
on the patient’s HRQoL, as suggested previously e.g. for hernia repairs in the elective
setting in McCormack et al., (2005), and Sharma et al., (2015). It was also assumed
that there is no differential effect on QALYs between the comparison groups, beyond
the effect on one-year mortality, or the rate or duration of emergency readmissions,
both of which were derived from the individual-level HES data. This was motivated
by the limited availability of studies comparing HRQoL of ES to NES alternatives in
the emergency setting. The QALY calculation recognised differences in HRQoL
according to age and gender, by adjusting the general HRQoL values from the
literature according to recommended age-gender weights derived from the general
population (see Appendix C.11) (Ara et al., 2017; Ara and Brazier, 2010).

Appendix C.3. Search for appropriate HRQoL scores and adjustment

The approach to estimating QALYs required that appropriate HRQoL values were
identified from a literature review. We undertook separate search strategies for each

condition in MEDLINE (see Appendix C.10). The criteria used to select the most
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appropriate source of HRQoL, recognised the specific requirements of the ESORT
study (ESORT Study Group, 2020), and were prioritised according to:

1. The study considered at least one intervention regarded as ES by the clinical
panel.

2. The intervention was performed in the emergency (non-elective) setting.

3. The study evaluated HRQoL using the tool recommended by NICE in their
methodological guidance, the EuroQoL 5-dimension (EQ-5D) instrument in its
three-level (3L) version (NICE, 2013).

4. The study evaluated HRQoL at baseline (i.e. pre-operatively), and at one-year
from baseline.

5. The study was conducted in the UK, or in a country with similar demographics
and healthcare system.

6. The study was conducted no earlier than ten years before the start date of the
ESORT study (i.e. 2010).

Most of the studies that met these criteria compared different forms of ES, rather
than ES versus NES strategies. We therefore applied the same HRQoL scores at
baseline and one year to both comparison groups as outlined in Appendix C.2, in
keeping with the assumption noted above, that any differences in HRQolL between
the comparison groups would be captured by differences in one-year mortality, and

the rate and duration of emergency readmissions.

Appendix C.4. A Local instrumental variable (LIV) approach

We consider the Neyman-Rubin potential outcomes framework (Neyman, 1990;
Rubin, 1974), where Y; = uy(Xo, Xy, 9) and Yy = py(Xp,Xy,9) are the potential
outcomes under treatments 1 (ES) and 0 (NES) and A =Y; —Y, is the individual
treatment effect, X, are observed characteristics (e.g. patient’s measured frailty), Xy
are unmeasured confounders (e.g. patient’s physiology) and 9 captures any remaining
unobserved random variation. The model for treatment assignment can be defined as
D*=up(Z,Xp) —Up and D = 1if D* = 0, where Z is a vector of instruments and Up,
captures Xy and any other unobserved variable that influences treatment selection.
Here, the decision to assign the patient to ES (D=1) depends on their observed and
unobserved characteristics and the tendency of their hospital to operate (i.e. the
instrument). Following Heckman and Vytlacil (1999, 2005) and without loss of
generality, this model can be re-written in terms of probabilities as D* = P(Z,Xy) —

V, where P(Z,X,) is the propensity for treatment, V reflects the degree to which
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unobserved variables discourage treatment and V is uniformly distributed between 0

and 1.

Note that under this model each complier (patient whose treatment status was altered
by shifts in the level of IV) has some level of Z at which they would have only just
been assigned to ES. For any value of Z below that “threshold”, the patient will
remain in the comparator group. At this level of Z they would be in equipoise. These
hypothetical patients in equipoise are referred to as marginal patients, since a marginal
change in the IV is sufficient to alter their treatment assignment. Since the IV is
assumed not to otherwise influence treatment, the change in outcomes attributable to
this marginal change in the IV can be attributed to the change in treatment, thus we
can identify the marginal treatment effect for these marginal patients. The Marginal
Treatment Effect (MTE) can be defined as,

AMTE (x0,v) = E(A|Xp = %0,V = V)

The MTE is the most nuanced treatment effect parameter. Under regular IV
assumptions, the Local instrumental variable (LIV) estimator can be used to estimate
a series of MTEs (Bjorklund and Moffitt, 1987; Heckman, 1997; Heckman and
Vytlacil, 1999, 2005),

OE(Y, — YolXo = x0,P(2,%0) = p)

AMTE(xO,p) = ap

To estimate the MTEs, we (i) estimate the propensity score for ES for each individual
using a probit model, including the measured confounders and the instrument (similar
to the first stage in 2SRI, or 2SLS but using probit in place of linear regression), (ii)
store the estimated propensity scores and make sure that there exists coverage for
both treatment arms across all values from 0 to 1 (rounded to 0.01; or else drop
values), (iii) estimate an outcome model (Generalised Linear Models (GLMs) here) on
the covariates, propensity score and interactions of these using appropriate methods,
(iv) take the derivative of the estimated outcome equation with respect to the
estimated propensity score to obtain the MTE estimate. Then, MTEs can be
aggregated into meaningful parameters of treatment effects such as the ATE or
CATEs.

Basu showed that MTEs can also be used to derive person-centered treatment (PeT)
effects (Basu, 2014, 2015). Note that the treatment assignment status provides some
information on V and P(Z, X,) for each patient. For instance, a patient with low frailty

who nonetheless is assigned to ES, is likely to have unmeasured characteristics

185



encouraging ES (disease severity), that is the observed treatment assignment is
informative about the range of unobserved confounders (and hence values of V) that

are plausible for that patient.

For patients in the treatment group (D=1), the propensity to choose treatment based
on X and Z must outweigh the propensity to choose the comparator strategy based
on Up, i.e. P(z,x5) > v. For patients in the comparator strategy (D=0), the opposite

is true. Hence,
APeT(xo,p, D) = E(Yl - Y0|X0 = xo,P(Z, xO) > U) for individuals with D=1
APeT(xo,p, D) = E(Yl - Y0|X0 = xo,P(Z, xo) < U) fOI' individuals with D=0

The PeT effect averages MTEs with the same level of X and Z over those values of
unobserved variables that are compatible with that patient’s treatment assignment.
All the treatment effect parameters, including conditional average treatment effects
(CATESs), can be derived by taking averages of PeT effects. This can be accomplished
using the ‘petiv’ command in Stata.(Basu, 2015) In short, we evaluate the MTE at
different values of v, retaining only those that are consistent with the observed
treatment decision given that patients observed characteristics and the level of the
hospital’s tendency to operate (TTO, i.e. the IV) for their hospital, and then average
these MTEs to obtain the PeT effect. The PeT effects can then be aggregated for the

population of interest.
Implementation for the CEA

This LIV approach was implemented as follows: first, each patient’s propensity for ES
was estimated according to their observed characteristics and the TTO using a probit
model. Second, for each outcome (costs, QALYs), an appropriate GLM, determined
by reference to the root mean squared error, was estimated relating the observed
outcome to the individuals’ observed characteristics, and their propensity for ES, along
with interactions between them. Next, the MTEs were obtained by considering the
impact on outcomes of a marginal change in the propensity for ES. Third, numerical
integration was used to obtain individual level treatment effect estimates recognising
their actual treatment assignment as described in Basu (2015). After obtaining the
effect estimates for Costs and QALYs, these were used to calculate the effect on Net

Monetary Benefit (NMB), i.e. the incremental net monetary benefit (INB).

To obtain standard errors and confidence intervals, the steps above were bootstrapped

300 times (200 times for sensitivity analyses due to computational complexity), with
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all outcome models estimated within the same bootstrap to account for correlation
between the cost and QALY endpoints. (For further details on the estimation steps,
see Basu (2015)).

Appendix C.5. Accounting for hospital quality

We derived proxy measures for the quality of acute care in managing emergency
admissions. These proxy measure of quality of care, were defined by the rates of all-
cause mortality and emergency readmissions up to 90 days for each hospital (base
case). This information was reported for each condition for the 2009-2010 financial
year, to provide baseline, time-invariant proxies for care quality in each hospital, and
for the one year preceding each qualifying emergency hospital admission, to provide
time-varying proxies for care quality. This allowed the study to adjust for time-
constant differences in quality across hospitals, and those that differed over time.
While an alternative approach would be to include hospital level fixed effects, these
would only control for time invariant unobserved confounders, and would also remove

much of the variation in TTO by hospital, thus weakening the IV substantially.

