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ABSTRACT A fundamental, clinical, and scientific concern is how lytic bacterio-
phage, as well as antibiotics, impact diagnostic positivity. Cholera was chosen as a
model disease to investigate this important question, because cholera outbreaks en-
able large enrollment, field methods are well established, and the predatory relation-
ship between lytic bacteriophage and the etiologic agent Vibrio cholerae share com-
monalities across bacterial taxa. Patients with diarrheal disease were enrolled at two
remote hospitals in Bangladesh. Diagnostic performance was assessed as a function
of lytic bacteriophage detection and exposure to the first-line antibiotic azithromy-
cin, detected in stool samples by mass spectrometry. Among diarrheal samples posi-
tive by nanoliter quantitative PCR (qPCR) for V. cholerae (n � 78/849), the odds that
a rapid diagnostic test (RDT) or qPCR was positive was reduced by 89% (odds ratio
[OR], 0.108; 95% confidence interval [CI], 0.002 to 0.872) and 87% (OR, 0.130; 95% CI,
0.022 to 0.649), respectively, when lytic bacteriophage were detected. The odds that
an RDT or qPCR was positive was reduced by more than 99% (OR, 0.00; 95% CI, 0.00
to 0.28) and 89% (OR, 0.11; 95% CI, 0.03 to 0.44), respectively, when azithromycin
was detected. Analysis of additional samples from South Sudan found similar phage
effects on RDTs; antibiotics were not assayed. Cholera burden estimates may im-
prove by accommodating for the negative effects of lytic bacteriophage and antibi-
otic exposure on diagnostic positivity. One accommodation is using bacteriophage
detection as a proxy for pathogen detection. These findings have relevance for other
diagnostic settings where bacterial pathogens are vulnerable to lytic bacteriophage
predation.
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There are approximately 4.5 billion diarrheal disease cases per year (1). While the 2
to 4 million cases of cholera that occur annually represent a small fraction of the

total cases (2), cholera inflicts a high morbidity and mortality on populations with
extreme poverty. Outbreaks begin when immunologically susceptible human hosts are
exposed to the Gram-negative pathogen Vibrio cholerae (O1 and O139 serogroups)
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from contaminated food or water (3). Before modern rehydration regimens, mortality
rates rose above 20% (4) from acute secretory diarrhea resulting from the action of
cholera toxin (3). For cases treated with oral or intravenous rehydration, mortality rates
decrease to less than one percent (5, 6). Antibiotics are recommended for cholera
patients with moderate to severe dehydration (7, 8), but in practice most cholera
patients are likely ordered antibiotics (27, 36, 44). Asymptomatic cases are detected by
a rise in antibody titer but negative stool studies, typically by microbial culture (9). V.
cholerae is shed from the human host with increased infectivity (10, 11). This hyperin-
fectivity is suggested to drive the exponential phase of outbreaks (12).

Patients often shed V. cholerae-specific lytic bacteriophages (ICP1, ICP2, and ICP3).
The receptor for ICP1 is the O-antigen lipopolysaccharide (13–15), and the ICP2
receptor is OmpU, which is regulated by ToxR; removal of either protein impedes ICP2
(13, 16). The receptor for ICP3 is assumed to be the O-antigen lipopolysaccharide (17).
While the host range of ICP1 is O1 V. cholerae, ICP2 and ICP3 can infect non-O1 V.
cholerae (16). These vibriophages are proposed to quench outbreaks based on data that
a higher percentage of patients shed vibriophages during the collapse of an outbreak
(18–21). Vibriophages are detected in aquatic settings with correlates to outbreaks (19,
22), and ICP1 has been shown to maintain infectivity in environmental water (23).

