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Abstract  

 

Introduction: Identifying optimal COVID-19 vaccine dose is essential for maximizing their 

impact. However, COVID-19 vaccine dose-finding has been an empirical process, limited by 

short development timeframes, and therefore potentially not thoroughly investigated. 

Mathematical IS/ID modelling is a novel method for predicting optimal vaccine dose which 

could inform future COVID-19 vaccine dose decision making. 

 

Methods: Published clinical data on COVID-19 vaccine dose-response was identified and 

extracted. Mathematical models were calibrated to the dose-response data stratified by 

subpopulation, where possible to predict optimal dose. Predicted optimal doses were 

summarised across vaccine type and compared to chosen dose for the primary series of 

COVID-19 vaccines to identify vaccine doses that may benefit from re-evaluation. 

 

Results: 30 clinical dose-response datasets in adults and elderly population were extracted 

for four vaccine types and optimal doses predicted using the models. Results suggest that, if 

re-assessed for dose, COVID-19 vaccines Ad26.cov, ChadOx1 n-Cov19, BNT162b2, Coronavac, 

and NVX-CoV2373 could benefit from increased dose in adults and mRNA-1273 and 

Coronavac, could benefit from increased and decreased dose for the elderly population, 

respectively. 



 

Discussion: Future iterations of COVID-19 vaccines could benefit from re-evaluating dose to 

ensure most effective use of the vaccine and mathematical modelling can support this. 

  

Introduction 
 

COVID-19 is one of the largest global public health challenges ever and has had a devastating 

effect, societally and economically (1). The push to develop COVID-19 vaccines is unparalleled 

with over 20 vaccines now currently being rolled out globally and approximately 300 

candidate vaccines still in development (2). These vaccines are a promising step toward 

ending the current pandemic. 

 

Essential to achieving maximal vaccine efficacy against COVID-19, or any disease, is identifying 

optimal vaccination dose amount (hereafter ‘dose’). However, as COVID-19 vaccines have 

been developed at a rapid pace compared to conventional vaccine development (3), it is likely 

that this has led to less evaluation of optimal dose. This is evident in the development of 

ChAdOx1 nCoV-19 vaccine, whereby a mistake in the dosing administration interval led to 

unexpected efficacy results, which could have provided potentially better protection (4). It is 

clear that not fully investigating COVID-19 vaccine dose-response curves to identify optimal 

dose could result in potential suboptimal protection and potentially wasted vaccine 

resources.   

 

Currently, dose finding in vaccine product development studies is primarily an empirical and 

essentially qualitative approach (5). Evaluation of a wide range of vaccine doses is time-



consuming and costly and therefore not rigorously conducted, even under normal 

circumstances (5). Unfortunately, this means sub-optimal doses may be progressing to the 

latter stages of development (examples of this can be seen in yellow fever (6, 7), meningitis 

(8) and malaria (9) vaccines). It is clear that a more effective method is urgently needed to find 

optimal vaccine dose. 

 

Historically, the development of new drugs has encountered similar issues with dose 

identification, but today benefits from systematic, extensive use of mathematical models that 

describe within-host drug dynamics (10). Model-Based Drug Development (MBDD) is 

recognized as an efficient tool to accelerate and streamline drug development, by minimizing 

developmental time and resources (11). MBDD has been established for decades in the 

pharmaceutical industry (12) and is often required by regulatory agencies in all stages of drug 

development. As such, MBDD is regularly used to establish optimal drug dose (13). 

 

In contrast, until our recent work, there has been very few vaccine dose-finding studies using 

similar quantitative modelling methods. To address this, we have launched the novel field of 

vaccine ‘Immunostimulation/Immunodynamic’ (IS/ID) modelling, an adaptation of methods 

used in drug development to systematically and quantitatively identify ‘best’ dose. We have 

shown its potential in a novel TB vaccine (14, 15) and Adenoviral-based vaccines (16-18) and 

IS/ID modelling has been recognised by vaccine developers and modellers as the future 

methodology to optimise vaccine development (19-23).  

