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Abstract 

This thesis is concerned with improving methods for cost-effectiveness analyses (CEA). 
Real-World Data (RWD), for example, from routine data sources such as electronic 
health records, is used to generate comparative effectiveness and cost-effectiveness 
evidence in settings where appropriate evidence from Randomised Controlled Trials 
(RCTs) is not available. However, studies using RWD face fundamental issues 
pertaining to the study design, in particular around the risk of bias due to confounding 
and treatment effect heterogeneity. The aim of this thesis is to contribute to the 
literature on CEA methods for those settings. The thesis considers recent advancements 
in the causal inference and econometrics literature to examine the following objectives: 
(i) to identify challenges for comparative- and cost-effectiveness studies in applying the 
‘target trial’ framework, (ii) to evaluate a novel local instrumental variable (LIV) 
approach in a CEA, (iii) to evaluate the performance of the LIV approach according to 
varying levels of instrument strength in a simulation study. 

The first paper in the thesis considers the main challenges in applying the target trial 
framework in comparative effectiveness and cost-effectiveness studies that use RWD, 
and offers recommendations, in particular around the interrelated issues of defining the 
study population and the comparator groups. The second paper is concerned with 
methods to address unmeasured confounding and heterogeneity, which are major 
challenges in CEA that use RWD. In this paper, I evaluate LIV methods in the context 
of a CEA that uses routine data from the ‘Emergency Surgery OR noT’ (ESORT) 
study. In the third paper, I extend this assessment of LIV methods with a simulation 
study that assesses the performance of LIV in realistic scenarios, defined by varying 
levels of instrument strength, and different forms of heterogeneity and sample sizes. The 
findings from these papers suggest that, in addressing both confounding and 
heterogeneity, LIV methods can provide accurate estimates of treatment effects of direct 
decision-making relevance. I find that, provided the instrument is strong, or the sample 
size is at least moderate, the LIV approach reports estimates with low bias and that are 
statistically efficient, regardless of the form of treatment effect heterogeneity that is 
present. 

The thesis concludes that by directly addressing confounding and heterogeneity the 
proposed methods can mitigate concerns about studies using RWD. Findings from this 
thesis can help future CEA that use RWD, to provide more useful evidence for decision-
making. 
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Chapter 1. Introduction 

1.1 Cost-effectiveness analysis for decision-making in health 
care 

The primary goal of most health systems worldwide is to improve population health 
(World Health Organization, 2000). In budget-constrained settings, decision-makers 
and reimbursement agencies have to make difficult decisions about how to assign 
limited health resources to alternative uses. In many countries, reimbursement 
agencies draw on evidence from health economic evaluations which compare relative 
outcomes from alternative interventions, programs or technologies (herein referred to 
as ‘interventions’) against their relative costs (i.e., the value of the health forgone 
elsewhere in the system as a result of the adoption of the intervention) (Drummond 
et al., 2005).   

The most widely adopted form of economic evaluation is cost-effectiveness analysis 
(CEA), which contrasts the additional cost per additional unit of health outcome, 
generally defined according to measures such as quality-adjusted life years (QALYs) 
or disability-adjusted life years (DALYs) (Culyer, 2010).1 A common metric in CEA 
is the incremental cost-effectiveness ratio (ICER). The ICER lends itself to a decision 
rule to judge ‘value for money’, whereby if the ICER is below a particular cost-
effectiveness threshold representing the opportunity cost,2 then the intervention may 
be deemed relatively cost-effective and, pending consideration of other issues, such as 
the level of uncertainty, or the value of innovation, the intervention may be 
recommended for adoption.3 

Evidence from CEA can inform resource-allocation decisions in public health and 
social care, but is most commonly used in recommendations about adoption and use 
of health interventions in health technology assessment (HTA) (Claxton et al., 2010; 
Ochalek et al., 2020; Rudrapatna and Butte, 2020; Sorenson et al., 2008). While other 
factors such as equity may well be important considerations in the development and 

 

1 This thesis considers CEA in its widest context, so the definition of ‘health outcome’ adopted includes clinical 
outcomes but also health-related utility measures. 
2 See Eckermann and Pekarsky (2014) for a review of methods for evaluating a threshold value for the effects of 
new health interventions. 
3 Alternatively, cost-effectiveness can be assessed looking at the incremental net monetary benefit (INB), which is 
the difference between the incremental costs and the incremental health outcomes, expressed in monetary terms. 
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formulation of HTA guidelines, cost-effectiveness has been shown to be the main 
determinant of previous HTA decisions by the National Institute for Health and Care 
Excellence (NICE) in England and Wales (Dakin et al., 2015). 

Given the central role of economic evidence in HTA decision-making, it is important 
that CEA use robust analytical methods for assessing the relative effectiveness and 
costs of health interventions. To that end, NICE publishes its own methods and 
processes manuals which set out the type of evidence required and how to ensure it is 
of ‘the highest standard possible and transparent’ (NICE, 2022). According to NICE’s 
methods guidance for HTA, there are three main requirements for evidence generated 
in CEA: (i) the included population, comparators and outcomes should be relevant to 
the evaluation, (ii) the study should use appropriate methods to minimise bias, and 
(iii) the evidence should be generated in a transparent and reproducible way (NICE, 
2022). 

Such evidence might come from CEA with various study designs, which raise different 
issues. Many CEA use Randomised Controlled Trials (RCTs) for the assessment of 
short-term effectiveness, and the random assignment of the comparators can balance 
all confounding factors (Willan and Briggs, 2006). However, the availability of RCT 
evidence in many decision contexts and disease areas is limited. For the evaluation of 
non-pharmaceutical technologies (e.g., devices or diagnostics), or the introduction of 
changes to health services, health policy of public health interventions, there are major 
challenges in generating RCT evidence, which may not be mandated for introduction 
of the intervention into the health system. By contrast new pharmaceutical agents 
often require RCT evidence on safety and efficacy prior to marketing authorisation 
(Skivington et al., 2021). However, RCTs designed for the purposes of marketing 
authorisation, may have strict eligibility criteria and a short duration of follow-up, 
which limits the relevance of the evidence generated for the purposes of HTA. Hence, 
CEA are almost always required to use observational (non-randomised) data within a 
general modelling framework, in particular for the estimation of parameters pertaining 
to longer term utilities and resource use, which are unlikely to be appropriately 
estimated within the limited follow-up period of most RCTs (Briggs et al., 2006).  

For the assessment of new health technologies, NICE and other HTA agencies are 
moving away from the exclusive reliance on RCT evidence for the assessment of 
relative effectiveness, and towards further use of Real-World Data (RWD) in their 
evaluations. In this thesis, the definition of RWD is data ‘generated through routine 
clinical practice and without any intervention by the researcher’ (Garrison et al., 2007; 
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Makady et al., 2017b). This definition of RWD encompasses data from a broad variety 
of sources that is routinely collected for purposes not limited to research, such as the 
reimbursement of health service providers.4 Under this definition, both registry data 
and administrative data including electronic health records (EHR) are considered 
RWD. In this thesis the main interest is in the form of RWD that is collated for 
administrative purposes, which can also be referred to as ‘routine data’ (Garrison et 
al., 2007). Following precedents in the literature, I will refer to real-world evidence as 
‘evidence generated in observational studies through the analysis of RWD’ (Garrison 
et al., 2007; US FDA, 2018).  

The latest methods guidance from NICE highlights the general use of RWD as a 
priority methods research area, stating “we aim to harness the principles of data 
science to further our knowledge, using big data and real-world data (RWD) for the 
benefit of the wider health and social care system”. The recently-published NICE real-
world evidence framework described potential uses of RWD, good research practices 
and recommendations for improving transparency and trustworthiness of real-world 
evidence (NICE, 2022). However, some challenges remain, in particular around the 
design and conduct of CEA in settings with unmeasured confounding and 
heterogeneity (see definitions in section 1.2). This thesis seeks to address this gap, by 
improving methods for assessing comparative effectiveness and cost-effectiveness that 
use RWD. 

The next section describes the potential uses of RWD in HTA processes, and in 
particular, for the purposes of generating evidence on comparative effectiveness and 
cost-effectiveness. I outline some common methods for generating this type evidence 
using RWD, and identify important gaps in these literatures. 

1.2 The use of Real-World Data in Cost-effectiveness 
Analyses 

The increased availability of RWD has created opportunities for informing HTA 
processes in settings where RCT evidence is unavailable or inadequate. A recent review 
of the policies of six HTA agencies on use of real-world evidence showed that there is 

 

4 In this thesis, I use the terms ‘real-world data’ and ‘routine data’ interchangeability to emphasise that focus is 
on data is collected in routine care. While some forms of RWD such as genomic data or patient reported outcomes 
are collected outside of routine clinical care, for practical purposes, I don’t make a distinction between these two 
definitions. 
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substantial variation in the extent to which international HTA agencies rely on real-
world evidence for assessment treatment effectiveness, and for estimating other 
requisite parameters for CEA (Makady et al., 2017a). NICE’s real-world evidence 
framework describe how it has expanded its criteria for evidence, and how RWD might 
be used to inform guidance. Table 1.1 provides a non-exhaustive list of current uses 
of RWD by NICE. 

Table 1.1. Uses of real-world data (RWD) for Health Technology Assessment 
(HTA) and examples from previous guidance from the National Institute of Health 
and Care Excellence (NICE) - adapted from NICE’s real-world evidence framework 

Uses of RWD in HTA Example of NICE 
guidance 

Describing the decision context HST15 (NICE, 2021)  
Informing parameters in economic models  NG115 (NICE, 2019)  

Supplementing network meta-analyses in settings where 
the network is ‘incomplete’ 

TA383 (NICE, 2016) 

Generating comparative- or cost-effectiveness evidence 
within uncontrolled studies such as single-arm trials 

HST14 (NICE, 2021a)  

Generating comparative- or cost-effectiveness evidence 
exclusively from RWD sources. 

TA524 (NICE, 2018) 

 

Current uses of RWD in technology evaluations include gaining an understanding of 
the particular decision context (row 1 in Table 1.1), as well as informing parameters 
in economic models (row 2 in Table 1.1). Uses of RWD in generating comparative 
effectiveness or cost-effectiveness evidence are not limited to one design. Applications 
include settings in which RWD is used to generate external comparison groups for 
single arm trials, settings in which relative costs and outcomes need to be evaluated 
over a time-horizon beyond the RCT follow-up period, or where the RCT population 
does not represent the target population of interest (rows 3 and 4 in Table 1.1). A 
final setting in which RWD could be particularly important is if, in the complete 
absence of relevant RCT evidence, individual-level RWD is used directly to estimate 
comparative effectiveness and cost-effectiveness (row 5 in Table 1.1).   

This thesis is concerned with this last use of RWD, that is, generating comparative- 
effectiveness and cost-effectiveness evidence using only RWD, and in the specific 
setting where individual participant data is available for all the comparison groups of 
interest. This type of evidence is particularly useful in those settings in which RCT 
evidence is often unavailable, including public health interventions, non-
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pharmacological interventions such as surgical procedures, or pharmacological 
interventions such as treatments for orphan diseases or complex interventions.  

Observational studies, including those that use RWD, have the potential to meet 
NICE’s requirement (i) for evidence generated in CEA that ‘the included population, 
comparators and outcomes should be relevant to the evaluation’ (NICE, 2022a). 
However, the reliance on non-randomised designs for assessing comparative 
effectiveness raises concerns around the risk of bias (requirement ii), and about 
whether the findings have been generated in a transparent and reproducible way 
(requirement iii). These concerns were acknowledged in NICE’s real-world evidence 
framework, where the risk of bias from confounding, and the lack of trust in evidence 
from RWD studies were described as two of the three main barriers to a wider 
adoption of real-world evidence in HTA decision-making (NICE, 2022). This thesis is 
concerned with improving methods to help address the first two barriers to the better 
use and broader adoption of real-world evidence in HTA decision-making. The third 
barrier alluded to by NICE pertaining to concerns around the quality of the data, is 
not directly addressed by the thesis, but I will consider issues pertaining to the data 
quality within the case studies included in the thesis. 

Tackling the ‘trust barrier’ requires that studies improve the transparency and 
traceability of study design choices. Previous good practice recommendations include 
using reporting checklists as well as facilitating access to data to help evidence users 
judge the quality of the evidence. Several checklists and quality assessment tools have 
been developed for CEA, but they are insufficient for evaluating study design choices 
in studies using RWD. Most checklists have focussed on related but different issues 
pertaining to RCTs and decision models (Drummond et al., 2005; Husereau et al., 
2013; Philips et al., 2006). While some checklists have been developed that relate to 
RWD (Kreif et al., 2013), further consideration of broader issues of study design, 
analysis and interpretation are required. Other recommendations such as pre-
registering the study protocol and health economics analysis plan (HEAP), and using 
structured reporting templates, should also be adopted as they are well-known good 
research practices, but they are unlikely to help evaluate the risk of confounding in a 
given study. More recently, NICE’s 2022 real-world evidence framework recommended 
that the notions of the ‘target trial’ framework should be adopted in observational 
studies.  

The target trial framework was developed in the epidemiological literature as a tool 
to help minimise the risk of bias and design flaws in observational studies (Hernán 
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and Robins, 2016). The target trial is a hypothetical trial that the researcher would 
design to evaluate the research question. The target trial framework requires 
researchers to specify crucial standpoints to the analysis of RWD, such as stating the 
study eligibility criteria, and defining the comparator groups. By encouraging 
researchers to apply the design principles of RCTs, the target trial framework can 
help reduce the risk of bias from using inadequate study designs to assess comparative 
effectiveness (Dickerman et al., 2019; Petito et al., 2020). The application of the 
notions of the target trial can also allow evidence-users judge the design choices made 
in the study by formally evaluating how closely the study design emulates that of an 
analogous RCT (Dahabreh et al., 2020; García-Albéniz et al., 2017; Lodi et al., 2019). 
Gomes et al., (2022) describes ways the target trial framework could be applied to 
alternative study designs and uses of RWD in HTA, but there is a lack of guidance 
and exemplar applications in CEA that use RWD to evaluate treatment effectiveness 
and cost-effectiveness. 

While the target trial framework offers some general principles for the design of 
observational studies, on its own, this framework is insufficient to mitigate the 
inevitable concerns about confounding in observational studies (second barrier). 
Confounding arises when baseline covariates associated with the outcome are not 
balanced between treatment strategies (Hernán et al., 2002). In studies using RWD, 
treatment strategies are not randomised and have a high risk of unmeasured 
confounding (or residual confounding), that is, confounding due to unmeasured 
baseline characteristics. A key purpose of the study design and methods of analysis 
for assessments of comparative effectiveness and cost-effectiveness that use RWD is 
to minimise the risk of confounding. 

An advantage of RWD is that it can target the population of interest for decision-
making purposes, that is, patients who present for the health care interventions in 
question in routine clinical practice. However, the inclusion within the RWD of a 
broader population than those who would enrol in an RCT, may raise concerns about 
‘treatment effect heterogeneity’ in addition to those of confounding (Bell et al., 2016; 
Sarri et al., 2022). In particular, if drivers of treatment effect heterogeneity are also 
associated with the choice of treatment strategy, and the outcome of interest, then 
the study needs appropriate methods to account for the confounding effect of those 
variables. In health care, both measured and unmeasured prognostic factors such as 
the patient’s age or the stage of the disease may be expected to influence treatment 
selection and also explain the individual’s response to treatment. In this thesis, I 
describe ‘overt (treatment effect) heterogeneity’ as heterogeneity that is according to 
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measured characteristics within the RWD. I refer to ‘essential (treatment effect) 
heterogeneity’ as heterogeneity according to unmeasured prognostic variables.5  

This thesis is concerned with evaluations of comparative effectiveness and cost-
effectiveness in presence of essential heterogeneity. This is a common phenomenon in 
health care research, and raises important concerns for observational studies 
evaluating treatment effects, as treatment choice is often according to patient 
characteristics such as the patient’s capacity to benefit from either treatment strategy 
which is unlikely to be measured within RWD. However, although this problem is 
common, methods to tackle both confounding and heterogeneity due to unmeasured 
characteristics have not been well-developed, in the setting of comparative 
effectiveness and cost-effectiveness studies. 

1.3 Methods for evaluating treatment effects in Cost-
Effectiveness Analyses 

In the general causal inference, biostatistics and econometrics literature, numerous 
methods have been developed to address the risk of confounding inherent in 
observational studies (Hernán and Robins, 2020; Pearl, 2000). In CEA, some progress 
has been made in the transfer of methods from these general literatures to address 
specific issues raised in this context such as the joint distribution of endpoints (Nixon 
and Thompson, 2005; Polsky and Basu, 2012; Sekhon and Grieve, 2012). Broadly, 
these methods can be grouped into methods that assume ‘no unmeasured confounding’ 
(this is often referred to as the ‘unconfoundedness’ assumption), and those that do 
not rule out the possibility of unmeasured confounding. Methods in the first group 
such as regression adjustment have been widely adopted in CEAs (see, for example, 
Kreif et al. (2012); Nixon and Thompson (2005); Willan et al., (2004)). These methods 
are generally appropriate for estimating policy-relevant treatment effect parameters 
such as the Average Treatment Effect (ATE) in settings where the treatment 
assignment mechanism is well-understood, and it is plausible to assume that the 
important confounding factors are measured in the data.  

In settings where the adjustment for observed prognostic factors is unlikely to provide 
sufficient protection against bias due to confounding, using Instrumental Variable (IV) 
methods might be advisable. IV methods can provide reliable estimates of treatment 

 

5 This terminology is used for consistency with the existing health econometrics literature. 
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effects even in presence of unmeasured confounding provided some requisite 
assumptions about the validity and relevance of the instrument hold (Baiocchi et al., 
2014; Brookhart et al., 2015; Rassen et al., 2009). The properties of IV methods under 
these assumptions have been discussed in the econometrics literature (Baiocchi et al., 
2014; Brookhart et al., 2015), and they have been extensively adopted in the applied 
economics literature. However, their use is still relatively uncommon in health care, 
including in CEA (see, for example,  Prentice et al., 2014; Saramago et al., 2020).  

The appropriateness of traditional IV methods for estimating treatment effects of 
decision-making relevance such as ATE or CATEs, largely depends on the form of 
treatment effect heterogeneity that is present (Angrist et al., 1993; Angrist and 
Fernández-Val, 2011). For instance, in presence of essential heterogeneity, the Two-
Stage Least Squares (2SLS) estimator can provide consistent estimates of the Local 
Average Treatment Effect (LATE), which is the average treatment effect among an 
unidentifiable subgroup of individuals in the population, but not necessarily the ATE 
for the population (Basu et al., 2007). Instead, Local instrumental variable (LIV) 
methods can provide robust estimates of comparative effectiveness that apply to 
policy-relevant populations in presence of essential heterogeneity, provided some 
assumptions hold (Heckman and Vytlacil, 2001). In Chapter 2, I provide an overview 
of the IV methodology, including the identification assumptions, with particular 
attention to LIV, which is the primary focus of this thesis. 

1.4 Case study: the ESORT study 

The methodological contributions of this thesis were motivated and informed by the 
‘Emergency Surgery OR noT’ (ESORT) study. This was a study funded by the 
National Institute for Health and Care Research (NIHR) that sought to evaluate the 
outcomes, costs and cost-effectiveness of emergency surgery (ES) for patients with 
common acute conditions (ESORT Study Group, 2020). This section provides: an 
overview of the ESORT study, focussing on the aspects that are relevant to the thesis; 
a description of my contribution to the ESORT study; and a brief explanation of the 
ESORT study to help define some of the specific objectives of the thesis. 

1.4.1 Overview of the ESORT study 

The ESORT study was a retrospective cohort study that used routine data from 
hospital episode statistics (HES) for emergency admissions to NHS hospitals in 
England to evaluate the effectiveness and cost-effectiveness of ES compared to 
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alternative non-emergency surgery (NES) strategies, such as delayed surgery or 
antibiotic therapy, for patients with five common acute conditions: acute appendicitis, 
diverticular disease, acute gallstone disease, abdominal wall hernia, and intestinal 
obstruction. 

For these conditions, RCT evidence on the benefits, risks and costs associated with 
the provision of ES is scarce (Azhar et al., 2021; Flum et al., 2020; Javanmard-
Emamghissi et al., 2021; Thornell et al., 2016). Observational studies have failed to 
address the major concern of unmeasured confounding (Koumarelas et al., 2014; 
Saverio et al., 2014). Clinical advisors to the ESORT project raised the concern that 
the decision as to whether patients have ES or the NES alternative is associated with 
baseline factors that are prognostic of outcomes such as all-cause mortality at 90 days. 
Hence unless these differences between the comparison groups are measured, and 
allowed for, the study would provide biased estimates of the effectiveness of ES, due 
to confounding by indication. These baseline factors may also modify the relative 
effectiveness of ES, and include some that are measured within the data, such the 
patient’s age, which can lead to overt heterogeneity. However, other baseline factors 
that are not measured in HES, such as the severity of the disease, which can modify 
the effectiveness of ES, i.e., essential heterogeneity is a major potential concern. 

The lack of evidence to inform clinical guidelines pertaining to the choice of strategy 
for patients presenting as emergency admissions with these acute conditions has 
resulted in wide variation in rates of ES across NHS hospitals in England 
(Abercrombie, 2017). The ESORT study sought to address this gap in the literature 
by exploiting this natural variation in use of ES. The ESORT study built on a 
precedent study that used an IV design to address confounding in evaluating the 
effects of ES versus non-operative strategies in the United States (Keele et al., 2018). 
The precedent study found that there were no substantial differences in clinical 
outcomes following ES versus NES strategies at the aggregated population level, but 
that for some pre-specified subgroups of patients, NES could lead to better outcomes 
(Keele et al., 2018). However, while this precedent study was useful in supporting the 
IV design taken in the ESORT study it did not consider the cost-effectiveness of ES 
nor did it consider an LIV approach to address essential heterogeneity.   

1.4.2 Study data 

This thesis used HES admitted patient care data on emergency admissions to 175 
NHS hospitals in England (Herbert et al., 2017). Data was provided to the ESORT 
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study team under a data-sharing agreement with NHS Digital. The data comprised 
emergency admissions and any subsequent readmissions of adult patients between 1 
April 2009 and 30 June 2020. Mortality data was obtained from linkage of Office for 
National Statistics (ONS) death records with HES. The data included rich clinical 
and sociodemographic information, including the patient’s age, gender and index of 
multiple deprivation (IMD). Information on medical interventions and surgical 
procedures was also available, as well as administrative information such as dates of 
surgical procedures and ultimate hospital discharge. Health-related quality of life and 
unit cost data were derived from the literature (see Chapter 4 for further details).  

1.4.3 Contribution of the candidate to the ESORT study 

Prior to the start of the thesis, the ESORT study had not started, and as aspects of 
the study design and analysis plans had not been specified, I was able to contribute 
in the following areas, pertaining to the thesis. First, I was able to develop and apply 
the target trial framework to the ESORT study. This required me to identify issues 
raised in adapting the general target trial framework to the HTA setting, to work with 
the project team to devise solutions, and to draft the resulting paper (see Chapter 3). 
Second, the application of the LIV framework to the ESORT study, required me to 
consider carefully the requisite assumptions pertaining to IV in general, and LIV in 
particular. I conducted the LIV analyses, alongside one of my supervisors, led the 
interpretation of the CEA results, and drafted the accompanying paper (Chapter 4). 
Third, motivated by the initial findings of the ESORT study, I led an extensive 
simulation study looking at the properties of the LIV approach in settings with 
different forms of heterogeneity, and with scenarios motivated by the ESORT study. 
I interpreted the results and drafted the resulting paper (Chapter 5).  For each of the 
three empirical papers for the thesis I include a statement which clearly delineates my 
own contribution from those of other ESORT team members including my PhD 
supervisors (see chapters 3, 4 and 5). 

1.5 Aims and objectives of the thesis 

The main aim of this thesis is to help address some of the gaps in methods for CEA 
that use routine data. The broad research question that this thesis sought to answer 
is: “Can Local Instrumental Variables methods inform CEAs with reliable estimates 
of relative effectiveness and cost-effectiveness in the presence of unmeasured 
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confounding and treatment effect heterogeneity?” To be able to answer this question, 
I defined the following three research objectives of this thesis: 
 

1. Critically examine the application of the principles of the target trial framework 
to the HTA context, identify the main challenges, and provide recommendations 
to address them. 
This was a novel application of the target trial framework within the HTA 
context. In Chapter 3, I provide an illustration of how this methodology can 
help to minimise concerns about confounding and design flaws in CEAs. I 
describe some of the main challenges for studies using RWD, and 
recommendations to address them. This study, in its paper format, is currently 
being considered for publication in Value in Health (March 2023). 
 

2. Evaluate and implement an LIV approach for addressing unmeasured 
confounding and heterogeneity in CEA. 
Chapter 4 includes an application of LIV in a CEA using routine data on 
emergency surgery admissions to NHS hospitals in England. The study formally 
evaluates the identification assumptions for LIV, and contrasts this 
methodology with alternative regression adjustment and IV approaches. 
Chapter 4 was published in Medical Decision Making (May 2022).  
 

3. Evaluate the performance of different IV approaches in terms of bias and 
statistical efficiency according to alternative levels of IV strength, sample sizes 
and forms of heterogeneity in a simulation study. 
To achieve this objective, a study was conducted using Monte Carlo simulation 
methods to measure the bias and efficiency implications for LIV of different 
levels of instrument strength, sample sizes, and forms of treatment effect 
heterogeneity. The results of this study can be found in Chapter 5 of the thesis. 
This study is currently being considered for publication in Health Economics 
(March 2023). 

1.6 Overall contribution of the thesis 

All three research objectives have been met through three research papers. The three 
papers have been submitted to journals, and have either been published (research 
paper 2 was published in Medical Decision Making (Moler-Zapata et al., 2022) or will 
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be considered for publication (research papers 1 and 3 are currently being considered 
for publication in the journals Value in Health and Health Economics, respectively). 