Diagnostically, culture and PCR are the best available gold standards for the
detection of V. cholerae (24, 25). Alternative methods include direct immunofluores-
cence microscopy for the O-antigen polysaccharide (OPS) (26), rapid diagnostic tests
(RDTs) that rely on OPS-specific antibodies, and, recently, nanoliter quantitative PCR
(nl-qPCR) (27, 28); nl-qPCR uses standard quantitative PCR chemistry in nanoliter
reaction volumes that are loaded robotically onto chips with 5,000 wells (TaKaRa Bio
USA; formerly WaferGen, Inc.). RDTs are intended to be durable in field settings where
clinical laboratories are not available but diagnostic information is vital to outbreak
response (25). Commercialized RDTs for cholera typically consist of a lateral-flow device
(dipstick). One end of the RDT is placed in the test material that also contains a pad with
mobile gold-labeled monoclonal antibody for the target pathogen. The gold-labeled
antibody bound to antigen is drawn vertically up the RDT by capillary action past a test
line with unlabeled monoclonal antibody for the target pathogen and then a control
line with a goat anti-mouse antibody that binds the nonvariable region of the mono-
clonal antibody (29).

The rationale for this study was based on the recognition that cholera RDTs have
limited adoption because of variable performance for unknown reasons (25, 30–33);
immediately testing stool samples demonstrated broad sensitivities (58 to 100%) and
specificities (71 to 100%). A modified method that enriches for V. cholerae in alkaline
peptone water (APW) to increase specificity to 91 to 99% is associated with a decrease
in sensitivity (30, 31, 34). Both lytic bacteriophage and antibiotics have been postulated
to impact diagnostics (33). Developing an RDT that has both high sensitivity and
specificity is a formidable task. One of the most commonly used RDTs is a lateral-flow
RDT for group A Streptococcus (Gram positive). This RDT has a sensitivity of 86% and
specificity of 95% (35). Clinically, this means 14 out of 100 patients may have strepto-
coccal pharyngitis but might be misdiagnosed and, therefore, not receive the indicated
antibiotic. An important question that has generalizability is if antibiotics or lytic
bacteriophage affect the results in these 14 patients.

Using cholera as a model, we tested the hypothesis that lytic bacteriophage, and
antibiotics, negatively impact diagnostics within the confines of a previously published
clinical study (36). In brief, the study was conducted from September to December 2015
at the district hospital, and a subdistrict hospital, in the remote northern district of
Netrokona, Bangladesh, which is prone to seasonal cholera outbreaks. Inclusion criteria
were patients at least 2 months old and presenting with acute (�7 days) diarrhea (�3
loose stools in the 24 h prior to admission) without complications. Additional analyses
were performed on samples from South Sudan to broaden the experimental scope of
this study.
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MATERIALS AND METHODS
Participants. This study was conducted within the confines of previously published studies in

Bangladesh (36) and South Sudan (37). Ethical approvals were obtained for the Bangladesh study at the
Institutional Review Boards (IRBs) of Stanford University School of Medicine and the Institute of
Epidemiology, Disease Control and Research, Bangladesh Ministry of Health and Family Welfare (36), and
for the South Sudan study at the IRBs of Johns Hopkins Bloomberg School of Public Health and the South
Sudan Ministry of Health, Directorate of Monitoring, Evaluation, and Research (37). Written informed
consent/assent was obtained from participants and/or guardians of participants.

Study design. In Bangladesh, inclusion criteria were patients at least 2 months of age presenting
with acute (�7 days) diarrhea (�3 loose stools in the prior 24 h) without clinical complications. Sample
collection occurred from September to December 2015 at the district hospital and a subdistrict hospital
in the remote northern district of Netrokona, which is prone to seasonal cholera outbreaks. In South
Sudan, inclusion criteria were patients presenting at a cholera treatment center in Juba who were at least
6 months old and had diarrhea (�3 loose stools in the prior 24 h). Samples were collected from August
to September 2015. There was no history of cholera vaccination at the Bangladesh and South Sudan sites.

