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Thesis abstract 

In 2020, Tuberculosis (TB) was the second-leading cause of death by a single infectious 

agent, trailing only COVID-19. Improved strategies for case finding and prompt treatment 

initiation are therefore a public health priority. However, routine TB case finding through 

health facilities depends on an individual recognising that they have TB symptoms and 

taking the initiative to seek care, and is not sufficient to control TB transmission. This is 

because a considerable number of people with TB symptoms delay and sometimes never 

attend healthcare facilities, meaning that they remain infectious in the community, and are 

at high risk of severe illness and death. By contrast, while community-based TB case-finding 

interventions are complementary to facility-based services, they are substantially more 

resource intensive, logistically challenging, and are generally only justifiable when targeted 

at groups of people at high risk of TB disease. Because the prevalence of microbiologically-

confirmed pulmonary TB is difficult to measure and only rarely exceeds 1% even in the 

highest burden settings, identifying population groups likely to have a high burden of 

undiagnosed TB disease who could benefit from community-based case finding 

interventions can be challenging. Therefore, the aim of this thesis was to investigate how 

statistical spatial modelling of epidemiological patterns of spatial heterogeneity in urban TB 

epidemiology in Blantyre could be used to improve the targeting of community-based active 

case-finding (ACF) interventions for TB, and so increase the efficiency and effectiveness of 

the delivery of these interventions. 

First, a systematic review of the effectiveness of spatially-targeted community ACF 

interventions demonstrated that spatially-targeted interventions are feasible and that they 

have potential as alternative design strategies for community ACF, but that more rigorous 
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approaches to design and analysis are required (Chapter 3, Khundi et al. 2021). The 

systematic review identified ten studies of spatially targeted interventions from six 

countries between 1 January 1993 and 22 March 2021: three directed against TB, three 

against leprosy, three against malaria, and one against HIV. Although data were limited, and 

understanding of effectiveness was limited by high risk of bias (particularly in classification 

of hotspots and ascertainment of outcomes), this demonstrated that spatially-targeted 

interventions have real potential to identify communities with a higher yield of identified 

cases, communities with a high prevalence of cases, and hence potential for accelerating 

reductions in the TB case notifications rates.  

Second, multi-level spatial regression modelling of TB case fatality rates across the city of 

Blantyre (Chapter 4, Khundi et. al., 2021) – in which we evaluated 4397 newly-diagnosed TB 

cases, 10.9% (479) of whom died – found strong evidence that, while undergoing TB 

treatment, age, being HIV positive, and distance to TB treatment clinic were associated with 

an increased odd of death. Distance to TB treatment clinic is a proxy of ease of access to 

care: individuals that have to travel longer distances to get health care are at an increased 

risk of adverse health.  In our study population, distance increased the odds of death only 

for patients that were registered at the referral clinic but not a primary health care clinic. 

This is consistent with the hypothesis that high quality facility-based TB screening and care 

is complementary to community-based interventions in reducing TB mortality. 

Third, using data from a citywide TB prevalence survey and Malawi Liverpool Wellcome’s 

Blantyre enhanced TB surveillance system (Chapter 5, Khundi et al., 2022), we developed a 

novel Bayesian statistical spatial modelling approach to enable identification of TB hotspot 

neighbourhoods, based on ranking of 72 neighbourhood prevalence-to-notification ratios. In 
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2019, the prevalence of microbiologically-confirmed TB in Blantyre was 215 per 100,000 

population. The model derived mean neighbourhood prevalence-to-notification ratio was 

4.49 (95% credible interval [CrI]: 0.98–11.91, range: 1.70–10.40, standard deviation: 1.79). 

This indicates that, overall, there remains a substantial burden of undiagnosed TB. Our 

model should support researchers and health workers in other settings with similar 

characteristics to urban Blantyre in identifying potential hotspot neighbourhoods without 

the need for conducting a full prevalence survey.  

Looking forward, the approaches developed in this thesis, need to be validated, and then 

further developed and applied in other similar urban settings to prioritise neighbourhoods 

by burden of undiagnosed TB, and hence efficiently direct community based ACF 

interventions.  
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Chapter 1: Introduction 

1.1 Burden of TB globally, and in Africa  

Tuberculosis (TB) is among the top ten leading causes of death in the world and is the 

second leading cause of death from a single infectious agent, after COVID-19 (1). In 2020, 

10.0 million people were estimated to have developed active TB disease. In addition, TB 

caused an estimated 1.3 million deaths among HIV negative individuals and a further 

214,000 deaths among people living with HIV (1). The highest burden was in adult men (56% 

of deaths) followed by adult women (33%) and children (11%). The COVID-19 pandemic, 

which started in 2019, severely affected essential TB services, with an estimated 7.1% 

increase in TB deaths in 2020 compared to 2019 (1). In addition, the gap between incident 

cases and notified cases widened in 2020, rising to 41% from 29% in 2019 (1,2). 

Geographically in 2020, most TB cases were in the WHO regions of South-East Asia (43%), 

Africa (25%), and the Western Pacific (18%), with smaller shares in the Eastern 

Mediterranean (8.2%), the Americas (2.9%) and Europe (2.3%) (1). The global reduction in 

estimated TB incidence between 2015 and 2019 was 11%, only halfway towards the 2020 

EndTB milestone (20%) (1). The African region narrowly missed the target, achieving a 

reduction of 19% (1). The global reduction in TB deaths between 2015 and 2019 was 9% 

against a target of 35%. However, the African continent made relatively good progress, 

achieving a reduction of 18% (1). 

The first systematic global estimate of TB incidence was done in 1990 by the WHO, which 

estimated that there were about 8 million incident TB cases and 2.6 to 2.9 million deaths 

(3).  Globally, between 2006 and 2016, there was an annual reduction in age standardised 

incidence of TB among HIV negative individuals of -1.3% (95% confidence interval (CI): -1.5% 
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to -1.2%), which was a slower rate compared to the period from 1990 to 2006 (-1.6%, 95% 

CI: -1.8 to -1.3). However, the reduction in rate of deaths in incident TB HIV negative 

individuals was (-4.5%, 95% CI:  -5.0 to -4.1) from 2006 to 2016 which was greater than the 

period between 1990 and 2006 (-3.2%, 95% CI, -3.7 to -2.9) (4).  

People living with HIV are more likely to develop active TB when infected with TB and are 

also at a substantially increased risk of adverse outcomes, including death (1). Incidence and 

mortality from HIV/AIDS in Africa increased rapidly from 1990 to 2006, and began to slowly 

decline afterwards (5). The decrease was due to the massive scale up of antiretroviral 

therapy (ART) coverage and the prevention of mother-to-child transmission (PMTCT) (6). 

Global scale up of ART was the primary factor in reducing AIDS related deaths from the 

highest peak of 1.9 million (95% CI: 1.7 million to 2.2 million) in 2005 to 1 million (95% CI: 

830 000 to 1.2 million) in 2016 (7). The decline in AIDS deaths was highest in eastern and 

southern Africa, the region most severely affected by the HIV pandemic. The percentage of 

AIDS related deaths reduced by 62% from the peak in 2004, 1.1 million (95% CI: 950, 000 to 

1.2 million) to 420 000 (95% CI: 350, 000 to 510, 000) in 2016.  