In sensitivity analyses, we consider ‘external’ measures of ‘quality of acute care’ by
using hospital performance measures from the National Emergency Laparotomy Audit
(NELA)(NELA, 2016, 2017, 2018). Since data were not available from NELA for all
years of the study, and definitions changed over time, we constructed an average
(weighted by volume) using data from 2016, 2017 and 2018 for the following seven
indicators of quality of peri-operative management for emergency laparotomy patients
which we anticipate would capture the influence of any potential time invariant

observed confounders associated with hospital quality:

1. Adjusted mortality rate

2. Proportion of patients in whom a risk assessment was documented preoperatively

3. Proportion of patients arriving in theatre within a time appropriate for the
urgency of surgery

4. Proportion of patients with a calculated preoperative risk of death >5% for whom
a consultant surgeon and anaesthetist were present in theatre

5. Admission to critical care when risk of death 25%
Unplanned returns to theatre

7.  Unplanned returns to critical care
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These variables were anticipated to control for a range of potential hospital-level

unobserved confounders.
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Appendix C.6. Definitions

of populations

(panel A

and B)

interventions (C and D) for acute appendicitis, diverticular disease, and

abdominal wall hernia

(A): List of International Classification of Diseases (ICD)-10 codes considered for

inclusion criteria

Acute appendicitis
(N=268,144)

Diverticular disease
(N=138,869)

Abdominal wall hernia
(N=106,432)

K35: Acute appendicitis

K35.2: Acute appendicitis
with generalised peritonitis

K35.3: Acute appendicitis
with localized peritonitis

K35.8: Acute appendicitis,

other and unspecified

K37: Unspecified
appendicitis

K57.0: Diverticular disease
of small intestine with
perforation and abscess
K57.1: Diverticular disease
of small intestine without
perforation or abscess
Kb57.2: Diverticular disease
of large intestine with
perforation and abscess
K57.3: Diverticular disease
of large intestine without
perforation or abscess

Kb57.4: Diverticular disease
of both small and large
intestine with perforation
and abscess

K57.5: Diverticular disease
of both small and large
intestine without perforation
or abscess

K57.8: Diverticular disease
of intestine, part unspecified,
with perforation and abscess
K57.9: Diverticular disease
of intestine, part unspecified,
without perforation or
abscess
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K40.0: Bilateral inguinal
hernia, with obstruction,
without gangrene
K40.1: Bilateral inguinal
hernia, with gangrene

K40.2: Bilateral inguinal
hernia, without obstruction
or gangrene

K40.3: Unilateral or
unspecified inguinal hernia,
with obstruction, without
gangrene

K40.4: Unilateral or
unspecified inguinal hernia,
with gangrene

K40.9: Unilateral or
unspecified inguinal hernia,
without obstruction or
gangrene

K41.0: Bilateral femoral
hernia, with obstruction,
without gangrene

K41.1: Bilateral femoral
hernia, with gangrene

K41.2: Bilateral femoral
hernia, without obstruction
or gangrene

K41.3: Unilateral or
unspecified femoral hernia,
with obstruction, without
gangrene

and



Acute appendicitis
(N=268,144)

Diverticular disease
(N=138,869)

Abdominal wall hernia
(N=106,432)

K41.4: Unilateral or
unspecified femoral hernia,
with gangrene

K41.9: Unilateral or
unspecified femoral hernia,
without obstruction or
gangrene

K42.0: Umbilical hernia
with obstruction, without
gangrene

K42.1: Umbilical hernia
with gangrene

K42.9: Umbilical hernia
without obstruction or
gangrene

K43.0: Incisional hernia
with obstruction, without
gangrene

K43.1: Incisional hernia
with gangrene

K43.2: Incisional hernia
without obstruction or
gangrene

K43.3: Parastomal hernia
with obstruction, without
gangrene

K43.4: Parastomal hernia
with gangrene

K43.5: Parastomal hernia
without obstruction or
gangrene

K43.6: Other and
unspecified ventral hernia
with obstruction, without
gangrene

K43.7: Other and
unspecified ventral hernia
with gangrene

K43.9: Other and
unspecified ventral hernia
without obstruction or

gangrene
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Appendix C.6.

Definitions

of populations

(panel

A and B) and

interventions (C and D) for acute appendicitis, diverticular disease, and

abdominal wall hernia

(B): List of exclusion criteria

Acute appendicitis

Diverticular disease

Abdominal wall hernia

(N=268,144) (N=138,869) (N=106,432)
Pregnancy None Pregnancy
Appendiceal cancer Ischaemia

Cancer

(C): Definition of ‘emergency surgery’ and time window

Acute
appendicitis
(N=268,144)

Diverticular
disease
(N=138,869)

Abdominal
wall hernia
(N=106,432)

Procedures defined as

‘emergency surgery’

See Panel (D)

See Panel (D)

See Panel (D)

Common procedures *Unspecified other ~ Image controlled None
excluded from definition excision of appendix percutaneous

of ‘emergency surgery’ drainage

Threshold for a 7 days Any time 3 days
procedure in the index

admission to be

‘emergency surgery’

Threshold for a 7 days 14 days 3 days

procedure in a
readmission to be

‘emergency surgery’

*Further OPCS Classification of Interventions and Procedures (OPCS-4) codes were added
to the list of ES procedures after the clinical panel exercise. For appendicitis (following

review of coding use by hospital): H029 Unspecified other excision of appendix. For

abdominal wall hernia (following inclusion of umbilical hernia as a diagnosis and for

consistency with other hernia types): T241 Repair of umbilical hernia using insert of natural

material, T248 Other specified primary repair of umbilical hernia, T971 Repair of recurrent

umbilical hernia using insert of natural material, T973 Repair of recurrent umbilical hernia

using sutures, T978 Other specified repair of recurrent umbilical hernia, T979 Unspecified

repair of recurrent umbilical hernia. See Panel (D) for full list of OPCS codes defined as

emergency surgery.
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Appendix C.6.

Definitions

of populations

(panel

A and B) and

interventions (C and D) for acute appendicitis, diverticular disease, and

abdominal wall hernia

(D): Full list of OPCS codes defined as emergency surgery

Acute appendicitis
(N=268,144)

Diverticular disease
(N=138,869)

Abdominal wall hernia
(N=106,432)

HO11: Emergency excision
of abnormal appendix and
drainage

HO012: Emergency excision
of abnormal appendix NEC
HO018: Other specified
emergency excision of
appendix

HO019: Unspecified
emergency excision of
appendix

HO029: Unspecified other
excision of appendix

HO031: Drainage of abscess
of appendix

HO032: Drainage of appendix
HO71: Right hemicolectomy
and end to end anastomosis
of ileum to colon

HO072: Right hemicolectomy
and side to side anastomosis
of ileum to transverse colon
HO073: Right hemicolectomy
and anastomosis NEC
HO074: Right hemicolectomy
and ileostomy HFQ

T342: Open drainage of
pelvic abscess

T343: Open drainage of
abdominal abscess

HO013: Emergency excision
of normal appendix

T463: Irrigation of
peritoneal cavity

HO062: Extended right
hemicolectomy and
anastomosis of ileum to
colon

HO091: Left hemicolectomy
and end to end anastomosis
of colon to rectum

H092: Left hemicolectomy
and end to end anastomosis
of colon to colon

H093: Left hemicolectomy
and anastomosis

H094: Left hemicolectomy
and ileostomy

H095: Left hemicolectomy
and exteriorisation of bowel
NEC

H101: Sigmoid colectomy
and end to end anastomosis
of ileum to rectum (0.03%)
H102: Sigmoid colectomy
and anastomosis of colon to
rectum

H103: Sigmoid colectomy
and anastomosis

H104: Sigmoid colectomy
and ileostomy

H105: Sigmoid colectomy
and exteriorisation of bowel
H113: Colectomy and
anastomosis NEC (0.01%)
H114: Colectomy and
ileostomy

H115: Colectomy and
exteriorisation of bowel
H152: End colostomy
H158: Other specified other
exteriorisation of colon
H333: Anterior resection of
rectum and anastomosis of
colon to rectum using staples

T201: Primary repair of
inguinal hernia using insert
of natural material

T202: Primary repair of
inguinal hernia using insert
of prosthetic material
T203: Primary repair of
inguinal hernia using
sutures

T204: Primary repair of
inguinal hernia and
reduction of sliding hernia
T208: Other specified
primary repair of inguinal
hernia

T209: Unspecified primary
repair of inguinal hernia
T211: Repair of recurrent
inguinal hernia using insert
of natural material

T212: Repair of recurrent
inguinal hernia using insert
of prosthetic material
T213: Repair of recurrent
inguinal hernia using
sutures

T218: Other specified repair
of recurrent inguinal hernia
T219: Unspecified repair of
recurrent inguinal hernia
T221: Primary repair of
femoral hernia using insert
of natural material

T222: Primary repair of
femoral hernia using insert
of prosthetic material
T223: Primary repair of
femoral hernia using sutures
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Acute appendicitis
(N=268,144)

Diverticular disease
(N=138,869)

Abdominal wall hernia
(N=106,432)

HO078: Other specified other
excision of right hemicolon
T468: Other specified other
drainage of peritoneal
cavity

H334: Anterior resection of
rectum and anastomosis
NEC

H335: Rectosigmoidectomy
and closure of rectal stump
and exteriorisation of bowel
H336: Anterior resection of
rectum and exteriorisation of
T342: Open drainage of
pelvic abscess (0.09%) 33

T228: Other specified
primary repair of femoral
hernia

T229: Unspecified primary
repair of femoral hernia
T231: Repair of recurrent
femoral hernia using insert
of natural material