 

Applying IS/ID models to COVID-19 vaccine dose-response data should allow us to identify 

optimal dose which may ultimately lead to more effective COVID-19 vaccines in terms of 



protection and efficient use of product (18, 21, 22). As there are multiple COVID-19 vaccines 

within a vaccine type (e.g. Adenoviral, mRNA, etc.) it is possible to aggregate IS/ID dose-

response and optimal dose predictions across vaccine type. Further to this, many COVID-19 

vaccine dose-escalation trials have stratified the vaccination population by potential high-risk 

factors for COVID-19 disease (e.g. age), allowing for optimal dose predictions for each risk-

factor groups. Finally, by using IS/ID models to predict optimal dose, we can identify if dose-

sparing is possible for vaccines that have progressed into the latter stages of development and 

therefore a dose has been selected. As many COVID-19 vaccines are now fully rolled out and 

some in the process of being administered as follow-up boosts, any potential for dose-sparing 

will be key in bringing down cost of development and spreading the vaccines further. 

 

We aimed to predict, using IS/ID models, the optimal dose of COVID-19 vaccines in humans 

using antibody dose-response data from existing published COVID-19 vaccines. We did this 

by (i) extracting published clinical antibody dose-response data for COVID-19 vaccines, (ii) 

calibrating IS/ID models to the dose-response data and predicting optimal dose across vaccine 

type by subpopulation and (iii) identifying, for the primary series of COVID-19 vaccines, 

vaccines where chosen dose may be sub-optimal, by vaccine type.  

 

 

Methods 

Objective 1: Extraction of clinical dose-response data for COVID-19 vaccines 

 

Our aim in Objective 1 was to identify publications that contained COVID-19 neutralizing 

antibody (NAb) dose-response data. NAb were chosen as they are currently believed to be 



important for protection against COVID-19 (24-26). We conducted a literature review of the 

online databases Medline, using the search themes relating to “Covid-19 or SARS-CoV-2” and 

“vaccine dose”. The literature was searched using these search terms between January 2020 

and December 2021. The resulting publications were screened, first, by abstract, followed by 

full text. Inclusion criteria included the administration of multiple (2+) dose-levels of the 

vaccine in the study and assessment of the NAb following vaccination. If multiple publications 

were found on the same vaccine dataset (e.g. as an update to a preliminary dataset), the 

latest publication was taken. NAb data presented in the paper were extracted by eye if in a 

table and using WebPlotDigitzer (27) if in graphical form. 

 

Objective 2: Calibration of IS/ID models to clinical dose-response data for COVID-19 

vaccines to predict optimal dose across vaccine type by subpopulation 

 

Simple IS/ID models were used to describe the NAb dose-response curve at the latest time 

point available in the data. We chose IS/ID models that represented either a saturated or 

peaked curve shape to account for the possibility that the dose-response could saturate or 

decrease (as seen in TB vaccines (14)) at higher dose levels. We chose a sigmoidal equation 

as the saturating curve defined as 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑅𝑚𝑎𝑥

1 + (
𝑅50

𝐷𝑜𝑠𝑒)
𝑝 

 

Where Rmax is the saturation maximum, R50 is the value where the response is 50% of the 

saturation maximum. The sigmoidal equation is able to capture when there is a range of small 



doses with zero response (p>1) (Figure 1A) or when the response increases immediately after 

zero dose (p>=1) (Figure 1B).  

 

We chose a combined exponential curve to represent a peaked curve defined as, 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = a ∗  (𝑒−𝑏∗𝐷𝑜𝑠𝑒 − 𝑒−𝑐∗𝐷𝑜𝑠𝑒) 

 

where a is a scalar and b<c. The combined exponential curve provides flexibility in the degree 

in which the dose-response curve decreases after the peak which other peaked curve 

equations cannot (Figure 1C). However, in the case where there is a small range of doses with 

zero response, which the combined exponential curve cannot capture, the following gamma 

probability density function (pdf) was chosen, 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = (𝑆 ∗
𝑟𝑠ℎ𝑎𝑝𝑒

Γ(𝑠ℎ𝑎𝑝𝑒)
∗ 𝐷𝑜𝑠𝑒(𝑠ℎ𝑎𝑝𝑒−1) ∗ 𝑒−𝑟𝑎𝑡𝑒∗𝐷𝑜𝑠𝑒) 

where S is a scalar multiplying the gamma pdf, rate is the gamma rate parameter, and shape, 

the gamma shape parameter (Figure 1D). 