Laboratory procedures. For samples collected in Bangladesh, the methods have been previously
described (27). In brief, the first stool sample voided was collected immediately after admission to avoid
exposure to hospital-administered antibiotics. The supernatants from V. cholerae-positive stools were
tested for antibiotic exposure using a liquid chromatography-mass spectrometry (LC-MS) protocol for a
1100 series high-performance liquid chromatograph (Agilent Technologies) integrated with an LTQ XL
ion trap mass spectrometer (Thermo Fisher Scientific) (27). The stool samples were tested by a dipstick
RDT (Crystal VC, Span Diagnostics) after enrichment in APW for 6 h or overnight (36). The first and last
samples collected per day were stored in Cary-Blair medium (4°C) for culture at a central reference
laboratory in Dhaka (icddr,b); samples were stored for up to 1 month. Aliquots (500 �l) from all patients
were stored in 1.3 ml RNAlater (Invitrogen).

For Bangladesh samples, stools suspended in RNAlater were centrifuged to obtain pellets for DNA
extraction using the MoBio Power Soil 96-well plate system (Qiagen; formerly PowerSoil). DNA extracts
were screened in technical replicates for V. cholerae by qPCR in a 384-well LightCycler (Roche) using
tcpAset1 primers (see Table S1 in the supplemental material) (27). Samples that had threshold cycle (CT)
values of less than 25 were defined as positive. Samples with CT values from 25 to 31 were evaluated for
the second target of ompW by PCR and gel electrophoresis, given that this CT value range is vulnerable
to false positives and negatives (8). In parallel, nl-qPCR was performed in technical replicates with tcpAset1

primers and additional targets (27, 28). SYBR Green master mix (Sigma-Aldrich) was used for both qPCR
and nl-qPCR; however, there was 1.8-fold more DNA in nl-qPCRs. Cycle threshold values for positivity
for qPCR and nl-qPCR were 29 and 28, respectively. 16S rRNA gene analysis utilized previously
published methods and data (27) on nl-qPCR V. cholerae-positive samples for tcpA (Table S1). Lytic
vibriophages ICP1, ICP2, and ICP3 were detected by PCR (Table S1). For samples collected in South
Sudan, analyses for V. cholerae have been previously described on DNA extracted from dried stool
spots (37). In addition, the extracts were analyzed by PCR for ICP1 and ICP3 (ICP2 PCR technically failed;
Table S1).

Direct immunofluorescence was performed as previously described on planktonic cells from
RNAlater-preserved stool samples (38). The planktonic cell fraction was obtained by a 15-s centrifugation
at 100 � g to remove sediment from 500 �l of sample followed by one phosphate-buffered saline (PBS)
wash, pelleting the supernatant fraction, and resuspension of the pellet in 500 �l of PBS with 3.7%
formalin. Mock positive-control stool samples were used for molecular and microscopy assays that
consisted of V. cholerae set to concentrations relative to cholera stool (5e8 CFU/ml and 1e8 CFU/ml) in
500 ml normal saline plus 1.3 ml RNAlater (ratio used in stool storage).

Statistical analysis. Latent class modeling was used to estimate sensitivities and specificities of each
diagnostic (39). For prior information, the assumptions for sensitivities were the same for RDT, qPCR,
nl-qPCR, and culture (50 to 100%). Assumptions for specificities were 50 to 100% for RDT, 90 to 100% for
qPCR and nl-qPCR, and 99 to 100% for culture (24). Gibbs sampling with 100,000 iterations was used to
generate posterior estimates with 95% confidence intervals (CI). Fisher’s exact test was used to evaluate
associations between diagnostic type and detection of lytic bacteriophage/azithromycin. Both sample
odds ratios (OR) and estimated sample odds ratios with a conditional maximum likelihood estimate were
computed. A two-sample Wilcoxon test was used to compare CT values between diagnostic positive and
negative samples among samples positive for V. cholerae by nl-qPCR CT. Comparison of microbiota (16S
rRNA gene analysis) by diagnostic result and exposure among nl-qPCR-positive samples was conducted
by permutational multivariate analysis of variance (PERMANOVA) as previously described (27). Missing-
ness in the data set is designated NA and is restricted to laboratory results. Statistical analyses were
completed in GraphPad Prism 8.0.1 and R v3.4.1/RStudio v1.1.0153 (40).