Research paper 1 describes the main challenges for comparative effectiveness and cost-
effectiveness studies that apply the target trial framework using RWD. These 
challenges relate to different aspects of the target trial’s design, including the definition 
of the eligibility criteria, treatment strategies and time zero. The paper also considers 
the major risk of confounding, which is one of the main concerns for CEA, and 
comparative effectiveness studies more generally that use RWD. I argue that carefully 
evaluating the risk of these issues in the study design, and applying the 
recommendations outlined in research paper 1, will not only help the study minimise 
the risk of confounding, but will help evidence users to judge whether the resulting 
evidence is adequate to inform the research question. These recommended practices 
could help improve the trustworthiness of real-world evidence, and facilitate its timely 
adoption in HTA and policy-making. The main recommendations describe how to plug 
gaps in the RWD using expert clinical judgement, for example in emulating the trial’s 
treatment eligibility criteria to ensure comparable populations across treatment 
groups; and how to use novel IV methods for estimation and inference on treatment 
effect parameters of decision-making relevance. 

Research paper 2 makes two important contributions to existing methods for CEA. 
First, the paper illustrates how RWD can be used to identify continuous instruments 
for use in real-world applications. LIV methods using a continuous IV constructed 
using routine data are used to evaluate policy-relevant treatment effects. Second, the 
study contrasts alternative IV methods that target different treatment effect 
parameters, and make different assumptions about confounding and heterogeneity, 
and I evaluate them in the context of the ESORT study. 

Research paper 3 addresses the gap in the guidance for applied LIV studies in terms 
of IV strength requirements in conjunction with different available sample sizes. The 
study builds on insights from research paper 2 to evaluate how LIV performs in terms 
of bias and statistical efficiency (measured by the root mean squared error, rMSE) in 
estimating the ATE and CATE parameters. I consider different scenarios defined by 
the strength of the instrument, the sample size and the form of treatment effect 
heterogeneity. The main contribution of the study is in demonstrating that the LIV 
approach provides estimates for ATE and CATE with lower levels of bias and RMSE, 
irrespective of the sample size or IV strength, compared to the 2SLS method. The 
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study also finds that, in general, with smaller sample sizes, both methods require 
stronger instruments to ensure low levels of bias. 

1.7 Structure of the thesis 

The remaining chapters of the thesis are as follows. Chapters 3 to 5 comprise the three 
research papers, each with a preamble within which I define my specific contribution.  

Chapter 3 (research paper 1) describes the main challenges in applying the notions of 
target trial framework to CEA that use routine data to inform HTA decision-making 
using working examples from the ESORT study. I offer recommendations for future 
studies looking to apply the target trial framework in evaluations of the effectiveness 
and cost-effectiveness of health interventions. Chapter 4 (research paper 2) builds on 
the preceding chapter in using the ESORT study to provide an exemplar application 
of the LIV methodology within a CEA that studies heterogeneity in outcomes and 
costs across patient characteristics. I describe the key methodological aspects of the 
LIV methodology, including the target estimand, and the identification assumptions 
underlying the methodology. I also demonstrate how RWD can be used to test some 
of these assumptions. Chapter 5 (research paper 3) draws motivation from the ESORT 
study to define a simulation study in which the reliability of LIV is evaluated 
according to how the method performs across settings with different sample sizes, 
levels of IV strength and forms of treatment effect heterogeneity. I contrast the 
performance of the LIV approach against that of the method of 2SLS in the simulation 
study, but also in cohorts derived using data from the ESORT study. Chapter 6 
provides an overview of the main findings and contributions of the thesis. The chapter 
acknowledges the limitations of the thesis, and identifies the main areas for future 
research. This chapter concludes by highlighting the implications of the findings of 
the thesis for applied researchers and policy makers. Appendices are available at the 
end of the thesis, and references at the end of each chapter. 
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Chapter 2. Methods 

2.1 Overview of Instrumental Variable methods 

The main goal of CEAs is to produce reliable estimates of relative effectiveness, costs 
and cost-effectiveness for the overall target population of interest, the ATE. It is also 
important to understand how heterogeneity can inform the stratification or 
personalisation of treatment choices. Incorporating this type of evidence into decision-
making processes can result in improved patient outcomes and gains in efficiency 
(Basu and Meltzer, 2007; Espinoza et al., 2014). In settings where treatment effects 
are suspected to be modified by observed patient characteries, CEAs are increasingly 
reporting Conditional Average Treatment Effects (CATEs) –i.e., treatment effects for 
groups of patients defined by values a particular observed prognostic factor–, alongside 
estimates of an overall ATE for the population. To be able to inform reliable estimates 
of ATE and CATEs, studies need to use appropriate techniques for addressing 
unmeasured confounding. 

IV designs can be used to address the concern of unmeasured confounding in CEAs 
using RWD (see Baiocchi et al., 2014; Brookhart et al., 2006 and Martens et al., 2006 
for reviews). A good instrument should meet the following criteria: (i) it is associated 
with treatment receipt (relevance condition), (ii) it affects the outcome only through 
its association with the treatment (exclusion restriction condition), (iii) it is not 
associated with unmeasured confounders (exchangeability condition), and (iv) the 
direction of the association with the treatment must be the same, irrespective of the 
level of the IV (monotonicity). Provided the existence of a valid and sufficiently strong 
instrument, IV methods can provide reliable estimates of treatment effect parameters 
(Angrist et al., 1993; Baiocchi et al., 2014). However, the likely risk of bias in settings 
with essential heterogeneity is problematic, and evaluating treatment effect 
parameters often involves trading off different assumptions by different methods.  

In this chapter, I introduce notation and describe the main IV approaches considered 
in the thesis. This intends to be a brief overview of the key standpoints of the IV 
methodology. For further details about how these methods were applied in the thesis, 
I refer the interested readers to Chapters 3, 4 and 5.  
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2.2 Notation and structural models 

Following Heckman and Vytlacil (1999, 2001), I consider a model for the outcome 
based on the Neyman-Rubin potential outcomes framework and define model a latent 
variable discrete choice model for selection into treatment (Neyman, 1990; Rubin, 
1974). I let treatment be a binary variable,	"!, take values 1 and 0, depending on 
whether the individual receives the treatment. #" = %"('", '# , )) and #$ =

%$('", '# , )) represent the potential outcomes under treatment and control, where '" 
is a vector of observed confounders, '# is a vector of unmeasured confounders, and ) 
captures any remaining unobserved variation. ∆	= 	#$ − #" is the individual treatment 
effect. 

I consider the following model for treatment assignment, 

"!
∗	=	-('", .) ≥ 0& and, 

"! = 1	if		"!
∗ ≥ 0	and	"! = 0, otherwise 

Where "!∗	is the ‘latent’ propensity for treatment, . is a vector of instruments, and 
0& reflects ‘distaste’ for treatment, and captures the effect of '# and other variables 
that discourage treatment assignment. Following Heckman and Vytlacil (1999), and 
without loss of generality, we can express this model in terms of probabilities as, "!∗ =
5('", .) − 6, where 5('", .) = 	7#!|'",![-(') , .)] is the propensity for treatment 
based on the observed characteristics, and where 6 = 7#!['#!|') = :) , . = ;] with 6 
⊥ (.,')) reflects the degree to which unobserved variables discourage treatment, and 
is uniformly distributed between 0 and 1. 

2.3 Conventional IV methods 

Imbens and Angrist (1994) and Angrist et al. (1993) introduced the Local Average 
Treatment Effect (LATE) parameter. The LATE can be defined as ∆*+,-(:. , ;, ;/) =
=[#$ − #"|') = :. , "! < "!/], and under the assumptions listed above, it can be 
identified by the IV estimand: 

![#|%! = '", 	* = +′] − ![#|%! = '", 	* = +]
![/|%! = '", 	* = +′] − ![/|%! = '", 	* = +] 
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The LATE is the average effect for the subgroup of individuals in the population 
whose treatment status changes as the IV shifts from + to +’. The subpopulation for 
whom "! < "!/ holds are often referred to as ‘compliers’ (Baiocchi et al., 2014).  

The 2SLS (Wald) estimator is the most widely used method for estimating linear 
models. It is implemented in two stages. In the first stage (or reduced form), "! is 
regressed on ') and . to obtain estimates of =["0|') , .]. In the second stage, #& is 
regressed on ') and =@["0|') , .] to obtain an unbiased estimate of =[#&|"! , ') , .]. 
When the instrument is continuous, pairwise combinations of ; and ;’ will produce 
different LATEs. However, as discussed in section 1.3, for 2SLS to inform policy-
relevant treatment effects such as the ATE or CATEs, it is required that there is no 
essential heterogeneity (Heckman et al., 2006).  

Alternatively, the Two-Stage Residual Inclusion (2SRI) method can retrieve estimates 
of the ATE even in presence of essential heterogeneity, similar to the control function 
approach (Terza et al., 2008; Wooldridge, 2010). The main difference compared to 
2SLS, is that this estimator uses the residuals from a first-stage regression for 
treatment assignment when fitting the model for #&, which is regressed on the "!, ') 
and the residuals, which might be included in different forms (Basu et al., 2018). This 
approach is analogous to 2SLS when both stages are linear, but has been mostly 
applied in non-linear settings (Basu et al., 2018). It is unclear whether 2SRI offers 
additional benefits in terms of bias reductions in estimates of ATE or LATE 
parameters compared to 2SLS. As discussed in Basu et al., (2018), while logit or probit 
models might offer a better fit to real-world data, 2SRI estimates could be biased if 
the functional form of the residuals is misspecified. 

Novel LIV methods constitute an attractive alternative for estimating treatment effect 
parameters of decision-making relevance when a continuous or multi-valued IV is 
available.  

2.4 Local Instrumental Variables methods 

Heckman and Vytlacil (1999, 2001, 2005) showed that LIV methods can identify 
effects for “marginal” patients, that is, patients who are in equipoise with respect to 
the treatment assignment decision, provided a valid, continuous instrument is 
available. These individuals are in equipoise because the propensity for treatment, 
given their observed levels of covariates and IV, just balance with a normalized version 
of the unmeasured confounders (V) discouraging treatment, such that a small 
(marginal) change in the IV is sufficient to nudge them into the treatment group. 
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Then, by contrasting individuals with marginally different values of the IV, but who 
are otherwise identical in measured and unmeasured covariates, the Marginal 
Treatment Effect (MTE) can be identified (Bjorklund and Moffit, 1987). 

2.4.1 Marginal Treatment Effects 

The MTE can be defined as,  

∆1,-(:) , A) = =(∆|') = :) , 6 = A) 

The MTE is the most nuanced treatment effect parameter. MTEs can be seen as 
building blocks that can be used to compute the ATE or LATE. When the MTE is 
constant in 0& –i.e. patients do not act upon the unobserved confounders–, then 
∆1,-= ∆+,-= ∆*+,-. Under essential heterogeneity, the different treatment effects can 
be computed as weighted averages of ∆1,-. 

Under standard IV assumptions, streams of MTEs can be estimated as (Heckman and 
Vytlacil, 2001), 

∆1,-(:) , B) =
C=(#$ − #"|') = :) , . = ;)

CB
 

LIV recovers MTEs for all the values in the support of the distribution of 5(.) 
conditional on ') = :).  

2.4.2 Person-centered Treatment effects 

Basu (2014) extended the LIV framework to consider personalised treatment effects 
known as Person-centered Treatment (PeT) effects. PeT effects can be derived from 
MTEs by using information on the observed patient characteristics, and the likely 
distribution of unobserved characteristics given the patient’s observed treatment 
status. The underlying insight is that for each individual patient, some levels of the 
normalized unobserved confounder would be inconsistent with the observed treatment 
decision for that individual, given their observed characteristics and the level of the 
IV (Basu, 2014). For patients in the treatment group (" = 1), the propensity to choose 
treatment based on ') and . outweighs the propensity to choose the comparator 
strategy based on 6, i.e.  5(;, :)) > A, whereas the opposite is true for patients in the 
comparator strategy (" = 0). MTEs that imply a lower level of unobserved 
confounding can thus be ‘ruled out’, narrowing the set of MTEs which could plausibly 
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represent the individual’s effect. The person-centered treatment (PeT) effect for an 
individual is obtained by aggregating the remaining MTEs. 

Hence,  

∆23,(:) , B, ") = =(#$ − #"|') = :) , 5(;, :)) > 6) for individuals with " = 1 

∆23,(:) , B, ") = =(#$ − #"|') = :) , 5(;, :)) < 6) for individuals with " = 0 

PeT effect averages MTEs with the same level of ') and . over those values of the 
unobserved confounders that are compatible with that patient’s treatment assignment. 
For individuals with " = 1, PeT effects can be derived as, 

=(#$ − #"|') = :) , 5(;, :)) > 6) = 5(;)4$E FG=(:) , A)HA
2(!)

"
 

All treatment effect parameters, including CATEs, can be derived by taking averages 
of PeT effects. This is therefore a well-suited approach exploring treatment effect 
heterogeneity, but requires that a valid, continuous or multi-valued IV is available 
(Basu, 2014).  

2.4.3 Estimation of MTEs and PeT effects 

In this thesis, I follow the approach described in Basu (2014, 2015) to estimate MTEs 
and PeT effects using the LIV methodology. Briefly, "! is regressed on . and '), 
using appropriate methods for binary outcomes, to obtain an estimate of the 
propensity for treatment, or propensity score, B̂(:) , ;). At this stage, an F statistic6 
test should be performed to evaluate the strength of the IV. Next, #& is regressed on 
') and a function of B̂ including interactions with '). The approach outlined in Basu 
(2014) involves differentiating the outcome model J(#&) by B̂(:) , ;). Next, PeT effects 
for each individual can be obtained by performing numerical integration, with MTE 
(CJK(#&) CB̂⁄ (:) , ;))	evaluated by replacing B̂	using 1,000 random draws of 
M~MOPQ(min(B̂(:) , ;)) ,max(B̂(:) , ;))). Then, "∗ = Φ4${B̂(:) , ;)} + Φ4$(1 − M) can 
be computed. PeT effects can then be computed by averaging CJK(#&) CB̂⁄ (:) , ;) over 
values of M for which B̂(:) , ;) > A if " = 1; or over values of B̂(:) , ;) < A if " = 0. 
Finally, averaging PeT effects over all of the observations provides an estimate of the 

 

6 The F statistic can be computed as	7 = [*(\K/ K̂7), with \K and K̂7 as the estimated 
value of the coefficient of Z in the first stage and its associated standard error.  
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ATE for the population, and over strata of ') gives the CATE for the subpopulation 
of interest. Standard errors can be computed using bootstrap methods (Basu, 2015). 
The Stata developed “petiv” command was used in this thesis to estimate PeT 
effects. 

2.5 Problems with weak IVs 

The advent of RWD has created opportunities for adopting LIV methods in 
comparative effectiveness and cost-effectiveness studies. One important barrier for a 
wider adoption of LIV methods is that it might have poor estimation and inference 
properties if the IV is only weakly associated with treatment assignment (Staiger and 
Stock, 1997, Andrews et al., 2019).  

The implications this might have for practice have not yet been formally evaluated. 
Some recently published papers in the weak identification literature have 
demonstrated the shortcomings of relying exclusively on the ‘rule of thumb’ that the 
F-statistic in the first stage needs to be above the threshold value of 10 in the case of 
binary IVs. These studies have shown that even when IVs are considered ‘strong’ by 
conventional standards, 2SLS can have low power (Keane and Neal, 2021), as well as 
size distortions in t-tests (Lee et al., 2021). These findings suggest that even when IVs 
meet conventional thresholds for ‘strength’, 2SLS might be unreliable. However, no 
studies have formally evaluated the IV strength required for LIV methods to perform 
well, nor whether requirements change according to the sample size, or the form of 
treatment effect heterogeneity that is present. 

The next chapter considers the target trial framework in the context of the ESORT 
study using LIV. In doing so, this work constitutes a novel application of the target 
trial paper in a IV study.  
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Chapter 3. Emulating Target Trials with Real 
World Data to inform Health Technology 
Assessment: findings and lessons from an 
application to emergency surgery 

3.1 Preamble to research paper 1 

The target trial framework was developed to help improve the design of comparative 
effectiveness studies using observational data, by emulating the design principles of 
RCTs with respect to, for example, the eligibility criteria or the comparator strategies 
(Hernán and Robins 2016). Since then, there has been a rapid increase in the number 
of studies, mainly in the biostatistics and pharmaco-epidemiological literature, that 
have used the methods described in Hernán and Robins (2016) and, Hernán et al. 
(2016). Previous studies, including early efforts from the RCT DUPLICATE initiative 
have sought to apply the target trial framework in the design and analysis of 
observational studies to replicate RCTs. These studies have found that while RCTs 
can be replicated using RWD, further research is needed to better understand the 
circumstances or contexts in which this real-world evidence will align with RCT 
evidence (Franklin et al. 2021; Danaei et al. 2018). 

Applications of the target trial framework to RWD for the purposes of informing HTA 
decision-making are uncommon. Recently, Gomes et al. (2022) described the potential 
uses of the framework for informing HTA processes. However, this paper did not offer 
an exemplar application, or give recommendations for future studies on how to address 
the challenges that might arise in CEA of health interventions using RWD.  

Research paper 1 paper aims to fill this gap by evaluating the challenges raised for 
CEA using individual-participant RWD, when no relevant RCT evidence is available. 
I draw from the main findings of the paper to offer recommendations for how to 
address these challenges in future studies. My role in this paper included reviewing 
the relevant literatures, developing and applying the target trial framework in the 
study, and conducting the analyses, guided by my supervisor, RG. I led the 
interpretation of the results. I wrote the draft version of the manuscript and 
incorporated comments from co-authors, SON, AH, RS and RG, into the manuscript. 
The analysis received ethical approval from the LSHTM Ethics Committee 
(ID:21776). 
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Abstract  

Objective: International Health Technology Assessment (HTA) agencies continue to 
advocate for the use of real-world data (RWD) for informing decision-making in health 
care. There is potential for the ‘target trial’ framework to encourage further uptake of 
this type of evidence by helping to alleviate concerns about bias and design flaws in 
these studies through the application of the design principles of randomised controlled 
trials. So far, its adoption in HTA has been modest, arguably due to the lack of 
guidance and exemplar implementations in this particular setting. 

Methods: We apply the two-stage (definition and emulation) target trial emulation 
approach in a study assessing the cost-effectiveness of emergency surgery for two acute 
gastrointestinal conditions (acute appendicitis and acute gallstone disease). We use 
hospital episodes statistics (HES) data for emergency hospital admissions with acute 
these conditions to 175 acute hospitals in England from 2010 to 2019. We highlight 
and describe the main challenges in applying the target trial framework in studies 
using RWD, and discuss how these were addressed in this particular application. 

Results: Our study identifies four main challenges for RWD studies applying the 
target trial framework. These are: (i) defining the study population, (ii) defining the 
treatment strategies, (iii) establishing time zero (baseline), and (iv) adjusting for 
unmeasured confounding. We exemplify how these challenges were addressed within 
the ‘Emergency Surgery OR noT’ (ESORT) study and, drawing on these findings, we 
outline a series of recommendations for how they can be addressed more widely when 
using the target trial framework alongside RWD. 

Conclusion: Studies using the target trial framework are likely to face similar issues 
to those that that arose in the ESORT study, and discussed here. The 
recommendations outlined in this study could help future studies, and should be 
considered complementary to design tools developed for economic evaluations to 
inform HTA, as well as those developed for informing choices about the adequacy of 
alternate statistical approaches for estimating treatment effects. 

Keywords: real-world data, target trial framework, health technology assessment, 
comparative effectiveness, emergency surgery. 
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3.2.1 Introduction 

Health Technology Assessment (HTA) agencies require robust effectiveness and cost-
effectiveness evidence to support decision-making in health care. Studies using Real 
World Data (RWD) such as disease registry data or electronic health records (EHR) 
can help build an evidence base, given their ability to include patients from large, 
heterogenous populations, and offer results for interventions of decision-making 
relevance and broad ranges of outcomes (Garrison et al., 2007; Makady et al., 2017a). 
However, the risk of bias from confounding and other design flaws in these studies 
constitute a major barrier to a more widespread adoption of real-world evidence in 
HTA decision-making (Bell et al., 2016; Faria et al., 2015).  

Good research practices recommendations by HTA agencies like the UK’s National 
Institute for Health and Care Excellence (NICE) include the use of checklists and 
other quality assessment tools, or the reporting health economic analysis plans, but 
these offer limited guidance on how to address fundamental issues pertaining to study 
design of studies using RWD (Husereau et al., 2013; Thorn et al., 2016). Recently, 
NICE’s latest manual of methods and processes for technology evaluation formally 
recognised the importance of RWD in informing decision-making and emphasised the 
need for studies that consider how the principles of the ‘target trial’ framework could 
be applied to HTA (Hernán et al., 2016; Hernán and Robins, 2016). 

The target trial framework can help mitigate concerns about the study design in 
observational (non-experimental) studies by applying the design principles of 
Randomised Controlled Trials (RCTs) (Dickerman et al., 2019; Hernán et al., 2016). 
This approach requires the definition of a (hypothetical) pragmatic trial protocol, 
which is then emulated using observational data. The target trial framework can help 
to better identify and minimise the risk of bias in the study, and make methodological 
assumptions and design choices transparent for evidence users. In settings with high 
quality observational data analyses, emulating the target trial principles has been 
found to help replicate the results of published RCTs (Caniglia et al., 2018; Franklin 
et al., 2021; Petito et al., 2020). More recently, Gomes et al., (2022) described the 
potential uses of the target trial framework in HTA, but did not actually use the 
methods in an application. In general, there is a lack of guidance on the apply the 
notions of the target trial framework in the HTA context, which raises major 
challenges, in particular around the interrelated issues of defining from RWD the 
study population, time zero (baseline) and the intervention and comparators. 
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The aim of this paper is to critically examine the application of the target trial 
framework principles to the HTA context when assessing the effectiveness of health 
interventions from RWD. We draw on a case-study, the ‘Emergency Surgery OR noT’ 
(ESORT) study, to describe common challenges in applying the target trial framework 
to assess comparative effectiveness from routine data and offer a series of 
recommendations for future studies (ESORT Study Group, 2020a). Unlike previous 
publications of the ESORT study (Hutchings et al., 2022; Moler-Zapata et al., 2022), 
here we define and emulate the key elements of the target trial protocol, in evaluating 
the cost-effectiveness of emergency surgery (ES) for patients admitted to hospital with 
acute gastrointestinal conditions (section 3.2.2), and report the results of the CEA 
(section 3.2.3). In section 3.2.4, we draw on these findings to offer general 
recommendations for future studies. 

3.2.2 Methods 

3.2.2.1 Overview 

The ESORT study exemplifies the challenges that arise for HTA when there is little 
evidence from RCTs to inform routine clinical practice. In this setting there were few 
published RCTs and economic evaluations that evaluated ES versus alternative non-
emergency surgery (NES) strategies for common acute conditions (ESORT Study 
Group, 2020a). The ESORT study helped address this gap in the literature by using 
information on 2010-19 hospital admissions from the Hospital Episode Statistics (HES) 
database, linked to Office for National Statistics (ONS) mortality data, to assess the 
cost-effectiveness of ES for five acute gastrointestinal conditions, including acute 
appendicitis and acute gallstone disease, which are the two conditions with the highest 
prevalence, and the focus of this paper. The evaluation of costs and outcomes was 
from a hospital perspective, over a one-year time horizon, and applied the key 
principles of the target trial framework as described in the following sections (Moler-
Zapata et al., 2022). 

3.2.2.2 Target population for the decision problem 

The application of the target trial framework to the HTA context, requires that 
eligibility criteria for the study population are defined to represent the target 
population of interest and that it only includes those subgroups for whom there is 
equipoise about the choice of intervention versus comparator strategies (i.e., clinical 
uncertainty about which treatment alternative is the best option for them). Only 
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patients who would in practice be eligible to receive either intervention, even if one is 
more likely than the other, should be included. 

In the ESORT study, these considerations informed the choice of inclusion and 
exclusion criteria (Table 3.1). Some inclusion criteria, such as the patient’s age and 
the requirement to be assessed by a surgeon, were intended to ensure equipoise and 
were emulated directly from the HES data. The clinical panel was asked to identify 
subgroups of patients who, according to unobserved as well as observed prognostic 
characteristics, would not be eligible to receive ES or NES. For example, by specifying 
an inclusion criterion that the patient must be at some point under the care of a 
consultant surgeon, the study deliberately excluded patients whose prognosis was so 
‘severe’ or ‘mild’ according to unobserved, as well as observed, characteristics, that 
they would not be considered for ES. Including patients for whom there is no equipoise 
could result violations of the positivity assumption if there is insufficient or no 
variability in treatment within strata of confounders (Petersen et al., 2012). For other 
criteria, such as the reason for admission, the information from the routine data and 
the available evidence were insufficient to define which patient subgroups to include 
(Table 3.1) lists those criteria that could not be directly emulated using RWD). 
Specifically, while there was information on the patients’ diagnosis according to ICD-
10 codes, it was unclear which of the subcategories of ICD-10 corresponded to patient 
subgroups that would be eligible for ES in routine practice, and for whom there was 
equipoise between the comparison strategies. 