T232: Repair of recurrent
femoral hernia using insert
of prosthetic material
T233: Repair of recurrent
femoral hernia using sutures
T239: Unspecified repair of
recurrent femoral hernia
T241: Repair of umbilical
hernia using insert of
natural material

T242: Repair of umbilical
hernia using insert of
prosthetic material

T243: Repair of umbilical
hernia using sutures

T248: Other specified
primary repair of umbilical
hernia

T249: Unspecified primary
repair of umbilical hernia
T271: Repair of ventral
hernia using insert of
natural material

T272: Repair of ventral
hernia using insert of
prosthetic material

T273: Repair of ventral
hernia using sutures

T278: Other specified repair
of other hernia of
abdominal wall

T279: Unspecified repair of
other hernia of abdominal
wall
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Acute appendicitis
(N=268,144)

Diverticular disease
(N=138,869)

Abdominal wall hernia
(N=106,432)

T288: Other specified other
repair of anterior abdominal
wall

G762: Open relief of
strangulation of ileum
G763: Open relief of
obstruction of ileum NEC
H176: Open relief of
obstruction of colon NEC
T251: Primary repair of
incisional hernia using
insert of natural material
T971: Repair of recurrent
umbilical hernia using
insert of natural material
T972: Repair of recurrent
umbilical hernia using
insert of prosthetic material
T973: Repair of recurrent
umbilical hernia using
sutures

T978: Other specified repair
of recurrent umbilical
hernia

T979: Unspecified repair of
recurrent umbilical hernia
T981: Repair of recurrent
ventral hernia using insert
of natural material

T982: Repair of recurrent
ventral hernia using insert
of prosthetic material
T983: Repair of recurrent
ventral hernia using sutures
T989: Unspecified repair of
recurrent other hernia of
abdominal wall

T252: Primary repair of
incisional hernia using
insert of prosthetic material
T253: Primary repair of
incisional hernia using
sutures
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Acute appendicitis
(N=268,144)

Diverticular disease
(N=138,869)

Abdominal wall hernia
(N=106,432)

T258: Other specified
primary repair of incisional
hernia

T259: Unspecified primary
repair of incisional hernia
44

T261: Repair of recurrent
incisional hernia using
insert of natural material
T262: Repair of recurrent
incisional hernia using
insert of prosthetic material
T263: Repair of recurrent
incisional hernia using
sutures

T268: Other specified repair
of recurrent incisional
hernia

T269: Unspecified repair of
recurrent incisional hernia
T318: Other specified other
operations on anterior

abdominal wall
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Appendix C.7. Unit costs (£GBP 2019/20) for potential cost drivers

Unit
. nt Source, definitions and

Item Unit cost ti

assumptions

(£GBP) P
Inpatient stay

NHS Reference costs 2017/18.

Weighted average of FDO5A and
G 1 d D 347

enerat war w FDO5B (NEL_XS) (NHS
Improvement, 2018).
ICU ward

NHS Reference costs 2017/18.

XC06Z: 1 ted (adult
Level 2 ICU Day 1,188 " organ supported (adu

critical care) (NHS Improvement,

2018).

NHS Reference costs 2017/18.

Weighted > of XC01Z-XC05Z.
Level 3 ICU Day 1,886 clgtec average o

2 to 6+ organs supported (adult
critical care) .

Diagnostic procedures

More common diagnostic procedures for acute appendicitis

NHS Reference costs 2017/18.
RD20A: Computerised Tomography

C ted
¢ ompY eh Procedure 83 Scan of One Area, without Contrast,
omogra
Srapiy 19 years and over (IMAG) (NHS
Improvement, 2018).
NHS Reference costs 2017/18.
. FE31Z: Diagnostic Colonoscopy with
Unspecified .
) ) ) Biopsy, 19 years and over (NES).
diagnostic endoscopic Procedure 206
L Mean bed-day costs of general ward
examination of colon . )
subtracted to avoid double-counting
(NHS Improvement, 2018).
X . NHS Reference costs 2017/18.
Fibreoptic , ) ,
. FE217Z: Diagnostic Endoscopic Upper
endoscopic ) )
. . Gastrointestinal Tract Procedures
examination of upper . )
trointestinal tract Proced 197 with Biopsy, 19 years and over
astrointestinal trac rocedure
8 i ) (NES). Mean bed-day costs of
and biopsy of lesion .
¢ general ward subtracted to avoid
© upp.er . double-counting (NHS Improvement,
gastrointestinal tract
2018).
Di tic fib ti NHS Refi e costs 2017/18.
iagnostic fibreoptic ., . o eference costs /

endoscopic

FE31Z: Diagnostic Colonoscopy with
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Unit

Source, definitions and

Item Unit cost )

assumptions

(£GBP)

examination of colon Biopsy, 19 years and over (NES).
and biopsy of lesion Mean bed-day costs of general ward
of colon subtracted to avoid double-counting

(NHS Improvement, 2018).

NHS Reference costs 2017/18. RD20:
Computed Computerised Tomography Scan of

Procedure 83 One Area, without Contrast, 19

tomography of head

years and over (IMAG) (NHS
Improvement, 2018).

More common diagnostic procedures for diverticular disease

NHS Reference costs 2017/18. RD20:
Computerised Tomography Scan of

C ted
¢ ompt eh Procedure 83 One Area, without Contrast, 19
omogra
grapiy years and over (IMAG) (NHS
Improvement, 2018).
Unspecified NHS RefeT"ence C(?StS 20'17/18.
. . . FE35Z: Diagnostic Flexible
diagnostic endoscopic . )
L Sigmoidoscopy, 19 years and over
examination of lower
. Procedure 143 (NES). Mean bed-day costs of
bowel using .
fib i general ward subtracted to avoid
1. reOPdIC double-counting (NHS Improvement,
sigmoidoscope 2018).
NHS Reference costs 2017/18.
. FE32Z: Diagnostic Colonoscopy, 19
Unspecified
. ] . years and over (NES). Mean bed-day
diagnostic endoscopic Procedure 206
inati ¢ col costs of general ward subtracted to
examination of colon
avoid double-counting (NHS
Improvement, 2018).
Unspecified NHS Refefence c9sts 2017/18. |
. L . FE31Z: Diagnostic Colonoscopy with
diagnostic fibreoptic .
) Biopsy, 19 years and over (NES).
endoscopic Procedure 277
inati ¢ Mean bed-day costs of general ward
examination of upper
trointestinal tpp ¢ subtracted to avoid double-counting
gastrointestinal trac (NHS Improvement, 2018).
Diagnostic NHS Reference costs 2017/18.
endoscopic FE347Z: Diagnostic Flexible
examination of lower Sigmoidoscopy with Biopsy, 19 years
bowel and biopsy of  Procedure 205 and over (NES). Mean bed-day costs

lesion of lower bowel
using fibreoptic
sigmoidoscope

of general ward (see above)
subtracted to avoid double-counting
(NHS Improvement, 2018).

More common diagnostic procedures for abdominal wall hernia
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Unit

Source, definitions and

Item Unit cost )
assumptions
(£GBP)
NHS Reference costs 2017/18.
Computed RD20A: Computerised Tomography
tomography Procedure 83 Scan of One Area, without Contrast,
19 years and over (IMAG) (NHS
Improvement, 2018).
NHS Reference costs 2017/18.
Transthoracic RD51C: Simple Echocardiogram, 5
. Procedure 101
echocardiography years and under (IMAG) (NHS
Improvement, 2018).
NHS Reference costs 2017/18. RD20:
Computed Computerised Tomography Scan of
tomography of Procedure 83 One Area, without Contrast, 19
abdomen years and over (IMAG) (NHS
Improvement, 2018).
NHS Reference costs 2017/18.
RD20A: Computerised Tomography
Computed .
tomography of head Procedure 83 Scan of One Area, without Contrast,
19 years and over (IMAG) (NHS
Improvement, 2018).
NHS Reference costs 2017/18.
Diagnostic FE31Z: Diagnostic Colonoscopy with
endoscopic Procedure 404 Biopsy, 19 years and over (NES).

examination of

peritoneum

Mean bed-day costs of general ward
subtracted to avoid double-counting
(NHS Improvement, 2018).

Operative procedures

Staff input

2019 Unit costs of Health and Social
Care (PSSRU). Section 14. Cost per

Consultant surgeon Minute 1.8 . i
working hour: consultant: surgical
(Curtis and Burns, 2019).
2019 Unit costs of Health and Social
C PSSRU). Section 14. Cost
Anaesthesiologist Minute 1.8 are'( ). Section O% ber
working hour: consultant: medical
(Curtis and Burns, 2019)
2019 Unit costs of Health and Social
Care (PSSRU). Section 14. Cost per
Consultant . . .
diologist Minute 1.8 working hour: consultant: medical
radiologis
& (Curtis and Burns, 2019).
2019 Unit costs of Health and Social
Registrar — surgery Minute 0.8 HHY costs of Healllh and Socia

Care (PSSRU). Section 14. Cost per
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Item Unit

Unit
cost
(£GBP)

Source, definitions and

assumptions

working hour: registrar (Curtis and
Burns, 2019).