Data availability. Data analyzed in the manuscript are available in the online supplemental material.

RESULTS
Sensitivity and specificity estimates by latent class modeling. In Bangladesh,

stool samples were collected from 881 of 961 enrolled patients. Among samples tested
by RDT, qPCR, and nl-qPCR, the distribution of diagnostic positivity is provided (Fig. 1A
and B). The sensitivities and specificities of each diagnostic were estimated using a
Bayesian latent class modeling framework, which enables estimation of diagnostic
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accuracy in the absence of a perfect reference standard by integrating data from
multiple tests (39). Estimates for sensitivity of RDT, qPCR, and nl-qPCR were 31.5% (95%
CI, 21.5 to 43.7), 64.1% (95% CI, 50.7 to 80.2), and 97.6% (95% CI, 89.0 to 100.0),
respectively. The specificities were 99.6% (95% CI, 99.0 to 99.9), 99.9% (95% CI, 99.7 to
100.0), and 99.6% (95% CI, 98.3 to 100.0), respectively. Among the subset of samples
randomly chosen for culture (16 positive out of 251), sensitivity was 57.1% (40.4 to 73.2)
and specificity was 99.7 (99.3 to 99.9). Based on these results, nl-qPCR was selected as
the best available reference standard for subsequent analysis. The receiver operator
curve (ROC) is presented (Fig. 1C).

Impact of lytic phage on diagnostic positivity. Among V. cholerae-positive sam-
ples by nl-qPCR in Bangladesh, 19.2% (15/78) and 1.3% (1/78) were positive for ICP1 and
ICP2, respectively; ICP3 was not detected. Of 180 random samples negative by nl-qPCR,
qPCR, and RDT, two patients had ICP1 (one was culture positive) and one had ICP2.
Among V. cholerae-positive samples by nl-qPCR that lacked azithromycin, vibriophages
(ICP1 and ICP2) were negatively associated with diagnostic positivity by RDT (OR, 0.11;
95% CI, 0.002 to 0.87), qPCR (OR, 0.13; 95% CI, 0.02 to 0.65), and direct immunofluo-
rescence microscopy (38) (OR, 0.18; 95% CI, 0.02 to 1.031; Table 1). Frequencies of
vibriophage detection were different between study sites (Fischer’s exact test;
P � 0.033).

FIG 1 Diagnostic comparison of Bangladesh stool samples identified as positive for V. cholerae by at least one modality (RDT, qPCR, and nl-qPCR; N � 78). (A)
Venn diagram of diagnostic positivity for qPCR, nl-qPCR, and RDT; area within each circle is relative to the degree of positivity. (B) Comparison CT values between
qPCR and nl-qPCR analysis with ICP1 and ICP2 metadata; horizontal and vertical dotted lines depict thresholds of positivity for each test. ND, not detected. (C)
Receiver operator characteristic (ROC) curve. Estimates of the sensitivity and 1-specificity of combining diagnostics are defined in the key, and vertical bars from
each symbol depict the 95% CI; these data are available in tabular format in Table S4.

TABLE 1 Lytic phage negatively impact diagnostic positivity (azithromycin excluded)

Dxg Na

Dx positive [% (no.
positive/total no.)] by
phage exposure

ORb OR_MLE
c CIc P valuedExposed Unexposed

RDT 56 9 (1/11) 49 (22/45) 0.105 0.108 0.002–0.872 0.019
qPCR 56 36 (4/11) 83 (37/45) 0.124 0.130 0.022–0.649 0.005
Microscopye 52 20 (2/10) 60 (25/42) 0.170 0.176 0.016–1.031 0.036
Culturef 22 0 (0/0) 59 (13/22)
aNumber of V. cholerae-positive samples by nl-qPCR without azithromycin detected in the stool by mass
spectrometry.