 

The three curves were calibrated to the log Geometric Mean Titre (GMT) and 95% CI NAb data 

using nonlinear regression, by the function nlsLM, in the software R (28). To establish which 

of the shapes best described the dose-response curves the goodness-of-fit measure, the 

Akaike information criteria (AIC) was compared, where a lower AIC indicates a better fit (29). 

The ‘best fit’ model, with the lowest AIC was then used to make the optimal dose prediction. 

 



In the case where only two dose levels were available in the study, placebo data (if available) 

or ‘zero response’ data at dose zero, were added to enable calibration of the models. This 

was necessary as all the models have three parameters, so require, at a minimum, three data 

points to calibrate.   

 

For a saturating dose-response curve, optimal dose is defined as the smallest dose after which 

the curve plateaus, i.e. there is negligible increase in response if dose is increased beyond this 

optimal value. For a peaked curve, optimal dose is defined as the dose where an increase in 

dose leads to a decrease in response. For a saturating curve, we used an ‘acceptance 

threshold’, which defined what constituted a negligible increase in response. Optimal dose is 

then the smallest dose at which further increasing dose will lead to a negligible increase in 

response, i.e. below the acceptance threshold. Figure 2 below illustrates how optimal dose is 

identified using an Acceptance Threshold (AT). Doses are increased by increments of Dose 

and the resulting increase in response is assessed against the AT. The optimal dose (indicated 

by a red line in Figure 2) is the minimum dose at which an increase in dose of Dose results in 

an increase in response less than the AT (boxed in Figure 2). 

For vaccines measured in ug, Dose was 10% of the maximum dose administered and the 

acceptance threshold was a less than 0.1% increase in response. For example, if the maximum 

administered dose was 10ug, Dose would be 1ug and optimal dose would be the smallest 

dose for when an increase of Dose leads to a less than 0.1% increase in response. For a 

vaccine measured in Viral Particles (VP) or Plaque Forming Units (PFU), Dose was 0.5log10 

dose. For a peaked curve, the same acceptance threshold was applied with the expectation 

that for further increasing dose beyond the optimal dose would not only lead to a negligible 

increase in response, but eventually, a decrease in response. 



 

NAb dose-response curve and optimal dose were predicted separately for each subpopulation 

where data on subpopulation responses were available. Subpopulation was defined as where 

the population was stratified into sub-groups, for example, by age. The median and IQR of 

the predicted optimal doses were calculated across vaccine type (overall and by 

subpopulation). 

 

Objective 3. Identify, for the primary series of COVID-19 vaccines, vaccines where chosen 

dose may be sub-optimal, by vaccine type 

 

To identify, for the primary series of COVID-19 vaccines, vaccines where chosen dose may be 

sub-optimal, we assessed if the chosen dose lay within the IQR of the optimal doses predicted 

in Objective 2 for each vaccine type and subpopulation. If the chosen dose was above the IQR 

then future iterations of the vaccine could benefit from decreased dose (dose-sparing), 

conversely, if the dose was above the IQR, dose should be increased. 

 

 

Results 

Objective 1: Extraction of clinical dose-response data for COVID-19 vaccines 

A total of 20 publications were identified (search conducted 11th June 2021) to be included in 

the analysis (Figure 3) and from those, a total of 30 datasets were extracted. A summary of 

the dose-response data, grouped by vaccine type, can be found in Table 1. Publications were 

available on adenoviral (n=4) (30-33), RNA/DNA (n=6) (34-39), Inactivated (n=6) (40-45), 

Subunit (n=3) (46-48) and nanoparticle (n=1) (49) vaccines. For each vaccine type (except for 



the nanoparticle vaccine), dose-response data were available for both adult (ages 18-55 year) 

and elderly populations (56-85 years, across all publications). For RNA/DNA, Inactivated and 

subunit vaccines, data on 8 dose levels were available. There was available data on four dose 

levels for adenoviral vaccines and two for the nanoparticle vaccine. A detailed summary of 

the search results, including the methods used to measure NAb titres, can be found in Table 

S1.  