Registrar — .
. Minute
anaesthesiology

0.8

2019 Unit costs of Health and Social
Care (PSSRU). Section 14. Cost per
working hour: registrar (Curtis and
Burns, 2019).

Registrar — radiology Minute

0.8

2019 Unit costs of Health and Social
Care (PSSRU). Section 14. Cost per
working hour: registrar (Curtis and

Burns, 2019).

Nurse — Band 5 Minute

0.6

2019 Unit costs of Health and Social
Care (PSSRU). Section 13. Cost per
working hour: band 5 — hospital-based
nurse (Curtis and Burns, 2019).

Nurse — Band 6 Minute

0.8

2019 Unit costs of Health and Social
Care (PSSRU). Section 13. Cost per
working. hour: band 6 — hospital-based
nurse (Curtis and Burns, 2019).

Operating
department Minute

practitioner

0.8

2019 Unit costs of Health and Social
Care (PSSRU). Section 13. Assumed
same cost as cost per working hour of
band-6 hospital-based nurse (Chapter
13) (Curtis and Burns, 2019).

Overhead costs

Operating room Minute

5.4

Includes direct drug and CSSD costs
as well allocated costs (other staff;
property and equipment maintenance;
domestics and cleaning; heat, light and
power; rent and rates; purchases of
furniture, fittings and equipment (non-
capital charge) and others). Weighted
average of 43 hospitals in Scotland
(ISD Scotland., 2019).

Reusable instruments and equipment

Manufacturer. See Table S3 for full list
of components. Total purchase cost is

Laparoscopic £.3,112. Number of uses is 2,750. Final
Procedure 39.2 ] .

colorectal set cost includes sterilisation cost
following at £0.8 cost per instrument
used (Ismail et al., 2015).

Main 1 . Manufacturer. See Table S3 for full

ain laparoscopic
P P Procedure 36.8 list of components. Total purchase

set

cost is £2,511. Assumed number of
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Item

Unit

Unit
cost
(£GBP)

Source, definitions and

assumptions

uses is 2,750. Final cost includes
sterilisation cost following at £0.8
cost per instrument used (Ismail et
al., 2015).

Major general set

Procedure

39.2

Manufacturer. See Table S3 for full
list of components. Total purchase
cost is £2,744. Assumed number of
uses is 2,750. Final cost includes
sterilisation cost following at £0.8
cost per instrument used (Ismail et
al., 2015).

Minor general set

Procedure

32.8

Manufacturer. See Table S3 for full
list of components. Total purchase
cost is £1,417. Assumed number of
uses is 2,750. Final cost includes
sterilisation cost following at £0.8
cost per instrument used (Ismail et
al., 2015).

Endoscopic

polypectomy set

Procedure

16.2

Manufacturer. Includes endoscopic
forceps, snare and endoscopic clips.
Final cost includes sterilisation cost
following at £0.8 cost per instrument
used. (Ismail et al., 2015) Unit cost
calculated assuming number of uses
is 4400 (except for snare and clips
which are assumed to be disposable).

Telescope and stack

Procedure

15.2

Manufacturer. Includes stack, scope
(Precision ideal eyes 10mm 30°, HD
autoclavable Laparoscope 33cm),
tray and cable (fibreoptic cable
5.0mm x 10 ft. (3.05m)). Purchase
cost of stack and stack are £68,760
and £2,334, respectively. Unit cost
calculated assuming number of uses
is 4400.

Ultrasound system

Procedure

1.5

Manufacturer. Purchase cost of
ultrasound system is £7,132. Unit
cost calculated assuming number of
uses is 4400.

Disposables

Laparoscopic linear
stapler

Procedure

262

Manufacturer. Linear Cutter 75mm.
1 is assumed to be used per
procedure.
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Item Unit

Unit
cost
(£GBP)

Source, definitions and

assumptions

Stapler reload Procedure

36.5

Manufacturer. Reload linear cutter,
blue, 75mm. Purchase cost of
£465.61 per box of 12. 1 is assumed
to be used per procedure.

Endoloop ligature Procedure

56.9

Manufacturer. Endoloop Ethicon. 3
are assumed to be used per procedure
(Clement et al., 2020).

Biosynthetic mesh Procedure

61.1

Manufacturer. Sutumed Polipropilene
Non-absorbable Hernia Mesh 12" X
12". 1 is assumed to be used per
procedure.

Abdominal drain set  Procedure

18.2

Manufacturer. Set includes 1000mL
drainage bag, catheter valve cap,
slide clamp, tape strips and wipe.
Purchase cost £36.5 per box of 2.

Foyle catheterisation

Procedure
kit

9.4

Manufacturer. Catheterisation Set
16fr Foley and extras. Includes a 16fr
Foley catheter, a 500ml leg-bag,
2000ml bedside drainage bag, sterile
syringe and lube.

CSSD: Central sterile services department, ICU: intensive care unit, NHS: National Health

Service.
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Appendix C.8. Full list of components of surgical sets considered in cost

analysis

Laparoscopic
colorectal set

Main laparoscopic
set

Major general set

Minor general set

Aesculap dorsey
forcep 4 parts

Anti-tamper tags
B p handle no 3
B p handle no 4

Babcock tissue
forcep long

Babcock tissue
forcep short

Bottom tray
Container

Container

identification label

Diathermy
dissecting forcep

mcindoe
Diathermy quiver

Diathermy quiver
long + black end
cap

Dissecting forcep
debakey 6"

Dissecting forcep
debakey 8"

Dissecting forcep
gillies toothed

Doyen intestinal
clamp curved

Dunbhill artery
forcep

Dyball retractor

Filter and retaining
clip

Anti-tamper tags
B p handle no 3
B p handle no 4
Bottom tray
Container

Container

identification label

De-jardin stone
forcep

Diathermy
dissecting forcep

mcindoe

Diathermy quiver
long + black end
cap

Dissecting forcep
debakey 6"

Dissecting forcep
gillies toothed

Dunhill artery
forcep

Eragon ratchet
handle - do not
assemble to forcep

Filter and retaining
clip

Grasping forcep +
ratchet with
connector (pm 109)

Hassan 10mm (2
parts+10mm clear
seal)

Insulated hook with
connector

B p handle no 4
B p handle no 5

Babcock tissue
forcep 6 1/2"

Babcock tissue
forcep 8"

Balfour self-
retaining retractor

(see remarks)

Deaver retractor,

broad

Deaver retractor,
narrow

Diathermy
dissecting forcep

mcindoe
Diathermy quiver

Disposable green
tray wrap 120 x 150

Dissecting forcep
debakey 6"

Dissecting forcep
debakey 8"

Dissecting forcep
debakey 9 1/2"

Dissecting forcep
gillies toothed

Dissecting forcep
non toothed 5'

Doyen intestinal
clamp curved

Doyen intestinal
clamp straight

Artery forcep
mosquito curved

B p handle no 3
B p handle no 4

Babcock tissue
forcep

Catspaw retractor

Diathermy
dissecting forcep

mcindoe
Diathermy quiver

Disposable blue tray
wrap 120 x 150

Disposable green
tray wrap 120 x 150

Dissecting forcep
debakey 6"

Dissecting forcep
gillies toothed

Dunbhill artery
forcep

Heiss artery forcep
Lahey artery forceps

Lanes dissecting
forcep (1-2 teeth)

Littlewoods tissue
forcep

Mayo pin holding
next 2 items
Mayo pin holding
next 3 items
Mayo pin holding
next 4 items
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Laparoscopic
colorectal set

Main laparoscopic
set

Major general set

Minor general set

Grasping forcep +
ratchet with
connector (pm 109)

Hasson 12mm (3
parts) eal2nh send
disassembled

Heiss artery forcep

Insulated hook with
connector

Ireusable cannula
12mm

Lanes dissecting
forcep (1-2 teeth)

Laparoscopic
diathermy lead
(8mm bovie)

Littlewoods tissue
forcep

Maryland f/cep no
ratchet with
connector (pm 102)

Massons needle
holder

Monopolar
diathermy lead pin
fitting

Needle holder mayo
hegar

Nelson robert

scissors

Parker kerr
intestinal clamp
straight

Retractor
langenbeck medium

Retractor
langenbeck small

Lanes dissecting
forcep (1-2 teeth)

Laparoscopic
diathermy lead
(8mm bovie)

Littlewoods tissue
forcep

Maryland forcep no
ratchet with
connector (pm 102)

Mesh basket with lid

Modular monopolar
forcep (johan) sn
8393.184 2 parts

Monopolar
diathermy lead pin
fitting

Myoma forcep +

ratchet with
connector (pm 117)

Needle holder
crilewood

Needle holder mayo
hegar

Pike mouth forcep +
ratchet with
connector (pm 107)

Retractor
langenbeck medium

Retractor
langenbeck small

Reusable cannula

10mm

Reusable cannula
12mm

Scissor mayo
straight

Dunbhill artery
forcep

Dyball retractor
Heiss artery forcep
Lahey artery forceps

Lanes dissecting
forcep (1-2 teeth)