In 2020, the highest burden of HIV-associated TB was in the African WHO region, which 

included 23 of the WHO’s list of 30 countries with the highest burden of HIV associated TB 

(1), and the majority of HIV-associated TB cases and death occurred in Africa (75%) (8). 

Apart from HIV infection, other risk factors for development of TB disease include poverty, 

undernutrition, smoking and diabetes (9). Most of these risk factors are inter-related. For 

instance, individuals that are from less affluent families are also likely to have fewer options 

for nutritious meals and hence might be undernourished (9). In addition, living in congested 

settings, unplanned housing and slums is also associated with increased risk of acquiring and 
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developing TB, because of crowding, increased social contact mixing and poor air quality (9). 

Most African cities have a large population that live under these conditions, due to the rapid 

pace of urbanisation, and also failure of governments to provide basic services and facilities 

(9,10).  Hence strategies to address the burden of TB are required to be multisectoral to 

address the various determinants of TB disease. 

Accelerated efforts to reduce TB incidence and deaths are required to achieve the 2035 End 

TB goals, which are defined as a reduction of 90% of TB incidence and 95% of TB deaths in 

2035 compared to 2015 and having no TB-affected families facing catastrophic costs due to 

TB (1,11). To achieve this, continuing improvements in TB diagnosis and care must be made 

to accelerate progress toward removing barriers to access to care to attain universal health 

coverage. Additionally, action on determinants that contribute to TB transmission and 

disease must be taken (1). 

The goal of this Chapter is to provide background and motivation for the PhD thesis. Section 

1.2 describes the natural history of TB and its implication for public health approaches to 

diagnosis, care and prevention of TB. Section 1.3 discusses the current public health 

practices in screening, diagnosis, treatment, and prevention of TB. Section 1.4 discusses the 

current approaches to case-finding interventions. Section 1.5 describes the current 

approaches implemented for TB surveillance burden estimation. Section 1.6 outlines the 

PhD thesis research aims and objectives and concludes the Chapter. 
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1.2 Tuberculosis: its natural history and implications for public health 

Understanding the natural history of TB is important because it allows greater insights into 

the clinical pathways experienced by people with TB, formalised in the TB cascade of care; it 

supports rational approaches to improving diagnosis and treatment; informs effective public 

health interventions for TB control (1).  

TB is caused by Mycobacterium tuberculosis (MTB), with a small fraction of clinical disease 

attributed to Mycobacterium Bovis and other mycobacterial species (8). TB primarily causes 

disease in the lungs (85% of clinical presentations, known as pulmonary TB) followed by 

sites outside of the lung parenchyma (known as extrapulmonary TB), including the pleura, 

lymph glands, abdomen, meninges and other sites (1,12).  

In immunocompromised individuals (e.g. people living with HIV, people at the extremes of 

age, and people taking immunosuppressive medication) TB can spread to multiple organs; 

this is known as disseminated TB (8). Symptoms of TB depend on which part of the body is 

affected. Common symptoms of TB include fever, fatigue, night sweats, unexplained weight 

loss, and in pulmonary TB, chronic cough and haemoptysis (coughing sputum mixed with 

blood) (1,8). Without treatment, about 50% of HIV negative individuals with active TB 

disease die and nearly all HIV-positive individuals die, with often a fulminant disease course 

(1,8). 

TB is spread when an infected individual expels droplets with MTB into the air, for example 

by coughing, sneezing, shouting, or singing (8). Depending on the environment, these 

droplets can remain in the air for several hours (13). MTB is transmitted when the inhaled 

droplets containing MTB reach the alveolar air sacs of the lungs. In the early stages of the 

infection, the MTB is contained in the lungs. Later however, the bacteria can spread through 
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the lymphatic system or the bloodstream to other organs (8). Within 2 to 8 weeks, lung 

macrophages ingest and surround the bacilli to form granulomas (Figure 01) (1,8). These 

cells form a barrier shell which keeps the bacilli encapsulated (Often known as the Ghon 

focus). At this point, individuals will have no symptoms of TB, but will frequently 

demonstrate immunoreactivity with evidence of exposure to TB, known as latent TB 

infection (LTBI). In the granuloma, bacilli reproduce slowly, avoiding the host cell’s immune 

system defences. If replication is uncontrolled however, eventually TB bacilli will break out 

from the granuloma, with bacilli entering the small (and occasionally large) airways; at this 

stage the individual becomes infectious and symptomatic (active TB disease) (8).  

When individuals have active TB disease, the immune system’s efforts to control the 

multiplication of bacilli in the granulomas causes the human host to destroy its own lung 

tissue (8). If the replication is not stopped, further replication leads to the creation of more 

cavities, and the lung parenchyma is destroyed progressively in a process that might take 

months or years. This lung damage can often be seen on a chest X-ray, and this is a good 

indication that someone has active pulmonary TB. Approximately 10% of people infected 

with TB progress to active TB disease over their lifetime (8). HIV positive individuals are 26-

times more likely to develop active TB disease compared to HIV negative individuals (8).  

Progression to active disease depends on the immune response of the host and other 

reasons that have not been well characterised (8). Depending on the immune response a 

spectrum of infection stages can arise; latent or subclinical states, ranging from the early 

containment of infection by an innate or an acquired immune response, through the 

containment of live but non-replicating bacilli and bacterial replication at low levels partially 

contained by immunity (Figure 01) (8).  
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Exposure to, and infection with TB depends on a wide range of factors some of which are 

environmental, others depend on the TB pathogen, and some upon social dynamics.  

Environmental and social factors that are important in determining TB exposure and 

infection include humidity, sunlight, temperature, ventilation, air quality, poverty and 

crowding (14). For the human host, HIV status, age and sex are the most important risk 

factors for development of active TB, with others including diabetes, immunosuppressive 

medications, alcohol and tobacco use (14). The TB disease cycle offers three points for 

possible interventions for avoiding active TB disease: before infection, during the course of 

an established infection (during latency) and after progression to active TB disease (8) 

(Figure 01). 
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Figure 01: schematic for the natural history of TB  

 

Source: Figure extracted from Pai et al., Nature (8) 

1.2.1 Implications of TB history on public health  

People can transmit TB when they have active TB disease, subclinical TB, or asymptomatic 

TB (Figure 01) (8,15). Historically it was assumed that only symptomatic TB cases were able 

to transmit TB, but this has changed with a better understanding of the TB disease spectrum 

(Figure 01) (8,15). It is now recognised that people with subclinical stages of TB can also 

transmit infection (16,17).  Therefore, interventions that are intended to reduce and 

eliminate the spread of TB need to involve the identification of people with both 

asymptomatic and symptomatic TB (8,15). In routine TB care, individuals self-present at a 

health facility to request TB investigation when they experience symptoms. Since, by 

definition, asymptomatic TB cases do not have symptoms, they do not go to health facilities 

to seek care (18). This has important implications for the ongoing transmission of TB at the 

population level, since asymptomatic TB cases are more likely to be missed by routine TB 

care system (19,20). Hence both symptomatic and symptomatic TB cases need to be 
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targeted for diagnosis and treatment to reduce TB transmission at the population level 

(8,15,16). 