The ESORT study addressed the challenge of defining those elements of the target 
trial protocol that could not be specified from the routine data, by convening two 
panels of 12 clinicians with relevant expertise that followed a modified Delphi process 
(see ESORT Study Group (2020b) for details). The panellists were required to judge 
which inclusion and exclusion criteria were appropriate, given the requirement for 
equipoise between the comparison groups, and to define the interventions of interest 
(see next section).  The consensus of the panel required at least nine from 12 responses 
in favour of the inclusion of the category, and five (appendicitis) and three (gallstone 
disease) ICD sub-categories were designated for inclusion (see Appendix B.1) for full 
list). The panel’s consensus also designated that for patients with acute appendicitis 
those with ICD-10 codes corresponding to appendiceal cancer and pregnancy should 
be excluded due to lack of equipoise, but for patients with gallstone disease none of 
the subcategories should be excluded. 
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Table 3.1. Protocol of the target trial of emergency surgery (ES) versus non-emergency surgery (NES) for acute appendicitis and acute 
gallstone disease 

 Description of Target Trial of ES How was the protocol element emulated in the ESORT? 
Eligibility 
criteria 

Inclusion criteria:  
- Patient was at least 18 years old at admission. 
- Emergency admission, via emergency department or primary 

care. 
- The condition was the reason for admission into hospital. 
 
- The diagnosis was confirmed by consultant surgeon. 
 
Exclusion criteria:  
- According to clinical condition-specific exclusion criteria. 
- Emergency admission for the condition in the previous year. 
- Surgery for the condition within the previous 90 days. 

 
- Patient transferred between hospitals before surgical assessment. 
  

Inclusion criteria: 
- Emulated directly from HES data. 
- Emulated directly from HES data. 

 
- Expert panel defined diagnostic (ICD-10) codes with equipoise 

between comparator strategies. * 
- Emulation directly from HES data. 

 
Exclusion criteria: 
- Expert panel designated exclusion criteria with (ICD-10) codes. † 
- Emulated directly from HES data.  
- Emulated directly from HES data (using definitions of treatment 

strategies below). 
- Emulated directly from HES data. 

 
Additional criteria according to data availability: 
- Patient was admitted to an ineligible hospital for ESORT. ‡ 
- Admission lacked information on admission or discharge status or 

date. 
Treatment 
strategies 

- ES defined as urgent, expedited or immediate surgery for the 
condition (NCEPOD, 2004). 
 
 

 

- Expert panel defined the two criteria for ES: (i) the procedure 
constituted ‘surgery for the condition’ according to selected 
OPCS codes, § (ii) to be considered ‘emergency’, the panel 
designated a time window of seven days from the date of 
assessment (see below). 
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 Description of Target Trial of ES How was the protocol element emulated in the ESORT? 
- NES: (i) medical management with no surgery for the condition; 

(ii) surgery that did not meet the criteria for ES, either because 
not relevant procedure, or after the seven-day time window, 
possibly preceded by medical management. 

- Emulation assumed patient assigned NES if they did not meet 
ES criteria  

Time zero 
and 

follow-up 
period 

- Time zero is analogous to the time of randomisation, and is when 
all the eligibility criteria are met, the assignment to ES or NES 
occurs, and follow-up starts. 

 
 
- Follow-up ends at the earliest of one year, death, or end of study 

period. 

- Emulation assumed time zero was the start date of the first 
finished consultant episode for the first admission, in which the 
specialty code was general surgery, colorectal surgery or upper-
gastrointestinal surgery. 

 
- Emulation censored patients at the date of death, if that was 

within one year from day zero. Complete follow-up data were 
available for all patients. 

 
Treatment 
assignment 

- Individuals are randomly assigned to a strategy at baseline. - Treatments groups were assumed to be balanced after adjustment 
for differences in measured and unmeasured prognostic factors in 
the statistical analysis. 

 
Outcomes - Life years at 1 year from randomisation. 

- QALYs at 1 year from randomisation. 
 
- Total costs at 1 year from randomisation. 
 
 
 
 
 
- Net monetary benefit at 1 year from randomisation. 

- Emulated directly from HES data (linked to ONS death data). 
- Emulation required adjusting life years using published age- and 

gender-adjusted HRQoL scores from similar populations. 
- Emulation required calculating resource use for categories 

considered to be main drivers of total costs (length of stay, 
including critical care; operative and diagnostic procedures and 
readmissions up to one year) and valuing resource use data using 
relevant estimates of unit costs taken from national unit cost 
databases. 

- Emulated combining cost and QALY data. 
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 Description of Target Trial of ES How was the protocol element emulated in the ESORT? 
Causal 

contrast of 
interest 

- ITT effect (effect of assignment of patients to interventions at 
baseline) 

- PP effect (effect of complying with the trial protocol) 

- ITT effect could not be emulated since information on the initial 
treatment assignment was not available from HES. 

- Emulation of the per-protocol effect required taking differences 
between the treatment groups in estimated total costs, life years, 
QALYs and net monetary benefits at one year.  

Analysis 
plan 

- ITT analysis and PP analysis with adjustment for baseline 
prognostic factors. 

 
 
 
 
 
 
 
- Subgroup analyses by baseline age, sex, frailty and number of 

comorbidities. 

- Emulation of the PP analysis required using a LIV approach to 
mitigate the risk of confounding due to unmeasured prognostic 
factors associated with ES receipt. The IV was the hospital’s 
tendency to operate. Models were adjusted for a wide range of 
case-mix measures (age, gender, frailty level, comorbidity profile, 
ethnicity, index of multiple deprivation), fixed effects for each 
financial year and proxies of quality of acute care (rates of 
emergency admission and mortality for each hospital and acute 
condition in 2009-10, and in the year prior to the admission).   

- Emulated directly from HES data. 

*See Appendix B.2 for full list ICD10 codes for the two conditions. †ICD-10 codes for acute appendicitis: Pregnancy (O00-O9A; Z00-Z99) and appendiceal 
cancer (C00-D49). ICD-10 codes for acute gallstone disease: none. ‡ Of all eligible acute general hospitals with at least 200 emergency general surgery 
admissions per year, those that ceased activity in five years prior to 31 December 2019 were excluded. § See Appendix B.2 for full list of procedure codes 
included in definition of ES the two conditions (ESORT Study Group, 2020b). FCE: Finished Consultant Episode, HES: Hospital Episode Statistics, 
HRQoL: Health-related Quality of Life, ICD: International Classification of Diseases, ITT: Intention-to-treat, LIV: Local Instrumental Variables, ONS: 
Office of National Statistics, OPCS: Office of Population Censuses and Surveys, PP: Per-protocol, QALY: Quality-adjusted Life Years.
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3.2.2.3 Definition of treatment strategies 

The main challenge in defining the treatment strategies from the RWD is ensuring 
that these represent how the intervention is used in routine clinical practice. In the 
ESORT study, the treatment strategies under assessment were complex, combining 
different surgical and non-surgical procedures. ES involves operative management that 
is immediate, urgent or expedited (NCEPOD, 2004). To operationalise the ES 
definition, the expert panel were asked to consider which of the Office for Population 
Censuses and Surveys (OPCS) procedure codes listed within the HES data met the 
definition of ES, and to define the appropriate time window. The panel’s consensus 
was that 21 (appendicitis) and 45 (gallstones) procedure codes (see Table 3.1 and 
Appendix B.2), respectively, met the definition for ES, and that for both conditions 
the time window for ES should be within seven days of assessment (baseline/time 
zero, see below).  

The definition of the comparator strategy should consider whether the information in 
the RWD is sufficient to ensure the comparator strategy is defined in enough detail 
to evaluate the causal contrast of interest (Hernán, 2004; Hernán and Taubman, 2008). 
In the ESORT study, any patient who didn’t receive one of the designated procedures 
within the 7-day period was assigned to the NES strategy. This definition includes 
management with antibiotic therapy and either no surgery within the one-year time 
horizon, or surgery that does not meet the ES criteria (i.e., either an OPCS procedure 
code not considered to be ES within the designated ES window or an OPCS procedure 
code considered to be ES but outside the window). The proposed definition of the 
comparator strategy in ESORT, reflects the variation in the provision NES strategies 
in routine clinical practice, but also the limited availability of granular information in 
HES on specific NES treatments (e.g., duration or dosage for antibiotic therapy), 
which meant that the study could evaluate the cost-effectiveness of ES against not 
providing NES, but not against specific NES strategies. 

3.2.2.4 Definition of time zero and follow-up 

The careful definition of the emulated target trial’s ‘point of randomisation’ or ‘time 
zero’ can help minimise the risk of bias in the study (Emilsson et al., 2018; Hernán et 
al., 2016). In an RCT, time zero is defined as the time when eligibility is met, the 
alternative treatment strategies commence, and the follow-up begins. In RWD studies, 
it is often impossible to establish temporality from events recorded in the data, and if 
eligibility and treatment assignment are not aligned with the start of follow-up, then 



53 
 

 

selection bias (if patients are excluded according to events that occurred after the 
onset of treatment) and immortal time bias (if there is a period of the follow-up over 
which outcomes of interest cannot occur) can emerge (Lévesque et al., 2010; Maringe 
et al., 2020). The criteria for time zero are: (i) it does not precede the time when the 
eligibility criteria are met, (ii) it must be identified for all patients regardless of the 
assigned treatment arm strategy, (iii) it should minimise the time window used to 
define treatment initiation to reduce the possibility of immortal time bias. 

In ESORT, emulating time zero was not straightforward. The study considered using 
the date of hospital admission or the date either strategy was initiated, but both were 
deemed inadequate. For many patients, the date of admission preceded the date 
diagnosis was confirmed by a surgeon which was an inclusion criterion (violation of i). 
Also, for the NES comparator, a date of treatment initiation was not available 
(violation of ii). A third alternative, the date that the patient was first under the care 
of a consultant surgeon was judged to be the most appropriate definition of time zero. 
After this initial surgical assessment, patients with these acute conditions would be 
assigned to either treatment strategy, without delay. Given the study’s eligibility 
criteria, once the patient had the surgical assessment all the eligibility criteria were 
met. This definition of time zero could still lead to bias, if during the seven-day time 
window for defining receipt of ES (rather than NES), the risk of the outcomes of 
interest differed between the comparison groups. For patients with acute appendicitis 
and acute gallstone disease, this would seem unlikely as patients are at very low risk 
of adverse outcomes, such as death, over that period (Di Saverio et al., 2020). When 
assessing ES for other conditions with higher rates of in-hospital mortality, methods 
like ‘cloning, censoring and weighting’ could help to reduce the risk of immortal time 
bias (Hernán and Robins, 2016). 

3.2.2.5 Outcomes 

The nature of RWD might pose additional challenges for the emulation of the target 
trial as data on outcome measures are often unavailable or available with insufficient 
detail. However, through HES, the ESORT study had access to rich resource use data 
including the total duration of hospital stay (including readmissions), and survival 
time from HES linked to ONS mortality data, which was used to derive life years. 
While information on health-related quality of life (HRQoL) following ES and NES 
for the conditions was not available from HES, it could be obtained from available 
published studies reporting HRQoL weights for comparable populations. These 
weights were combined with information on key events (e.g., emergency admissions), 
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and survival time to derive one-year Quality-Adjusted Life Years (QALYs) (Moler-
Zapata et al., 2022). The main cost-effectiveness outcome is the incremental net 
monetary benefit (INB) at one year, using NICE’s recommended threshold of £20,000 
per QALY (NICE, 2013). 

3.2.2.6 Causal contrast 

RCTs are typically concerned with estimating the Intention-to-treat effect (ITT), that 
is, the effect of being assigned to a particular treatment strategy and the per-protocol 
effect (PP), that is, the effect of receiving the treatment as prescribed in the protocol. 
In observational studies, where treatment received is observed but treatment 
assignment is not, a PP analysis is generally favoured. In the ESORT study, the broad 
protocol definition of both the ES and the NES strategies allowed us to estimate a PP 
effect. Here, the assumption that patients in either group adhered to their treatment 
assignment is plausible and consistent with routine practice.  

3.2.2.7 Analysis plan 

The risk of confounding bias poses a major threat to the validity of observational 
studies, and alternative methods make different assumptions, which need to be 
carefully considered (Freemantle et al., 2013). The ESORT study used a Local 
Instrumental Variable (LIV) approach to mitigate the concerns about unmeasured 
confounding. Briefly, LIV allows for treatment selection according to measured and 
unmeasured prognostic factors, and can report consistent estimates of the overall effect 
for the population (i.e., the Average Treatment Effect, ATE) and subpopulations of 
interest (i.e., conditional ATEs, CATEs) provided a series of assumptions hold (Moler-
Zapata et al., 2022).  

The instrument in the ESORT study was the hospital’s tendency to operate (TTO), 
which is a proxy for their preference for ES, calculated from historic data. The 
assumptions underlying LIV are: (i) TTO only influences the outcome through its 
effect on treatment assignment (exclusion restriction), (ii) TTO is associated with 
treatment assignment (relevance assumption), (iii) TTO is independent of unmeasured 
confounders (exchangeability condition), and (iv) TTO has the same direction of effect 
on the probability of treatment receipt, irrespective of the level of the IV 
(monotonicity assumption). These assumptions were judged plausible, given the 
findings that the IV was sufficiently strong (assumption ii), balanced the observed 
covariates (iii) and by implication and a priori reasoning also unobserved covariates 
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(i) and, was unlikely to have a differential effect on the probability of ES receipt at 
different levels of TTO (iv) (see Appendix B.5).  

We also conducted analyses which made alternative assumptions as sensitivity 
analyses. We undertook conventional risk-adjustment (using generalised linear model 
(GLM) regression) approaches, adjusting for the same baseline measures as in the LIV 
analysis, but that makes the alternative assumption that all the requisite confounders 
have been adjusted for. For completeness we also included a naïve comparison, that 
assumed there were no confounders. For each approach we reported the incremental 
net monetary benefit (INB) for the overall target population of interest (ATE), and 
for LIV the INB according to prespecified subgroups of policy relevance (defined by 
age, sex, frailty level and number of comorbidities. 

3.2.3 Results 

3.2.3.1 Cohort description 

We identified 268,144 patients with acute appendicitis and 240,977 with gallstone 
disease who met the target trial eligibility (see Figure 3.1). Of these patients, 92% 
(appendicitis) and 22% (gallstone disease) met the definition of ES, and the baseline 
characteristics of the comparison groups are given in see Table 3.2. In each cohort, 
those patients who had ES were on average younger, fitter and with fewer 
comorbidities (Table 3.2). 
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Figure 3.1. (a): Flowchart of eligibility for a target trial of emergency surgery 
versus non-emergency surgery for acute appendicitis, emulation using Hospital 

Episodes Statistics data 

 

A&E: accident and emergency, GP: general practitioner, ESORT: emergency surgery or not; 
TTO: tendency to operate  
  

753,704 admissions 
assessed for eligibility 

436,550  Admissions failed to meet the inclusion criteria 
 398,121 Appendicitis was not the reason for admission  
 27,374  Admission was not an emergency 
 92  Admission belonged to under-18 patient  
 161  Admission was to ineligible trust for ESORT 
 10,802 Appendicitis diagnosis was not confirmed by a 

surgeon  

317,154 admissions 
met the inclusion 

criteria 

268,144 eligible 
admissions 

49,010   admissions met the exclusion criteria 
 258 Patient had appendiceal cancer 
 1,400 Patient was pregnant 
 4,422 Admission preceded by another admission for 

the condition within the previous year 
 2,255 Admission to ineligible hospital for ESORT or 

for calculating TTO  
 724 Patient was transferred within hospitals before 

surgical assessment 
 2,876 Patient had surgery at a date prior to the date of 

surgical assessment  
 394 Admission lacked information on admission 

discharge status 
 36,681 Admission started before 1/12/2010 or after 

31/12/2019 
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Figure 3.1 (b): Flowchart of eligibility for a target trial of emergency surgery 
versus non-emergency surgery for gallstone disease, emulation using Hospital 

Episodes Statistics data 

 

A&E: accident and emergency, GP: general practitioner, ESORT: emergency surgery or not; 
TTO: tendency to operate 
 

  

324,642 admissions met 
the inclusion criteria 

2,310,797 admissions 
assessed for eligibility 

1,986,155 Admissions failed to meet the inclusion criteria 
1,716,899 Acute gallstone disease was not the reason for 

admission 
 201,796 Admission was not an emergency 
 78 Admission belonged to under-18 patient 
 298 Admission was to ineligible trust for ESORT 
 67,084 Appendicitis diagnosis was not confirmed by a 

surgeon 

240,977 eligible 
admissions 

83,665   admissions met the exclusion criteria 
 45,349 Admission preceded by another admission for 

the condition within the previous year 
 3,076 Admission to ineligible hospital for ESORT or 

for calculating TTO  
 691 Patient was transferred within hospitals before 

surgical assessment 
 456 Patient had surgery at a date prior to the date 

of surgical assessment  
 317 Admission lacked information on admission 

discharge status   
 33,776 Admission started before 1 April 2010 or after 31 

December 2019 
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Table 3.2. Patient characteristics of the two cohorts of patients by emergency 
surgery (ES) and non-emergency surgery (NES) groups 

 Acute appendicitis 
(N=268,144) 

Acute gallstone disease 
(N=240,977) 

 ES 
(n=247,506) 

NES 
(n=20,638) 

ES 
(n=52,004) 

NES 
(n=188,973) 

Gender: n (%) 
Male 
Female 

 
134,270 (54) 
113,224 (46) 

 
10,409 (50) 
10,228 (50) 

 
15,140 (29) 
36,864 (71) 

 
63,046 (33) 
125,927 (67) 

Age: mean 38 (16) 47 (20) 51 (18) 56 (19) 
IMD quintile: n (%) 
1 – Most deprived 
2 
3 
4 
5 – Least deprived 

 
49,495 (20) 
47,818 (20) 
49,203 (20) 
50,337 (21) 
46,636 (19) 

 
4,319 (21) 
3,898 (19) 
4,128 (20) 
4,024 (20) 
3,907 (20) 

 
11,774 (23) 
9,586 (19) 
10,641 (21) 
10,881 (21) 
8,686 (17) 

 
44,650 (24) 
34,792 (19) 
37,561 (20) 
39,759 (21) 
30,285 (16) 

SCARF index: n (%) 
Fit 
Mild frailty 
Moderate frailty 
Severe frailty 

 
206,796 (84) 
34,544 (14) 
5,041 (2) 
1,125 (0) 

 
15,015 (73) 
4,052 (20) 
1,155 (6) 
416 (2) 

 
34,056 (66) 
13,608 (26) 
3,385 (6) 
955 (2) 

 
114,973 (61) 
52,629 (28) 
16,175 (9) 
5,196 (3) 

Ethnicity: n (%) 
Black/Black mixed 
Asian/Asian mixed 
White 
Chinese and other 

 
5,771 (2) 
11,592 (5) 

194,968 (79) 
9,054 (4) 

 
627 (3) 

1,122 (5) 
16,371 (79) 

708 (3) 

 
827 (2) 

2,204 (4) 
44,396 (85) 

997 (2) 

 
3,923 (2) 
9,124 (5) 

162,727 (86) 
4,092 (2) 

Charlson index: n (%) 
0 – comorbidities 
1 
2 
3+ – comorbidities 

 
207,525 (84) 
35,721 (14) 
3,715 (2) 
545 (0) 

 
15,321 (74) 
3,989 (19) 
1,035 (5) 
293 (1) 

 
36,737 (71) 
12,287 (24) 
2,544 (5) 
436 (1) 

 
120,748 (64) 
49,863 (26) 
14,503 (8) 
3,859 (2) 

*SCARF: Secondary Care Administrative Records Frailty. 
 

3.2.3.2 Cost-effectiveness results 

The LIV approach reports overall INB estimates for ES versus NES of -£86.2 (95% 
CI -1,163, 991) and £221 (-450, 892) for appendicitis and gallstone disease, 
respectively (Table 3.3). The regression adjustment reported similar estimates for the 
INB of -£223 (95% CI -342, -104) for acute appendicitis and -£220 (95% CI -316, 124) 
for gallstone disease (see also Appendix B.3 for estimated effects on costs, life years 
and QALYs). By contrast, the unadjusted INB estimates were £1,431 (95% CI 1,259, 
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1,603) and £1,002 (95% CI 832, 1,171) for acute appendicitis and gallstone disease, 
respectively (see also Appendix B.3 for estimated effects on costs, life years and 
QALYs). When considering population subgroups, the LIV analysis suggests that ES 
was not cost-effective for patients with severe frailty (for both conditions) and patients 
with two, three or more comorbidities (acute appendicitis) (Figure 3.2, see also 
Appendix B.4). 

Table 3.3. Estimated group means and incremental costs (£GBP 2019/20), 
quality-adjusted life years (QALYs) and net monetary benefit (£GBP 2019/20, 

INB) at one year of emergency surgery vs non-emergency surgery strategies using 
the Local Instrumental Variable (LIV) approach 

 Emergency 
surgery 

Non-emergency 
surgery 

Mean differences (95% 
CI) 

 Acute appendicitis (N=268,144) 

Costs 3,366 3,475 -109 (-1,130, 913) 
Life years 0.996 0.999 -0.003 (-0.006, -0.001) 
QALYs 0.942 0.952 -0.010 (-0.024, 0.003) 
Net benefit 15,475 15,561 -86.2 (-1,163, 991) 

 Acute gallstone disease (N=240,977) 

Costs 5,477 5,554 -76.8 (-702, 548) 
Life years 0.970 0.978 -0.009 (-0.022, 0.005) 
QALYs 0.877 0.870 0.007 (-0.001, 0.015) 
Net benefit 12,059 11,838 221 (-450, 892) 

Variables used for adjustment in models: age (years), sex, ethnicity, index of multiple 
deprivation (quintiles), number of comorbidities (Charlson index), frailty level (SCARF 
index), method of admission, year fixed effects, proxies for the quality of acute care within 
the hospital. 
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Figure 3.2. Forest plots of estimated incremental net monetary benefit (INB) of emergency surgery (ES) versus non-emergency surgery 
(NES) for acute appendicitis (panel A) and acute gallstone disease (panel B) across population subgroups 

   (A): Acute appendicitis (B): Acute gallstone disease 

* Values to the left (right) of the 0 axis denote that NES (ES) is cost-effective for the subgroup. 
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3.2.4 Discussion 

International HTA agencies are expanding their use of comparative effectiveness 
evidence from RWD studies (Garrison et al., 2007; Makady et al., 2017). NICE's new 
real-world evidence framework sets out recommendations to help RWD studies 
provide trustworthy evidence to inform decision-making, which include using the 
target trial framework to inform study design choices (NICE, 2022). This paper 
illustrates how this framework can be applied to HTA in a study evaluating the cost-
effectiveness of ES for two common acute gastrointestinal conditions, which 
exemplifies common challenges in applying the target trial alongside RWD to inform 
HTA. In Table 3.4, we draw on the findings from this study to outline some 
recommendations for future studies looking to assess comparative effectiveness from 
RWD.  

This paper makes three important contributions to the literature. First, it contributes 
to the literature of methods for informing HTA decision-making with robust 
effectiveness evidence from RWD. NICE describes three main barriers to the adoption 
of real-world evidence in their evaluations: (i) the risk of bias, (ii) the quality and 
relevance of the data, and (iii) concerns about the trustworthiness of the evidence 
(NICE, 2022). To tackle concerns about the trustworthiness of evidence, study design 
choices need to be made traceable and transparent for decision-makers. Current good-
practice recommendations, including the reporting of checklists for economic 
evaluations, provide, in general, insufficient basis for judging study design choices 
outside of RCTs (Faria et al., 2015; Orsini et al., 2020). The target trial framework 
allows users of the evidence generated from RWD to assess its rigorousness and 
trustworthiness according to how closely the study design mimics that of an RCT. 
Published RCTs estimates can be used as ‘benchmarks’ in HTA to assess choices 
about aspects of the study design, including the plausibility of the assumptions 
underlying the different statistical approaches (Franklin et al., 2021). A further step 
would be to use the target trial framework in the design of systematic reviews and 
network meta-analyses of RCTs (Zhao et al., 2020). However, in many settings, RCT 
evidence for benchmarking is unavailable or unsuitable as it fails to include the target 
populations, comparators or endpoints of decision-making relevance. This study shows 
that RWD can still be used to support HTA decision-making in those settings. While 
applying the notions of target trial framework helps ensure that groups are 
comparable, thereby reducing the potential for confounding, this study highlights the 
importance of considering statistical methods that make alternative underlying 
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assumptions about residual confounding. In ESORT, the unadjusted comparison of 
means which makes the implausible assumption of no confounding at all leads to a 
different conclusion to the GLM regression and LIV approaches which make more 
plausible assumptions about confounding, and lead to similar results.  

Second, the paper tackles the lack of guidance on how to apply the principles of the 
target trial framework in RWD studies to ensure they meet the main requirements of 
HTA. We identify a series of challenges that are raised when using routine data for 
emulating target trials pertaining to: (i) defining the study population, (ii) defining 
the intervention and all relevant comparator strategies, (iii) establishing time zero, 
and (iv) using appropriate methods to adjust for confounding. Table 4 offers point-
by-point recommendations for how to address these challenges.  

The first challenge relates to the inability to emulate the target trial’s eligibility 
criteria, which can result in bias due to imbalances in the distribution of patient 
characteristics. To inform HTA, applying the target trial framework would require 
RWD studies to emulate trials with active comparators (the ‘standard of care’) (NICE, 
2014). Then, in order to minimise the risk of confounding from imbalances in 
prognostic factors, the eligibility criteria need to ensure that only patients for whom 
there is likely to be equipoise between treatment strategies are included. In the 
ESORT study, the criterion that the patient must be ‘under the care of a surgeon’ 
(see Table 3.1 for definition) helped exclude patients whose prognosis was so poor 
according to unobserved, as well as observed characteristics, that they would not be 
considered for ES (e.g., patients in advanced stages of the disease). When defining the 
eligibility criteria, another important consideration is that the population needs to 
include all patient subgroups of relevance for HTA decision-making. When published 
clinical guidance is insufficient to identify these populations, expert judgement should 
be used to adapt the target trial’s eligibility criteria to the data available and to the 
requirements of HTA (see Table 3.4). Sensitivity analyses around the different 
eligibility criteria could help assess the implications of these decisions and should be 
adopted (Lodi et al., 2019). In the ESORT study, the clinical panel exercise provided 
a basis for this. The study could define alternative more/less strict definitions of the 
eligibility criteria by varying the threshold for required number of responses favouring 
inclusion of an ICD-10 code sub-category. 
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Table 3.4. Challenges and recommendations for studies applying the target trial framework alongside Real-World Data (RWD) to inform 
Health Technology Assessment (HTA) 

Protocol Challenge for RWD Implications for HTA decision-
making 

Example from target trial of ES Recommendation 

Eligibility 
criteria 

Data might be 
insufficient to emulate 
the trial’s eligibility 
criteria 

Estimates of comparative effectiveness 
could be subject to selection bias/ 
confounding if the distributions of 
patient characteristics are not balanced 

Unclear which ICD-10 diagnostic 
subcategories describe patients with 
diagnoses of acute appendicitis and 
acute gallstone disease. 