Lang stevenson
intestinal clamps

Littlewoods tissue
forcep

Massons needle
holder

Mayo pin holding
next 1 item

Mayo pin holding
next 3 items

Mayo pin holding
next 4 items

Mayo pin holding
next 6 items

Monopolar
diathermy lead pin
fitting

Moynihan
cholecystectomy
clamp

Needle holder mayo
hegar 7 1/4'

Needle holder mayo
hegar 8 1/2"

Nelson robert

scissors

Parker kerr
intestinal clamp
curved

Meyarding finger

retractor

Monopolar
diathermy lead pin
fitting

Needle holder
crilewood

Needle holder mayo
hegar

Poirers/allis tissue
forcep

Retractor
langenbeck medium

Retractor
langenbeck small

Retractor morris

medium

Retractor self-
retaining travers

Retractor self-
retaining west

Scissor kilner curved
Scissor mayo curved

Scissor mayo
straight 5 3/4"

Scissor mcindoe

curved

Sh/sh scissor

Soaker sheet to be
placed under
basket /tray

Spencer wells artery
forceps 7" curved

Spencer wells artery
forceps 8" straight

Sponge holder
rampley
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Laparoscopic
colorectal set

Main laparoscopic
set

Major general set

Minor general set

Retractor morris

medium

Roberts artery
forcep

Scissor mayo
straight

Scissor mcindoe
curved

Sh/sh scissor

Sponge holder
rampley

Threaded cannula
S5mm (2 parts)

Top tray
Trayliner

Trocar blunt tip
12mm

Trocar pencil point
12mm

Trocar pencil point
Smm

Trocar sharp tip
Smm

Waughs diathermy
dissecting forcep

Scissor mcindoe
curved

Sh/sh scissor

Spencer wells artery
forceps 7" curved

Sponge holder
rampley

Threaded cannula
Smm (2 parts)

Top tray
Towel clip small
Trayliner

Trocar blunt tip

10mm

Trocar pencil point

12mm

Trocar pencil point

Smm

Trocar sharp tip

Smm

Wash basket

Parker kerr
intestinal clamp
straight

Retractor
langenbeck medium

Retractor morris

large

Roberts artery
forcep

Scissor mayo curved

Scissor mayo
straight 5 3/4"

Scissor mcindoe
curved

Sh/sh scissor

Soaker sheet to be
placed under
basket /tray

Sponge holder
rampley

Styles tissue forcep
Trayliner
Wash basket

Waughs diathermy
dissecting forcep

T.o.e. dissecting
forcep

Trayliner

Wash basket
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Appendix C.9. Resource use categories for operative procedures in emergency surgery (ES) window

Acute appendicitis

Diverticular disease

Abdominal wall hernia

ES (N=247,506) NES (N=20,638) ES (N=15,772) NES ES (N=62,559) NES (N=43,873)
(N=123,097)
Most common - Emergency Interval Recto-sigmoi- Fibreoptic Primary repair of ~ Unspecified
operative excision of appendicectomy dectomy and closure endoscopic snare  inguinal hernia urethral
procedures in abnormal of rectal stump and  resection of lesion  using insert of catheterisation of
each arm in ES appendix exteriorisation of of colon prosthetic material bladder
window bowel
Time in theatre  Literature 70 (Javanmard- 70 (Javanmard- 135 (Heah et al., 25 (Teramoto et 60 (Wu et al., 15 (Wilson,
in minutes /expert Emamghissi et Emamghissi et 1995)* al., 2020) 2016) 2016)
(source) opinion al., 2020) al., 2020)
Staffing levels Expert S1 S1 S1 S1 S1 S2
opinion
Instruments Expert Main Main laparoscopic Major general set ~ Endoscopic Minor general set -
opinion laparoscopic set  set polypectomy set
Equipment Expert Laparoscope, Laparoscope, - Laparoscope, - -
opinion cable and tray cable and tray cable and tray
Main disposables Expert Three loops for ~ Three loops for Laparoscopic - Biosynthetic Foyle
opinion closure of the closure of the linear stapler and mesh catheterisation
appendiceal appendiceal reload kit
stump stump

The table includes exemplar data for most common operative procedures in ES window. Resource use for all other operative procedures was calculated

considering the same categories. *If the procedure appeared with operative codes for loop colostomy, other specified other exteriorisation of colon, or

unspecified other exteriorisation of colon, the duration was assumed to be 205 minutes. S1 considered: 1 consultant surgeon, 1 registrar surgeon, 2 band 5

nurses, 1 band 6 nurse, 1 operating department practitioner, 1 consultant anaesthetist, 1 registrar anaesthetist. S2 considered 1 band 5 nurse.
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Appendix C.10. Search strategies for HRQoL data
(A): Acute appendicitis

Database: Ovid MEDLINE(R) ALL <1946 to August 19, 2021>
Search Strategy:

*appendicitis/ (16067)
*appendectomy/ (6399)
appendic*.ti,ab. (33073)
appendec*.ti,ab. (10129)
emergency+surgery*.ti,ab. (9412)
emergency+appendectomy*.ti,ab. (153)
non-operative+manag*.mp. (1888)
conservative+manag*.mp. (16648)
antibiotic*.ti,ab. (360099)

10  antibiotic+adj+therapy.ti,ab. (0)

11  Anti-Bacterial+Agents/tu (135940)
12 Watchful+wait$.tu. (0)

13 delayed+surg$.ti,ab. (2186)

14 trial.ti,ab. (657219)

15 RCT.ti,ab. (24987)

16 randomi#ed-+controlled+trial.pt. (541163)
17  controlled+clinical+trial.pt. (94345)
18 case+control+stud$.ti,ab. (113048)
19  cross-sectional+stud$.ti,ab. (197037)
20 cohort+stud$.ti,ab. (244943)

21  observational+stud$.ti,ab. (126477)
24 Economic+evaluation.ti,ab. (9983)

25  EuroQol-5+Dimension.ti,ab. (670)

26 "EQ-5D".ab. (9451)

27 or/1-2(19106)

28 or/3-13 (496587)

29 and/27-28 (16860)

30 or/14-24 (1682168)

31 and/29-30 (1350)

32 or/25-26 (9720)

33  and/31-32 (4)

© 00 N O O &~ W N -
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Appendix C.10. Search strategies for HRQoL data

(B): Diverticular disease

Database: Ovid MEDLINE(R) ALL <1946 to September 24, 2021>
Search Strategy:

*diverticulitis/ (2667)

*Diverticulum/ (8202)

Diverticul*.mp. (33728)
emergency+surgery*.ti,ab. (9470)
Drainage*.ti,ab. (97292)
Lavage*.ti,ab. (52937)
Percutaneous+drainage*.ti,ab. (4232)
sigmoidectomy*.ti,ab. (1089)
colectomy*.mp. (24998)

10 conservative+manag*.mp. (16769)
11  antibiotic*.ti,ab. (362483)

12  antibiotic+adj+therapy.ti,ab. (0)

13 Anti-Bacterial+Agents/tu (136787)
14  Watchful+wait$.tu. (0)

15 delayed+surg$.ti,ab. (2207)

16  trial.ti,ab. (662690)

17 RCT.ti,ab. (25317)

18 randomi#ed-+controlled+trial.pt. (544498)
19  controlled+clinical+trial.pt. (94426)
20 case+control+stud$.ti,ab. (113845)
21  cross-sectional+stud$.ti,ab. (200110)
22  cohort+stud$.ti,ab. (248537)

23 observational+stud$.ti,ab. (128258)
24 Economic+evaluation.ti,ab. (10055)
25 EuroQol-5+Dimension.ti,ab. (690)
26 "EQ-5D".ti,ab. (9680)

27  or/1-3 (10504)

28 or/4-15 (651442)

29 and/27-28 (10504)

30 or/16-24 (1697513)

31 and/29-30 (200)

32 or/25-26 (9957)

33 and/31-32 (2)

O© 00 N O O &~ W N -
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Appendix C.10. Search strategies for HRQoL data

(C): Abdominal wall hernia

1 (inguinal or femoral or ventral or umbilical or abdominal wall).ti,ab. (335807)
2 hernia.ti,ab. (52281)

3 hernioplasty/ (9400)

4 herniorrhaphy/ (9400)

5 hernioplasty.ti,ab. (1602)

6 herniorrhaphy.ti,ab. (2372)

7  repair+or+surg*.ti,ab. (22)

8 hernia+adj+repair.ti,ab. (0)

9  (early adj3 (surg* or repair)).ti,ab. (28362)

10 trial.ti,ab. (657219)

11  RCT.ti,ab. (24987)

12  randomi#ed+controlled+trial.pt. (541163)
13 controlled+clinical+trial.pt. (94345)

14  case+control+stud$.ti,ab. (113048)

15 cross-sectional+stud$.ti,ab. (197037)

16  cohort+stud$.ti,ab. (244943)

17  retrospective+stud$.ti,ab. (179855)

18 observational+stud$.ti,ab. (126477)