1.3 Current public health practice, screening, diagnosis, treatment, and 
prevention 
1.3.1 Diagnosis and screening 

The choice of diagnostic tool for TB depends on the stage of the TB infection and the 

characteristics of the individuals to be tested. Two main tests are available for latent TB 

infection, the tuberculin skin test (TST) and the interferon-gamma release assay (IGRA) (21), 

which both measure immunological response to previous exposure to TB. Newer tests for 

latent TB infection (c-TB, Diaskintest) are becoming available, but are not in wide use 

currently (22). 

Testing for latent TB infection and treatment is only recommend for groups that are at an 

increased risk of progression to active TB disease, for instance people living with HIV, 

household contacts of TB patients and other at risk HIV-negative groups such as patients 

who are receiving dialysis or solid organ transplant (21). Treatment of latent TB is only likely 

to be beneficial for a small percentage of people, predominately those with evidence of 

recent infection, those in high-risk groups, and those with documented evidence of 

exposure or latent infection (21). Before initiation of LTBI diagnosis or treatment, active TB 

disease must be ruled out to avoid treatment of active disease with inappropriate single 

anti-TB agents. This is commonly affirmed through  the absence of any TB symptoms on a 

WHO-recommended TB symptom screen, and occasionally by the absence of abnormal 

chest radiograph findings. Where suspicion of active TB remains, a microbiological 

confirmatory test of TB is carried out, as discussed further in the paragraphs below (21). 
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By contrast, detection of active TB disease utilises two main approaches: screening, and 

diagnostic testing. Two main methods are available for either screening or triaging 

individuals (19,23). Screening tests are done in people who would not have sought care 

under usual circumstances, and who don’t recognise themselves to be unwell (19). Triaging 

tests (a form of intensified screening to support clinical decision making) are administered 

to people with TB symptoms and/or high-risk factors for TB. Both screening and triage tests 

aid in determining who should undergo confirmatory testing (23). Until very recently the 

main approaches for screening or triaging individuals were TB symptom screening and chest 

X-ray radiography (24). More recently, a cluster-randomised trial has investigated a TB 

screening approach based on universal sputum testing with a rapid PCR-based molecular 

platform, and in 2021, WHO additionally made recommendation that testing for the 

presence of a raised non-specific inflammatory maker (C-reactive protein [CRP]) could be 

used for triage testing (1,25). To confirm the results of a positive symptom screen, chest X-

ray or CRP, a microbiological diagnosis is usually required (19,24), although treatment may 

be started on the basis of clinical suspicion alone, especially when patients are too unwell to 

produce a sputum sample. Confirmatory testing for pulmonary TB is based on smear 

microscopy, molecular tests and/or culture-based methods. The sputum smear test is the 

most widely used confirmatory test in low-income and middle-income countries despite it 

having low accuracy, with sensitivity of 32%-94% and specificity of 50%-99% (8). WHO now 

recommends the Xpert MTB/Rif and TRUENAT molecular platforms as diagnostic tests 

because they have greater sensitivity than smear microscopy and make lower laboratory 

demands (24).   

Initially, the focus of WHO recommendations for diagnosis and TB treatment was 

symptomatic sputum smear positive pulmonary TB cases until the year 1999 (26), because 
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they were thought to be the only group that was infectious and rapid reductions in TB 

transmission could be achieved by only focusing on this group (8,18,27).  

However, focusing only on symptomatic smear positive cases has had suboptimal impact on 

the epidemiology of TB since people with smear negative TB, asymptomatic and extra-

pulmonary TB are ignored (28). This is because approximately 50% of detected active TB 

cases in TB prevalence surveys do not have TB symptoms, and 50% of culture confirmed TB 

cases are smear negative TB (15,17,29). This means that people with asymptomatic, smear 

negative TB and extra-pulmonary TB are less likely to be diagnosed with TB and initiate 

treatment, resulting in a high risk of morbidity and mortality (8,26). Neglecting these 

individuals in screening programmes meant that they were at high risk of experiencing 

prolonged diagnostic delays, during which they would continue to transmit TB in the 

community, thereby undermining TB control and eradication efforts (8,18). In the End-TB 

Strategy (2015-2035), there has been a refocusing of priorities to ensure that all people 

affected by TB – not just individuals with sputum smear positive active TB- are supported to 

achieve a rapid diagnosis, treatment, and supportive care (1). 

WHO recommended diagnostics for extra-pulmonary TB and disseminated TB include: the 

Xpert-MTB/Rif and TRUENAT testing of extra-pulmonary samples; lateral flow 

lipoarabinomannan (LAM) detection in urine; microscopy of extra-pulmonary samples; 

histopathology;  and clinical diagnosis, although these are not always widely available in 

resource-limited settings (1,24). First generation urine LAM testing is recommended for HIV-

positive patients who are seriously ill with a high probability of disseminated TB disease 

(CD4 cell count of less than or equal to 100/mm3) (30).  
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1.3.1.1 Limitations of TB diagnosis  

Both currently-recommended LTBI tests (tuberculin skin test [TST] and interferon gamma 

release assay [IGRA] have a low predictive value for identifying individuals who are likely to 

progress to having active TB and hence benefit from LTBI treatment (8). Smear microscopy 

has been replaced with a more accurate test Xpert MTB/Rif, but this is relatively expensive, 

difficult to maintain in poor resource settings, needs to operate under a room temperature 

of 30 °C or lower and requires uninterrupted power supply (24). This means that many 

primary health clinics do not have the capacity to install and maintain an Xpert MTB/Rif, 

hence samples have to be referred to referral TB laboratories. This in turn means that 

individuals having TB tests at these clinics cannot receive same day results (31), a factor that 

is important to link patients into care and support treatment initiation (32). Children <15 

years are also not well served by the currently-recommended Xpert MTB/Rif sputum test, 

since it is difficult to get sputum samples from children as they may be unwilling or might 

have difficulties expectorating (32). However, according to a WHO update in 2020, stool 

samples can now be utilised for Xpert MTB/Rif tests in children (33–35). 

1.3.2 Treatment and prevention 

Active pulmonary TB is treated with a WHO-recommended standardised short-course 

treatment: six-month combination of antibiotics treatment (1). The main intervention for 

reducing the risk of progression from LTBI infection to active TB disease is a six-month 

Isoniazid preventative therapy (IPT) (21). In children, the bacilli Calmette- Guérin (BCG) 

vaccine protects from severe forms of TB (1). 

Both treatment and prevention can only be successful when a multifaceted approach to TB 

control is adopted. Costs incurred during seeking of diagnosis and treatment can cause 
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access to TB barriers and affect adherence to TB treatment. According to WHO, in 2020 47% 

of TB patients faced catastrophic costs against a target of 0%; these are expenditures on 

seeking TB care that account 10% or more of household income (1). People with TB should 

not lose their jobs because they have been diagnosed with TB; instead, they should be 

supported to return to work once their treatment is completed and they have healed 

sufficiently to work (36). Poverty is a risk factor of TB, and countries where economic 

conditions have improved have also experienced reduced incidence of TB (9), hence WHO 

has put strong focus on sustainable development goals (SDG) that are associated with TB 

(1). In essence, TB medical interventions must be combined with improvements in the social 

and economic determinants of TB (9). 