Use expert opinion to 
adapt the trial’s eligibility 
criteria to the data 
available 

Population selected for 
study might include 
patients for whom there 
is no equipoise between 
treatment strategies 

Estimates of comparative effectiveness 
could be subject to confounding bias 

No equipoise for some patients with 
designated diagnostic codes for the 
condition (e.g., pregnant patients 
with designated codes of 
appendicitis)  

Use clinical guidelines 
and/or expert opinion to 
define and exclude patient 
subgroups for whom there 
is no equipoise 

Population selected for 
study might fail to 
include subgroups of 
interest for decision-
making 

Findings could fail to inform decision-
making if they are not generalisable to 
the target population, or omit relevant 
subgroup analyses 

Unclear which patients are eligible 
and in equipoise for ES and NES 
strategies in routine practice 

Use clinical guidelines 
and/or expert opinion to 
define subgroups of 
interest 

Treatment 
strategies 

The definition of the 
intervention (e.g., its 
timing) might differ from 
the intervention of 
interest 

Findings could fail to inform decision-
making if they do not reflect routine 
clinical practice 

Unclear which OPCS-4 procedure 
codes and timings describe ES. 

Use clinical guidelines 
and/or expert opinion to 
define the intervention and 
comparators 

The comparator strategy 
might not be defined 
with sufficient level of 
detail 

Findings could fail to inform decision-
making due to the interventions 
involved in the causal contrast not 
being well defined 

The study could not inform the 
comparative effectiveness of ES versus 
specific NES treatments, but could do 
so against not receiving ES. 

Carefully assess whether 
the causal contrast can be 
estimated given the data 
available. 
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Protocol Challenge for RWD Implications for HTA decision-
making 

Example from target trial of ES Recommendation 

Time zero Start of follow-up might 
pre-date the assessment 
of the eligibility criteria 

Findings could be subject to selection 
bias 

Using the date of admission as day 
zero could result in bias due to post-
baseline events being used to 
exclude patients. 

Consider the likely bias 
arising from alternative 
candidates for day zero. 

Time of treatment 
assignment might not be 
aligned with that of 
eligibility assessment and 
start of follow-up 

Findings could be subject to immortal 
time bias 

Using the date of admission as day 
zero could result in bias if, during 
time until treatment initiation, the 
risk of event of interest differed 
between the groups. 

Include as a criterion for 
day zero that it should 
minimise time to 
treatment initiation. 

Statistical 
analysis 

Residual confounding 
might exist after 
emulating the main 
components of the target 
trial, from both measured 
and unmeasured 
prognostic factors. 

Estimates of comparative effectiveness 
could be biased by residual confounding 

Naïve comparisons are unlikely to 
provide robust estimates, whereas 
adjustment in LIV and GLM 
regression resulted in similar 
findings 

Consider appropriate 
methods for tackling 
confounding and, where 
possible, assess the 
underlying assumptions in 
the method used. 

Not all statistical 
methods might be 
appropriate for studying 
the causal contrast(s) of 
interest. 

Findings might not be generalisable to 
the target population  

Estimates of traditional IV methods 
usually pertain to narrow 
populations, but LIV can retrieve an 
overall effect. 

Carefully assess the 
plausibility of the 
assumptions required for 
the estimation of the 
causal contrast. 

 

 



65 
 

 

The main challenge in defining the intervention and comparator strategies is to specify 
the treatment(s), dosage(s) and/or timing(s) that characterise their provision in 
routine clinical practice (second challenge). The definition could be informed by 
clinical guidelines for management of the condition, but as in the ESORT study, these 
are often unavailable. Unless the treatments of interest are specified within the RWD, 
the study will be of limited use for informing HTA decision-making (Hernán, 2004). 
Further to this, the study should carefully consider whether the comparators are 
defined in sufficient detail to evaluate the causal contrast of interest (Hernán and 
Robins, 2020; Holland, 1986). We recommend drawing on expert opinion to define the 
interventions and comparators of interest from those recorded within the routine data 
(Table 3.4).  

The ESORT study highlights the challenges in defining time zero (baseline) from the 
RWD (third challenge), which cannot precede eligibility, and must minimise any delay 
prior to treatment initiation. In studies like ESORT, where treatment initiation for 
one or all treatment strategies is not observed in the data, the choice of time zero 
should be carefully evaluated. The ESORT study defined time zero as the date when 
the patient was first under the care of a surgeon. This definition is expected to carry 
low risk of bias since, (i) it is does not precede the time of eligibility assessment and, 
(ii) while it may not coincide with the time of treatment initiation, the probability of 
events until treatment initiation is small for these conditions. To help ensure the 
definition of time zero meets the requirement above, tools that help establish 
temporality from RWD, such as design diagrams (Patorno et al., 2020), and 
approaches like reweighting, censoring and cloning (Hernán and Robins, 2016) should 
be adopted in settings where immortal time bias is suspected. 

In relation to the fourth challenge, our paper builds on precedent work on the use of 
IV methods for confounding adjustment, and in particular the combination of the 
target trial framework with IV methods to reduce the risk of bias from unmeasured 
confounding, which is a major concern in RWD (Swanson, 2017). ESORT uses a LIV 
approach which, unlike traditional IV methods such as two-stage least squares, can 
provide estimates of the ATE and CATEs that apply directly to the target population.  

The application of the target trial framework should encompass the use of design tools 
pertaining to the choice of statistical approaches for estimating treatment effects in 
observational studies, such as the STROBE checklist (Vandenbroucke et al., 2007), 
and as this paper illustrates, a fundamental element of this is that the plausibility of 
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the underlying assumptions is assessed, and alternative approaches that make 
contrasting assumptions are considered. 

The third contribution of this paper is to illustrate how the target trial framework can 
be applied and used to make treatment recommendations in settings where 
appropriate RCT evidence is not available. The assessment of the relative cost-
effectiveness of ES for acute appendicitis and acute gallstone disease in ESORT 
contributes to the scarce evidence on the effects of providing ES versus alternative 
strategies for patients with acute gastrointestinal conditions. For these conditions, 
studies conducted so far have evaluated ES against NES in relation to patient 
outcomes like mortality, HRQoL and length of hospital stay (Flum et al., 2020; 
Hutchings et al., 2022), but this paper contributes to the limited available evidence 
on relative cost-effectiveness (Javanmard-Emamghissi et al., 2020). In particular, 
while the ESORT study finds that overall, it is highly uncertain whether ES is cost-
effective for treating patients with these three conditions, the results clearly suggest 
that for patients who have severe frailty ES is not cost-effective. This finding has 
direct implications for clinical decision-making, emphasises the importance of 
perioperative frailty assessment for patients presenting with these common conditions, 
and that alternative NES strategies including medical management or later surgery 
are more cost-effective for these patients  

While the ESORT study exemplifies key issues that arise in undertaking emulations 
of target trials for HTA using individual patient data from routine sources, it cannot 
consider all the issues that may arise when using RWD in HTA. In ESORT, given the 
completeness and accuracy of HES data (ESORT Study Group, 2020c), there were no 
concerns around the risk of attrition bias or reporting bias, which can result from 
imbalances in the duration of follow-up and reporting of outcome data, but could be 
present in other studies. A related limitation of this study is that the application of 
the target trial framework was to the endpoints available within the routine data, 
namely survival time and health service utilisation. In other settings, lack of data on 
broader outcome measures could add another layer of complexity to the study. Finally, 
the ESORT study directly addresses the use of RWD for HTA purposes when 
individual patient data are available from a single study. More generally, greater 
consideration is needed on how the principles may expand to settings where individual 
patient data are not available for any, or all the comparators of interest (e.g., creating 
external controls in single arms trials).  
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In conclusion, this paper addresses common challenges that arise when applying the 
target trial framework to assess comparative effectiveness and cost-effectiveness for 
the purposes of HTA, when using RWD. The paper provides recommendations for 
improving the study design pertaining to the definition of the study population, 
comparators, and analytical approaches to help address concerns about the use of 
RWD in decision-making. 
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Chapter 4. Local instrumental variable methods to 
address confounding and heterogeneity when using 
electronic health records: an application to 
emergency surgery 

4.1 Preamble to research paper  

This chapter presents an application of the LIV methodology to a CEA using routine 
data from England. The paper was published in Medical Decision Making by open access 
on May 24, 2022, as part of the special theme issue on “The use of electronic health record 
(EHR) data in health decision research”. The full reference for the article is: 

Moler-Zapata S, Grieve R, Lugo-Palacios D, et al. (2022) Local instrumental variable 
methods to address confounding and heterogeneity when using electronic health 
records: an application to emergency surgery. Medical Decision Making 0(0). DOI: 
10.1177/0272989X221100799. 

Prior to this work, the LIV methodology developed by Heckman and Vytlacil (1999, 
2001, 2005) and further extended by Basu (2014) had not been used in a CEA. This 
research, conducted within the ESORT study, sought to address the gap in the 
evidence on the relative the benefits, risk and costs of ES compared to alternative 
NES strategies for treating patients with common acute gastrointestinal conditions 
who are admitted into hospital as an emergency. This setting exemplifies how LIV 
methods can be used to expand the evidence base with real-world evidence (e.g., by 
considering broader study populations). Published RCTs for some of these conditions 
have, included highly selective patient samples, reported outcomes over short follow-
up periods or failed to consider economic outcomes of relevance for policy-makers and 
health care providers such as resource use and costs (Azhar et al., 2021; Flum et al., 
2020; Javanmard-Emamghissi et al., 2021). For other acute conditions, such as 
abdominal wall hernia, no RCTs of ES have been conducted. Some published studies 
have had non-experimental designs but they have failed to address the fundamental 
concern of unmeasured confounding (Koumarelas et al., 2014; Saverio et al., 2014). 

The study describes the target estimand and main assumptions required for 
identification with LIV. The paper illustrates how LIV can be used to evaluate 
heterogeneity of treatment effects over population groups, it also contrasts LIV against 
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alternative IV approaches which make alternative assumptions, and offers guidance 
for future CEA on how to interpret any discrepancies between the different methods. 
My role included designing the CEA, collating resource use data from HES, collating 
unit cost data from national databases, conducting literature searches to identify 
HRQoL data, evaluating the identification assumptions, and conducting the LIV 
analyses, jointly with my supervisor, SON. I led the interpretation of the results. I 
wrote the draft version of the manuscript, and incorporated comments from co-authors 
into the manuscript. I also addressed the comments raised during the peer-review 
process.  

The analysis received ethical approval from the LSHTM Ethics Committee 
(ID:21776). 
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Abstract  

Background: Electronic health records (EHRs) offer opportunities for comparative 
effectiveness research to inform decision making. However, to provide useful evidence, 
these studies must address confounding and treatment effect heterogeneity according 
to unmeasured prognostic factors. Local instrumental variable (LIV) methods can help 
studies address these challenges, but have yet to be applied to EHR data. This article 
critically examines a LIV approach to evaluate the cost-effectiveness of emergency 
surgery (ES) for common acute conditions from EHRs. 

Methods: This article uses hospital episodes statistics (HES) data for emergency 
hospital admissions with acute appendicitis, diverticular disease, and abdominal wall 
hernia to 175 acute hospitals in England from 2010 to 2019. For each emergency 
admission, the instrumental variable for ES receipt was each hospital’s ES rate in the 
year preceding the emergency admission. The LIV approach provided individual-level 
estimates of the incremental quality-adjusted life-years, costs and net monetary benefit 
of ES, which were aggregated to the overall population and subpopulations of interest, 
and contrasted with those from traditional IV and risk-adjustment approaches.  

Results: The study included 268,144 (appendicitis), 138,869 (diverticular disease), 
and 106,432 (hernia) patients. The instrument was found to be strong and to minimize 
covariate imbalance. For diverticular disease, the results differed by method; although 
the traditional approaches reported that, overall, ES was not cost-effective, the LIV 
approach reported that ES was cost-effective but with wide statistical uncertainty. 
For all 3 conditions, the LIV approach found heterogeneity in the cost-effectiveness 
estimates across population subgroups: in particular, ES was not cost-effective for 
patients with severe levels of frailty. 

Conclusions: EHRs can be combined with LIV methods to provide evidence on the 
cost-effectiveness of routinely provided interventions, while fully recognizing 
heterogeneity. 

Keywords 

Cost-effectiveness analysis, emergency surgery, heterogeneous treatment effects, 
instrumental variable, personalized medicine 
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Highlights 

- This article addresses the confounding and heterogeneity that arise when assessing 
the comparative effectiveness from electronic health records (EHR) data, by 
applying a local instrumental variable (LIV) approach to evaluate the cost-
effectiveness of emergency surgery (ES) versus alternative strategies, for patients 
with common acute conditions (appendicitis, diverticular disease, and abdominal 
wall hernia). 

- The instrumental variable, the hospital’s tendency to operate, was found to be 
strongly associated with ES receipt and to minimize imbalances in baseline 
characteristics between the comparison groups. 

- The LIV approach found that, for each condition, there was heterogeneity in the 
estimates of cost-effectiveness according to baseline characteristics. 

- The study illustrates how an LIV approach can be applied to EHR data to provide 
cost-effectiveness estimates that recognize heterogeneity and can be used to inform 
decision making as well as to generate hypotheses for further research. 
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4.2.1 Introduction 

Electronic health records (EHRs) offer important opportunities for comparative 
effectiveness research that can directly inform medical decision making (Kuo et al., 
2018; Russell, 2021). EHRs offer the possibility of evaluating interventions as provided 
in practice to all eligible patients. Agencies, such as the National Institute for Health 
and Care Excellence (NICE), recognize the potential of EHRs (NICE, 2013), but to 
provide useful evidence about comparative effectiveness, two major concerns must be 
addressed. First, treatment selection according to unmeasured baseline prognostic 
measures (e.g., disease severity) can make results subject to unmeasured confounding 
(Kreif et al., 2013; Kyriacou and Lewis, 2016). Second, there may be treatment effect 
heterogeneity according to patient and contextual characteristics. While approaches 
for handling heterogeneity according to measured covariates (effect modification) are 
commonly used, less attention has been given to ‘essential heterogeneity’, that is, 
heterogeneous gains according to unmeasured characteristics that influence selection 
into treatment (Basu et al., 2007; Heckman et al., 2006). 

The first challenge is unlikely to be addressed by studies that apply traditional risk 
adjustment methods to provide estimates of comparative effectiveness, as EHRs tend 
to have inadequate information on case severity (Keele and Small, 2019; Stürmer et 
al., 2011). A valid instrumental variable (IV) design can provide accurate estimates 
of treatment effectiveness, even when there are unmeasured differences between the 
comparison groups (Baiocchi et al., 2014). If the IV is valid, it encourages receipt of 
the treatment, but does not have an effect on the outcome, except through treatment 
receipt. However, a major concern with applying traditional IV approaches, such as 
2-stage least squares (2SLS) in the presence of essential heterogeneity, is that the 
resultant estimates are unlikely to apply to the overall populations or subpopulations 
of decision-making interest (Angrist et al., 1993; Angrist and Krueger, 1999; Baiocchi 
et al., 2014; Imbens and Angrist, 1994). 

Local instrumental variable (LIV) approaches can provide estimates of comparative 
effectiveness that apply to policy-relevant populations (Heckman and Vytlacil, 1999, 
2001, 2005). LIV methods can estimate individual-level treatment effects, known as 
person-centered treatment (PeT) effects, which can then be aggregated over relevant 
subgroups. LIV methods make the same underlying assumptions as all IV methods 
but also require that the instrument be continuous (Heckman and Vytlacil, 2005). 
LIV approaches have been used for comparative effectiveness research as part of 
bespoke observational studies of educational reforms (Basu, Jones, et al., 2018), 
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cardiovascular and bariatric surgery (Coleman et al., 2020; Reynolds et al., 2021), and 
transfers to intensive care units (Grieve et al., 2019), but they have not been applied 
to EHR data, nor to an economic evaluation. In EHR settings, it is particularly 
challenging to identify and assess the validity of an IV, given that the data are 
collected for clinical or administrative rather than research purposes.    

These major challenges of using EHRs for comparative effectiveness research are 
exemplified by the ESORT study (ESORT Study Group, 2020), which aims to 
evaluate the effectiveness and cost-effectiveness of ES versus nonemergency surgery 
(NES) strategies, which include antibiotic therapy, nonsurgical procedures (e.g., 
drainage of abscess), or surgery deferred to the elective (planned) setting. The question 
as to whether ES or NES strategies are more cost-effective is important, given the 
high burden of emergency general surgical services and the lack of evidence to inform 
clinical decision making (Abbott et al., 2017; Abercrombie, 2017; Stewart et al., 2014). 
Here, an unmet challenge is to identify those patient groups for whom ES is most 
cost-effective, and conversely those for whom NES alternatives, such as later surgery, 
may be more worthwhile. Randomized controlled trials (RCTs) have been undertaken 
for some acute conditions such as acute appendicitis and diverticular disease, but these 
have included highly selective or small patient samples, whereas for other acute 
conditions, such as abdominal wall hernia, no RCTs of ES have been conducted (Azhar 
et al., 2021; Flum et al., 2020; Javanmard-Emamghissi et al., 2021; Thornell et al., 
2016).  

Faced with this evidence gap, the ESORT study uses records from England’s Hospital 
Episode Statistics (HES) database on emergency admissions to acute National Health 
Service (NHS) hospitals from 2009 to 2019, for common acute conditions, including 
the 3 considered in this article, acute appendicitis, diverticular disease, and abdominal 
wall hernia (ESORT Study Group, 2020) HES for admitted patient care is a database 
containing administrative, patient, and clinical details of all admissions to hospitals 
in England’s NHS (Herbert et al., 2017). Clinical data on diagnoses and procedures 
are routinely extracted from discharge summaries for inclusion in local patient 
information databases, and transferred to HES. The HES database is primarily used 
for administrative and payment purposes. HES lacks detailed clinical data held locally 
but has been used widely for research purposes. The ESORT study previously used 
HES data and found no evidence of differences in the overall clinical effectiveness of 
ES versus NES strategies (Hutchings et al., 2022). However, this earlier article did not 
consider alternative approaches for tackling the confounding that arises with HES 
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data or provide the estimates of relative cost-effectiveness that are essential for 
decision making. 

The aim of this article is to critically examine LIV methods for addressing unmeasured 
confounding and heterogeneity in evaluating the cost-effectiveness of ES for patients 
with these 3 conditions from EHR data. The article is structured as follows. First, we 
provide an overview of the ESORT study. Second, we define the main aspects of the 
LIV methodology, including application to the ESORT study. Third, we present the 
results. Fourth, we discuss the key findings, strengths, and limitations of the article 
and the implications for further research. 

4.2.2 Methods  

4.2.2.1 Essential features of the ESORT study 

Data sources and study population. The ESORT study uses HES data to evaluate the 
relative effectiveness and cost-effectiveness of ES versus alternative strategies from the 
hospital perspective over a 1-y time horizon. The study protocol and statistical 
analysis plan were developed following the principles of the target trial emulation 
framework (ESORT Study Group, 2020a; Hernán and Robins, 2016). Briefly, the 
ESORT study includes patients aged 18 y or older, admitted as an emergency 
admission via an accident and emergency department, or primary care referral, who 
were admitted to 175 NHS hospitals in England from April 1, 2010, to December 31, 
2019; had the relevant ICD-10 diagnostic codes; and met other inclusion criteria 
(see Appendix C.6). 

Comparator strategies. Admissions were defined as receiving the ES strategy if, 
according to Office of Population Censuses and Surveys (OPCS) codes, they had a 
relevant operative procedure within time windows designated by a clinical panel of 3 
d (hernia), 7 d (appendicitis), or any time within the emergency admission 
(diverticular disease) (ESORT Study Group, 2020). The NES strategies included 
medical management, interventional radiology, and operative procedures that did not 
meet the ES criteria (see Appendix C.6). 

Covariates. Baseline covariates were extracted from HES and included age, sex, 
ethnicity, the Index of Multiple Deprivation, the Charlson Comorbidity Index 
(Armitage and Van Der Meulen, 2010), the secondary care administrative records 
frailty (SCARF) index (Jauhari et al., 2020), and teaching hospital status. The 
SCARF index uses ICD-10 codes to define 32 deficits that cover functional 
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impairment, geriatric syndromes, problems with nutrition, cognition and mood, and 
medical comorbidities, with severe frailty defined as the presence of 6 or more deficits. 
Information was taken from HES data to derive proxy measures of the quality of acute 
care in each hospital according to rates of 90-d all-cause mortality and emergency 
readmissions in preceding periods. Subgroups of interest were defined ex ante, drawing 
on clinical judgment to define those strata anticipated to modify the relative 
effectiveness and cost-effectiveness of ES. Subgroup definitions were based on the 
following baseline characteristics: age group, sex, Charlson comorbidity index, SCARF 
index, diagnostic subcategories, and year of admission. 

Outcomes. The CEA took an intention-to-treat approach, whereby all patients 
contributed to the treatment group to which they were assigned at baseline, 
irrespective of the subsequent treatments received (e.g., planned or unplanned 
surgery). We reported the mean (95% confidence interval) incremental costs, quality-
adjusted life-years (QALYs), and net monetary benefit (INB) at 1 y. Individual-level 
resource use was extracted from HES data for the index emergency admission and for 
all subsequent hospital readmissions up to the end of follow-up (death or December 
31, 2019). Resource use included the length of the hospital stay, including time in 
intensive care units, and the use of diagnostic and operative procedures. Resource use 
items were combined with unit costs (£ GDP, 2019/20) to calculate total costs per 
patient (see section 1 and Appendix C.7., C.8., and C.9.). All unit costs were inflated 
to 2019–20 prices (£ GBP) using UK’s GDP deflator published by HM Treasury (HM 
Treasury Department, 2020). 

Survival time up to 1 y was calculated for all patients from HES records linked to the 
Office for National Statistics death data. Health-related quality of life (HRQoL) data 
were not available from HES, and so QALYs were calculated by combining the 
survival time with HRQoL estimates from the literature (see Appendix C.2, C.3, C.10 
and C.11). We derived each patient’s QALYs at 1 y using the area under the curve 
approach (Manca et al., 2005), which allowed HRQoL to decrease to baseline levels 
following an emergency readmission, but assumed that HRQoL levels recovered 
following hospital discharge. HRQoL levels were adjusted to reflect the patient’s age 
and gender, and were assumed to be zero for patients who died over the follow-up 
period (see Appendix C.18) (Ara et al., 2017; Ara and Brazier, 2010). The study’s 
cost-effectiveness metric was the INB of ES versus NES, calculated by multiplying the 
incremental QALYs by a NICE recommended willingness-to-pay threshold of £20,000 
per QALY and subtracting from this the incremental cost (NICE, 2013).  
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We now present the main elements of the LIV design (in the following section). We 
then discuss how PeT effects, average treatment effect (ATE), and conditional ATEs 
(CATEs) were estimated using LIV and contrast the results against 2 alternative 
methods for estimating the ATE—2-stage residual inclusion and GLM regression—
which make different assumptions about confounding and heterogeneity.    

4.2.2.2 Instrumental Variable estimation 

4.2.2.2.1 Overview  

A valid instrument must be associated with treatment assignment (relevance 
condition) (i), the IV must be independent of unmeasured confounders 
(exchangeability condition) (ii), the IV must influence the outcomes only through 
treatment assignment (exclusion-restriction assumption) (iii), and the IV must have 
the same direction of effect on the probability of which treatment is received, 
irrespective of the level of the IV (monotonicity) (iv) (Angrist et al., 1993; Baiocchi 
et al., 2014). The most widely used IV approach, 2SLS, estimates the average 
treatment effect (ATE) when effects are homogeneous. If there are heterogeneous 
treatment effects, and the IV is binary, 2SLS reports a local ATE (LATE) or a 
weighted average of LATEs with a continuous IV (Angrist and Imbens, 1995; 
Cornelissen et al., 2016), requiring careful interpretation of the estimated effects in 
light of the LATE estimand.  

Two-stage residual inclusion 

2-stage residual inclusion (2SRI) is an IV approach that relies on concepts that support 
control function methods in an attempt to control for unmeasured confounding (Terza 
et al., 2008). This approach uses residuals from a first-stage regression for treatment 
assignment, in a second-stage outcome model (Terza et al., 2008). Unlike 2SLS, the 
2SRI approach, when applied to a binary treatment, aims to estimate the ATE rather 
than LATEs. However, concerns have been raised that this approach may provide 
biased estimates of the ATE due to the necessity to extrapolate the residuals when 
constructing counterfactuals, and that it is sensitive to misspecification of the 
functional form underlying the residuals (Basu, Coe, et al., 2018). Here, we address 
the latter concern by using generalized residuals, which have been shown to minimize 
the bias in estimating the ATE (Basu, Coe, et al., 2018). Nonetheless, although 2SRI 
can, in some circumstances, provide accurate estimates of the ATE, it is not 
specifically recommended for exploring heterogeneity (Terza et al., 2008).  
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4.2.2.2.2 Estimating person-level effects using Local Instrumental Variable Methods 

We also consider an LIV method that can estimate ATEs, subgroup effects, and 
personalized treatment effects, in the presence of unmeasured confounding and 
heterogeneity, and can extend to nonlinear outcomes such as costs and QALYs (Basu, 
2014; Basu et al., 2007).  