19  (cost adj (utility or effectiv*)).ti,ab. (149693)
20  Economic+evaluation.ti,ab. (9983)

21  (quality of life or QoL or HRQoL).ti,ab. (312433)
22 EuroQol.af. (6571)

23 EQ-5D*.af. (9689)

24 and/1-2 (20870)

25  or/3-9 (40553)

26 or/10-20 (1972540)

27 or/21-23 (315435)

28 and/24-27 (129)
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Appendix C.11. Health-related quality of life (HRQoL) scores from the

literature and sources

Condition Source Mean Baseline EQ- One-year EQ-
age* 5D-3L score 5D-3L score
Females Males Females Males
Acute O’Leary et al., 32.80 0.751 0.768 0.967 0.989
appendicitis (2021)
Diverticular Thornell et al., 68.00 0.649 0.666 0.866 0.889
disease (2016)

Abdominal wall Rutegard et al., 58.76 0.848 0.870 0.936 0.960
hernia (2018)
The three studies used the EuroQol- 5-Dimension (EQ-5D) in its 3-level (3L) version.
*Mean age at trial start in the study.
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Appendix C.12. Generalised Linear Models (GLMs) for quality-adjusted
life years (QALYs) and costs, assessment of model fit according to root

mean squared error (RMSE)

Family Link Degree Acute Diverticular Abdominal
appendicitis Disease wall hernia
QALYs
Binomial  Logit [0.059] [0.192] [0.204]
Binomial  Logit 0.059 0.192 0.204
Binomial  Logit 0.059 0.192 0.204
Costs
Gaussian  Identity 1 3530.330 8980.985 [8975.387]
Inverse Identity 1 3533.875 8993.261 8988.748
gaussian
Gamma Identity 1 3532.422 8987.824 8983.084
Gaussian  Log 1 3525.947 8977.639 8976.490
Inverse Log 1 3530.944 9002.912 9009.775
gaussian
Poisson Log 1 3526.854 8980.842 8980.611
Gamma Log 1 3528.611 8988.305 8990.651
Gaussian  Identity 2 3530.321 8981.013 8975.399
Inverse Identity 2 3533.866 8993.318 8988.820
gaussian
Gamma Identity 2 3532.425 8987.953 8983.125
Gaussian  Log 2 (3525.900] (8975.837] 8976.386
Inverse Log 2 3530.938 8999.703 9009.797
gaussian
Gamma Log 2 3528.617 8985.700 8990.591

Most appropriate GLMs for costs and QALY's were selected looking at RMSEs (in

brackets). Degree refers to the polynomial order of the propensity score.
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Appendix C.13. Most common operative procedures within emergency surgery window (panel A) and after emergency

surgery window and up to one year (B)

(A): Within emergency surgery (ES) window

Acute appendicitis (N=268,144) Diverticular disease (N=138,869) Abdominal wall hernia (N=106,432)
ES (N=247,506) NES (N=20,638) ES (N=15,772) NES (N=123,097) ES (N=62,559) NES (N=43,873)
Most Emergency Interval Rectosigmoidectomy Fibreoptic endoscopic Primary repair of Unspecified
common excision of appendicectomy and closure of rectal snare resection of inguinal hernia using urethral
high- abnormal appendix (6.7) stump and lesion of colon (0.1) insert of prosthetic catheterisation of
volume (63.0) Other specified exteriorisation of Endoscopic division — material (27.6) bladder (0.5)
operative Unspecified other other excision of  bowel (55.6) of adhesions of Repair of umbilical [eectomy and
procedures excision of appendix (4.2) Irrigation of peritoneum (0.1) hernia using sutures anastomosis of
* (%) appendix (16.6) Planned delayed  peritoneal cavity Endoscopic snare (17.9) ileum to ileum
Emergency appendicectomy (7.7) resection of lesion of  Repair of umbilical (0.3)
excision of (1.6) Sigmoid colectomy  lower bowel using hernia using insert of Unspecified
abnormal appendix Total and exteriorisation  fibreoptic prosthetic material (12.3) excision of ileum
and drainage (9.9)  cholecystectomy  of bowel (6.6) sigmoidoscope (0.1) Primary repair of femoral (0.1)
Unspecified (1.6) Anterior resection Freeing of adhesions  hernia using sutures (9.4) Freeing of
emergency excision Image controlled  of rectum and of peritoneum (0.1) Primary repair of femoral adhesions of
of appendix (3.6) percutaneous exteriorisation of Fibreoptic endoscopic  hernia using insert of peritoneum (0.1)
Emergency drainage of lesion  bowel (3.1) resection of lesion of  prosthetic material (7.0)  Omentectomy
excision of normal  of abdominal Loop colostomy colon (0.0) Other (15.4) (0.0)
appendix (1.3) cavity (0.4) (2.3) Other (0.0) Other (0.0)
Other (0.1) Other (0.1) Other (14.2)
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Appendix C.13. Most common operative procedures within emergency surgery window (panel A) and after emergency

surgery window and up to one year (B)

(A): Within emergency surgery (ES) window (cont.)

Acute appendicitis (N=268,144) Diverticular disease (N=138,869) Abdominal wall hernia (N=106,432)

ES (N=247,506)  NES (N=20,638)  ES (N=15,772) NES (N=123,007) ES (N=62,559) NES (N=43,873)
% with no
‘more

9

common 49 84.9 10.6 99.7 10.5 98.9
operative
procedures
ok

Denominator is the total number of patients in the group. *'Other’ includes procedures with >1% volume in index admission appearing in ES window.
**This Includes patients for whom no procedures were recorded and those who got ‘low-volume’ (<1%) procedures. NES: non-emergency surgery.

212



Appendix C.13. Most common operative procedures within emergency surgery window (panel A) and after emergency

surgery window and up to one year (B)

(B): After emergency surgery window (ES) up to one year

Acute appendicitis (N=268,144)

Diverticular disease (N=138,869)

Abdominal wall hernia (N=106,432)

ES NES ES NES ES NES

(N=247,506) (N=20,638) (N=15,772) (N=123,097) (N=62,559) (N=43,873)
Most Emergency Unspecified Closure of Fibreoptic endoscopic Primary repair of Primary repair of
common excision of urethral colostomy (9.41) snare resection of lesion inguinal hernia using  inguinal hernia using
high- abnormal catheterisation Rectosigmoidectomy of colon (4.00) insert of prosthetic insert of prosthetic
volume appendix (2.80) of bladder (4.33) and closure of rectal Fibreoptic endoscopic material (3.83) material (26.9)
operative Emergency Emergency stump and resection of lesion of Repair of umbilical Repair of umbilical
procedures excision of excision of exteriorisation of colon (1.74) hernia using sutures hernia using insert
(%) * abnormal abnormal bowel (7.96) Rectosigmoidectomy and ~ (1.70) of prosthetic

appendix (0.78) appendix (4.27)  Freeing of adhesions closure of rectal stump Unspecified urethral material (6.17)

Emergency Unspecified of peritoneum (1.27) and exteriorisation of catheterisation of Repair of umbilical

excision of
abnormal
appendix (0.45)
Total
cholecystectomy
(0.31)
Unspecified
urethral
catheterisation of
bladder (0.26)
Other (1.30)

other excision of
appendix (2.81)

Planned delayed
appendicectomy
(1.88)

Planned delayed
appendicectomy
(0.92)

Other (3.98)

Freeing of adhesions
of peritoneum (1.14)
Sigmoid colectomy
and exteriorisation
of bowel (1.00)
Other (7.23)

bowel (1.21)

Endoscopic snare
resection of lesion of
lower bowel using
fibreoptic sigmoidoscope
(1.04)

Anterior resection of
rectum and anastomosis
of colon to rectum using
staples (0.60)

Other (3.72)

bladder (1.52)
Repair of umbilical
hernia using insert of
prosthetic material
(1.14)

Repair of recurrent
inguinal hernia using
insert of prosthetic
material (0.69)
Other (3.01)

hernia using sutures
(5.56)

Repair of recurrent
inguinal hernia using
insert of prosthetic
material (2.86)
Unspecified urethral
catheterisation of
bladder (1.49)

Other (6.30)
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Appendix C.13. Most common operative procedures within emergency surgery window (panel A) and after emergency

surgery window and up to one year (B)

(B): After emergency surgery window (ES) up to one year (cont.)