1.3.2.1 TB treatment outcomes 

Individuals diagnosed with active TB in the community via ACF or in health facilities are 

referred to start treatment at their local TB treatment clinic, where they are also entered 

into the national TB register for surveillance, and monitoring and evaluation purposes. At 

the end of TB treatment each patient is assigned an outcome in the register. The categories 

of TB treatment outcomes are outlined in Table 01 below; they are defined according to 

WHO guidelines on reporting of TB outcomes and they are mutually exclusive except one, 

treatment success (37). 
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Table 01: TB treatment outcomes 

Outcome Definition 

Cured A pulmonary TB patient with bacteriologically 

confirmed TB at the beginning of treatment 

who was smear- or culture-negative in the last 

month of treatment and on at least one 

previous occasion. 

Treatment completed A TB patient who completed treatment without 

evidence of failure but with no record to show 

that sputum smear or culture results in the last 

month of treatment and on at least one 

previous occasion were negative, either 

because tests were not done or because results 

are unavailable. 

Treatment failed A TB patient whose sputum smear or culture is 

positive at month 5 or later during treatment. 

Died A TB patient who dies for any reason before 

starting or during the course of treatment. 

Lost to follow-up Lost to follow-up 

A TB patient who did not start treatment or 

whose treatment was interrupted for 2 

consecutive months or more. 

Not evaluated A TB patient for whom no treatment outcome is 

assigned. This includes cases “transferred out” 

to another treatment unit as well as cases for 

whom the treatment outcome is unknown to 

the reporting unit. 

Treatment success The sum of cured and treatment completed. 

Source: Table extracted from WHO guideline (37) 

In 2019, the overall global treatment success rate for people treated for TB with first-line 

drugs was 86% against a target of 90%. But the treatment success rates were lower in 

people living with HIV (77% globally in 2019) (1).  
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1.4 Current approaches to case-finding interventions  

The discovery of TB treatment drugs marked a change in the approach to public health 

interventions of TB control (18). Before TB transmission control was done by detection and 

isolation of symptomatic TB cases into special care homes known as sanatoria (18). The 

discovery of TB treatment allowed TB patients to be safely treated in hospital, or at home 

with monitoring by health personnel or a designated guardian under the directly observed 

therapy (18). This allowed WHO and countries to set ambitious targets for detection and 

treatment of individuals with TB (19,38). Approaches for detecting TB cases are discussed 

below. 

1.4.1 Passive case finding 

Passive case finding (PCF) is where TB symptomatic individuals in the community decide to 

go and seek care at a health facility for their symptoms, on their own or after being 

prompted by family or friends (39). Once patients are diagnosed with TB either through a 

confirmed microbiological test or through a clinical decision (where a clinician decides based 

on patients’ symptoms regardless of a negative microbiological TB test), they are started on 

TB treatment (1). Even when TB symptoms are recognised, approximately 42 percent (31) of 

people delay reporting to healthcare facilities to be investigated for TB; the estimated 

average delay is approximately 81 days (40) from the time an individual notices the first 

symptoms of TB to the time they make their first visit to a health facility that provides TB 

care. This might be due to a number of factors that include the social economic status of the 

patient’s household, since individuals from poorer households might not have enough 

resources to get access to health facilities even when the services offered are free (19).  
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In Malawi and other African countries, qualitative work has also shown that delays in 

accessing TB care might also be driven by harmful gender-based norms, where men have a 

culture of only accessing help when the situation is severe because early care seeking is 

perceived as a sign of weakness (41). Perceptions of poor service delivery may also 

discourage individuals from self-presenting to health facilities in a timely manner (42). Such 

perceptions might push individuals to seek care from other care providers that are outside 

the formal health facilities such as traditional healers, or self-medicating with off the-shelf 

medicine bought from local grocery stores (42).  

Since self-presentation to health facilities starts with an individual having symptoms, this 

means that asymptomatic active TB cases cannot self-present to health facilities for TB 

investigations (40). Individuals with undiagnosed active TB disease in the community 

continue to transmit infection hence putting the community at risk and also increasing their 

own risk of morbidity and mortality, since delays in seeking health care are associated with 

poorer outcomes (43). Hence reliance on PCF alone, even when this is followed by prompt 

diagnosis and initiation of treatment, is not sufficient to meaningfully impact TB 

transmission and reduce incidence, prevalence, and mortality (44).  

1.4.2 Active case finding 

Active case finding (ACF) campaigns were first carried out in the industrialized countries 

between 1930s and 1960s, prompted by high TB mortality rates (18). These were screening 

campaigns that would target whole populations, and were credited for rapidly reducing TB 

mortality rates (18). WHO, over time has been updating its guidelines on ACF to tackle the 

current state of the TB epidemic based on evidence from research studies (19,38). Unlike 

PCF, ACF is health service provider initiated. ACF is the systematic investigation of 
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individuals for active TB in pre-specified groups of the population. It uses investigation 

procedures that can be rapidly applied (19). When ACF is done within a health facility, it is 

referred to as intensified case finding, in contrast to PCF, health service providers request 

health facility attendees to be investigated for TB, if the attendees have TB symptoms or 

have risk factors for TB, even when their reason for that clinic visit was for another 

condition. ACF can also be done in congregate settings such as prisons, refugee camps and 

in other priority communities (45,46). The screening procedure should be sensitive enough 

to identify individuals who are likely to have active TB and exclude the rest, while 

confirmatory testing should have high specificity to avoid false positives (19,45).  

The primary objective of ACF is to ensure that active TB is detected early to reduce the risk 

of transmission, poor disease outcomes and the adverse social and economic consequences 

of the disease (17,19,45). ACF typically targets people in the community who do not seek 

care because either they do not have symptoms or do not recognise the symptoms that 

they have or they face barriers to accessing facility-based health services (19).  

1.4. 2.1 Community-based active case-finding 

Interventions that rely on individuals attending a health facility – PCF or facility based ACF 

approaches – fail when individuals do not present at facilities (45). Unlike PCF and health 

facility-based ACF, the goal of community ACF is to identify and diagnose individuals with 

active TB in the community (19,45). Community ACF diagnoses individuals with TB at an 

earlier stage of their disease compared to PCF, therefore potentially reducing the length of 

time which an individual is infectious to others in the community (17,19). Therefore, a 

successful ACF intervention is expected to reduce TB disease prevalence and incidence of TB 
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in the community (19). Below I summarise the evidence for the effectiveness of community 

ACF interventions (45). 

A recent systematic review on the effectiveness of community ACF that informed the 2021 

WHO TB Screening Guidelines identified 28 studies, and found that when community 

interventions are done with a high coverage and with repeated rounds, they can reduce the 

prevalence of undiagnosed TB cases in the community (45). The studies covered a range of 

target populations: five in the general population, seven in high-density urban areas with 

high poverty rates, four rural populations, two camps of internally displaced people, four in 

incarcerated populations, one in mines, and two in homeless people (45). The studies 

implemented different types of ACF interventions: door-to-door screening, sputum 

collection by community health workers or volunteers, community engagement, and mobile 

TB screening clinics (45). 