Heckman and Vytlacil (1999, 2001, 2005) showed that LIV methods can identify 
effects for “marginal” patients, those who are in equipoise with respect to the 
treatment assignment decision, provided a valid, continuous instrument is available. 
These individuals’ propensity for treatment (PS), based on the levels of their observed 
covariates and IV, just balance with a normalized version of the unmeasured 
confounders (V) discouraging treatment, such that a small (marginal) change in the 
IV is sufficient to nudge them into the treatment group (where D=1 [i.e., ES] if PS > 
V and 0 [NES] otherwise). Contrasting outcomes for individuals with marginally 
different values of the IV, but who are otherwise identical in measured and 
unmeasured covariates at different levels of the IV, identifies a series of marginal 
treatment effects (MTEs). The MTE is equivalent to the conditional LATE for 
infinitesimally small changes in the normalized unobserved confounder, V (Huber and 
Wüthrich, 2019). MTEs can then be aggregated to obtain the ATE and CATEs for 
subgroups (Heckman and Vytlacil, 2005). 

The LIV method relies on correctly modeling the relationships of the covariates and 
the IV with both the treatment and the outcome, typically using parametric models 
(Kennedy et al., 2019; Ogburn et al., 2015). If the treatment assignment model is 
misspecified, the second-stage model will use biased estimates of the PS, thus 
introducing bias into the subsequent effect estimates. Similarly, if the outcome model 
is misspecified, the estimated MTEs may not represent the true MTEs, as they will 
have been derived as the derivative of an incorrect outcome model !"# =
!"($|&'(,*'+)

!-. . While the “true” model specifications are unknown, considering 

alternative specifications, visually inspecting the models’ predictions versus actual 
values, and considering the root mean squared error (rMSE) of the predictions, in 
addition to using standard model diagnostic approaches such as Hosmer and 
Lemeshow (2000) and Pregibon (1980) tests for Generalised Linear Models (GLMs), 
can be helpful in minimising risk of misspecification. 

Basu (2014) extended the LIV approach by using the individual patient’s observed 
treatment status to obtain personalized effect estimates. The key insight underlying 
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this approach is that for each individual patient, some levels of the normalized 
unobserved confounder would be inconsistent with the observed treatment decision 
for that individual, given their observed characteristics and the level of the IV (Basu, 
2014). For instance, if an individual with high propensity for ES according to 
observables (e.g., age) were observed to receive NES, it is reasonable to assume that 
the discouragement according to unobserved confounders must have exceeded the 
propensity for ES (i.e. PS < V if D=0). MTEs that imply a lower level of unobserved 
confounding can thus be ‘ruled out’, narrowing the set of MTEs which could plausibly 
represent the individual’s effect. The person-centered treatment (PeT) effect for an 
individual is obtained by aggregating the remaining MTEs and, are therefore more 
nuanced or ‘personalized’ than MTEs and CATEs. These effects can then be 
aggregated to obtain higher level estimands (e.g., ATE and CATEs (Basu, 2014, 
2015)). (For full details and implementation in this study, see Appendix C.4.). 

4.2.2.2.3 Developing IV and LIV approaches within the ESORT study 

The ESORT study adopted an IV approach to evaluate ES from US claims data 
(Keele et al., 2018), following pharmaco-epidemiological research in taking clinician 
preference as an instrument for treatment receipt (Brookhart and Schneeweiss, 2007; 
Widding-Havneraas et al., 2021). In the ESORT study, the IV was the hospital’s 
tendency to operate (TTO), which reflects practice variation across hospitals in ES 
rates for these conditions (see Appendix C.15.). For each qualifying emergency 
admission, the TTO was defined as the proportion of eligible emergency admissions 
in that specific hospital who received ES in the previous 12 mo, thus requiring that 
the hospital’s past preference for ES strongly predicts treatment choice for the current 
patient. The rationale for the IV design is that, after adjustment for observed 
characteristics, the patients’ baseline prognosis is similar across hospitals with 
different TTO levels (Widding-Havneraas et al., 2021). Hence, the patients can be 
“randomized” between the ES and NES strategies according to the hospital’s TTO. 

While Keele et al. (2018). validated this IV within US claims data, we carefully 
considered whether each of the above underlying assumptions were met within the 
EHR data for the ESORT study. We assessed the relevance of the hospital’s TTO 
with a weak instrument test that is robust to heteroscedasticity and clustering (Olea 
and Pflueger, 2013). Assumptions (ii), (iii), and (iv) are untestable. The IV would fail 
the exclusion-restriction condition (assumption iii) if patients admitted to hospitals 
with high TTO received better care (e.g., postoperative care) leading to lower 
mortality or shorter stays (and hence costs), regardless of the treatment received, 
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which seems unlikely. However, to increase the plausibility of assumptions (ii) and 
(iii), we adjusted for a rich set of potential confounders, including proxies for the 
quality of acute care in each hospital (see Appendix C.5). We assessed the extent to 
which observed prognostic covariates differed across levels of the instrument 
(see Figure 4.1). Imbalances observed in measured covariates across levels of the TTO 
would raise concerns about assumptions (ii) and (iii). We also observed a strong 
positive, linear relationship between the hospital-level TTO and receipt of ES for all 
3 conditions, providing support for assumption (iv).  

4.2.2.3 Statistical and sensitivity analyses 

LIV estimated PeT effects of ES versus NES on costs and QALYs for each individual 
allowing for treatment effect heterogeneity and confounding (Armitage and Van Der 
Meulen, 2010; ESORT Study Group, 2020b; Hernán and Robins, 2016; Jauhari et al., 
2020). These were aggregated to report the effects of ES overall and for each 
prespecified subgroup of interest. Probit regression models were used to estimate the 
initial propensity score (first stage), whereas GLMs were applied to the cost and 
QALY data, with the most appropriate chosen according to rMSE (see Appendix 
C.12). Hosmer-Lemeshow and Pregibon tests were also used to check the model fit 
and appropriateness (Hosmer and Lemeshow, 2000; Pregibon, 1980). For the QALY 
endpoint, the logit link and binomial family were selected (all 3 conditions) and, for 
costs, the log link and Gaussian family (appendicitis and diverticular disease) and the 
identity link and gaussian family (hernia). Models at both stages adjusted for the 
above baseline measures, time period, and proxies for hospital quality, defined by rates 
of emergency readmission and mortality in 2009 to 2010 (time constant) and in the 
year prior to the specific admission concerned (time-varying; see Appendix C.5). 
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Figure 4.1. Mean level of rescaled baseline covariates according to the level of the 
instrumental variable 
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Overall estimates of incremental costs, QALYs, and INB were reported with standard 
errors and confidence intervals (CIs) obtained with the nonparametric bootstrap (300 
replications), allowing for the clustering of individuals within hospitals and the 
correlation of individual-level costs and effects. The individual-level estimates of 
incremental costs and QALYs were also plotted on the cost-effectiveness plane, 
stratified by subgroups of policy relevance. 

The 2SRI and risk-adjustment (GLM regression) approaches took the same approach 
to model specification and selection (including covariates used for confounding 
adjustment) to report overall estimates of incremental costs and QALYs and INB. 
The proportion of missing data across the 3 cohorts was low, with less than 5% missing 
values for all baseline covariates, other than ethnicity (10% in the appendicitis cohort); 
thus, a complete case analysis was performed.  

Sensitivity analyses  

Sensitivity analyses were undertaken to assess whether the results from the main 
analysis were robust to alternative definitions and assumptions. First, the study 
adjusted for “quality of care” using external hospital performance measures from the 
National Emergency Laparotomy Audit (NELA) (NELA Project Team, 2016, 2017, 
2018). Second, we considered the sensitivity of our findings to the potential for under- 
or overestimating costs from EHR data by increasing all costs by 10% (SA2) and to 
reducing them by 10% (SA3). Third, we considered an alternative approach to QALY 
calculation that used linear interpolation between the baseline admission, and 1-y 
follow-up (SA4). Fourth, we considered a longer time horizon of 5 y, by restricting the 
sample to those patients who were admitted from 2010 to 2014 (SA5). 

Ethics approval 

The research was approved by the London School of Hygiene and Tropical Medicine 
ethics committee (Ethics Reference no: 21687). The study involved the secondary 
analyses of existing pseudo anonymised data and did not require UK National Ethics 
Committee approval. 
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4.2.3 Results 

The study included 268,144 (appendicitis), 138,869 (diverticular disease), and 106,432 
(hernia) patients. The proportions of patients who had ES were 92.3% (appendicitis), 
11.4% (diverticular disease), and 58.8% (hernia). The patients with acute appendicitis 
who had ES were on average younger and more likely to be fit and without 
comorbidities as compared with those who had NES strategies. For patients with 
diverticular disease, patients who had ES were less likely to be fit but were of similar 
age and comorbidity profile to those in the NES groups. For patients with hernia, a 
higher proportion of women had ES. Other baseline characteristics were similar 
between the comparison groups (Table 4.1).  

The most prevalent forms of ES are listed in Appendix C.13. Most patients in the 
NES strategy groups did not have an operative procedure. 

Table 4.2 presents the unadjusted costs of ES and NES. For patients with diverticular 
disease, the average total costs for the ES group at 1 y were higher than for the NES 
group (£16,498 v. £4673), reflecting the higher initial admission costs, including 
operative costs. For the other 2 conditions, the average 1-y costs of ES versus NES 
were similar, with the higher operative costs of ES offset by higher readmission costs 
following the NES strategy (see Appendix C.13). For patients with diverticular 
disease, before any case-mix adjustment, the proportion of patients who had died by 
1 y was higher in the ES versus NES group (see Appendix C.16). 

4.2.3.1 IV diagnostics 

The hospital’s TTO was strongly correlated with ES receipt for all 3 conditions, after 
case-mix adjustment (see Table 4.3). For the 3 conditions, the F statistic ranged from 
135 (appendicitis) to 735 (hernia) versus the commonly applied threshold of 10 
(Staiger and Stock, 1997). Thus, the hospital’s past preference for ES strongly predicts 
treatment choice for the current patient. The mean levels of the baseline covariates 
(rescaled) were similar across the TTO levels (Figure 4.1), which makes it more 
plausible that the IV also balances unobserved covariates. 
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Table 4.1. Baseline characteristics of patients in the cohorts 

 Acute appendicitis 
(n=268,144) 

Diverticular disease 
(n= 138,869) 

Abdominal wall hernia 
(n=106,432) 

 ES 
(n=247,506) 

NES 
(n=20,638) 

ES  
(n= 15,772) 

NES 
(n=123,097) 

ES  
(n=62,559) 

NES  
(n=43,873) 

Gender: n (%) 
Male 

Female 

 
134,270 (54) 
113,224 (46) 

 
10,409 (50) 
10,228 (50) 

 
7,074 (45) 
8,698 (55) 

 
49,922 (41) 
73,172 (59) 

 
37,522 (60) 
25,035 (40) 

 
31,341 (71) 
12,530 (29) 

Age: mean 38 47 64 64 63 62 
SCARF index: n (%) 

Fit 
Mild frailty 

Moderate frailty 
Severe frailty 

 
206,796 (84) 
34,544 (14) 
5,041 (2) 
1,125 (0) 

 
15,015 (73) 
4,052 (20) 
1,155 (6) 
416 (2) 

 
6,197 (39) 
5,631 (36)        
2,706 (17) 
1,238 (8) 

 
65,911 (54) 
38,851 (32) 
13,433 (11) 
4,902 (4) 

 
33,014 (53) 
19,608 (31) 
7,360 (12) 
2,577 (4) 

 
23,871 (54) 
 13,104 (29) 
4,987 (11) 
1,911 (4) 

Charlson index: n (%) 
0 – comorbidities 

1  
2 

3+ – comorbidities 

 
207,525 (84) 
35,721 (14) 
3,715 (2) 
545 (0) 

 
15,321 (74) 
3,989 (19) 
1,035 (5) 
293 (1) 

 
9,789 (62) 
4,482 (28) 
1,222 (8) 
279 (2) 

 
73,457 (60) 
35,106 (29) 
11,454 (9) 
3,080 (3) 

 
39,216 (63) 
17,494 (28) 
4,792 (8) 
1,057 (2) 

 
26,297 (60) 
12,163 (28) 
4,169 (10) 
1,244 (3) 

ES: Emergency surgery, IMD: Index of multiple deprivation, NES: non-emergency surgery, SCARF: secondary care administrative records frailty 
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Table 4.2. Unadjusted costs of ES and NES strategies (£GBP 2019/20) 

 Acute appendicitis 
(N=268,144) 

Diverticular disease 
(N=138,869) 

Abdominal Wall Hernia 
(N=106,432) 

 ES  
(N=247,506) 

NES  
(N=20,638) 

ES  
(N=15,772) 

NES 
(N=123,097) 

ES  
(N=62,559) 

NES  
(N=43,873) 

Index admission 
Bed-day costs (£): mean (SD) 1,613 (2,080) 1,850 (3,147) 10,637 (12,919) 1,880 (2,511) 2,249 (7,036) 1,181 (3,853) 

Cost diagnostic procedures (£): mean (SD) 28.0 (54.2) 57.8 (69.1) 108 (104) 86.5 (81.4) 20.3 (52.3) 18.2 (45.1) 
Cost operative procedures (£): mean (SD) 1,132 (127) 192 (429) 1,947 (938) 1.68 (32.8) 809 (244) 42.3 (209) 
Total costs index admission (£): mean (SD) 2,774 (1,974) 2,101 (3,213) 12,690 (13,124) 1,967 (2,537) 3,079 (7,066) 1,242 (3,938) 

Readmissions up to 1 year 
Patients with 1+ readmissions: n (%) 66,446 (26.8) 10,895 (53.0) 10,100 (64.2) 90,300 (74.4) 25,947 (41.5) 31,997 (72.9) 

Bed-day costs (£): mean (SD) 541 (2,594) 1,408 (4,208) 3,444 (8,028) 2422 (6,167) 1,786 (5,998) 2,581 (7,413) 
Cost diagnostic procedures (£): mean (SD) 22.5 (80.2) 70.2 (142) 94.4 (149) 146 (174) 33.5 (100) 45.7 (120) 
Cost operative procedures (£): mean (SD) 18.5 (139) 178 (419) 270 (628) 137 (496) 62.7 (242) 406 (457) 

Total costs readmissions: mean (SD) 582 (2,650) 1,656 (4,338) 3,808 (6,374) 2,706 (6,743) 1,882 (6,061) 3,033 (7,468) 
Total costs at one year: mean (SD) 3,355 (3,519) 3,757 (5,658) 16,498 (16,027) 4,673 (7,145) 4,961 (9,666) 4,275 (8,680) 

ES: emergency surgery, NES: non-emergency surgery, SD: standard deviation. 
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Table 4.3. Instrumental Variable strength for the hospital-level tendency-to-operate 
(TTO) within the HES data (2009-19) for emergency admissions that met the 

ESORT study inclusion criteria for each of the three conditions 

Condition Montiel-Pflueger robust weak instrument test F-
Statistic 

Acute appendicitis  135 
Diverticular disease 206 

Abdominal wall hernia 735 
 

4.2.3.2 Overall cost-effectiveness results by method  

Table 4.4 reports the estimated incremental costs and QALYs and the INB according 
to the intention-to-treat principle for the overall population using regression 
adjustment, 2SRI, and the LIV approach. For patients with appendicitis and hernia, 
all 3 methods reported mean INBs close to zero. For patients with diverticular disease, 
the results differed by method. The regression adjustment and the 2SRI approaches 
reported that ES has positive incremental costs, negative incremental QALYs, and 
negative INBs with 95% CIs below zero (Table 4.4). By contrast, the LIV results show 
that there was considerable uncertainty in the overall cost-effectiveness estimates for 
all 3 conditions, with 95% CIs around the INBs that included zero (Table 4.4). For 
acute appendicitis, the incremental QALYs and costs were also close to zero (Table 
4.4). For patients with diverticular disease, the LIV approach reported that, on 
average, ES led to a cost reduction (−£1724), QALY gain (0.047), and a positive INB 
(£2664). For patients with abdominal wall hernia, the LIV approach reported that 
the positive incremental costs of ES (£891) were offset by moderate QALY gains 
(0.0386; see Appendix C.17). 

4.2.3.3 Subgroup analysis of cost-effectiveness of ES 

Figure 4.2 reports that beneath the overall LIV results, there is underlying 
heterogeneity in the INB estimates according to subgroup. For patients with acute 
appendicitis, ES appears less cost-effective for women, older patients, and those with 
2 or 3 comorbidities. For each condition, ES is less cost-effective on average, according 
to increasing frailty levels. For example, for appendicitis, the estimated INBs for 
patients with moderate and severe frailty were −£5750 (−£7810, −£3692) and 
−£18,723 (−£23,886, −£13,561) versus £369 (−£728, £1467) for patients who were 
fit (see also Appendix C.17).  
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Table 4.4. Estimated incremental net monetary benefit (INB), costs, and QALYs of ES vs NES strategies  

 Acute appendicitis  
(N=268,144) 

Diverticular disease  
(N=138,869) 

Abdominal Wall Hernia  
(N=106,432) 

INB 
Unadjusted differences 1,431 (1,259, 1,603) -13,088 (-13,509, -12668) -303 (-469, -137) 

GLM -165 (-287, -42) -12,381 (-12,848, -12,058) -50.1 (-241, 141) 
GLM-2SRI 281 (-743, 1,306) -7,496 (-12,230, -2,763) -1,474 (-3,038, 2,995) 

LIV -86.2 (-1,163, 991) 2,664 (-4,298, 9,626) -119 (-1,282, 1,043) 
Incremental costs 

Unadjusted differences -413 (-513, -312) 11,857 (11,486, 12,228) 674 (548, 800) 
GLM 318 (213, 424) 11,266 (10,905, 11,626) 483 (318, 649) 

GLM-2SRI 762 (-73.5, 1,598) 5,990 (1,371, 10,609) 1,645 (295, 2,995) 
LIV -109 (-1,130, 913) -1,724 (-7,878, 4,430) 891 (20.7, 1,762) 

Incremental QALYs 
Unadjusted differences 0.0509 (0.0462, 0.0556) -0.0616 (-0.0672, -0.0559) 0.0186 (0.0150, 0.0221) 

GLM 0.00767 (0.00550, 0.00983) -0.0594 (-0.0653, -0.0534) 0.0216 (0.018, 0.0253) 
GLM-2SRI 0.0522 (0.0294, 0.0750) -0.0753 (-0.116, -0.0343) 0.0085 (-0.0240, 0.0411) 

LIV -0.00973 (-0.0226, 0.00316) 0.0471 (-0.0829, 0.177) 0.0386 (0.00430, 0.0729) 

2SRI: two-stage residual inclusion, GLM: generalised linear model, LIV: local instrumental variable, QALYs: quality-adjusted life years. 
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Figure 4.2. Estimated Incremental Net monetary Benefit (INB) of ES versus NES 
strategies for acute appendicitis (panel A), diverticular disease (B) and abdominal 

wall hernia (C) 

(A): Acute appendicitis 
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Figure 4.2. (cont.)  Estimated Incremental Net monetary Benefit (INB) of ES 
versus NES strategies for acute appendicitis (panel A), diverticular disease (B) and 

abdominal wall hernia (C) 

(B): Diverticular disease 
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Figure 4.2. (cont.)  Estimated Incremental Net monetary Benefit (INB) of ES 
versus NES strategies for acute appendicitis (panel A), diverticular disease (B) and 

abdominal wall hernia (C) 

(C): Abdominal wall hernia 
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4.2.3.4 Estimated Individual-level effects of ES on costs and outcomes 

Figure 4.3 reports the individual-level estimates of incremental costs and QALYs for 
the 3 conditions. Here, for illustration, the results are stratified by frailty level. For 
those with severe frailty, the proportion of patients for whom ES is estimated to be 
cost-effective is 0.0657% (appendicitis), 46.9% (diverticular disease), and 0.00% 
(hernia), whereas for patients who were fit, the corresponding proportions were 59.0% 
(appendicitis), 87.1% (diverticular disease), and 82.0% (hernia). 

Figure 4.3. Cost-effectiveness plane of person-centered treatment (PeT) effects on 
costs and QALYs for appendicitis (panel A), diverticular disease (B) and abdominal 

wall hernia (C) 

(A): Acute appendicitis 
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Figure 4.3. (cont.)  Cost-effectiveness plane of person-centered treatment (PeT) 
effects on costs and QALYs for appendicitis (A), diverticular disease (B) and 

abdominal wall hernia (C) 

(B): diverticular disease 

 

(C): abdominal wall hernia 

 

Legend Figure 3: PeT effects of ES on costs and QALYs for appendicitis, diverticular disease 
and abdominal wall hernia, where each data point relates to one patient in the dataset and 
each colour to one band of the secondary care administrative records frailty (SCARF) index 
(fit is light grey, severe frailty is black).  
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4.2.4 Sensitivity analyses 

The overall results were robust to alternative assumptions (see Appendix C.14), 
including alternative definitions of hospital quality of care (SA1), higher (SA2) or 
lower (SA3) unit costs, and the use of linear interpolation for calculating QALYs 
(SA4). The extension to a 5-y time horizon resulted in a negative INB for appendicitis 
and diverticular disease (SA5), but the sample size was much reduced (∼50%), and 
the CIs surrounding the INB estimates over this extended time horizon were wide and, 
like the base case, included zero. 

4.2.5 Discussion  

This article critically examines LIV methods for comparative effectiveness research 
using EHRs in the context of a CEA. We evaluate the cost-effectiveness of ES 
compared with NES alternatives for emergency admissions with common acute 
conditions. The IV design exploited the wide variations in ES rates across hospitals. 
The LIV method was chosen because it can address confounding and treatment effect 
heterogeneity, and provide cost-effectiveness estimates for the overall population as 
well as subpopulations of decision-making relevance, provided the models for the 
outcome and the treatment assignment are correctly specified. For diverticular disease, 
the results differed by method. Whereas the traditional approaches reported that, 
overall, ES was not cost-effective, the LIV approach reported that the overall results 
were highly uncertain. For appendicitis and hernia, all 3 approaches reported that the 
overall cost-effectiveness results were uncertain. For all 3 conditions, the LIV approach 
found heterogeneity in the cost-effectiveness estimates; in particular, ES was not cost-
effective for patients with severe levels of frailty. 

This article makes 3 important contributions to the literature. First, we add to the 
literature using IV methods for the evaluation of routinely provided interventions 
(Basu et al., 2007; Brookhart and Schneeweiss, 2007; Davies et al., 2013; O’Malley et 
al., 2011; Polsky and Basu, 2012). In the EHR context, given that data are not 
collected for research purposes, finding a valid IV is especially challenging. This article 
exemplifies the use of EHRs to substantiate and assess the underlying assumptions of 
an IV design. For example, to address potential violations of the exclusion restriction, 
we examined whether the hospital’s TTO could minimize imbalances in measured 
covariates with balance plots and used “internal” (i.e., EHR data) and “external” (i.e., 
NELA (NELA, 2016, 2017, 2018) information to adjust for the quality of acute care, 
and improve the plausibility of the exclusion restriction.  



100 
 

 

Second, this article constitutes a novel application of LIV to a CEA that uses EHR 
data. We show how EHRs can offer large sample sizes, enabling a CEA to provide 
precise cost-effectiveness results at the subgroup level, and to reflect the range of 
patients presenting in routine practice. This article also highlights major challenges of 
using EHR data for CEA, namely, unmeasured confounding and treatment effect 
heterogeneity. Although both IV methods considered rely on parametric assumptions 
and the validity of IV assumptions to address confounding, 2SRI can also fail to 
identify the ATE in the presence of essential heterogeneity (Chapman and Brooks, 
2016; Evans and Basu, 2011). Hence, one interpretation of the differences between the 
estimates from 2SRI and LIV for patients with diverticular disease is that the 
estimated effects may differ between marginal patients and the overall population 
(Chapman and Brooks, 2016). For patients with diverticular disease, patients may 
well have been selected to receive ES according to measures that were not available 
in these EHR data, such as the severity of the disease, and so the 2SRI approach may 
have failed to validly identify the ATE.  

Third, this article contributes to the limited previous literature evaluating the cost-
effectiveness of ES for these common acute conditions. Some previous studies have 
also suggested that NES strategies can result in similar outcomes and costs for patients 
with appendicitis (Flum et al., 2020; Javanmard-Emamghissi et al., 2021; Sippola et 
al., 2020), whereas others have found NES to be more cost-effective than ES (O’Leary 
et al., 2021). Published RCTs evaluating ES strategies for acute diverticular disease 
have failed to recruit sufficiently large populations to explore heterogeneity across 
population subgroups (Thornell et al., 2016), and are nonexistent for acute hernia. 
Unlike previous studies (Azhar et al., 2021; Fitzgibbons et al., 2006; Flum et al., 2020; 
Javanmard-Emamghissi et al., 2021; O’Dwyer et al., 2006; O’Leary et al., 2021; Patel 
et al., 2020; Salminen et al., 2015; Stroupe et al., 2006; Thornell et al., 2016; Van De 
Wall et al., 2010; You et al., 2018), the ESORT study included large sample sizes 
(>100,000 for each condition) and subgroups (e.g., those with severe frailty) excluded 
from RCTs. These results can help decision makers identify subgroups for whom NES 
strategies are relatively cost-effective (e.g., patients with severe frailty), those for 
whom ES is more cost-effective (e.g., “fit” patients), and those for whom there is 
residual uncertainty and for whom further research may be most valuable (Basu and 
Meltzer, 2007; Espinoza et al., 2014).  

This study has several strengths. First, the study extended a previously validated IV 
approach, by using large-scale EHR data (Keele et al., 2018). Second, the HES data, 
while having common features of EHR data (notably the potential for confounding 
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and heterogeneity), were of generally high quality with baseline covariates, all-cause 
mortality, and resource use data available for ∼95% of patients. Third, the study 
considered 3 different conditions for which it was anticipated there would be 
heterogeneous treatment effects according to patient subgroups.   