 

Objective 2: Calibration of IS/ID models to clinical dose-response data for COVID-19 

vaccines to predict optimal dose across vaccine type by subpopulation 

 

Figure 4 shows the results of the model calibration and prediction of optimal dose for the 

adenoviral COVID-19 vaccines. All the Adenoviral curve shapes were best described using the 

saturating model, except for data from (30, 31) (Figure4.1 and 4.2). The predicted optimal 

doses ranged between 4 x1010 to 7x1016 vp which overlapped the higher end of the 

administered dose range of 2.2x1010 to 1.5x1011vp. The median predicted optimal dose across 

all datasets is 6.1 x1010 vp (IQR: 5 x1010 – 6.1 x1011 vp). In adults, the median predicted optimal 

dose was 4.3 x1011 vp (IQR: 6.5 x1010 – 1.8 x1016 vp). In the elderly population it was 4.5 

x1010vp (IQR: 4.2 x1010- 4.8 x1010vp).  

 

Figure 5 shows the results of the model calibration and prediction of optimal dose for the RNA 

and DNA COVID-19 vaccines. The RNA vaccines dose-response curves were described by both 

the saturating and peaked curve shapes. Although it is worth noting that the mRNA-1273 

vaccine datasets (34, 35, 38) were exclusively best described by the saturating curve shape.  

The predicted optimal doses ranged between 21ug to 225ug which overlapped with 



administered dose range of 1 to 250ug.  The median predicted optimal dose across all 

datasets is 75ug (IQR: 21-90ug).  The median predicted optimal dose for adults and the elderly 

population is 63ug (IQR: 43-113ug) and 80ug (IQR: 21-90ug), respectively. The DNA vaccine 

dose-response curve was best described by peaked curve shape and the predicted optimal 

dose was 1.4ug.  

 

Figure 6 shows the results of the model calibration and prediction of optimal dose for the 

Inactivated COVID-19 vaccines. The majority of inactivated vaccines dose-response curves 

were best described by the saturating curve shape with the exception of data for the 

Inactivated whole-virus vaccine in adults (41) and CoronaVac in 70+ year adults (44) which 

were best described using a peaked curve (Figure 6.2 and 6.9). For those vaccine measured in 

ug, the predicted optimal doses ranged between 2 – 36ug which overlapped the administered 

dose range 2.5 – 10 ug. The median predicted optimal dose across all datasets is 7ug (IQR: 5-

18ug). The median predicted optimal dose for adults and the elderly population is 7ug (IQR: 

5-14ug) and 9ug (IQR: 5-19ug), respectively. For the Inactivated vaccine measured in EU (43), 

the predicted optimal dose of 690 EU was above the maximum dose administered (150 EU). 

 

Figure 7 shows the results of the model calibration and prediction of optimal dose for the 

subunit and nanoparticle COVID-19 vaccines. All Subunit vaccines dose-response curves were 

best described by the peaked curve shape with the exception of SCB-2019 datasets (48) in 

adults which were best described by a saturating curve shape (Figure 7.3). The predicted 

optimal doses ranged between 4.5ug – 290ug which overlapped the administered dose range 

of 3 – 50 ug. The median predicted optimal dose across all datasets is 21ug (IQR: 11-95ug). 

The median predicted optimal dose for adults and the elderly population is 30ug (IQR: 20-



161ug) and 12ug (IQR: 12-12ug), respectively. The nanoparticle vaccine dose-response curve 

was best described by peaked curve shape. The predicted optimal dose was 12ug. 

 

The model calibration results for each dataset can be found in table S2. 