In the above systematic review, three randomised trials provided varying evidence in 

support of community ACF. First, the ZAMSTAR study (44) was a cluster-randomised trial in 

24 communities in Zambia and South Africa in a general population with a high TB 

prevalence. The ACF intervention was a combination of community mobilisation, improving 

awareness of TB symptoms in schools and setting up sputum collection points in the health-

care facilities and the community. TB diagnosis in the intervention arm was based on smear 

microscopy, and the study's goal was to investigate if there was a difference in the 

prevalence of active TB cases between the intervention and control arms 4 years after the 

start of the intervention. In a post-intervention prevalence survey, the intervention was 

evaluated by comparing the prevalence of tuberculosis between the two arms. Overall, 

1277 per 100,000 people had culture-positive TB, compared to 1485 per 100,000 in the ACF 
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arm. The adjusted TB prevalence ratio comparing the control arm versus the intervention 

arm was 1.09 (95% CI: 0.89-1.40). There was no difference in the prevalence of active case 

TB between the intervention and control groups. 

In the ACT3 study in Vietnam (25), all people aged 15 years and older, regardless of 

symptoms, were screened annually in their homes using sputum Xpert MTB/Rif tests for 3 

years, in 120 communities in the general population. A further 120 communities were 

randomised to the control arm. The effect of the intervention was assessed by a prevalence 

survey in the fourth year since the start of the intervention, where a prevalent TB case was 

defined as an individual that had at least one sputum sample with a confirmed TB diagnosis 

using Xpert test. The active TB prevalence in the control arm was 226 per 100000 and 126 

per 100000 in the intervention arm. The adjusted prevalence ratio between the control arm 

versus the intervention arm was 0.56 (95% CI: 0.40-0.78). In other words, the intervention 

arm had a statistically significant 44% lower prevalence of active tuberculosis than the 

control arm. 

Third, the DETECTB study in Zimbabwe (47) was a cluster randomised trial in the urban 

general population in Harare. The outcome was the prevalence of culture positive TB among 

a random sample of 12% of households in each of 46 clusters compared before and after six 

rounds of the intervention. The 23 clusters were allocated to mobile van ACF and the other 

23 to door-to-door screening, adults (16 years) with a cough of more than two weeks were 

asked to provide two sputum samples for smear microscopy test. The adjusted risk ratio for 

active TB disease after ACF versus before ACF was 0.59 (95% CI: 0.40-0.89). In other words, 

there was about a 40% reduction in the prevalence of culture positive TB in the intervention 

arm compared to the control arm. 
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Based on the evidence of the systematic review, WHO has updated its TB community 

systematic screening guidelines (19). According to the latest WHO community ACF 

guidelines, indiscriminate community ACF is only recommended in areas with a prevalence 

of undetected adult pulmonary TB of 0.5% or more (19). Community ACF is also 

recommended among people with structural risk factors for TB (19). These include 

populations that are urban poor, homeless, live in remote or isolated areas, indigenous 

communities, migrants, refugees, internally displaced persons, and marginalised groups 

with limited access to health care (19). The other groups that are recommended for 

systematic screening are people living with HIV, close contacts of individuals with TB 

disease, incarcerated populations, miners, and other people exposed to silica dust (19).  

1.4.3 Shortcomings of current community case-finding recommendations 

ACF programmes can be extremely resource-intensive and expensive (18). TB cases are 

usually concentrated in subgroups of the population (48,49). Because of this, indiscriminate 

generalised community ACF is only recommended for communities with 0.5% prevalence 

and in marginalised communities with structural risk factors for TB (19). It is also important 

to realise that even in these recommended communities, TB incidence might not be 

uniformly distributed (50). Since most African cities have a lot of communities that can be 

categorised as marginalised (for instance, informal communities) prioritisation is important 

for effective allocation of community ACF interventions and health resources (50). The 

identification of these communities needs to be carefully conducted in order to identify 

areas that have a higher burden of TB and also poor access to TB care at health facilities 

(48,49). Unfortunately, the current WHO recommendations do not provide detailed 

guidance on how this can be achieved (19).  
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1.4.3.1 Spatial, hotspot targeted TB community interventions 

Spatially targeted interventions are infectious disease community interventions targeted at 

areas with elevated disease burden or high transmission or risk factors (48,49). Such areas 

are referred to as hotspots (49). Spatially targeted interventions aim to reach people in 

neighbourhoods that have higher barriers to access of care at health facilities (49). 

Therefore, given the current recommendations for selection of communities for community 

ACF, hotspot targeted TB interventions could be another alternative approach for carrying 

out community ACF (49,51). 

TB cases are known to cluster into hotspots geographically (52). These TB hotspots are 

usually characterised by poverty, informal urban settlements, displaced people, a higher 

proportion of male residents (as men are known to have a greater risk of TB infection and 

disease compared to women) (53), and poor access to health services (54–56). To identify 

true TB hotspots for effective targeting of community TB interventions, it is important that 

the spatial heterogeneity of TB and its drivers are identified. These factors are likely to vary 

by area, so it is important that the analyses are contextualised to each setting (50).  

TB hotspots are usually based on geolocation of TB case individuals’ residences that are 

aggregated at the area level (57). The area level aggregation might be district level or 

neighbourhood level depending on the resolution of the available data. Common spatial 

clustering methods that are used to identify the spatial hotspots include Kulldorff’s spatial 

scan statistic, the local Moran test, and Getis and Ord’s local Gi statistic (48). Care has to be 

taken when defining hotspots that are based on notified cases, due to the possibility that 

the identified hotspots can be areas that have better access to TB diagnosis and notification 

and not hotspots of undiagnosed TB (48). 
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 Also, the usefulness of the identified disease hotspot patterns depends on the spatial scale 

chosen. If the area aggregate units are too big, they do not give information that can be 

used for targeted interventions at neighbourhood level (48,49). It is also important that the 

area units that are used are those that are related to the disease that is being investigated 

(51). For instance, community health worker (CHW) catchment areas would be preferable to 

area units such as electoral areas, since health programmes are already familiar working 

with CHW catchment areas (58).  

The time window of analysis is also an important dimension that can influence the spatial 

pattern of an infectious disease (48). The time period to consider depends on the specific 

disease; for instance, those that have a long incubation period could be analysed at a wide 

window period compared to acute infectious diseases (48). The risk of progression to active 

TB disease after being infected with TB is highest in the first 2 years after infection (8,51).  

Hence typically, TB data are analysed at 1 year or greater periods of time (8,51). 

Since TB is a relatively rare disease even in high-burden settings, analysis of TB data 

commonly faces challenges of sparsity, where some areas might have fewer cases or no 

cases (59). Statistical smoothing techniques can mitigate the problems of stochastically 

unstable rates from areas with small populations, or low prevalence, by smoothly 

incorporating information from nearby locations (59). This enables predictions to be made 

in areas with sparse data (59).  

1.5 TB surveillance and burden estimation 

TB incidence is the number of new TB cases arising each year in a given population (1). 

Monitoring trends in TB incidence allows WHO and TB programmes to assess progress 

towards meeting the End TB goals and appropriately respond to the pandemic (1). 
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Unfortunately, TB incidence cannot be directly estimated because the design of such a 

survey would be impossible in most populations (1). Instead, TB burden is estimated using 

TB prevalence and TB notifications (1), and occasionally TB incidence is modelled from these 

data.   