While we address some of the challenges of using EHRs for CEA, others remain. First, 
HRQoL data were not available from HES and had to be obtained from the literature. 
Granular baseline measures of disease severity (e.g., size of abscess) were not available 
to provide more nuanced subgroup definitions. Second, it is possible that coding errors 
within the HES data were incorporated into the estimates of cost and cost-
effectiveness, although previous research found that costs estimated from HES data 
were very similar to those derived from medical records (Thorn et al., 2016). Third, 
in common with any approach to address confounding, the implementation of the LIV 
methods made assumptions, in particular, that the relationships of the covariates and 
the IV, with both the treatment receipt and the outcomes, were correctly specified. 
Here, more flexible data-adaptive approaches may be helpful, although they have not 
yet been extended to this context. A further consideration is that subgroup analyses 
presented here represent the average estimated effect for individuals within the group 
rather than the causal effect of group membership per se. While the subgroups used 
here were prespecified within a statistical analysis plan, in other contexts spurious 
subgroup effects may be obtained by “P-hacking.” 

This article identifies areas for future research. First, future research could build on 
this work by incorporating data-adaptive methods such as generalized random forests 
or lasso into the LIV estimation, or by using methods such as causal rule ensembles 
for exploring heterogeneity (Lee et al., 2020), while recognizing interactions among 
prognostic variables. Second, the methods used in this study could be extended to 
chronic diseases by considering other preference-based instruments (e.g., tendency to 
prescribe), or multiple IV such as genetic markers, which will raise new issues for the 
LIV approach. Finally, our results can be used to target future trials. For instance, 
for patients with abdominal wall hernia, there appears to be equipoise about the choice 
of strategy (∼50% in each comparison group). A future trial could collect granular 
information on patient subgroups, longitudinal HRQoL measures, and be nested 
within the EHR data to help ensure the results are directly applicable to clinical 
decision making. 
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Chapter 5. How does a local Instrumental Variable 
Method perform across settings with instruments of 
differing strengths? A simulation study and an 
evaluation of emergency surgery 

5.1 Preamble to research paper 3 

In this chapter, I present a simulation study evaluating the performance of the LIV 
methodology according to varying levels of IV strength grounded in motivating 
examples from the ESORT study. This paper follows naturally from research paper 2 
(Chapter 4), which raised hypotheses about the requirements for LIV in terms of IV 
strength. This previous paper helped defined the scenarios of interest in the simulation 
study, in particular, according to different sample sizes and forms of treatment effect 
heterogeneity. 

As discussed in Chapter 4, while LIV has the potential to inform estimates of policy-
relevant parameters when applied to RWD, like any other IV method, it relies on 
assumptions. In particular, the relevance assumption, relates to the strength of the 
instrument. If the instrument is not sufficiently strong, that is the correlation of the 
IV with treatment assignment is insufficient, then, conventional IV approaches do not 
provide unbiased, statistically efficient estimates of treatment effects. 

There is an extensive literature studying the implications of weak IVs for inference. 
Current practice relies on a rule of thumb, in that to be judged sufficiently strong, the 
first stage F statistic should exceed a threshold of 10 (Staiger and Stock 1997). 
However, Lee et al. (2021) showed that 2SLS can have low power at conventional 
levels of the F statistic and suggested that in order to reduce size distortions of the t-
ratio to zero, the first-stage F statistic needs to be much larger. Other recent papers 
evaluating the finite sample properties of IV methods at have been recently published 
(Keane and Neal 2021; Angrist and Kolesár 2021; Andrews et al. 2019). 

However, no studies have evaluated the requirements in terms of IV strength for LIV 
methods. While Basu (2014) demonstrated the finite-sample properties of LIV, this 
paper did not consider scenarios with IVs of moderate strength, or whether the 
requirements for instrument strength differ according to sample size, or form of 
treatment effect heterogeneity that is present. 
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Research paper 3 helps to address this gap in the literature in designing a Monte Carlo 
simulation to test the performance of LIV in settings with different levels of IV 
strength. I report performance according bias and statistical efficiency, and contrast 
LIV against 2SLS over scenarios in which the IV strength, sample size and form of 
heterogeneity is varied. The findings can inform guidance about the design of future 
IV studies.  

My role involved: reviewing the relevant literatures and, I designed and conducted the 
simulation study and analysed the case study together with my supervisor SON. I led 
the interpretation of the main findings. I wrote the first draft version of the 
manuscript, and incorporated comments from co-authors, SON, AB and RG, into the 
manuscript. 

The analysis received ethical approval from the LSHTM Ethics Committee (ID:21776) 

The paper was accepted for presentation at the 29th European Workshop on 
econometrics and health economics, which was held in September 2022, and has been 
published at Health Econometrics and Data Group (HEDG) database as a working 
paper. Following this, the paper is currently being considered for publication in Health 
Economics. 

The full reference to the working paper is: 

Moler-Zapata, Silvia, Richard Grieve, Anirban Basu, and Stephen O’Neill. 2022. “How 
Does a Local Instrumental Variable Method Perform across Settings with Instruments 
of Differing Strengths? A Simulation Study and an Evaluation of Emergency Surgery.” 
22/18. Health, Econometrics and Data Group (HEDG) Working Papers. 
https://ideas.repec.org/p/yor/hectdg/22-18.html. 
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Abstract 

Local instrumental variable (LIV) approaches use continuous/multi-valued 
instrumental variables (IV) to generate consistent estimates of average treatment 
effects (ATEs) and Conditional Average Treatment Effects (CATEs). However, there 
is little evidence on how LIV approaches perform with different sample sizes or 
according to the strength of the IV (as measured by the first-stage F-statistic). We 
examined the performance of an LIV approach and a two-stage least squares (2SLS) 
approach in settings with different sample sizes and IV strengths, and considered the 
implications for practice. 

Our simulation study considered three sample sizes (n = 5000, 10000, 50000), six levels of 
IV strength (F-statistic = 10, 25, 50, 100, 500, 1000) under four ‘heterogeneity’ scenarios: 
effect homogeneity, overt heterogeneity (over measured covariates), essential heterogeneity 
(over unmeasured covariates), and overt and essential heterogeneity combined. Compared 
to 2SLS, the LIV approach provided estimates for ATE and CATE with lower levels of 
bias and RMSE, irrespective of the sample size or IV strength. With smaller sample sizes, 
both approaches required IVs with greater strength to ensure low (<5%) levels of bias. In 
the presence of overt and/or essential heterogeneity, the LIV approach reported estimates 
with low bias even when the sample size was smaller (n = 5000), provided that the 
instrument was moderately strong (F-statistic greater than 50, for the ATE estimand). 

We considered both methods in evaluating emergency surgery across three different acute 
conditions with IVs of differing strengths (F-statistic ranging from 100 to 9000), and 
sample sizes (100000 to 300000). We found that 2SLS did not detect significant differences 
in effectiveness across subgroups, even with subgroup by treatment interactions included 
in the model. The LIV approach found there were substantive differences in the 
effectiveness of emergency surgery according to subgroups; for each of the three acute 
conditions, frail patients had worse outcomes following emergency surgery. 

These findings indicate that when a continuous IV of a moderate strength is available, 
LIV approaches are better suited than 2SLS to estimate policy-relevant treatment effect 
parameters.  

Keywords 

Instrumental Variables, Instrument Strength, Tendency to Operate, Emergency Surgery. 
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5.2.1 Introduction 

The personalisation of treatment choice can be informed by comparative effectiveness 
research that exploits the widespread availability of electronic health records (EHRs), 
but requires methods that address confounding and heterogeneity. For conventional 
linear Instrumental Variable (IV) methods, such as two-stage least squares (2SLS) to 
identify policy-relevant estimands such as the Average Treatment Effect (ATE) or 
Conditional Average Treatment Effects (CATEs), it is required that there is no 
essential heterogeneity (Heckman et al., 2006). Essential heterogeneity arises when 
treatment effects differ over levels of unmeasured confounders, in which case 2SLS no 
longer identifies the ATE, even if the instrument is strong and valid (Heckman et al., 
2006). Essential heterogeneity, is a major concern in health care, as it is commonly 
the case that there are biological correlations between risk factors, some of which 
remain unobserved to the analyst. 

In the presence of essential heterogeneity, Local Instrumental Variable (LIV) 
approaches can provide consistent estimates of the ATE and CATEs (Heckman and 
Vytlacil, 2005). LIV methods draw on theory about individual’s choices to identify 
‘marginal treatment effects’ (MTEs) for individuals at the ‘margin of treatment choice’ 
(Bjorklund and Moffitt, 1983; Heckman and Vytlacil, 1999). These MTEs are 
identified for individuals for whom the level of the IV is such that observed 
characteristics encouraging treatment (including the IV) and unobserved 
characteristics discouraging treatment are balanced, so there is equipoise about the 
treatment decision. Here, a small change (or nudge) in the level of a valid, continuous 
IV ‘tips the balance’ for the treatment decision for these marginal patients, without 
changing the distribution of the underlying risk factors. Therefore, comparing mean 
outcomes between two groups of patients only separated by a small change in the IV, 
identifies MTEs for individuals who comply with the change in treatment, due to that 
small change in the IV. A continuous instrument with sufficient support allows all 
individuals to be defined as ‘compliers’ at some level of the IV (Heckman and Vytlacil, 
1999). Hence, given observed covariates, MTEs can be estimated along the continuum 
of the IV, and aggregated to provide CATEs and ATEs (Heckman and Vytlacil, 1999, 
2001, 2005) 

The theoretical properties of these LIV methods in settings with essential 
heterogeneity have been discussed by Heckman et al. (2006), Basu et al. (2007) and 
Angrist and Fernández-Val (2011). However, most simulation studies of IV methods 
only consider treatment effects that are homogeneous, or heterogenous according to 
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measured factors (overt heterogeneity) (Martínez-Camblor et al., 2019; Terza, Basu, 
et al., 2008; Terza, Bradford, et al., 2008). Studies that have considered essential 
heterogeneity, have found that 2SLS provides inconsistent estimates of the ATE 
(Basu, Coe, et al., 2018; Brooks et al., 2018; Chapman and Brooks, 2016), whereas 
Basu (2014) reports that a LIV method could provide consistent estimates of the ATE 
and CATE in finite samples. LIV methods have now been applied across a multitude 
of settings including cardiovascular and bariatric surgery, universal child care 
programs and transfers to intensive care units (Basu, Jones, et al., 2018; Cornelissen 
et al., 2018; Grieve et al., 2019; Reynolds et al., 2021).  

A major barrier to wider use of IV approaches in general is that if the instrument is 
only weakly associated with treatment assignment, then IV estimators can provide 
very biased and imprecise estimates (Bound et al., 1995; Nelson and Startz, 1990; 
Stock et al., 2002). Weak IVs can also amplify the bias arising due to violations of the 
other assumptions (Bound et al., 1995; Small and Rosenbaum, 2008). While current 
practice tends to rely on the first-stage F-statistic exceeding the value of 10, (Staiger 
and Stock, 1997) recent developments in the weak identification literature for IV 
models have revealed the shortcomings of an unequivocal decision rule for assessing 
weak identification (Andrews et al., 2019; Angrist and Kolesár, 2021; Keane and Neal, 
2021; Lee et al., 2021; Moffitt and Zahn, 2022). For LIV to provide consistent, precise 
estimates of ATE or CATEs, requires a strong continuous/multi-valued IV with 
sufficient support to ensure that there is a level of the IV at which each unit ‘complies’ 
(i.e., is selected into treatment according to the level of the IV). However, no study 
has assessed the levels of IV strength that are required for an LIV estimator to perform 
well, nor how performance may differ according to the sample size available, in settings 
with essential heterogeneity. 

This paper addresses this gap in the literature by contrasting LIV with the commonly 
used 2SLS estimator in Monte Carlo simulations, motivated by a case study which 
highlights typical issues pertaining to heterogeneity, sample size and IV strength. We 
simulate four scenarios: two of them under restrictive assumptions about heterogeneity 
(A: homogeneity; B: overt heterogeneity), one where treatment effects are allowed to 
be heterogenous according to an unmeasured confounder (C: essential heterogeneity), 
and one where both forms of heterogeneity are present (D: overt and essential 
heterogeneity). Across all scenarios, ATE and CATE are the parameters of interest. 

This paper is structured as follows. In section 5.2.2, we outline the motivating 
example. In section 5.2.3, we define the estimands and identification assumptions for 
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2SLS and LIV, and present the methods for the simulation study. In section 5.2.4, we 
present the results of the simulation study and the case study. In section 5.2.5, we 
discuss how this study adds to the literature and the implications for further research. 

5.2.2 Motivating example: the ESORT study 

The ESORT (Emergency Surgery OR noT) study evaluated the effectiveness of 
emergency surgery for acute gastrointestinal conditions. The primary outcome of the 
study was the number of ‘days alive and out of hospital’ (DAOH) at 90-days (see 
Hutchings et al. (2022) for details), which encompasses mortality and total length of 
hospital stay (LOS). The study exemplifies the key issues that arise when applying IV 
methods to EHR data to provide policy-relevant estimates of comparative effectiveness 
(ESORT Study Group, 2020; Hutchings et al., 2021, 2022). Patients presented as 
emergency admissions and were selected for either emergency surgery (ES), or 
alternative interventions such as medical management or delayed surgery, according 
to unmeasured characteristics such as the severity of the disease, and hence 
unmeasured confounding and essential heterogeneity were major concerns. 

The ESORT study followed Keele et al. (2018) and developed a continuous preference-
based IV for ES receipt to evaluate the effectiveness of ES for three acute 
gastrointestinal conditions: acute appendicitis, gallstone disease and abdominal wall 
hernia, using routine hospitalisation data from the hospital episode statistics (HES) 
inpatient database in England. The IV was the hospital’s tendency to operate (TTO), 
a proxy measure of the hospital’s latent preference for ES, defined as the proportion 
of eligible emergency admissions in each of 174 hospitals who had ES in the year 
preceding each admission. Given a relevant IV, two main assumptions need to hold: 
(i) conditional on the variables included in the models, the hospital’s TTO was not 
correlated with the patient’s outcome except through treatment assignment, (ii) it 
does not increase the probability of treatment for an individual at some value of the 
IV, but decrease it for higher values. The study design had some important features 
to support this assumption. First, in this emergency setting patients were unlikely to 
select the hospital according to quality of care. Second, the study only included direct 
admissions to hospital, so there was no scope to transfer the patient according to 
physician or patient choice. Third, information was collated on a rich set of proxies 
for the hospital’s quality of acute care, including rates of mortality and emergency 
admissions in previous years, which were included in the models as fixed effects. 
Fourth, observed covariates, were balanced across all levels of the TTO, which helped 
support the requisite assumption that the IV also balanced unmeasured confounders 
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(Hutchings et al., 2022; Moler-Zapata et al., 2022). The requisite assumption that the 
IV has a monotonic effect on treatment receipt could not be formally tested on the 
data. However, it was deemed plausible in this setting, as it seems unlikely that there 
are patients who would receive emergency surgery when admitted to hospitals with 
low TTO but receive NES when admitted into a hospital with high TTO. 

The ESORT study highlighted several outstanding concerns pertaining to IV methods 
in general, and LIV approach in particular. While the study reported estimates of the 
ATE, from the outset, there was policy interest in estimating the CATEs, according 
to baseline covariates including age, number of comorbidities, and levels of frailty. 
While the sample sizes for each condition, were relatively large, they also differed 
across conditions, from 268,144 (appendicitis) and 240,977 (gallstone disease), to 
106,432 (hernia) patients. There were also differences in the strength of the IV with 
F-statistics ranging from 141 (acute appendicitis), 739 (hernia) to 9,053 (gallstone 
disease). Hence, the ESORT study further motivated the interest in what strength of 
continuous IV was required to provide unbiased, efficient estimates of policy relevant 
estimands such as CATEs in settings with essential heterogeneity, and according to 
different sample sizes. 

5.2.3 Methods 

5.2.3.1 Instrumental variables methods 

Throughout we use the Neyman-Rubin potential outcomes framework (Neyman, 1990; 
Rubin, 1974). Let "! denote the observed outcome, #" denote the treatment received, 
and $ denote the instrumental variable, such that we observe ("! , #" , $) for each 
individual. For each patient, let "# = )#(*$ , *% , +) and "& = )&(*$ , *% , +) denote the 
potential outcomes, where *$	is the vector of observed covariates, *% is a vector of 
unmeasured confounders, and + captures all the remaining unobserved random 
variables. Throughout, we assume exogeneity of the covariates (A1), so that the 
treatment assignment is the only source of endogeneity, such that (*$ , *%) ⊥ + and 
*$ ⊥ *%. 

5.2.3.2 Identification assumptions 

Angrist et al. (1993) defined a series of structural assumptions for the identification 
of the LATE. Here, following Abadie (2003) and Tan (2006) we make the following 
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assumptions which are the conditional version of the assumptions outlined by Angrist 
et al. (1993):  

(A2) Unconfoundedness of Z ("!! , $") ⊥ '|(# 
(A3) Exclusion restriction "!! = "! with probability 1 
(A4) Relevance 0 < ,(' = -) < 1 
(A5) Monotonicity If	-$ > - then $"$ ≥ $" with probability 1 
(A6) Stable Unit Treatment  

Value Assumption $ = $% and " = "& 

 

Assumption (A2) requires that $ is as good as randomly assigned within levels of *$. 
Assumption (A3) rules out the possibility that $ has a direct effect on the outcome 
other than through	#'. Assumptions (A2) and (A3) ensure that the only effect of the 
$ on the outcome is through #'. This is sometimes called the independence 
assumption. Assumption (A4) ensures that $ and	#' are correlated conditional on *$. 
Assumption (A5) requires that an increase in $ always results in a higher or equal 
level of treatment assignment. Assumption (A6) requires that one individual’s 
potential outcomes ("!) and treatments (#') are not influenced by other individuals’ 
levels of $ (i.e., no interference), nor by how the instrument or treatment is delivered 
(i.e., no different versions of $ or #'). 

5.2.3.3 Estimands 

Imbens and Angrist (1994) and Angrist et al. (1993) show that, under the assumptions 
outlined above, the LATE can be defined as ∆()*+(/, , 0, 0-) = 1["# − "&|*$ = /, , #' <

#'-] and is identified by the IV estimand:. 

2["|(# = 5', 	' = -′] − 2["|(# = 5', 	' = -]

2[$|(# = 5', 	' = -′] − 2[$|(# = 5', 	' = -]
 

Vytlacil (2002) and Tan (2006) showed that the independence (A2 and A3) and 
monotonicity assumptions (A5) of the LATE framework are equivalent to those 
imposed by a non-parametric selection model, where treatment assignment depends 
on whether a latent index ()!(*$ , $)) crosses a particular threshold (*%!): 

 	$" = 19:&((# , ') ≥ (("; 

where *%! is a random variable that captures *% and all other factors influencing 
treatment assignment but not the outcomes. As in Heckman and Vytlacil (1999, 2001) 
we can rewrite this equation as #'=1{8(*$ , $) > :}, where : = <."![*%!|*$ =
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/$ , $ = 0] with : ⊥ ($,*$) and 8(/$ , 0) = <."!|/#,'[)!(*$ , $)] is the propensity for 

treatment, and < represents a cumulative distribution function. Therefore, for any 
arbitrary distribution of *%! conditional on *$ and $, by definition :~>?@ABCD[0,1] 
conditional on *$ and $. Then, the MTE can be defined as, ∆1*+(/$ , G) = 1("# −

"&|*$ = /$ , : = H) and Heckman and Vytlacil (1999, 2001) showed that, under the 
standard IV assumptions, it can be identified by: 

<2)("|(# = 5', ' = -)
<=

= 2)[("* − "+)|(# = 5', > = ?] 

MTEs can be aggregated directly to obtain estimates of the ATE as shown in Heckman 
et al. (2006). Basu (2014) showed that MTEs can be used to derive personalised 
treatment (PeT) effects for each individual that take into account the plausible range 
of values that : may take for each patient, in addition to their observed covariates, 
IV and actual treatment assignment (see Section 5.2.3.2) (Basu, 2014). The rationale 
for this approach is that the treatment assignment status provides some information 
on *%!. For patients in the treatment group (#' = 1), the propensity to choose 
treatment based on 	*$ and $ must outweigh the propensity to choose the comparator 
strategy based on *%!, i.e., 8(/$ , 0) > H. For patients in the comparator strategy 
(#' = 0), the opposite is true. The PeT effect for an individual is obtained by 
averaging the MTEs corresponding to that individual’s level of *$ and $ over those 
values of unobserved variables that are compatible with that patient’s treatment 
assignment. Hence, ∆23*(/$ , G, #) = 1("# − "&|*$ = /$ , 8(0, /$) > H) for individuals 
with #' = 1 and ∆23*(/$ , G, #) = 1("# − "&|*$ = /$ , 8(0, /$) < H) for individuals 
with #' = 0.  

All of the treatment effect estimands, including ATE and CATEs, can be derived by 
appropriately aggregating the PeT effects since these are defined at the individual 
level (see section 5.2.3.4)   

5.2.3.4 Estimation methods 

5.2.3.4.1 Two-stage Least Squares estimator 

2SLS is a common approach to the implementation of IV methods that consistently 
estimates the ATE parameter under homogeneity, or the LATE parameter under 
essential heterogeneity given a binary IV. Under assumptions (A1)-(A6), the 2SLS 
(Wald) estimator involves: (i) estimating 1[#"|*$ , $] by regressing  #' on *$ and $, 
and (ii) estimating 1["!|#' , *$ , $] by regressing on *$ and 1J[#"|*$ , $]. When the 
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instrument is continuous, 2SLS reports a weighted average of LATEs, which requires 
careful interpretation (Baiocchi et al., 2014). 

5.2.3.5 Local Instrumental Variables estimator: estimating PeT effects 

Basu (2014, 2015) describe in detail the series of steps required to estimate PeT effects 
using the LIV methodology. Briefly, #' is regressed on $ and *$, as above, using 
appropriate methods for binary outcomes and the propensity for treatment G(/$ , 0)	is 
estimated. Next, " is regressed on *$ and a function of Ĝ(/$ , 0) including interactions 
with *$. The approach outlined in Basu (2014) involves differentiating the outcome 
model L(") by Ĝ(/$ , 0). Next, PeT effects for each individual can be obtained by 
performing numerical integration, with MTE (MLN(") MĜ⁄ )	evaluated by replacing 
Ĝ	using 1,000 random draws of P~P?@A(min(Ĝ(/$ , 0)) ,max(Ĝ(/$ , 0))). Then, #∗ =
Φ5#{Ĝ(/$ , 0)} + Φ5#(1 − P) can be computed. PeT effects can be computed by 
averaging MLN(") MĜ⁄  over values of P for which #∗ > 0 if # = 1; or over values of 
#∗ ≤ 0 if # = 0. Finally, averaging PeT effects over all of the observations provides 
an estimate of the ATE for the population, and over strata of *$ gives the CATE for 
the subpopulation of interest. Standard errors can be computed using bootstrap 
methods (Basu, 2015). We now consider the design of the simulation study to contrast 
the relative performance of the LIV and 2SLS approaches. 

5.2.4 Simulation study  

Motivated by the gaps in the extant literature, and the motivating example, this 
simulation study was designed to consider the relative performance of 2SLS and LIV 
approaches across settings that differed with respect to the form of heterogeneity, the 
sample size and the strength of the IV. We report the performance of the methods in 
a Monte Carlo Simulation study according to their mean bias (%) and Root Mean 
Squared Error (RMSE) for each estimand (ATE and CATE). 

5.2.4.1 Data Generating process 

We create 5,000 datasets each containing N=	 {5000, 10000, 50000}	units, of which 
50% are assigned to the treated group. The data generating process (DGP) includes 
one observed (*$) and one unmeasured (*%) covariate. We draw *$, *% and the 
instrument, $ from normal distributions with mean 0, and standard deviation 3. Three 
subgroups of interest are defined by whether the individuals’ values for *$	are more 
than 0.5 standard deviations below or above its mean. 
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5.2.4.1.1 Treatment model 

The treatment assignment is determined by the latent variable #∗, defined as:  

$∗ = @& + 3(# − 3(( + @%' + (4 − @%)D&	

where Z! has a normal distribution with mean 0 and standard deviation, 1. Treatment 
is then determined as # = 1	if #∗ > 0	and # = 0	otherwise. The parameters [" and 
[! are chosen to ensure the IV F-statistic, <67 ,	 equals the desired level <*89:3; =
{10, 25, 50, 100, 500, 1000} on average, with, 

<67 =	 (] − ^A< − 1) ∗ =̀,	67
? − 6̀7

?

6̀7
?  

where =̀,	67
?  and 6̀7

?  indicate the residual variance from regressing # on *$ with or 
without including the IV respectively, and ^A< is the number of parameters in the 
model excluding the IV (i.e., ^A< = 2 here). For a given F-statistic, a larger sample 
size implies a lower compliance rate, which in turn will imply a weaker instrument. 
At low compliance rates, the MSE of IV estimates can increase substantially (Little 
et al., 2009). We estimate the compliance rate for each sample size and F-statistic, by 
contrasting treatment uptake at the 1st and 99th percentiles of the IV. 

5.2.4.1.2 Outcome model 

The outcome models under treatments ("#) and control ("&) can be written as: 

"+ =	E+
	 + E*

	(# + E.
	 (( + D/#	 

"* = (E+
	 + F+

	 ) + (E*
	 + F*

	 )(# + (E.
	 + F.