 

Objective 3. Identify, for the primary series of COVID-19 vaccines, vaccines where chosen 

dose may be sub-optimal, by vaccine type 

 

The chosen dose for the primary series of COVID-19 vaccines, (where this data was available) 

were compared to the aggregate predicted optimal dose for the overall, adult and elderly 

populations from Objective 2 (Table 2).  

 

For the Adenoviral vaccines, Ad26.cov (Janssen vaccine) and ChadOx1 n-Cov19 (Astra Zeneca 

vaccine), the chosen dose, 5x1010 vp (50) (51), was within the IQR of the predicted optimal 

doses found in Objective 2 for the overall population. However, the modelling suggests this 

dose may be too low in adults, with the median optimal predicted Adenoviral dose in adults 

approximately a log higher (4.3 x1011 vp). The median optimal predicted dose in the elderly 

population was smaller than the chosen dose, but only by 0.5log (4.5 x1010vp). The modelling 

suggests, the dose of both vaccines could be increased for adults, if safety permits.  

 

For the RNA vaccine, BNT162b2 (Pfizer vaccine), the chosen dose, 30ug (52), was within the 

IQR of the predicted RNA optimal doses found in Objective 2 for the overall population and 

the elderly population. However, the modelling suggests the dose was too low in adults, with 



the optimal predicted RNA dose in adults 33ug higher (63ug). The modelling suggests the dose 

could be increased for adults and maintained for the elderly population.  

For the RNA vaccine, mRNA-1273 (Moderna vaccine) the chosen dose, 100ug (53), was above 

the IQR of the predicted RNA optimal doses found in objective 2 for the overall population. 

Modelling suggests this dose was too high in the elderly population, with the median optimal 

predicted RNA dose in the elderly population 20ug lower (80ug). The modelling suggests the 

dose could be decreased in the elderly population and maintained for adults. 

 

For the Inactivated vaccine, Coronavac, the chosen dose, 3ug (40, 53), was below the IQR of 

the predicted optimal doses found in Objective 2 for the overall population, adult and the 

elderly population. The modelling suggests the dose should be increased for all age groups.  

For the Inactivated vaccine, BBV152, the chosen dose, 6ug (53), was within the IQR of the 

predicted optimal doses found in objective 2 for the overall population, adult and the elderly 

population. The modelling suggests the dose could be maintained for all age groups. 

 

For the nanoparticle  vaccine, NVX-CoV2373 the chosen dose, 5ug (53), was below the median 

predicted optimal doses found in Objective 2 for adults. The modelling suggests the dose 

could be increased. 

 

Discussion 

 

Given the urgent need for COVID-19 vaccines to end the current pandemic, it is vital that these 

vaccines are optimised to reach the population in the most efficient and effective way 

possible. Immunostimulation/Immunodynamic (IS/ID) modelling is a novel method which, 



when applied to antibody dose-response data, can aid in optimising dose selection for COVID-

19 vaccines. We used modelling to predict optimal dose for published COVID-19 in adults and 

the elderly population summarised over vaccine type. We predicted that to provide optimal 

immunogenicity in adults, adenoviral vaccines Ad26.cov, and ChadOx1 n-cov19, mRNA 

vaccine, BNT162b2, inactivated vaccine, Coronavac and nanoparticle vaccine, nvx-cov2373 

may desire to be increased in dose in future iterations of development. In order to provide 

optimal immunogenicity in the elderly population, mRNA vaccine, mrna-1273 may need to 

increase dose and inactivated vaccine, Coronavac, may need to decrease dose.  

 

There are key strengths to this work. The application of the simple IS/ID models to COVID-19 

vaccine dose-response data can provide valuable insight into the shape of the COVID-19 

vaccine dose-response curve, which is conventionally, only empirically investigated (21). 

Quantitative analysis of the dose-response curve shape allows us to interpolate between 

empirical dose-response data and can be used to inform dosing decisions on similar or 

emerging vaccines not only for COVID-19 but related pathogens. 