1.5.1 Prevalence of pulmonary TB surveys 

The prevalence of pulmonary TB disease is the number of pulmonary TB cases that exist in 

the population at a given point in time (60). It is reported as the number of TB cases per 

given population — usually per 100,000 population or as a percentage of the population 

(60). Cross sectional survey designs are used for TB prevalence surveys (60). The prevalence 

of TB is only measured among adults as children <15 years generally cannot produce 

sputum samples; prevalence surveys also ignore extrapulmonary TB as it is less common 

than pulmonary TB and it can also be difficult to diagnose under survey conditions, as the 

symptoms may be less specific and the disease may not be detectable through chest X-ray 

or sputum sample. According to WHO prevalence survey guidelines, survey participants can 

be screened using either or both a symptom enquiry and a chest X-ray (60). Sputum samples 

are then taken from all those with abnormal chest X-ray and/or symptoms suggestive of 

pulmonary TB (60). Each eligible study participant normally has two sputum samples taken, 

one immediately and one later in the day. However, both sputum samples may be provided 

at the same time in some cases (29). The sputum samples are tested in laboratories to 

identify which individuals have bacteriologically-positive pulmonary TB using Xpert MTB/Rif 

and or culture. 

TB prevalence surveys help to inform estimates of incidence, and TB burden trends, when 

repeat surveys are available (60). The insights from prevalence surveys inform policy choices 
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on action to reduce the TB disease burden. WHO prioritises national prevalence surveys for 

countries that have an estimated TB burden of about 150 incident TB cases per 100 000 

population per year or more, and do not have high coverage of routine notification systems 

and cause of death registries to enable direct estimates of TB incidence and TB death (29). A 

total of 33 national prevalence surveys have been done in 30 countries between 2007 and 

2020 with WHO support (29). This included 16 countries in Asia and 17 in Africa.Repeat 

surveys during this period were only done in three countries Myanmar, Philippines and 

Vietnam (29,33). Malawi last had a national prevalence survey in 2013: the prevalence of 

sputum smear positive TB was 220 (95% CI: 142 – 297) and the prevalence of sputum smear 

positive or culture positive TB was 452 (95% CI: 312 – 593) per 100, 000 adult population. 

TB prevalence surveys give information that helps to understand the TB epidemic, in 

addition to providing estimates of the disease burden (60). Surveys can assist in 

understanding why those who have been diagnosed with TB were not diagnosed before the 

survey in countries where access to diagnosis is difficult. They also detail the extent to which 

patients diagnosed with TB in the private sector are not reported to the national TB 

programmes (NTP) (60). This information is used to identify strategies that can increase the 

proportion of cases that are diagnosed and reported to the national routine TB surveillance 

programme. The data can also be used to describe the spatial distribution of the burden of 

disease in the community, although at a basic level of rural/urban strata (48,49).   

1.5.2 Notifications 

TB notifications refer to the number of TB cases that have been detected and reported to 

the national surveillance system (1). When compared to mortality, prevalence, and 

incidence data, TB notifications offer a measure of TB burden that is readily available to 
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national TB programmes (49). In most countries there is usually a gap between the number 

of people that are notified with TB and the actual number that are estimated to have 

developed incident active TB (1). This gap is due to a combination of underreporting of 

people diagnosed with TB (individuals diagnosed with TB but not reported to the national TB 

programme) and underdiagnosis (i.e. when people with TB cannot access health care or are 

not diagnosed when they do) (1).  

WHO estimates incidence based on TB notifications only for countries where there is better 

quantification of under-reporting and over-reporting and universal access to quality health- 

care. Only 147 countries fulfilled this criterion in 2020, representing about 23% of the 

estimated global number of incident TB cases in 2020 (1). Alternatively, TB prevalence 

surveys were used to estimate TB incidence in 29 countries, these countries accounted for 

66% of the global TB incidence in 2020 (61). Finally, case notification combined with expert 

opinion about case detection gaps was used in 39 countries, which accounted for 11 % of 

the estimated global number of incident cases (61).  

The COVID-19 epidemic that started in 2019, affected TB notifications in most countries; 

globally, there was an 18% drop in notifications of people diagnosed with TB in 2020 

compared to 2019 (1). In addition, in 2019 and 2020 the gap between notified TB cases and 

the number of people estimated to have developed TB grew wider (1,2).  The number of 

notified TB cases increased between 2009 to 2019 from 5.7 to 7.1 million. But due to the 

COVID-19 pandemic, the number of notified TB cases in 2020 fell to 5.8 million, a number 

that is similar to the number of notified TB cases that were diagnosed and notified in 2012 

(1). 
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1.5.3 Data collection practices 

In most countries, notified TB cases from health facilities are reported at the 

district/province health offices where they are aggregated and sent to the National TB 

programme (1). NTP’s aggregate all the data from all the districts across the country and 

send the data to WHO (1).  

For example, in Malawi, the routine data collected when notifying TB patients are age, sex, 

physical address, duration of cough, previous treatment, HIV test results, antiretroviral 

status, smear microscopy result, TB classification (pulmonary or extra-pulmonary) and TB 

treatment outcome (62). Prevalence surveillance studies provide an opportunity for 

collecting data that is more representative of the study population (29). This data includes 

social demographic data, TB risk factors and health care-seeking behaviour data (29). 

In Africa, collection of TB patients’ or prevalence survey participants’ global positioning 

satellites (GPS) coordinates could provide additional epidemiological insights that enable 

identification of TB hotspots at granular area level (63). The majority of people that are 

disproportionately affected by the disease live in informal urban settlements that do not 

have postal codes or zip codes (56), meaning that it is currently challenging to spatially 

resolve the TB case’s location of residence (64).  

The data that were used for this PhD thesis came from Blantyre, Malawi. Blantyre provided 

a good study setting because it has had an ongoing enhanced TB notification system since 

2015 (65,66). This enhanced system was set up to improve data collection practices among 

NTP staff based at health facilities as well as provide TB microbiologically confirmed lab tests 

(65,66). This has allowed collection of high-quality TB notification data: apart from collecting 

the routine data, other data such as GPS coordinates of TB patients’ households are also 
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collected (65,66). The other source of data is going to come from a TB prevalence survey 

that was carried out in urban Blantyre in 2019.   

So far in this introduction, we have argued that TB is a major ongoing public health 

challenge globally, in Africa and in Malawi (1). Passive Case Finding (PCF) – waiting for sick 

individuals to self-present at health facilities for TB investigations – cannot eradicate the TB 

epidemic (15,19). Even under optimal circumstances, PCF would miss asymptomatic cases 

which make up about 50% of all prevalent cases (15). One potential solution is to 

complement PCF with community-based ACF, but the current recommendations for ACF are 

unlikely to be cost-effective for resource constrained settings like Africa and Malawi (18,19). 

Exploiting the risk factors that lead to the concentration of TB cases into hotspots could aid 

in the identification of most at need communities that could be targeted with ACF (51). The 

aims of my PhD in the section below, are towards addressing these gaps in WHO community 

ACF recommendations. 