	 )(( + D/$  

Implying the treatment effect is a = 1("# − "&) = 	 a&
	 + a#

	 *$ + a?
	 *%. Specifically, we 

define the outcome under control as follows: 

"+ =	−10 − 10(# + 10(( +G(0,1) 

We consider 4 scenarios for the outcome under treatment, "#. In Scenario A, effects 
are homogeneous (a = 50). In Scenario B, effects are heterogeneous but depend only 
on observed confounders (overt heterogeneity) (a = 40 + 	20*$). In Scenario C, *% 
influences both the treatment assignment and the gains from treatment (a = 40 +

20*%). In this Scenario, there is essential heterogeneity but no overt effect 
heterogeneity. Finally in Scenario D there is both overt and essential heterogeneity 
(a = 20 + 	20*$ +20*%). Table 5.1 displays the parameter values for each scenario. 
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The parameter combinations of interest consist of combinations of ? =

	{5000, 10000, 50000} and FTarget. = {10, 25, 50, 100, 500, 1000}. For each parameter 
combination for each scenario, we create 5000 datasets using the DGP described above 
and estimate the treatment effects as described below. 

Table 5.1. Definition of the simulation scenarios 

 Sample size F-statistic H0 H1 H2 
Scenario A: 

Homogeneity 
All sample sizes 

(I =
	{5000, 10000,
50000}) 

All F-statistic 
values (FTarget =
{10, 25, 50, 

100, 500, 1000}) 

50 0 0 

Scenario B: Overt 
heterogeneity 40 20 0 

Scenario C: Essential 
heterogeneity 40 0 20 

Scenario D: Overt and 
essential heterogeneity 20 20 20 

 

5.2.4.2 Implementation of methods 

For the 2SLS model, we control for *$ and instrument # by $. To capture 
heterogeneity, we also include an interaction between *$ with #, and instrument this 
with interactions of $	and *$. To obtain effect estimates, we use the recycled 
predictions approach, whereby the two potential outcomes (Y&	and	"#) are predicted 
from the second stage model after setting # = 0	or # = 1 and the interaction *$*# =

0	or	*$ (Basu and Rathouz, 2005; Stata Corp Lp, 2001). The individual level effect is 
then estimated as τN = 	Yh# − Yh&, allowing us to calculate the ATE, and CATEs for the 
three subgroups (CATE1, CATE2, and CATE3). 

For the LIV approach, we first estimate the propensity for treatment conditional on 
*$and $, and in the second stage outcome model we include *$, #,  the estimated 
propensity score (Ĝ), Ĝ**$ and Ĝ 2. (Heckman and Vytlacil, 2005). We then estimate 
PeT effects for each individual as described in Basu (2015) using the petiv command 
in Stata. The estimated PeT effects are then aggregated to obtain estimates of the 
ATE, CATE1, CATE2, and CATE3. Before applying either method, we remove 
observations at those levels of the estimated propensity score where there is 
insufficient overlap (Basu, 2015). 
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5.2.5 Results 

5.2.5.1 Simulation study 

Figures 1-4 present mean (%) bias in the ATE and CATE estimates (Figure 5.1 and 
Figure 5.2, respectively) and the corresponding plots for RMSE (Figure 5.3 and Figure 
5.4, respectively). The results for the three subgroups showed similar patterns, and 
hence, for brevity, we only report the results for one of them. 

In settings with homogenous treatment effects, or with overt heterogeneity, both 
approaches reported relatively low levels of bias (<5%) in the ATE estimates, apart 
from 2SLS, which reported moderate levels of bias (5-10%) in settings with F-statistics 
below 100 or a smaller sample size (n = 5000) (Figure 1). In settings with essential 
heterogeneity, 2SLS reports relatively high (>10%) levels of mean bias across 
practically all combinations of IV strength and sample size. The mean (%) bias is 
quite variable with respect to the target F-statistic (Figure 5.1). Inspection of the 
distribution of percentage bias across the 5,000 simulations (not shown) suggests this 
is due to the fact that the tails of the distribution are fat, particularly at lower values 
of F. At very high (>100) levels of the target F, the mean and mean % bias are similar 
however this is not the case at lower levels. LIV estimator reports low levels of bias 
in ATE estimates across all scenarios aside from those with both a smaller sample size 
(n = 5000) and a F-statistic of 10 or 25 (Figure 5.1). The distribution of bias across 
simulation runs (not shown) has thinner tails for the LIV method than seen for 2SLS, 
hence the mean bias is less volatile here.  

The bias plots for the CATE estimates have a somewhat similar pattern, although for 
this estimand the 2SLS estimator reports high levels of mean bias even in settings 
with overt heterogeneity, unless the sample size is relatively large (n = 50000) and/or 
the F-statistic is above 100 (Figure 2). The LIV estimator reports lower levels of bias 
than 2SLS across the majority of scenarios. 

In general, for both methods, across most scenarios, for a given sample size, the levels 
of mean (%) bias decrease at higher levels of the F-statistic (Figure 5.2). The RMSE 
in the estimates of the ATE are substantially lower for the LIV than the 2SLS 
estimator, except for those settings with an F-statistic of 500 or 1000 (Figure 5.3). For 
the CATE, in general, the RMSE estimates mirror the bias results, in that they are 
substantially lower across all settings for LIV (Figure 5.4). 
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Figure 5.1. Bias plot for Average Treatment Effect (ATE) estimates across scenarios, with sample sizes of 5000 (left), 10000 (middle) and 
50000 (right) 

Scenario 1: effect homogeneity 

 

Scenario 2: overt heterogeneity 
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Figure 5.1. (cont.) Bias plot for Average Treatment Effect (ATE) estimates across scenarios, with sample sizes of 5000 (left), 10000 
(middle) and 50000 (right) 

Scenario 3: essential heterogeneity 

 

Scenario 4: overt & essential heterogeneity 
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Figure 5.2. Bias plot for Conditional Average Treatment Effect (CATE) estimates across scenarios, with sample sizes of 5000 (left), 10000 
(middle) and 50000 (right). 

Scenario 1: effect homogeneity 

   

Scenario 2: overt heterogeneity 
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Figure 4.2. (cont.) Bias plot for Conditional Average Treatment Effect (CATE) estimates across scenarios, with sample sizes of 5000 
(left), 10000 (middle) and 50000 (right) 

Scenario 3: essential heterogeneity 

                  

Scenario 4: overt & essential heterogeneity 
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Figure 5.3. Root Mean Squared Error plots for Average Treatment Effect (ATE) 
estimates from 2SLS (dashed line) and LIV (solid line) across the scenarios 

Scenario 1: effect homogeneity 

 

Scenario 2: overt heterogeneity 
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Figure 5.3. (cont.) Bias plot for Conditional Average Treatment Effect (CATE) 
estimates across scenarios, with sample sizes of 5000 (left), 10000 (middle) and 

50000 (right) 

Scenario 3: essential heterogeneity 

 

Scenario 4: overt & essential heterogeneity 
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Figure 5.4. Root Mean Squared Error plots for Conditional Average Treatment 
Effect (CATE) estimates from 2SLS (dashed line) and LIV (solid line) across the 

scenarios 

Scenario 1: effect homogeneity 

 

Scenario 2: overt heterogeneity 
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Figure 5.4. (cont.). Root Mean Squared Error plots for Conditional Average 
Treatment Effect (CATE) estimates from 2SLS (dashed line) and LIV (solid line) 

across the scenarios 

Scenario 3: essential heterogeneity 

 

Scenario 4: overt & essential heterogeneity 
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Compliance rates for a given F-statistic were sensitive to the sample size available. 
For a sample size of 5000, increasing the F-statistic from 10 to 1000 increases the 
compliance rate from 8% to 73%, while for a sample size of 50000, the compliance rate 
only increases from 3% to 29% (Table 5.2). 

Table 5.2. Compliance rate by sample size (N) and F-statistic 

F-statistic N = 5000 N = 10000 N = 50000 
10 8% 6% 3% 
25 13% 9% 5% 
50 18% 13% 6% 
100 26% 20% 9% 
500 56% 42% 21% 
1000 73% 57% 29% 

 

5.2.5.2 Case study 

5.2.5.2.1 Case study: implementation of 2SLS and LIV approaches 

LIV estimated PeT effects of ES versus NES on DAOH at 90 days, for each individual 
allowing for treatment effect heterogeneity and confounding (Angrist and Kolesár, 
2021; ESORT Study Group, 2020; Hutchings et al., 2022; Moffitt and Zahn, 2022). 
These PeT effects were aggregated to report the effects of ES overall, and for each 
pre-specified subgroup of interest. Since DAOH at 90 days was left skewed due to the 
maximum being 90 days, we rescaled this to lie between 0 and 1 (90-DAOH)/90) and 
effects were then rescaled back to the original scale. Probit regression models were 
used to estimate the initial propensity score (first stage), while GLMs were applied to 
the outcome data, with the most appropriate family and link function chosen 
according to RMSE, with Hosmer-Lemeshow and Pregibon tests also used to check 
model fit and appropriateness (Hosmer and Lemeshow, 2000; Pregibon, 1980). The 
logit link and binomial family were selected for all three conditions. Models at both 
stages adjusted for baseline measures, time period, and proxies for hospital quality, 
defined by rates of emergency readmission and mortality in 2009-10 (time constant), 
and in the year prior to the specific admission concerned (time-varying). 

Estimates of mean differences in DAOH between the comparison groups, overall and 
for pre-specified subgroups (CATEs) were reported with standard errors and 
confidence intervals (CI) obtained with the non-parametric bootstrap (300 
replications), allowing for the clustering of individuals within hospitals. The 2SLS 
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approach used the same model specification and selection (including covariates used 
for confounding adjustment) to report estimates overall and for subgroups. 

5.2.5.2.2 Case study: results 

The study reported somewhat similar that for both methods the 95% CIs surrounding 
the mean differences included zero (Figure 5.5). Beneath this overall result, the LIV 
approach reported evidence that the effectiveness of ES was heterogeneous according 
to pre-specified subgroups. In particular, for all three conditions, ES led to lower 
DAOH for patients who had severe levels of frailty, and for those with acute 
appendicitis, ES was less effective for older patients (aged 80-84) or those with three 
of more comorbidities. By contrast, the 2SLS approach, which failed to account for 
unobserved heterogeneity (e.g., disease severity), did not report any substantive 
differences in relative effectiveness according to patient subgroup (Figure 5.5). 

5.2.6 Discussion 

This paper formally assessed the performance of the LIV methodology developed by 
Heckman and Vytlacil (1999, 2001) and further extended by Basu (2014) to provide 
policy relevant estimates of ATE and CATE in settings that differed according to the 
form of heterogeneity, the sample size, and level of IV strength. We contrasted the 
performance of LIV with that of the widely-used 2SLS approach. The scenarios 
considered in the simulation study were directly motivated by gaps in the literature 
and by a comparative effectiveness study that used LIV in evaluating emergency 
surgery for three acute gastrointestinal conditions for subgroups of prime policy 
relevance. In the case study, overt and essential heterogeneity were important 
concerns, amid differing levels of IV strength and sample sizes, and these issues 
motivated the scenario of prime interest for the simulation study (Scenario D). 
However, we also considered scenarios, which can, in principle provide accurate 
estimates of ATE and CATEs with conventional IV methods such as 2SLS (Scenarios 
A and B). We compared the performance of the two methods, according to bias and 
statistical efficiency (RMSE).  
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Figure 5.5. Mean differences in days alive and out of hospital (DAOH) between ES and NES for appendicitis (left), gallstone disease 
(centre) and hernia (right) subgroups 

2SLS: two-stage least squares; CI: Confidence Interval; LIV: Local Instrumental variables. 
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Four preliminary findings of the simulation study are worth emphasising. First, our 
results suggest that while LIV performs better according to increasing levels of IV 
strength and sample size, this estimator reports relatively low levels of bias in 
estimates of the ATE and CATEs across all scenarios including those with essential 
heterogeneity. These findings compliment those of Basu (2014) in evaluating the 
reliance of the estimator on the relevance condition as well as the consistency of the 
estimator, but also by considering a wider range of assumptions about heterogeneity. 

Second, our results suggest that 2SLS reports biased estimates of the ATE and CATEs 
in the presence of essential heterogeneity, except in those cases where the instrument 
is very strong (F-statistic above 500). These results are consistent with previous 
findings that 2SLS estimates cannot generally be extrapolated to broader populations 
beyond the compliers unless restrictive assumptions are made about the heterogeneity 
of treatment effects (Brooks et al., 2018; Chapman and Brooks, 2016)., However, our 
results suggest that, even under homogenous treatment effects, 2SLS provides biased 
estimates of the ATE, in scenarios where the F-statistic is low, but the requisite 
magnitude of the F-statistic also depends on the sample size and the form of 
heterogeneity. 

This finding further emphasises the inadequacy of guidance resting solely on a ‘rule of 
thumb’ for a single setting, the target F-statistic, and highlights the importance of 
these wider considerations when interpreting a study’s results. 

Thirdly, while 2SLS can reliably estimate CATEs in the presence of effect homogeneity 
or overt heterogeneity given a sufficiently strong IV or large enough sample, in the 
presence of essential heterogeneity, as theory would suggest, 2SLS can give extremely 
biased estimates of CATEs, and so in settings where essential heterogeneity is 
anticipated, 2SLS should not be used to estimate CATEs. In contrast, the LIV method 
provided estimates with low bias in the presence of overt and/or essential 
heterogeneity, provided the F-statistic was greater than 50. Interestingly, for the 
estimates of the CATEs, we find that as the sample size increases, an increase in the 
F-statistic is less beneficial in mitigating bias and reducing RMSE, in line with the 
observation that a given increase in the F-statistic has less impact on compliance rates 
at larger sample sizes. 

Finally, LIV generally reported lower levels of RMSE than 2SLS, in particular for 
estimating the CATEs. However, it is important to note that here the propensity score 
and outcome models underlying the LIV method are correctly specified, and that 
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performance may deteriorate where this is not the case. Data adaptive approaches 
could prove useful where model specification is not known. 

The findings from the simulation study are informative in interpreting the CATE 
estimates in the ESORT study. The results offer reassurance that in such settings 
where essential heterogeneity would appear inevitable, that a LIV approach can 
provide unbiased estimate of policy-relevant estimands such as CATE, with sample 
sizes and F-statistics smaller than those of the ESORT study. Here, the LIV approach 
was able to report relative effectiveness according to subgroup, and the finding that 
for patients with high levels of frailty ES was not cost-effective (or cost-effective), 
provides important evidence to inform policy, and contributes to shared decision-
making (Moler-Zapata et al., 2022). 

This study has several strengths. First, it builds on insights and hypotheses raised by 
a large observational study using EHRs from England. The ESORT study illustrates 
the main challenges of using LIV methods for comparative effectiveness research and 
its findings in relation to IV strength, sample size requirements directly informed the 
scenarios considered in the simulation study. Second, while the uptake of LIV methods 
has been limited almost entirely to settings with essential heterogeneity, the 
simulation study considers different forms of heterogeneity of treatment effects as well 
as the scenario where treatment effects are assumed to be homogeneous in the study 
population. Future work will expand the simulation study to incorporate other well-
known issues of IVs methods, including the challenges in applying IV estimation 
methods to non-linear outcome data (Clarke and Windmeijer, 2010; Vansteelandt et 
al., 2011). Previous research has shown that the power of 2SLS conveyed by 
conventional F-statistic values is low (Keane and Neal, 2021; Lee et al., 2021). In this 
future work, we will therefore consider the implications of sample size and instrument 
strength for the power of LIV analyses and confidence interval coverage. Future work 
will also formally assess whether imbalances in treatment assignment rates are 
detrimental to consistency and power of LIV inferences. This is an important concern 
for applied work using EHRs. For instance, the observed difference in the prevalence 
of ES and NES in ESORT (90/10 in the cohort with appendicitis) could reduce the 
power of the analysis (Walker et al., 2017). 
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Chapter 6. Discussion 

6.1 Introduction 

Comparative effectiveness and cost-effectiveness studies that evaluate alternative 
health and social care interventions have the opportunity to exploit the growing 
availability of RWD, and provide evidence that can inform decision-making. However, 
these studies are faced with major challenges including the risk of unmeasured 
confounding and heterogeneity. A further concern and barrier to the wider use of this 
form of evidence in decision-making, is the lack of transparency about choices in the 
study design and analysis. These concerns may apply to any setting that uses RWD 
to assess comparative effectiveness and cost-effectiveness, including pharmaceutical 
interventions, other health technologies such as surgical interventions or devices, 
changes to health or care services or the introduction of new health policies, or public 
health interventions (Faria et al., 2015; Skivington et al., 2021). This thesis draws on 
recent methods developments in the causal inference and health econometrics 
literature to help improve the approaches for tackling confounding and heterogeneity 
when assessing comparative effectiveness and cost-effectiveness using RWD. 

The aim of this thesis was to help address gaps in the guidance on methods for CEA 
that use RWD, and more specifically routine data, in settings with unmeasured 
confounding and treatment effect heterogeneity. The specific objectives were to: 

1. Critically examine the application of the principles of the target trial framework 
to the HTA context, identify the main challenges, and provide 
recommendations to address them. 

2. Evaluate and implement an LIV approach for addressing unmeasured 
confounding and heterogeneity in CEA. 

3. Evaluate the performance of IV approaches in terms of bias and statistical 
efficiency according to alternative levels of IV strength, sample sizes and forms 
of heterogeneity in a simulation study. 

The next section outlines the main findings from the thesis. Sections 6.3 and 6.4 
discuss the main contributions of the thesis to the methodological literature, and the 
literature evaluating the cost-effectiveness of ES for acute gastrointestinal conditions. 
Section 6.5 summarises the main limitations of the thesis. Section 6.6 identifies areas 
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for future research. Section 6.7 and 6.8 discuss the implications for applied researchers 
and policy making, and section 6.9 concludes the thesis. 

6.2 Overall findings 

The target trial framework can be adopted in CEA to support the design of studies 
that use RWD. Since the publication of the seminal papers by Hernán and Robins 
(2016) and Hernán et al., (2016), the target trial framework has become a popular 
tool for non-randomised health care evaluations as it can help reduce bias due to 
confounding which is a perennial problem with this study design. The target trial 
framework also provides evidence users, including decision-makers and service 
providers, with a tool to judge methodological choices of observational studies, such 
as the plausibility of assumptions made in the statistical analysis, according to how 
closely they emulate the design elements of the hypothetical trial.  

This thesis identified four main challenges in applying the target trial framework 
within CEA that use routine data. These relate to potential data constrains affecting 
the study’s ability to emulate the trial’s eligibility criteria, challenges in defining 
treatment strategies and time zero, and the risk of confounding. I argue that these 
four challenges are prominent in those common settings in which the analyst has no 
control over the data collection process. These four challenges are important ones to 
address to help reduce bias from confounding and improve the transparency and 
reproducibility of methods and findings, to improve the use of RWD for informing 
decision-making. While these issues are not the only challenges that studies using 
RWD might face, other concerns may relate for example to missing data, censoring, 
non-compliance or measurement error, but these are beyond the scope of the thesis 
(DiazOrdaz and Grieve, 2019; Latimer et al., 2014; Willan and Briggs, 2006).  Here, 
the focus of the thesis is on approaches to address the unmeasured confounding and 
essential heterogeneity that arise in estimating comparative effectiveness and cost-
effectiveness from routine data.  

Research paper 1 offers an exemplar application of the target trial framework in a 
CEA, and critically considers the major challenges that could arise in comparative 
effectiveness and cost-effectiveness studies that use RWD. The first challenge is to 
define the eligibility criteria that delineate the target population for the study. These 
are patients who would be eligible to receive either the intervention or the comparator 
in routine practice. However, the emulation of a trial’s design should also ensure that 
the population only includes those patients for whom there is equipoise about the 
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treatment comparators of interest (i.e., patients with a positive probability of receiving 
each treatment option). Otherwise, if the study includes a subgroup for whom there 
is a strong prior belief that they will not benefit from either of the comparators of 
interest, even after adjusting for confounding factors, the treatment effect could be 
estimated with bias (Petersen et al., 2010). Researchers should therefore consider the 
"equipoise" principle when defining the eligibility criteria. This is can be challenging  
as patient’s equipoise often cannot be assessed from the data. The paper offers some 
recommendations for how to apply this principle to the available RWD, recognising 
that in practice there may be gaps, omissions and challenges in applying the 
framework in practice. 

One related challenge is in defining treatment strategies from the RWD. If the 
definition of the intervention differs from the intervention of interest, including the 
setting in which they are administered or their timing, the findings of the study will 
be of limited relevance for decision-making. Researchers also need to carefully consider 
the definition of the comparator strategy. Ideally, it should reflect the comparator 
used in routine clinical practice to be relevant for decision-making. It is also important 
that the comparators are be defined in sufficient level of detail to be able the causal 
contrast of interest is identified (Hernán, 2004; Hernán and Taubman, 2008).  

Third, the study also exemplified the concern that, even if treatment strategies and 
target population can be defined from the RWD, it is important to define time (day) 
zero the analogue to the time of randomisation, as part of any strategy to reduce bias 
in the estimation of treatment effects. The date or time of key events is not always 
recorded in the RWD, which makes it challenging for studies to define when eligibility 
is met, treatment is assigned and the treatment strategies are initiated (Patorno et 
al., 2020). The paper discusses how CEA that fail to align these events could suffer 
from selection bias and immortal time bias.  

Lastly, the paper discusses the role that insufficient information for covariate 
adjustment plays in raising concerns of residual confounding in CEA. This is a well-
known challenge for observational studies, and previous studies have considered 
alternative statistical methods for tackling confound in CEA (Kreif et al., 2013; Nixon 
and Thompson, 2005; Polsky and Basu, 2012; Sekhon and Grieve, 2012). However, 
one important (new) finding of this thesis is that IV designs can be compatible with 
the application of target trial framework in observational studies. Previous studies 
had suggested that valid IVs are inadequate for emulating trials, mainly because the 
estimated effect only pertains to a subset of the population (Swanson, 2017), which is 
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very unlikely to represent the target population. While this is true in conventional IV 
analyses, as my second research paper showed, LIV methods can, provided some 
requisite assumptions hold, provide policy-relevant estimands, for example the ATE 
for the whole population of interest, and CATE for subpopulations of interest.  

Research paper 2 directly addresses the concern that few CEA have applied IV 
methods to RWD to formally model essential heterogeneity in patient outcomes, costs 
and cost-effectiveness of an intervention. Here, the concern is that unmeasured 
characteristics that predict expected outcomes following either intervention also 
inform treatment selection. The paper contrasts different IV approaches (2SLS, 2SRI 
and LIV) in evaluating the cost-effectiveness of the alternative strategies, in this case 
ES versus alternatives. These methods have different target estimands, and different 
assumptions for identification, which makes comparison between the findings 
challenging. However, it is still interesting that the findings from the three methods 
are notably different. 2SLS, which aims to estimate the LATE, and LIV which aims 
to estimate the ATE give different estimates of the overall effect, especially in the 
diverticular disease cohort. The reason why estimates are so dissimilar in that cohort, 
might be explained by essential heterogeneity, as surgical teams may be likely to select 
patients into treatments according to expected gains from treatment given their 
unobserved risk profile. Theory suggests that both 2SRI and LIV can report estimates 
of the ATE, so differences in the resultant estimates are likely to reflect that in the 
presence of essential heterogeneity suspected in the diverticulitis example, the 
underlying assumptions are less plausible for the 2SRI versus LIV approach (Basu et 
al., 2018).  

In research paper 2, I exemplify the LIV approach to estimate the overall cost-
effectiveness of ES for the study population, as well as for a series of pre-specified 
subgroups. The study evaluated ES using different approaches: risk-adjustment (GLM 
regression), 2SLS, 2SRI and LIV. While all four study designs rely on untestable 
assumptions, only the LIV design can identify causal effects in the presence of 
unmeasured confounding and treatment effect heterogeneity according to unobserved 
characteristics. LIV approaches do still rely on the fundamental IV assumptions, and 
the presence of a continuous IV (see Chapter 2) (Basu et al., 2007). The plausibility 
of these assumptions was carefully evaluated using both formal tests and clinical 
judgement. The TTO was strongly associated with receipt of ES. Even though the 
exclusion restriction can never be fully tested, the study found that the TTO was able 
to balance the baseline covariates, which makes it more plausible that it was also able 
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to balance unobserved covariates. Models were adjusted for measures of hospital 
quality of care to further bolster the plausibility of the identification assumption.  

One important finding of the analysis using LIV is that while the study does not 
provide strong evidence that either ES or NES is cost-effective overall for any of the 
acute conditions, one or other of the modalities can be cost-effective when targeted at 
specific population subgroups. In particular, for patients with acute appendicitis and 
abdominal wall hernia with moderate or severe less of frailty, and those who have at 
least two comorbidities, the NES strategy is relatively cost-effective. NES is also cost-
effective for diverticular disease patients with perforation of abscess. ES appears to be 
cost-effective for subgroups of patients with diverticular disease or hernia who are fit 
(both conditions), or who are younger (hernia only). 

Research paper 2 also reported differences across the acute conditions in the cohort sizes 
and the strength of the IV (see Table 4.3). These findings motivated further research 
questions about the requirements of IV methods with respect to instrument strength 
and sample size, for estimation and inference pertaining to ATE and CATE.  and helped 
define the scenarios of interest for the simulation study in research paper 3.  

The main findings from that paper 3 are that, first LIV methods perform well 
regardless of the form of heterogeneity and confounding; second the general 
requirements with respect to IV strength depend on the available sample size; third, 
2SLS estimates are biased in settings with essential heterogeneity when the instrument 
is not strong, fourth, levels of strength used to define sufficiency of IV strength in 
applications might fail to guarantee minimal biases in the estimation of treatment 
effects. 

6.3 Contributions 

This thesis contributes to the literature on analytical methods for CEA by drawing 
on insights from the causal inference and health econometrics literature. The following 
sections describe the main methodological contributions of the thesis. 