Acute appendicitis (N=268,144) Diverticular disease (N=138,869) Abdominal wall hernia (N=106,432)
ES NES ES NES ES NES
(N=247,506) (N=20,638) (N=15,772) (N=123,07) (N=62,559) (N=43,873)

% with no
‘more
common’ 94.1 81.8 72.0 87.7 88.1 50.7
operative
procedures**

Denominator is the total number of patients in the group. *’Other’ includes procedures with >1% volume in index admission appearing after the ES
window. **This Includes patients for whom no procedures were recorded and those who got ‘low-volume’ (<1%) procedures. NES: non-emergency

surgery.
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Appendix C.14. Summary of sensitivity analyses (SA) results. Overall Incremental Net monetary Benefit (INB) of

emergency surgery (ES) vs non-emergency surgery (NES) strategies

. Lo Acute appendicitis Diverticular disease Abdominal wall hernia
Analysis Description
(N=268,144) (N=138,869) (N=106,432)
Base case See Chapter 4 -86.2 (-1,163, 991) 2,664 (-4,298, 9,626) -119 (-1,282, 1,043)
Considered alternative measures of
hospital quality derived from the National
SA1 408 (-787, 1,605 5,823 (1,029, 10,616 125 (-1,027, 1,276
Emergency Laparotomy Audit (NELA) (-787, 1,605) 823 (1,029, 10,616) (-1,027, 1,276)
reports from 2016-2018 (see Section 3.2.4)
Considered a 10% decrease in all unit costs
SA2 _ ) , -96.9 (-1,078, 884) 2,491 (-3,673, 8,655) -30.4 (-964, 903)
in total cost calculation (see Section 3.2.4)
Considered a 10% increase in all unit costs
SA3 _ . , -75.2 (-1,257, 1,107) 2,836 (-4,356, 10,028) -208 (-1,254, 837)
in total cost calculation (see Section 3.2.4)
Used linear interpolation between baseline
SA4 and one-year HRQOL endpoints for -202 (-1,514, 1,110) 2796.432 (-2,796, 8,389) -125 (-1,216, 967)
calculating QALY (see Section 3.2.4)
Evaluated costs and effects of ES and NES
SA5 over a five-year time horizon (see Section -3,786 (9,113, 1,541) -1,502 (-27,066, 24,062) 700 (-6,812, 8,212)

3.2.4)

INB of ES in the sensitivity analyses was estimated using Local Instrumental Variable methods. 95% confidence interval in parentheses. ES: emergency

surgery, HRQoL: health-related quality of life, NES: non-emergency surgery, QALYs: quality-adjusted life years.
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Appendix C.15. Variation in tendency to operate (TTO) across 175 NHS
hospitals in the one year prior to emergency admissions that meet the
inclusion criteria for acute appendicitis (panel A), diverticular disease

(panel B) and abdominal wall hernia (panel C)

(A): Acute appendicitis
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Appendix C.16. Kaplan-Meier estimates for time to one-year death for
acute appendicitis (panel A), diverticular disease (B), abdominal wall
hernia (C)

(A): Acute appendicitis
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Appendix C.17. Forest plots of estimated incremental costs and Quality-adjusted Life Years (QALYs) from the Local

Instrumental Variables (LIV) approach

(A): Acute appendicitis

Categary and Subgroug

difference in means (35% CI}

Full sample
All (N = 262371) E J 106,79 (-1130.41, 512.83) - 0.01 {-0.02. 0.00)
Age
<45 [N = 175403) -+ 301,66 (-1451.57, 650.56) » 001 (-0.00, D.02)
45-49 M = 18417) —— 51.96 |- 1823.15, 1719.23) o 0.02 {(-0.04. -0.01)
50-54 M = 17079) —p— 34.90 -1821.00, 1632 84) - 0.04 {-0.06. -0.01)
55-50 [M = 13538) —— 144,88 {-1775.38, 2085.14) - 0.05 (-0.08. -0.03)
£0-64 [N = 10944} - 102281 (-60B.89, 2654.50) —— 0.04 (-0.06.-0.01)
£5-69 M = 9258) —— 5.25 (-2000.39, 2050.68) ——] .05 (-0.08. -0.00)
T0-74 [N = GBSE) —— 947,56 (-1653.02, 3549 55) —— 0.07 (-012. -0.02)
T5-70 [N = 4648) —— 801,45 (-2600.14, 4583.05) i 0.08 {-0.14, -0.02)
BO-04 (M = 2678) +* 2294.53 (-2077.58, GBET.03) —— 0.3 {021, -0.05)
B4+ [N = 2247) ———p— IE16.84 (-1251.49, B488.17) —y— 0.01 (-0.12. 0.10)
Gender
Male (N = 141234) - 7725 (-1T28.68, 572.18) - 0.02 (004, 0.04)
Female (N = 121137) b 437.78 (-511.60, 1386.38) *» .05 (-0.06. -0.04)
SCARF Indax
Fit (N = 216&33) - 48306 (-1525.31, 553.18) 4 0.01 (-0.02. 0.01)
N frailty (N = 37814) - 531.48 (684 47, 1747.44) ->- 0.02 {-0.08. -0.00)
Maderate frailty (M = £103) —— 5287.52 (3450.14, TOTE.21) —— 0.02 (-0.07. 0.02)
Savere frailly (N = 1521) —— 15715.09 (11160.95, 20242.23) ——— 0.15 (-0.24. -0.08)
Charlzon Index
N comarkidities (N = 218005) -+ 315,56 (-1356.74, 724.83) 4 0.01 {-0.02. 0.01)
O comarbidity (N = 33804) - 243,76 (-1002.90, 1480.41) - 0.01 (-0.03. 0.01)
Twa comorbidities (N = 4640 - 530839 (364857, B96E.21) —— 0.08 {(-0.10, -0.01)
Three or more comoridities | —_—— 7570007 (200683, 15133.32) ————— 0.21 {-0.33, -0.08)
Sub-Diapnoses
K350 - Acute spypendicitis with generalized perionits (N = 1568) - TI817 (-1B93.05, 418.71) -+ 0.01 (-0.02, 0.07)
K351 - Acute sppend th pe abscess (N = 2481} “ 72384 (161158, 184.31) L 0.01 {-0.03, 0.00)
1352 - Acute sppendicitis with peneralized peritoniis (N = 10281) - 1071 (-1274.04, 1295.45) - 0.02 (-0.04. -0.00)
K353 - Acute sppendicitis with locazed peritonitis (4 = 58143) > 327.38 (-TT1.53, 1426 35) | 2 (-0.04. -0.00)
K358 - Acute sppendicts. ofer and unspecied (M = 115611) -» 405 (109638, 1088 26) - 0.01 {0.02. 0.00)
K350 - Acube sppendicitis, unspecied (N = 28156} 4 884,85 (-1850.71, 194.61) L 3 0.00 (-0.01, 0.01)
KT - Unspecified appendicitis (N = 35741) E 3 32657 (-1136.68, 481.55) L 3 0.00 (-0.01, 0.01)
Yoo
201011 [N = 24747) — 1550.55 (-3180.06, 72.99) L 3 0.01 (-D.0Z. 0.07)
201112 (N = 25383) + 1054.04, 711.79) » 0.00 [-0.01, 0.02)
2012013 (N = 25369) - 345,60 (-1515.80, 818.18) - 0.00 [-0.02, 0.02)
201314 (N = 25858) —— 833,48 |-2665.51, 13796.60) - 0.02 (-0.03. 0.00)
201415 (N = 26642) - 565,01 (-2221.28, 1090.65) L 0.02 (-0.04, 0.00)
015118 (N = 27349) — 1096.88 (-3339.42, 1145.64) - 0.00 {-0.03, 0.02)
201817 (N = Z74E5) - 372,07 {-364.08, 1532 23) - 001 (002, D.0G)
201718 (N = 27848) v 908,74 (-50.54, 2053.01) * 0.03 (-0.04. -0.01)
201819 (N = Z6746) M- 325,67 (-117.09, 1989.23) L . 0.02 (-0.04. -0.00)
201920 (N = Z1928) - 1000.77 (8186, 1957.84) -+ 0.02 {-0.04, -0.00)
I ] ] | ] | I
10000 a 10000 20000 30000 3 2 1 a



Appendix C.17. Forest plots of estimated incremental costs and Quality-adjusted Life Years (QALYs) from the Local
Instrumental Variables (LIV) approach