1.6 Research aim: 

The overall aim of the thesis is to investigate how spatial heterogeneity in TB epidemiology 

can be used to improve the delivery of community-based case-finding interventions for TB.  

Hypothesis: Can we find epidemiologically important spatial variability in TB epidemiology in 

urban Malawi, which may be used to guide better-targeted and perhaps more successful TB 

care and prevention activities, based on recent research and TB notification and prevalence 

data? 
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Objectives: 

1. To systematically review the available literature on the effectiveness of spatially 

targeted interventions for HIV, TB, leprosy, and malaria. Note that, since spatially 

targeted interventions of TB are still relatively new, I included the other infectious 

diseases to broaden the scope of our understanding of spatially targeted 

interventions.  

2. To identify spatial and non-spatial risk factors for case fatality rates of notified TB 

cases in urban Blantyre Malawi. 

3. To estimate neighbourhood-level TB case prevalence to notification rate ratios (P:N 

ratios) using data from systematic surveillance of notified TB cases and a citywide TB 

prevalence survey form Urban Blantyre, Malawi. To help identify neighbourhoods 

that have a higher burden of undiagnosed TB that may be being missed by the 

routine TB notification surveillance system. 

4. To discuss the findings from objectives 1 to 3 to inform the design of effective 

community ACF interventions. 

  



 41 

1.7 Structure of the thesis 

The plan for this thesis is as follows: Chapter 2 introduces the study setting and describes 

the data sources for this PhD. In addition, I will describe the preliminary modelling that was 

carried out at the start of the project to investigate the feasibility of the proposed approach. 

Chapter 3 presents a published systematic review of the effectiveness of spatially targeted 

interventions of HIV, TB, leprosy and malaria, whose findings provide formal justification for 

our approach. Chapter 4 presents published TB case fatality analysis for the Blantyre urban 

area, 2015-19. Building on this, Chapter 5 presents published results of modelling of 

neighbourhood prevalence to notification ratios for identification of TB hotspots. We 

conclude with a comprehensive discussion of the findings and their implications in Chapter 

6. 
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Chapter 2 

2.1 Introduction 

This chapter describes the study area in Section 2.2, and Section 2.3 gives a brief description 

of the sources of data that were used for this PhD. Section 2.4 describes data simulation and 

modelling work that was done to demonstrate the feasibility of the proposed approach for 

achieving objective three of the thesis – specifically the feasibility of using the 2015-19 

notification data and the 2019 prevalence survey to estimate TB Prevalence to notification 

ratios for the 72 neighbourhoods across urban Blantyre, Malawi. The simulation and 

modelling work was part of my PhD proposal. 

2.2 Description of the study area 

Malawi is in the Sub-Saharan African region (Figure 2.1). It shares borders with Mozambique 

on the east, south and southwest, Zambia to the northwest and Tanzania to the northeast 

(1). It has three climatic seasons: a warm wet season (November to April), a cool dry winter 

season (May to August) and a hot dry season (September to October) (2). It is classified 

among the least developed countries in the world by the United Nations (3). Malawi’s gross 

domestic product per capita was estimated to be 424 USD in 2020, and 68% of the 

population was estimated to live below the poverty line in 2019 (less than $1.90 per day) 

(4,5). 
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Figure 2.1: Map of Africa  

 

Shapefiles for the map of Africa were obtained from the afrilearndata R package, code to 

produce the map can be accessed at 

https://github.com/mcewenkhundi/phd_exploratory_chapter. 

The study site was urban Blantyre, Malawi (Figure 2.2). Blantyre is the second largest district 

in Malawi after the capital city Lilongwe, and the country’s commercial centre (6). Blantyre 

is located in the southern region of Malawi, and according to the 2018 national census, 

urban Blantyre had a population of 800,264 and a mean household size of 4 (6). The city has 

a high population growth rate of 2% per annum according to the 2018 population census 

(6). A national TB prevalence survey that was done in 2014 estimated that the city had an 

estimated TB prevalence of about 1% (7) and an HIV prevalence of 18% in 2018 (8). Malawi 
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as a country is categorised as an area of high HIV and TB prevalence burden by the World 

Health Organization (9). 

Figure 2.2: Map of administrative districts of Malawi, Blantyre district marked in orange 

 

The shapefiles for the Malawi admirative regions were obtained from Malawi National 

Statistical Office, code to produce map can be accessed at 

https://github.com/mcewenkhundi/phd_exploratory_chapter 
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2.3 Description of the sources of data for the PhD 

In this section, I describe the sources of data for this PhD, which are summarised in Table 2.1.  

Table 2.1: Data sources summary table 

Data name Census data TB Notifications TB treatment 
outcomes 

Prevalence survey 
data 

Description 
of study 

A study area 
enumeration 
exercise 
collected 
household-level 
data for all the 
neighbourhoods 
in the study 
area.  

Data is collected on 
all notified TB cases. 
In addition to the 
national TB 
registration data, 
other study-specific 
data are also 
collected.  

TB treatment 
outcomes of 
notified TB cases 
are collected 
from all the TB 
registers after 
the end of the 
six-month TB 
treatment. 

Individuals with a 
cough or abnormal 
chest X-ray or both 
were asked to 
submit sputum for 
smear and Xpert 
microscopy and 
MIGT culture.  

Time period 
of data 
collection 

10 Oct 2015 and 
30 Dec 2015. 

From 1 Jan 2015 to 
30 Dec2019. 

From 1 Jan 2015 
to 30 Dec 2019. 

From May 2019 to 
October 2019. 

Collection 
method for 
GPS data 

Using a GPS 
device, a 
circumferential 
walk was done 
to mark the 
boundary of 
each 
neighbourhood. 

Using ePAL, a 
software application 
that has inbuilt maps. 
TB officers were 
assisted by patients 
to capture household 
coordinates  

All TB Treatment 
outcome data 
are linked to TB 
notifications data 

GPS devices were 
used to get 
household GPS 
coordinates 

Total 
records  

The total 
population from 
the census was 
753,489  
individuals 

10,306  10,306  15000 adults 

 
2.3.1 Study census 

In 2015, the MLW study team conducted a population census in all of the city’s community 

health worker (CHW) areas (10). Each CHW area has a ministry of health employee that is 

linked to its closest primary health clinic. These CHW officers are responsible for providing 

community engagement activities to the community members in the CHW area on behalf of 

the health facility that they report to. Our study team data officers have previously collected 

the GPS boundaries of these CHW areas, this was accomplished by doing a circumferential 
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walk around the CHW areas accompanied by the CHW officers, since these are the ones who 

knew the physical boundaries of their areas. These GPS vector shapefile boundaries were 

imported into Qgis (a geographic information system software application) and were further 

processed to create smooth boundaries and remove accidental gaps between neighbouring 

CHW areas. Each area was also assigned a numeric code and a name for easy identification. 

During the census CHW’s accompanied by our study field workers would move around the 

areas that they were responsible for and enumerate the household members of all the 

households within the boundaries of that CHW area. Aggregated information of household 

members was collected using a paper-based questionnaire. According to the census, 

household members were defined as people who live together and eat meals together. At 

each household, a household member was interviewed; preference was given to the 

household head but they were represented by another member that was available at the 

time of the interview. The household level data that was collected includes the total number 

of members, male members aged >15yrs, female members aged >15yrs, children aged 5 to 

14yrs, toddlers aged 1 to 4yrs and infants <1yr. The paper-based questionnaires were 

entered into a data base using Access forms. 5% of records entered each week were 

reviewed for quality checks of the entry process. 