bOR, sample odds ratio.
cEstimated odds ratio with conditional maximum likelihood estimate (MLE); CI, 95% confidence interval.
dFisher’s exact test.
eIndeterminant samples were considered negative; limit of detection was 100 to 1,000 CFU/ml.
fInsufficient samples with phage for statistical analysis.
gDx, diagnostic.
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Diarrheal samples from South Sudan were analyzed to increase generalizability (37).
ICP1 was detected in 10.2% of enriched samples (n � 10/98) independent of V. cholerae
detection by PCR. Among samples positive for V. cholerae by PCR, ICP1 was detected in
24% of samples (n � 7/29; see Table S2 in the supplemental material). Among samples
negative for V. cholerae by PCR, ICP1 was detected in 4.3% of samples (n � 3/69); two
samples were RDT negative, and one was weakly RDT positive. ICP1 was negatively
associated with RDT positivity after enrichment (OR, 0.00; 95% CI, 0.00 to 0.64,
P � 0.010; Table S2); a statistically significant difference was not observed for unen-
riched samples. ICP3 was not identified. There were insufficient samples with bacte-
riophage detected to assess bacteriophage impact on culture positivity.

Impact of azithromycin on diagnostic positivity. Among Bangladesh samples
positive by nl-qPCR but negative for bacteriophage, azithromycin was negatively
associated with diagnostic positivity by RDT (OR, 0.00; 95% CI, 0.00 to 0.28) and qPCR
(OR, 0.11; 95% CI, 0.03 to 0.44) but not by direct fluorescence microscopy (OR, 0.54; 95%
CI, 0.14 to 1.97) (Table 2). Azithromycin was negatively associated with culture positivity
(OR, 0.00; 95% CI, 0.00 to 0.997) (Table 2).

Absolute and relative V. cholerae concentration. Absolute and relative V. cholerae
concentration was assessed by nl-qPCR and 16S rRNA gene analysis, respectively.
Among nl-qPCR-positive samples, there was a significant inverse relationship between
diagnostic positivity and V. cholerae concentration (Table S3). With no exclusions, fold
differences between positive and negative samples ranged from 21-fold (culture) to
79-fold (qPCR). The one exception was that phage exposure (azithromycin samples
excluded) did not associate with a significant difference in the nl-qPCR CT values
between culture-positive (n � 13; CT , 19.4; 95% CI, 14.3 to 22.0) and -negative samples
(n � 9; CT, 20.8; 95% CI, 17.6 to 25.9; P � 0.186). Statistically significant differences in
microbiota (16S rRNA gene) were observed between RDT-positive and -negative stools
with stratifications for bacteriophage (Fig. S2A) and azithromycin (Fig. S2B).

DISCUSSION

This study investigated the potential vulnerability diagnostics have when bacterial
targets are exposed to lytic bacteriophage predation or antibiotics. Using cholera as a
model system and nl-qPCR as a reference standard for V. cholerae, we found that the
odds of an RDT, qPCR, and microscopy diagnostic testing positive were reduced by
more than 83% when lytic bacteriophage were present. Similarly, the odds of an RDT,
qPCR, and culture testing positive were reduced by more than 89% when the first-line
antibiotic azithromycin was detected in stool by mass spectrometry. These results
expose a vulnerability of gold-standard diagnostics that clinicians and scientists have
feared but lacked sufficient data to take evidence-based action.

We reason that the low inflection point in the ROC at approximately 0.7 sensitivity

TABLE 2 Azithromycin negatively impacts diagnostic positivity (phage excluded)

Dxg Na

Dx positive [% (no.
positive/total no.)] by
phage exposure:

ORb OR_MLE
c CIc P valuedExposed Unexposed

RDT 63 0 (0/18) 49 (22/45) 0.000 0.000 0.000–0.282 �0.001
qPCR 63 33 (6/18) 82 (37/45) 0.108 0.113 0.026–0.437 �0.001
Microscopye 58 44 (7/16) 60 (25/42) 0.529 0.535 0.139–1.973 0.378
Culturef 27 0 (0/5) 59 (13/22) 0.000 0.000 0.000–0.997 0.041
aNumber of V. cholerae-positive samples by nl-qPCR without lytic bacteriophage (ICP1, ICP2, and ICP3)
detected in the stool by PCR.