 

By using simple IS/ID models that do not take into account the biological mechanism as a 

result of vaccination, we could predict optimal dose regardless of the NAb measure chosen in 

the study (e.g. PRNT, microneutralization (MN) assay). Our method of predicting optimal dose 

using a pre-specified acceptance threshold which was assessed against proportion of the 

dosing range in the study meant each optimal dose prediction was standardised for each 

dataset. This meant that the differences in NAb measure across studies did not impact the 

prediction of optimal dose and allowed us to aggregate optimal dose predictions across 

vaccines developed by different groups, regardless of any difference in laboratory methods. 



 

There were weaknesses to our work. To best predict optimal dose by vaccine type and 

subpopulation, our aggregated optimal dose predictions were based on limited studies and 

datasets in most cases. It would not have been appropriate to ignore vaccine type to increase 

power for subpopulation prediction, given the difference in COVID-19 vaccine types currently 

in development. Similarly, the limited range of dose-levels and sample sizes per study meant 

the 95% confidence interval of the model parameters was wide or not predictable. This means 

the uncertainty in the estimated model parameters is high and that the optimal dose 

prediction is based only on the GMT of the data. However, we believe that the dose-response 

trend this represents can still be a valuable guide to identifying optimal dose. Unfortunately, 

this is a challenge not just for IS/ID modelling, but for current empirically-based vaccine 

development in general, as usually only a very limited number of doses are investigated in 

clinical trials. Despite this, vaccine dosing decisions are still empirically made based on this 

same limited data. 

 

We choose to use only Neutralising Antibodies (NAb) to represent the immune response to 

COVID-19 which have been suggested as important for protection against COVID-19 (24-26). 

However, a correlate of protection for COVID-19, which is likely to be more complex than only 

NAb, not yet been identified. As an example, T cells were not considered in this work even 

though they have been shown to contribute to the COVID-19 immune response (54). This 

means that by only considering the NAb dose-response curves we are unlikely to have found 

the true ‘optimal immunogenic dose’. However, given NAb are a strong indication of response 

and have been, so far, a routine and more abundant measure of COVID-19 vaccine 

immunogenicity, we believe we our methods have predicted a reasonable estimate of optimal 



dose. A more complex QSP or immune response ‘network model’ could provide better 

understanding of optimal immunogenic dose for multiple immune response readouts, but 

with limited data, this was not possible for this work. 

 

 

We used the latest timepoint available in the published dataset to make optimal dose 

predictions on the most mature immune response possible. However, the latest time point 

was variable across the studies, ranging from 28 to 70 days resulting in aggregated optimal 

dose predictions based on different levels of response maturation. NAb responses taken at 

early and late time points may not be comparable, as affinity maturation may lead to delayed 

increases. To overcome this issue, we could have predicted optimal dose at the timepoint 

common to all datasets, 28 days. However, under this condition we would not have been able 

to capture the effect of the boost immunization (administered at day 28 for most of the 

vaccines), which has been critical to increase protection in real world trials. 

 

The acceptance threshold was arbitrarily chosen and changing this value will change the 

prediction of optimal dose. However, this value was considered conservative and ensured the 

plateau of the saturating dose-response curve was sufficiently flat, resulting in a robust 

optimal dose prediction. 

To our knowledge, there are few published studies using mathematical models to predict 

COVID-19 vaccine dose and none that have used all available published dose-response 

datasets for COVID-19 vaccine dose prediction. 

 



Giorgi et. al. use a Quantitative Systems Pharmacology (QSP) model to predict the percentage 

COVID-19 responders over time by dose after vaccination with mRNA vaccine, mRNA-1273. 

Their results show that, early on, there is little difference in the percentage of those who 

responded (using median convalescent serum concentration as a threshold measure) 

between the 30ug and 100ug dose of the vaccine regardless of age.  However after 

approximately a year, responders decreases (22). Empirical data support this as lower doses 

mRNA-1273 of 25µg had as high antibody immune responses as those who were given the 

dose chosen Phase III dose, 100ug (54). This suggests mRNA-1273 doses could be equally as 

effective at a lower dose, a finding our predictions support. 