6.3.1 Developing recommendations for studies that apply the 
target trial framework to Real-World Data 

Research paper 1 offers a series of recommendations for CEA to address the main 
challenges in applying the target trial framework to studies that use routine patient-
level data (see previous section). These recommendations complement previous 
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methodological guidance (Drummond et al., 2005; Faria et al., 2015; Husereau et al., 
2013; Philips et al., 2004) and checklists for economic evaluations, and expand on 
them by considering aspects of the study design that are specific to studies that use 
RWD. The contributions also complement previous tools developed for evaluating 
statistical approaches used in observational CEA, including those that were designed 
to address selection bias (Kreif et al., 2013), by considering broader aspects of the 
study design of observational studies. 

Research paper 1 discusses how expert opinion can help in adapting the target trial’s 
eligibility criteria, and definitions of the treatment strategies to the RWD available 
to minimise the risk of bias. One example of how expert judgement can be used, in 
defining which of the eligibility criteria available from within the RWD are required 
to ensure equipoise between treatment strategies. Previous recommendations for 
aligning eligibility criteria in the study with those in the target trial include measuring 
the proportion of patients included/excluded as a result of applying each criterion 
(Franklin et al., 2020). Lodi et al., (2019) describes methods to ‘harmonise’ the target 
trial design with published RCT, and to accompany these attempts with sensitivity 
analyses to explore the impact of components that cannot be harmonised.  

In considering how the target trial framework can be applied to IV designs, research 
paper 1 also provides practical advice for future CEA conducted in those settings 
where there is a risk of unmeasured confounding. These recommendations highlight 
the importance of contrasting methods that make alternative assumptions about 
confounding, as well as carefully evaluating the presence of heterogeneous treatment 
effects. In these settings, even if the IV is judged valid, the requisite assumptions of 
IV methods like 2SLS will not be satisfied, and the resultant inferences are unlikely 
to be appropriate (see also next section). 

6.3.2 Application of a Local Instrumental Variable approach 
for unmeasured confounding and heterogeneity in Cost-
Effectiveness Analysis that use Real-World Data 

The main contribution of research paper 2 is to the literature on CEA methods, in 
illustrating how LIV methods can estimate treatment effects in the presence of 
unmeasured confounding and treatment effect heterogeneity. It describes the 
assumptions required for identification of relevant treatment effect parameters, and 
exemplifies the issues that arise when undertaking a policy-relevant CEA that relies 
on routine data for estimating comparative effectiveness. The paper contrasts LIV 
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with alternative IV approaches (2SRI and 2SLS) which make alternative assumptions, 
and offers guidance for future CEA on how to interpret those discrepancies. 

Another contribution of research paper 2 is in demonstrating how, LIV can evaluate 
treatment effect heterogeneity over pre-specified subgroups of interest. This is an 
important contribution to the literature on methods for informing personalisation of 
treatment choice in clinical practice. This literature has expanded rapidly in recent 
years, but most methods assume that treatment selection is only according to observed 
covariates (Kreif et al., 2020; Sadique et al., 2022) which in many CEA that use RWD 
is an unrealistic assumption. For example, decision-making as to which intervention 
patients receive may reflect ‘capacity to gain’ which is likely to reflect biological, 
patient or physician preferences or organisational characteristics which are unlikely to 
be measured within the data. One extension that could be considered in future studies 
that use the LIV framework is to harness the myriad of covariates available from 
linked datasets with advances in the machine learning literature, to select those 
observed covariates that modify relative effectiveness and cost-effectiveness (see also 
section 6.6) (Belloni et al., 2014)  

The findings of research paper 2 on the cost-effectiveness of ES for treating patients 
with acute appendicitis, diverticular disease and abdominal wall hernia (described in 
the previous section) also contribute to the limited available evidence on the cost-
effectiveness of ES for acute conditions from previous RCTs and observational studies. 
Compared to previous studies for the three conditions, the CEA considers broader 
more heterogeneous populations (O’Leary et al., 2021) evaluates economic outcomes, 
including resource use and costs (Flum et al., 2020) and reports heterogeneity in 
effects, costs and cost-effectiveness of ES versus NES strategies for each of these acute 
conditions (Javanmard-Emamghissi et al., 2021). 

6.3.3 Evaluation of instrument strength requirements for 
Local Instrumental Variables in simulation study  

This thesis has demonstrated that there is great potential in applying LIV in CEA 
and comparative effectiveness studies more generally. One important contribution is 
to the health econometrics literature in demonstrating that, whenever a strong and 
valid, continuous is available, LIV might be preferable to conventional IV methods 
like 2SLS. Research paper 3 evaluates the performance of LIV and 2SLS according to 
mean bias and statistical efficiency in ATE and CATE estimates. While it was 
anticipated from theory that that 2SLS would not provide unbiased, efficient estimates 
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of the ATE or CATE parameters under essential heterogeneity, the study also found 
that compared to 2SLS, LIV reported less biased, more efficient estimates of both sets 
of parameters, in settings with non-essential heterogeneity or homogeneity.  

Two other key findings from research paper 3 are worth-emphasising. First, unlike 
2SLS, LIV continues to perform well in settings with essential heterogeneity, but 
might require stronger IVs, or larger sample sizes to report small biases (<5%) and 
lower RMSE. Second, the study finds that 2SLS can be biased even in the setting 
where there is effect homogeneity if the instrument is not sufficiently strong (F<100). 
These findings align with previous work suggesting that without large sample sizes, if 
the IV is not sufficiently strong 2SLS can provide treatment effect estimates with 
substantial biases (Martens et al., 2006). 

Research paper 3 also compares CATE estimates under 2SLS and LIV in three cohorts 
of the ESORT study, and reveals that the choice of the method matters in practice 
for the common setting in which the selection mechanism is unknown. While 2SLS 
fails to detect any signal of heterogeneity across subgroup estimates, LIV finds 
evidence that treatment effects of ES vary according to the patient’s age, frailty level 
and number of comorbidities, which has direct relevance for policy-makers with respect 
to targeting scarce surgical resources. 

6.4 Other general methodological contributions  

In considering the application of the target trial framework to RWD, and evaluating 
the properties of IV methods across broader range of settings, including essential 
heterogeneity, the findings are relevant for the general causal inference and health 
econometrics literatures. 

6.4.1 Insights from target trial relevant to the literature of 
observational epidemiology methods using Real-World Data 
in general and Instrumental Variable methods in particular 

While the target trial framework has been previously applied in the epidemiological 
literature studies with rich information about treatment strategies, confounders and 
outcomes, there are few applications in the RWD setting that use routine 
(administrative) data. The resulting lack of guidance on how to address the challenges 
raised by RWD could cause bias and emulation failures to be inadvertently introduced 
into the studies (Franklin et al., 2020, 2021). Research paper 1 gives insights into how 
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expert judgement might be used to make decisions about study design when the RWD 
is insufficient. While previous work has elaborated on methods for structured 
elicitation for HTA (Soares et al., 2018), this has not considered the potential 
relevance of formal or informal elicitation approaches for applying target trial 
emulation to RWD. Similarly, few studies have considered IV methods for emulating 
target trials (Danaei et al., 2018). Research paper 1 therefore contributes to this 
limited literature in describing how the design elements of RCTs can be emulated 
using LIV designs and in using expert opinion to define key standpoints of the study 
with respect to the population and comparator groups. 

6.4.2 Evaluation of Instrumental Variable methods wider 
contexts  

Most previous simulation work in the health econometrics literature evaluating IV 
methods ability to identify treatment effect parameters have been limited to settings 
where treatment effects had been assumed to be homogeneous (Ionescu-Ittu et al., 
2012; Kang et al., 2015). The papers by Chapman and Brooks (2016) and Basu et al. 
(2018) did consider heterogenous treatment effects in evaluating the consistency of 
2SLS and 2SRI in estimating the LATE and ATE parameters. However, none these 
studies considered LIV methods. Basu (2014) demonstrated the consistency of the LIV 
approach under ‘optimal’ conditions, which assumed large sample sizes and strong 
instruments, and allowed for essential heterogeneity, but that study did not formally 
test the performance of the method under scenarios such as weak identification or 
partial violation of the identification assumptions. Research paper 3 expands this 
previous work by Basu (2014) by considering a wider range of scenarios, defined by 
varying levels of IV strength and sample size, as well as across scenarios with different 
forms of treatment effect heterogeneity. 

6.5 Limitations 

In this section, I acknowledge general limitations relating to the unverifiability of the 
IV identification assumptions, and to other challenges that were not explored in this 
thesis. I then consider the interesting avenues for future research that this thesis 
provokes for methods for CEA using routine data. 
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6.5.1 Further challenges in applying target trial framework 
to Real-World Data 

The list of recommendations outlined in research paper 1 does not aspire to offer 
solutions to all the issues that are raised in CEA that use routine data. Instead, it 
intends to offer practical recommendations for some common challenges that can arise 
with respect to confounding, when applying the target trial framework to assess the 
comparative effectiveness and cost-effectiveness from RWD settings in which 
individual participant data are available for all the comparators of interest. While the 
challenges identified in the ESORT study are common in RWD, as the analyst rarely 
has control over the treatment selection or data collection process, other complexities 
may well arise. For instance, there might be concerns around the accuracy of the 
outcome data. Information bias could emerge if for example information on a resource 
use measure, such as whether there were differences across the comparator groups in 
the way events, such as the receipt of surgery were recorded in the RWD (Rassen et 
al., 2021). The complex nature of RWD also means that, the recommendations 
outlined in research paper 1, will be need to be adapted to the specific context of the 
study. For instance, in studies that aim to evaluate complex treatment pathways, 
including subsequent treatment switching, it may be necessary to consider multiple 
definitions of time zero, and also forms of confounding, in particular time-varying 
confounding, beyond those considered in the ESORT study (section 6.6). Likewise in 
some settings, such as those where treatment switching occurs or there is non-
adherence, might pose additional challenges for studies using RWD, as this might 
raise concerns about time-dependent confounding. Some papers have described how 
methods like IPW might be used  for evaluating dynamic treatment regimens (Hernán 
et al., 2012), and recent work extending IV estimation with structural mean models 
in presence of time-varying confounding might be relevant (Shi et al., 2022). 

Likewise, while the approach taken to elicitation was structured, it was pragmatic and 
used a modified Delphi approach to establish consensus across the panel of experts. 
Further work could more formally consider the uncertainty raised by divergent views 
across the expert panel (Soares et al., 2018). 

6.5.2 Unverifiability of identification assumptions 

Like any observational study, the CEA findings in research paper 2 rely to some extent 
on some unverifiable assumptions. The study describes the assumptions required for 
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identification of marginal treatment effects with LIV, namely the exchangeability 
condition, the exclusion-restriction condition, the relevance assumption, and the 
monotonicity assumption. For example, it seems unlikely that there were imbalances 
in patients’ prognosis across different levels of the TTO. For instance, the nature of 
the emergency setting, and the exclusion of patients who were referred to tertiary 
referral centres is likely to reduce the risk of bias due to the “doctor (hospital) 
shopping” phenomenon, which has been observed in other settings (Rassen et al., 
2009). The study found that the TTO balanced the observed covariates, which gave 
some support to the requisite assumption that it was also able to achieve balance in 
the unmeasured characteristics.  

One important challenge for the study was the exclusion-restriction, which requires 
that the IV only influences the outcome through its association with treatment 
assignment. To boost the plausibility of this assumption in the ESORT study, all 
analytical models included adjustment for proxies of the hospital’s quality of acute 
care, for example through improved post-operative care, in addition to patient 
covariates (see chapter 4). Likewise, in defining the IV at the hospital level, instead 
of at the surgeon- or team-level, the study sought to minimise the risk of bias emerging 
from the association of the TTO with concomitant treatments, which is typically 
observed in preference-based IV settings (Baiocchi et al., 2021; Brookhart and 
Schneeweiss, 2007). While, after the adjustments for quality for care the exclusion-
restriction was judged plausible, the study could have assessed this assumption more 
formally. For instance, with falsification tests, such as estimating whether ES had any 
effect on subgroups of always-treated patients to falsify this assumption7 (Kang et al., 
2013).  

6.5.3 Comparators and metrics to evaluate the performance 
of Local Instrumental Variable methods in the simulation 
study  

The simulation study in research paper 3 evaluated LIV and 2SLS across settings with 
different instruments, sample sizes and forms of treatment effect heterogeneity 
according to the mean bias in estimates and the rMSE. The findings expand the weak 
identification literature in finding that LIV has good estimation properties across a 

 

7 Note that the study assumes that all patients included in the study given the eligibility criteria have a level of 
their unmeasured covariates, such that they can be induced into treatment selection following a change in the level 
of the IV. This rules out the existence of patients who are never-takers or always-takers. 
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range of scenarios, and demonstrating that it can report estimates with less bias and 
lower RMSE than 2SLS (see section 6.6.2). However, while the study deliberately 
chose not to include methods that assume no unobserved confounding, as they lay 
beyond the scope this thesis, the comparison could have been extended to consider a 
broader range of comparators including 2SRI, which, unlike 2SLS, can in theory 
retrieve the ATE for the population in presence of unmeasured confounding (Basu et 
al., 2018; Terza et al., 2008). Also, the study sought to formally evaluate LIV methods 
in typical settings for the use of RWD according to levels of IV strength or sample 
size. However, I did not consider other issues that arise with IV approaches, including 
bias from violations of the exclusion-restriction assumption. Finally, the chosen 
metrics for the simulation study, bias and rMSE could have been supplemented by 
other measures of performance according to power or CI coverage probability (see 
section 6.6). 

6.6 Areas for future research 

This thesis identified a series of areas for further research.  

6.6.1 Application of the principles of target trial framework 
and Local Instrumental Variables in settings with time-
varying confounding 

Future studies could expand on the methods described in the thesis to address related 
challenges. In particular, the ESORT study exemplifies the setting in which a single 
‘one-off’ treatment is administered at a particular timepoint. Hence, further research 
is required to evaluate relative effectiveness in those settings in which sequences of 
treatment are provided across the time horizon of interest, which raises issues about 
time-varying confounding according to observed and unobserved factors. Methods like 
inverse probability of treatment weighting (IPW), and parametric g-computation have 
been proposed for estimating treatment effects of time-varying treatments in presence 
of observed confounders that are also time-dependent (see Daniel et al. (2013) for a 
review). However, the theory for estimating effects of time-varying treatments using 
IVs is far less developed. Recently, Tchetgen et al. (2018) considered IV estimation in 
the context of Marginal Structural Models, which were introduced by Robins (1997) 
for estimating joint effects time-varying treatment, but only in the context binary 
instruments. Further research could evaluate whether methods can be expanded to 
consider continuous IVs. This thesis did not consider other strategies for mitigating 
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the risk of immortal time bias in studies using RWD and treatment strategies with a 
grace period. Methods like CCW described by Hernán and Robins (2016) could be 
adopted within IV designs in presence of time-varying confounding.  

6.6.2 Extending simulation study design to consider 
additional metrics of performance for evaluating Local 
Instrumental Variable methods 

While research paper 3 gives insights into the finite sample estimation properties of 
LIV methods according to different levels of IV strength, the simulation study did not 
evaluate the reliability of statistical inferences on treatment effects of these methods. 
It is well-known that, unlike inferences based on the weak-identification-robust 
Anderson-Rubin (AR) test statistic8, t-ratio-based inferences estimator are subject to 
size/coverage distortions when instruments are weak (Dufour, 2003). Recent work by 
Lee et al. (2021) has quantified those distortions in the case of 2SLS, and suggested 
that applying a ‘95% confidence’ requires that the first stage F statistic exceeds 100. 
However, it is unclear whether these findings apply to the continuous IV setting, where 
identification relies on the existence of a continuous IV that is not only valid, but also 
sufficiently strong to ensure that there is a level of the IV at which all the individuals 
in the sample ‘comply’ (i.e., are shifted or selected into treatment) (Basu et al., 2007). 

The strength of the instrument and the sample size have also been shown to influence 
the study’s power to detect true causal effects (minimise the risk of type-II errors) of 
IV methods. Recently, Keane and Neal (2021) and Angrist and Kolesár (2021) showed 
that the power conveyed by conventional F-statistic values (i.e., around 10) with 2SLS 
can be low. While, this is likely to be the case for LIV too, power evaluations have 
yet to be extended to continuous IV. Therefore, future research could extend the 
simulation study design in research paper 3 to formally evaluate the reliability of 
inference with LIV by considering coverage of the 95% CI, and power to detect a 
causal effect based on the CI. Statistical power could also be affected by imbalances 
in treatment assignment in the case of LIV, just as with 2SLS (Campbell and 
Gustafson, 2018; Myers et al., 2011). Therefore, the simulation study design could also 
be expanded to consider scenarios where the proportion of patients exposed (assigned) 
to treatment is varied alongside the instrument strength and sample size.  

 

8 The test has correct size regardless of sample size and strength of the IV. 
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6.6.3 Use of data-adaptive methods alongside Local 
Instrumental Variable methods 

Consistent estimation of treatment effect parameters using the methods described in 
the thesis requires that the parametric models for the outcome and treatment selection 
are correctly specified. This can be a challenging task, especially in settings with high-
dimensional data, that carries a high risk of bias due to model misspecification. 
Machine learning methods have already been applied for high-dimensional covariate 
selection in IV designs using 2SLS methods for policy evaluation (Bakx et al., 2020; 
Martin et al., 2022). Similar approaches could be adopted in the continuous/multi-
valued IV setting. Recently, a doubly robust (DR) estimator of the MTE curve was 
developed by Kennedy et al. (2019). The DR estimator, together with the models for 
the outcome and treatment, requires the specification and estimation of an additional 
nuisance function, which models how the instrument depends on the covariates. In 
this thesis, following (Heckman and Vytlacil, 1999, 2001), the estimation of target 
treatment effect parameters was done defining fully parametric models. Instead, 
Kennedy et al. (2019)’s proposed approach relaxes the assumption that both 
parametric models are correctly specified. Another advantage of this flexible method 
is that the target estimand can be made conditional on covariates of interest, and not 
the full covariate space. Further work could build on this work using data-adaptive 
covariate selection methods such as least absolute shrinkage and selection operator 
(LASSO) for confounding adjustment in high dimensional settings (Belloni et al., 
2014). 

6.7 Recommendations for applied researchers 

6.7.1 Apply the set of recommendations for target trial using 
Real-World Data to inform Health Technology Assessment 
provided in research paper 1 

The target trial emulation framework should be adopted as part of CEA designs that 
use RWD. Researchers should carefully assess the sufficiency and adequacy of the data 
to answer the research question, and in particular the challenges raised in research 
paper 1. When the RWD is insufficient or inadequate to emulate the design elements 
of the target trial, researchers should consider the recommendations provided in 
research paper 1. These should be adopted alongside published questionnaires and 
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checklists for economic evaluations, and other available tools for evaluating the 
plausibility of underlying assumptions of statistical methods (Faria et al., 2015; Kreif 
et al., 2013).  

6.7.2 When the study has access to a continuous or multi-
valued instrument, consider using Local Instrumental 
Variable methods for informing treatment effects as 
described in research paper 2 

The thesis describes novel methods for estimating treatment effects in the presence of 
unmeasured confounding and heterogeneity. It is recommended that in settings where 
essential heterogeneity is anticipated, researchers consider LIV methods to report 
robust estimates of treatment effects. More generally, LIV methods should be 
considered in any setting in which there is interest in evaluating heterogeneous 
treatment effects. Methods described in research paper 2 and 3 could be used to report 
estimates at the individual-level, or aggregated over subgroups of interest. 

6.7.3 Consider whether the strength of the instrument is 
enough to ensure low bias and sufficient statistical efficiency 
given the available sample size and form of treatment effect 
heterogeneity as described in research paper 3 

This thesis recommends that studies using LIV methods carefully consider the 
relevance assumption. The strength of the instrument, as measured by the value of 
the first stage F statistic, should not be judged according to whether it exceeds a fixed 
threshold. Whether the IV is sufficiently strong should be assessed alongside the 
sample size available, and the interaction between confounding and heterogeneity. For 
example, moderate and small samples may require a much stronger IV, i.e., higher F 
statistic, whereas if the sample size is very large, or if the treatment effects are 
expected to be homogeneous across individuals, then a weaker IV may suffice. 

6.8 Implications for policy-making 

Real-world evidence is being increasingly adopted by HTA agencies to inform decision-
making in healthcare. The recently-published, NICE methods guidance highlights the 
need for real-world evidence, but acknowledges the lack of trust in this type of evidence 
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as a major barrier for its adoption (NICE, 2022). The target trial framework offers a 
means to increase trust in this type of evidence from observational studies that use 
RWD, and improve the use of RWD in HTA. The target trial framework can help 
decision-makers and clinical experts to judge the rigour and reliability of the evidence 
according to how closely the study replicates (emulates) the design elements of the 
target trial. The recommendations outlined in research paper 1 could improve the 
process of critical appraisal of CEA that use routine data in HTA evaluations, and 
help those using the evidence to judge the appropriateness of the study design. For 
example, the risk of selection bias in the CEA could be judged according to whether 
the definition of time (day zero or baseline) is aligned with the time that eligibility is 
assessed.  

The ESORT study addressed some of the gaps in evidence evaluating the cost-
effectiveness of ES. In particular, the LIV approach found that while there is no 
indication that either ES or NES are cost-effective overall, there are subgroups of 
patients for which further uptake of NES strategies could result in better outcomes 
and cost, albeit with uncertainty about the magnitude of these effects reflecting the 
respective sample sizes. The LIV approach identified subgroups for which there may 
be cost savings from the increased uptake of ES or NES strategies. It found that NES 
strategies are more cost-effective for patients with moderate or severe frailty (acute 
appendicitis, abdominal wall hernia), and with at least two comorbidities (hernia), or 
in older age groups (appendicitis). Likewise, NES was the more cost-effective 
alternative for patients with diverticular disease with perforation and abscess. These 
findings suggest that currently NES (ES) might be (over)underused in some subgroups 
of patients with these conditions, and that redirecting resources could result in gains 
in terms of efficiency. The observed patterns of treatment effect heterogeneity across 
population subgroups could help inform future guidance for emergency admissions 
about triage for ES according to baseline risk profiles. However, further evidence is 
required to inform how best to ‘personalise’ the choice of strategy for patients for these 
conditions. These findings could help target future trials to provide more granular 
evidence about which prognostic factors play a role in explaining heterogeneous 
responses to ES. 

6.9 Conclusions 

This thesis aimed to address the lack of guidance for designing CEA that use routinely-
collected individual-level RWD in the presence of unmeasured confounding and 
heterogeneity. The thesis carefully examined the challenges that could arise in 
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extending the target trial framework to CEA that use RWD, and offers a series of 
recommendations for future studies.  

The risk of unmeasured confounding is arguably the biggest threat to providing 
reliable evidence from CEA that use RWD. This thesis extends LIV methods for 
tackling the risk of residual confounding and heterogeneity from unmeasured 
covariates to a CEA that uses individual-level routine data from England. I formally 
assess the main requirements for the LIV approach and provide guidelines for future 
studies. While these assumptions must also be made assessable and carefully assessed, 
these methods have the potential to use RWD to inform the personalisation of 
treatment choice. The focus of the thesis is on CEA that intend to inform decision-
making within the HTA context, but the principles developed can improve how RWD 
is used in comparative effectiveness and cost-effectiveness studies more generally.  
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11     antibiotic*.ti,ab. (362483) 

12     antibiotic+adj+therapy.ti,ab. (0) 

13     Anti-Bacterial+Agents/tu (136787) 

14     Watchful+wait$.tu. (0) 

15     delayed+surg$.ti,ab. (2207) 

16     trial.ti,ab. (662690) 

17     RCT.ti,ab. (25317) 

18     randomi#ed+controlled+trial.pt. (544498) 

19     controlled+clinical+trial.pt. (94426) 

20     case+control+stud$.ti,ab. (113845) 

21     cross-sectional+stud$.ti,ab. (200110) 

22     cohort+stud$.ti,ab. (248537) 

23     observational+stud$.ti,ab. (128258) 

24     Economic+evaluation.ti,ab. (10055) 

25     EuroQol-5+Dimension.ti,ab. (690) 

26     "EQ-5D".ti,ab. (9680) 

27     or/1-3 (10504) 

28     or/4-15 (651442) 

29     and/27-28 (10504) 

30     or/16-24 (1697513) 

31     and/29-30 (200) 

32     or/25-26 (9957) 

33     and/31-32 (2) 

--------------------------------------------------------------------------------  



 

-------------------------------------------------------------------------------- 

1     (inguinal or femoral or ventral or umbilical or abdominal wall).ti,ab. (335807) 

2     hernia.ti,ab. (52281) 

3     hernioplasty/ (9400) 

4     herniorrhaphy/ (9400) 

5     hernioplasty.ti,ab. (1602) 

6     herniorrhaphy.ti,ab. (2372) 

7     repair+or+surg*.ti,ab. (22) 

8     hernia+adj+repair.ti,ab. (0) 

9     (early adj3 (surg* or repair)).ti,ab. (28362) 

10     trial.ti,ab. (657219) 

11     RCT.ti,ab. (24987) 

12     randomi#ed+controlled+trial.pt. (541163) 

13     controlled+clinical+trial.pt. (94345) 

14     case+control+stud$.ti,ab. (113048) 

15     cross-sectional+stud$.ti,ab. (197037) 

16     cohort+stud$.ti,ab. (244943) 

17     retrospective+stud$.ti,ab. (179855) 

18     observational+stud$.ti,ab. (126477) 

19     (cost adj (utility or effectiv*)).ti,ab. (149693) 

20     Economic+evaluation.ti,ab. (9983) 

21     (quality of life or QoL or HRQoL).ti,ab. (312433) 

22     EuroQol.af. (6571) 

23     EQ-5D*.af. (9689) 

24     and/1-2 (20870) 

25     or/3-9 (40553) 

26     or/10-20 (1972540) 

27     or/21-23 (315435) 

28     and/24-27 (129) 

-------------------------------------------------------------------------------- 

 

 

  



 

 

 

 



 

 

 

 



 

 



 

 

 



 



 



 

 



 

 

 
 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



 

 

  



 

 

 

 

 



 

 

 



 



 



 

 