bOR, sample odds ratio.
cEstimated odds ratio with conditional maximum likelihood estimate (MLE); CI, 95% confidence interval.
dFisher’s exact test.
eIndeterminant samples were considered negative; limit of detection 100 to 1,000 CFU/ml.
fInsufficient samples with phage for statistical analysis.
gDx, diagnostic.
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is multifactorial (Fig. 1C). We explored the effect on sensitivity and specificity of adding
ICP1 detection as a proxy for V. cholerae detection (Fig. 1C; see also Table S4 in the
supplemental material). qPCR, culture, and RDT results moderately improved. The
effects of lytic bacteriophage, antibiotics, and host antimicrobial factors on diagnostic
positivity are likely additive, especially given that these diagnostics target different
biologic mechanisms. How duration of illness and severity of disease serve as deter-
minants of diagnostic positivity remain unknown. Time-series analyses of cholera
patients with lytic bacteriophage coinfection and defined antimicrobial administration
are needed to further these lines of inquiry. These studies would be strengthened by
enrollment of household contacts and healthy neighbor households, as well as testing
their water sources, to collectively determine rates of symptomatic and asymptomatic
V. cholerae infection and for detection of vibriophage inside and outside the human
host.

These findings should be viewed within the context of the limitations of the study.
The procedures were chosen for feasibility at remote field sites. The remote locations
delayed transport and culture up to 1 month, which can be detrimental to culture
efficiency (41) and precluded plaque assays by soft-agar overlay with V. cholerae
exposed to filtered stool supernatant. The higher detection rate of nl-qPCR than that of
qPCR was multifactorial, including the 1.8-fold difference in DNA. The positive nl-qPCR
samples that were negative by qPCR and negative by ompW were unlikely to be false
positives, because Vibrio spp. were detected by 16S rRNA gene analysis in all samples
that did not have lytic vibriophage (n � 13/13); those samples with vibriophage had
DNA of insufficient quality and/or quantity to yield a 16S rRNA gene result (n � 7/7).
Among nl-qPCR-positive and qPCR-negative samples, PCR detection for tpcA correlated
with PCR detection of ctxA (cholera toxin; n � 5/5; Table S1). These data, paired with
serologic results that found only O1 V. cholerae, make the possibility of confounding
from non-O1 V. cholerae unlikely. Despite these limitations, the discovery that lytic
bacteriophage negatively impacts diagnostics by 5- to 10-fold, even to the point that
samples will test positive for bacteriophage and negative for the pathogen, has broad
significance. One explanation is lytic bacteriophage and antibiotics inhibit bacterial
growth below the diagnostic limits of detection. Alternatively, bacteriophage nu-
cleases, or host nucleases responding to bacteriophage infection, may differentially
digest host chromosomal DNA to the point that PCR fails (42, 43).

Conclusions. Within the cholera field, this study suggests that an updated approach
is needed to estimate cholera burden, especially in the latter phases of outbreaks when
rates of concurrent lytic bacteriophage predation are likely higher (19, 20). This may
require an approach that includes lytic bacteriophage detection as a proxy for patho-
gen detection and a deemphasis on diagnostic results with known antibiotic exposure.
Outside the cholera field, these data serve as a call to action to survey for lytic
bacteriophage when bacterial diagnostics have inconsistent performance. These
efforts may justify a new line of diagnostic development that targets both the prey
(pathogen) and predator (bacteriophage) and scientific inquiry into the underlying
mechanisms of action and spatial/temporal relationship of lytic bacteriophage and
their host pathogen.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, CSV file, 0.04 MB.
SUPPLEMENTAL FILE 2, PDF file, 1.5 MB.
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