 

Empirical data for mRNA vaccine BNT162b2 show that antibody responses appear to wane six 

months after second vaccination, especially in adult men (55) which could be a result of 

under-dosing. Although we did not stratify our analysis by gender, our predictions support 

this by suggesting a higher dose of BNT162b2 in adults could be more immunogenic. 

 

In our previous work, we have used mechanistic models in a PK/PD style framework to 

characterise the immune response over time, the effect of vaccine dose on the response 

dynamics as well as the variation in vaccine response across a population (15, 56). Mechanistic 

models can provide valuable understanding of the underlying biology of immune responses 

to vaccination. Applications of mechanistic models to vaccine data could potentially be shared 

to inform model-predicted dose-response for similar or emerging vaccines, reducing the need 

for empirical data (21). We were not able to apply these methods in this work as only data on 

early responses were available. Mechanistic modelling in a pharmacometric framework of 



COVID-19 vaccine dose-responses could be conducted when more longitudinal data is 

available.  

 

There are other areas for future research. Most importantly, the modelling predictions in this 

work should be validated and strengthened with further data. This should be done in a clinical 

setting to show that our predictions are reflective of reality. It is likely that since the initial 

literature search was conducted, more datasets have become available given the pace at 

which COVID-19 vaccines have been developed. More optimal dose predictions from 

emerging COVID-19 vaccine data will strengthen the predictions made in this analysis. 

 

There are many other applications of IS/ID modelling that can accelerate development for 

vaccines not only against COVID-19 but other pathogens. These could include; cross-species 

and cross-disease dose translation (e.g. ‘borrowing’ dose-response information for similar 

diseases like MERS or SARS to make further predictions for COVID-19 vaccines); further work 

on the optimal COVID-19 vaccine dosing regimen (timing of vaccination)(22) and the effect of 

a third or fourth boost; and how we can use model-based adaptively designed vaccine trials 

to reduce the time taken to explore the full range of doses. These applications are common 

in drug-development and should be explored further in vaccines.  

 

In general, IS/ID modelling offers a promising solution to accelerate how we develop all 

vaccines (23). This is especially true of vaccines developed under urgent circumstances, like 

in the case of COVID-19 where the timely application of IS/ID modelling can vastly improve 

our ability to protect the global population, saving lives. 
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Figure 1. Representation of the saturating and peaked curves. A. Sigmoidal curve equation (p>1), B. Sigmoidal curve equation (p<1), C. 

Combined exponential curve equation, D. Gamma PDF curve equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Illustration and example saturating dose-response curve and identification of optimal dose using the acceptance 
threshold. The red line indicates the smallest dose at which the increase in response is below the acceptance threshold 

for an increase of Dose. AT= Acceptance Threshold, Dose = Incremental increase in dose. 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 3. Flowchart of data extraction and screening 



 Figure 4. Predicted optimal dose for Adenoviral COVID-19 vaccines. 
Figure numbers correspond to datasets from publications as follows: 1. (30), 2. (31), 3. (33), 4-6, (32). The black points and error bars correspond to the NAb Geometric Mean Titre and 
95% CI of the data. The blue line is the model-predicted NAb dose-response curve and the vertical dashed line is the predicted optimal dose using the acceptance threshold. Dose on the x-
axis is logged and transformed for ease of model calibration, but optimal doses are transformed back to the original scale in figure. OD= Optimal Dose, vp=Viral Particle. 

 



 
Figure 5. Predicted optimal dose for RNA/DNA COVID-19 vaccines. Figure numbers correspond to datasets from publications as follows: 1. (34), 2. (35), 3. (36, 37), 4. (37), 5-6. (38), 

7. (35), 8-9, (37), 10. (39). The black points and error bars correspond to the NAb Geometric Mean Titre and 95% CI of the data. The blue line is the model-predicted NAb dose-

response curve and the vertical dashed line is the predicted optimal dose using the acceptance threshold. OD= Optimal Dose. 