(B): Diverticular disease

difierence in

Category and Subgroup diflerence in means (35% CI) mazns (B5% CI)
Full sample
All (N =137038) —_—— 172307 (-7878.02. 4430.08) —— 0.0% (-0.08, 0.18)
Ape
<45 [N = 15850) —— 141740 (-5309.EZ. B144.81) * 0.03 (0.01, 0.04)
45-40 (N = 11324) 805,19 (-5309.14, T470.52) 3 0.04 (-0.01, 0.08)
5054 (N = 13312) 2438 B4 (-0507 37, 11385.08) — 0.08 (0.05, 0.12)
55-50 (N = 13344) -437 20 (-7062 85, 5088.44) —— 0.10 (004, 0.17)
G0-64 (M= 13483} -502 58 (-7011.30. 5323.14) —_— 012 (0.02, 0.22)
95-60 (N = 14108) e -1828.28 (-7705.07, 3840.42) —_—— 0.94 (0.02, 0.25)
70-74 (N = 14448} ——t -3354.50 (-8707 53, 1068.35) —_— 0.12 {-0.08, 0.28)
75-70 (N = 13015) ——— -4108 80 (-1.1e+04, 2652 82) —— 0.11(0.10, 0.32)
80-84 (N=12T723) ——t— -4031.80 (-12e+04. 1827.10) - -0 0'3.{-0 34, 0.24)
24+ (N = 13515) —_—— B742.51 (-1.3e+04, -220.97) + 0.23 (-0.57, 0.10)
Gender
Male (N = 58188) — 1826 51 (-7103.85. 3540.94) —— 0.0 (-0.04, 0.18}
Female (N = 20841) —r—— -1652.18 (-8434.67, 5130.31) —— 004 (-0.11, 0.18)
SCARF Incex
Fit (N = T1048) p— -2T25.83 (-0830.00, 1387.43) —— 0.12 (0.05, 0.18)
Mild fraity (N = 43043) —_— -1777.83 (-8708.17, 5240.51) ——— 0.04 {-0.14, 0.23)
Moderate frailty (N = 15670) * 104342 (-1.0e+04, 12124.58) —_—— <0.15 (<0.20, 0.0§)
Savare fraity (N = 8080) -+ 3110.03 (-1. 10«04, 18740.13) ———— -0.31 (-0.85, -0.08]
Charison Index
Mo comorbidities (N = B2118) — -4 54 (-8092 50, 5083.53) —+—— 0.05(-0.03, D.15)
One comarbidity (N = 38070) —_— 383414 (-1.De+04, 2734.18) —_— 0.01(-0.18, 0.18)
Two comorbidities (N = 12530) —_— 5588 28 (-1.2e+04, 1107.28) —_—— 0.04 (-0.20, 0.28)
Three or more comorbidities (M = 3320) —_———— -T284 80 (-1.5=+04, 252 53) . 022 (-0.08, 0.52)
Sub-Diagnosas
KE5T2 - Dwverticular disease of large mtestine with parforation and abscess (N = 32210} |——— 4225 18 (275.04. 8174.37) —— .03 (-0.10, 0.04)
K&T3 - Diwerticular disease of large mtestine without perforation or abscess (N = 104820} s o e -3551.52 (-1.0e+04, 3317.81) e 0.07 {-0.08, 0.22)
Year
2010011 (N = 9878) —_——— 5874 84 (-1.0a+04, -1480.53) —— 0.92 (-0.00, 0.25)
201112 (N = 10858) —_— ~3832.21 (-0280.34, 2024.92) -—— 010 (-0.03, 0.22)
2012113 (N = 11473) —_—— 4412 01 (932308, 400.08) —_—— 0.07 (-0.08, 0.20)
2013114 (N = 12531) ——t— -3078 91 (-0171.78, 3013.93) —r— 0.05 (-0.07, 018
2014715 (N = 13562) —_——— -2454 82 (-8322.00, 3412.45) —— 0.04 (0.0, 0.17)
201518 (N = 14548) —— £33 54 (-8018.24, 8751.18) 0.01(-0.13, 0.1%)
2018/17 (N = 15354) e -181.70 (-7643.38, 7310.99) E 0.05(-0.08, D.18)
201718 (N = 156225) R 078 38 (-7993_87, 8037.10) 0.01 (-0.13, D16
201818 (N = 18283) p— 210.39 (-3007 50, 7328.37) ——— 0.04 {-0.10, 0.17)
201020 (N = 14558) _r_ 431.08 (-7203.30. 5006.52) —— 0.02(-0.12,0.17)
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Appendix C.17. Forest plots of estimated incremental costs and Quality-
adjusted Life Years (QALYSs) from the Local Instrumental Variables (LIV)

approach

Calegory and Subgroup

(C): Abdominal wall hernia

difference in means (35% Cl)

diflerence in
means (95% CI}

Full sample
All (M = 104813) B1.30 (20,73, 1761.86) 0.04 (2.00. 0.07)
Age
=45 (N = 19845) 504 (19 {1045 75, 757.57) .00 (0., D)
45-48 (N = Ta28) 1345.31 (-2569.62, -120.79) 0,04 (0.00, 0.07)
50-54 (N = BOB1) 1454.24 (-2835.34, -72.14) = o 0.05 (.01, 0.08)
55-54 (N = Ta11) 102,09 1726 55, 1522.57) 0,00 {-0.03, 0.03)
6064 (N = B184) 142268 (-331.18, 3176.50) 001 (-0.04, 0.05)
B5-59 (N = 8035) 135,58 (-1666.93, 1195.77) 0.0 {-0.04, 0.08)
70-74 (N = 10167) 1024.18 {-553.22, 2601.55) —-— 0,05 (-0.01, 0.11)
75-79 (N = 10624) - ITETA6 (1190.58, 4316.34) el 0,06 (-0.01, 0.13)
B0-B4 (N = 10718) = 379,14 (0433, 9053 85) [—ip— 0.08 (-0.00, 0.15)
B44 (M = 126831) = 4228.24 (2419.63, 6038 .65) —— 0.10 (3.02, 0.18)
Gender
Male (N = BTR15) 112,603 (-792.59, 1018.45) -+ 0,04 (0.01, 0.07)
Female (M = 570098) & 314,15 (1210.43, 3417.67) el 0,03 {-0.02, 0.0
SCARF Index
Fit M = 55996 1223.76 (-2060.51, -387.01) L ] 0,04 (0.01, 0.07)
Mild fraiity (N = 32268) B38.31 (-201.86, 1880.43) —— 0.07 (0,02, 0.11)
Moderale frailty (M = 12208) —— 5456.%3 (1455 76, 7456.70) —y— 0.01 {-0.07, 0.05)
Severe fralty (M = 4441) —— 1538876 (11326.57, 18451.18) —p—t— 0.0 {-0.16, 0.04)
Charlson Index
Mo comorbidities (M = B4570) t 2 112.79 -741.31, 966.89) M- 0,03 {-0.00, 0.08)
One comarbidity (M = 28262) Hy- 1206 D4 {-50.34, 462 43) —tp— 0,06 (0.01, 0.1}
Twe camarbidities (N = 8825) - 4538.14 (2522 86, 6551.31) t—p— 0,05 (-0.01,0.12)
Three or more comarbidities (M = 2256 —— 482512 (1517.27, B132.97) —_— 0.04 (-0.16, Du09)
Subr-Dizgroses
Inguinal (M = 50261) 542 16 (-F96.37, 14T9.67) -3 0,05 (0.02, 0.08)
Femoral (M = 13260) [-0 279,68 (1260.51, 3299.24) -—— 0.07 (-0.03, 0.17)
Uenbilical {N = 39327) T43.40 (-176.48, 1663.29) - 0,02 (-0.00, 0.04)
Vendral (N = 2145) L 3 200847 (792.08, 3224 RE) - 0.00 (-0.04, D.03)
Bilateral (M = 3200) I 1175.90 (219,01, 2132.79) L 0.04 (0.01, 0.07}
Obstruction (W = 48583) > 1453 14 (538,35, 2380.94) | o 0,05 (-0.01,0.12)
Gangrene (N = 3279) * 206,68 (1277.92, 3315.39) ——— 0,06 (-0.03, 0.14)
Year
201011 (M = B022) 948,29 (-2750.07, BEE.4E) o 0,06 (-0.01, 0.12)
2011712 (N = Bd18) 122938 (-841 76, 2000.54) —— 0,90 (0.03, 0.17)
201213 [N = 9848) 1988.13 (-B55.24, 3233.50) —p— 0.10 (0.04, .17}
201314 (M = 10018) 363,63 (-1681.24, 1141.87) —tp— .06 (0.0, .11}
IS (N = 10118) 1160.22 {-386.60, 607 05) — 0,05 (-0.01, 0.10)
201616 (M = 10327) B11.22 (-674.96, 2297 .41) —— 0.05 (-0.00, 0.0%)
FOEAT (M = 11380) BESE0 (-414.96, T346.17) —— 0,00 (-0.04, 0.04)
201718 [N = 11753) EBE.AT (-G30.49, TI08.44) - 0.0 (-0.03, 0.05)
0188 (M = 12048) BE3.00 (-515.03, 2441.20) i 0,03 (-0.01, 0.07)
IO1G20 (N = 10285) == 3017.02 (I61.43, SE7261) - 0.03 {-0.07, D.00)
| I I | I |
10000 a 10000 20000 30000 10 1
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Appendix C.18. Health-related Quality of Life (HRQoL) trajectory
following initial (index) emergency admission and emergency readmission
for the base case, which assumes HRQoL reaches follow-up levels following
hospital discharge (panel A), and linear interpolation (B, sensitivity

analysis 4)

(A) 1.0

0.8

0.6

HRQoL

0.4

0.2

0.0

0
Days from baseline 3

(8) 10

0.8

0.6

HRQoL

0.4

0.2

0.0

0
Days from baseline e

(A) Immediate interpolation. Baseline HRQoL is assumed to apply constantly for the
duration of the index admission and any emergency readmission. Following the index
admission, the HRQoL is assumed to apply constantly for the duration of the period before
the final (one-year) endpoint, which is accrued immediately after discharge. (B) Linear
interpolation. Baseline HRQoL is assumed to apply constantly for the duration of the index
admission and any emergency readmission. HRQoL between the endpoints is assumed to
increase linearly.
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