 
Figure 6. Predicted optimal dose for Inactivated COVID-19 vaccines. Figure numbers correspond to datasets from publications as follows: 1. (40), 2. (41), 3. (45), 4. (42), 5. (43), 6. (44) 

7. (42), 8-9. (44). The black points and error bars correspond to the NAb Geometric Mean Titre and 95% CI of the data. The blue line is the model-predicted NAb dose-response curve 

and the vertical dashed line is the predicted optimal dose using the acceptance threshold. OD=Optimal Dose, EU=European Units 

 



 Figure 7. Predicted optimal dose for Subunit and Nano COVID-19 vaccines. Figure numbers 

correspond to datasets from publications as follows: 1. (46), 2. (47), 3-4. (48), 5. (49). The black points and error bars correspond to the NAb Geometric Mean Titre and 95% CI of the data. 

The blue line is the model-predicted NAb dose-response curve and the vertical dashed line is the predicted optimal dose using the acceptance threshold. OD=Optimal Dose. 

 



 

Vaccine 

Type 

No. of 

publications 

/datasets 

No. of total 

participants* 

Population stratification (Ns =No. of 

datasets, Nt=No. of total 

participants*) 

Distinct dose 

levels given* 
References 

Adenoviral 4/6  800 

Adults (18-55 years) (Ns = 4, Nt= 640)  

Elderly (56-69 years) (Ns = 1, Nt= 60) 

Elderly (70+ years) (Ns = 1, Nt= 100) 

2.2×10¹⁰, 5×1010, 

1×1011 or 

1·5×10¹¹ vp 

(30-33) 

RNA/DNA 6/10 917 

Adults (18-55 years) (Ns = 5, Nt=505) 

Elderly (56-70 years) (Ns = 2, Nt= 320) 

Elderly (71+ years) (Ns = 1, Nt= 20) 

Elderly (65-85 years) (Ns = 2, Nt= 72) 

1, 10, 20, 25, 30, 

50, 100 or 250 

μg 

(34-39) 

Inactivated 6/9 1205 

Adult (18-59 years) (Ns = 5, Nt=836) 

Elderly (60-64 years) (Ns = 1, Nt=99) 

Elderly (65-69 years) (Ns = 1, Nt=99) 

Elderly (70+ years) (Ns = 1, Nt=99) 

Elderly (60+ years) (Ns = 1, Nt=72) 

1.5, 2, 2.5, 3, 4, 

5, 6, 8 or 10 μg 

50,100 or 150 EU 

(40-45) 

Subunit 3/4 786 
Adult (18-55 years) (Ns = 3, Nt=726) 

Elderly (55-75 years) (Ns = 1, Nt=60) 

3, 5, 9, 15, 25, 

30, 45 or 50 μg 
(46-48) 

Nanoparticle 1/1 50 Adult (18-59 years) (Ns = 1, Nt=50) 5 or 25 μg (49) 

Table 1. Summary of the dose-response data, grouped by vaccine type. *Across all publications 

 

 



 

Vaccine 

Type 

Vaccine name (alias) Current 

phase of 

development 

Chosen 

dose 

Comparison of chosen dose to aggregate predictions of 

optimal dose in objective 2 

Overall Adult Elderly 

Adenoviral Ad26.cov (Janssen vaccine) In use in the 

UK 

5x1010 vp 

(50)  

Within IQR Below IQR Above IQR 

ChadOx1 n-Cov19 (Astra 

Zeneca vaccine) 

In use in the 

UK 

5x1010 vp 

(51) 

RNA/DNA BNT162b2 (Pfizer vaccine) In use in the 

UK 

30ug (52) Within IQR Below IQR Within IQR 

mRNA-1273 (Moderna 

vaccine) 

In use in the 

UK 

100ug (53) Above IQR Within IQR Above IQR 

Inactivated Coronavac In Phase III 3ug (40, 53) Below IQR Below IQR Below IQR 

 BBV152 In Phase III 6ug (53) Within IQR Within IQR Within IQR 

Nano NVX-CoV2373 

 

In Phase III 5ug (53) Below IQR NA NA  

Table 2. Chosen dose for the vaccines that are currently in phase III or above, comparison to the aggregate predicted optimal dose for the overall, adult and elderly populations and 

recommendations for further testing of doses for these vaccines.  

 