2.3.2 Enhanced TB notification surveillance and TB outcomes 

Patients diagnosed with TB in Malawi are registered by the National TB Programme. TB 

registration clinics in Blantyre include a government referral hospital, free public clinics and 

a small number of private health facilities (11). A collaboration between Malawi-Liverpool-

Wellcome Trust Clinical Research Programme (MLW), the Blantyre District Health Office, 

and the Malawi National TB Control Programme (NTP) has set up an enhanced TB 
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notification surveillance system in Blantyre. At registration, all TB patients are offered 

provider-initiated HIV testing and are initiated on antiretroviral therapy if newly diagnosed 

with HIV (11).  

Since 2015, an electronic data capture application (ePAL) has been used to collect clinical, 

sociodemographic, and household level data, this data includes the data that is collected  

routinely into the TB registers and study specific data. As part of the same enhanced system, 

a sputum sample is collected from the patient and sent to the study lab at Malawi College of 

Medicine Lab for sputum smear microscopy and culture (10,12). ePAL supports the capture 

of global positioning satellites (GPS) coordinates of TB patient’s households.  This is made 

possible because ePAL has preinstalled offline high resolution satellite maps which are 

geotagged with reference locations (“points of interest”) within each neighbourhood of the 

city. Using the name of place of residence and the closest point of interest that is to the 

patient’s household the TB officer is able to narrow the satellite map image of ePAL to a 

resolution that the TB patient is able to locate their household. The GPS coordinates are 

automatically collected by ePAL after pressing at the household location with a finger on the 

touch screen of the device. The ePAL application has previously been validated and 

described elsewhere (10,13).  

The city was subdivided into 72 neighbourhoods; these neighbourhoods were formed by 

combining several CHW areas to have approximately 4000 adults in a neighbourhood. Only 

CHW areas that belonged to the same community health worker were combined. 

Neighbourhood denominators were derived from the respective CHW areas that made up 

the neighbourhood from the census data collected in Section 2.3.2 
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2.3.3 TB treatment outcomes 

At the end of TB treatment, treatment outcomes of TB patients are recorded into the 

national TB registers at the TB treatment health facilities where they were getting their 

treatment. The TB outcomes are defined according to WHO guidelines on reporting of TB 

outcomes as outlined in in Section 1.4.4 and Table 1.1 (14).  A study team data officer goes 

around the TB clinics and collects the TB treatment outcomes using an electronic data 

capture device. Each record of the TB outcome was linked to a TB notification registration of 

that patient in the database.  

2.3.4 TB prevalence 

In 2019, a TB prevalence survey was carried out in Blantyre City by the MLW study team at 

the start of a planned cluster-randomised trial of community-based TB screening 

interventions, subsequently interrupted by COVID-19 (ISRCTN11400592). 72 

neighbourhoods were defined, each comprised of several community health worker (CHW) 

areas as described in Section 2.3.1. Using Google Earth, a geographical information specialist 

captured the GPS coordinates of all the houses in the 72 neighbourhoods to be used as the 

prevalence survey sampling frame. In each neighbourhood, 115 households were selected 

at random for participation into the prevalence survey with the aim of recruiting 215 adults 

(≥18 years old) per neighbourhood.  

Adults from the randomly selected households were visited and invited to attend a study 

tent located at a central point within the neighbourhood for TB and HIV investigations. TB 

screening was provided at the tent using a digital chest radiograph that was immediately 

read by an experienced radiographer trained in TB prevalence surveys, and with 

interpretation supported by computer assisted diagnostic software (Qure.ai version 2.0). 
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Participants who had an abnormal chest X-ray or reported cough of any duration were 

asked to provide two spot sputum samples for Xpert, smear microscopy, and MGIT culture. 

Patients with positive TB results were asked for confirmatory specimens and were assisted 

to register for TB treatment at the nearest TB registration centre. The study team would 

stay in a neighbourhood for a period of one week before moving to the next 

neighbourhood. 

2.5 Simulation and modelling of neighbourhood prevalence to notification 

ratios 

Data for the third objective of my PhD came from a TB prevalence survey and the TB 

notification surveillance of Urban Blantyre. Because the prevalence survey was incomplete 

at the time of presenting my PhD proposal to the PhD upgrade committee, I undertook the 

following simulation exercise to inform the modelling strategy and help establish the 

feasibility of the proposed approach for objective 3.  

I undertook the simulation exercise of the prevalence cases guided by the preliminary 

estimates from the ongoing prevalence survey and plausible values that would be expected 

according to our understanding of the study setting. Regression modelling based on the 

observed TB notifications and the simulated prevalent data were fitted to the data to check 

the feasibility of the proposed modelling approach for the calculation of prevalence to 

notification ratio. 
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Neighbourhood prevalence simulation approach: 

1. Prevalence study neighbourhoods were coded as 𝑗 = 1,2,3…72. We fixed the mean 

number of participants for each neighbourhood to 𝑝! = 215. The number of 

participants were fixed to 215 since that was the number that was aimed for in the 

prevalence survey referred to Section 2.3.4. We simulated the TB prevalence rate 𝜆!  

following the Equation below: 

𝜆! =	
"
#
$0.01(𝐷 − 𝑑!, + 0.0025𝑑!0 +	∅$%&,!  (Equation 2.1) 

𝑤ℎ𝑒𝑟𝑒	∅$%&,! 	𝑎𝑟𝑒	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑎𝑢𝑡𝑜 − 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒	𝑟𝑎𝑛𝑑𝑜𝑚	𝑒𝑓𝑓𝑒𝑐𝑡𝑠 

𝑤ℎ𝑒𝑟𝑒	𝐷	𝑤𝑎𝑠	𝑡ℎ𝑒	𝑀𝑎𝑥	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑐𝑒𝑛𝑡𝑒𝑟	𝑜𝑓	𝐵𝑙𝑎𝑛𝑡𝑦𝑟𝑒 to the centroid of the 

furthest neighbourhood. 

		𝑑! 	𝑤𝑎𝑠	𝑡ℎ𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑓𝑟𝑜𝑚	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑	𝑜𝑓	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑	𝑗	𝑡𝑜	𝑡ℎ𝑒	𝑐𝑒𝑛𝑡𝑒𝑟	𝑜𝑓	𝐵𝑙𝑎𝑛𝑡𝑦𝑟𝑒	𝑐𝑖𝑡𝑦 

The 𝜆!  were therefore allowed to vary between 0.01 to 0.0025. The centre of 

Blantyre was chosen as the location of the Queen Elizabeth Hospital, which is a 

referral hospital located approximately at the centre of the city. 

The rationale for choosing Equation 2.1 was based on preliminary data and previous 

studies (15,16). We assumed that TB prevalence will be highest in neighbourhoods 

towards the densely-populated centre of the city where more people live (15), and 

that the prevalence will reduce in more distal neighbourhoods. Therefore, we 

simulated neighbourhood prevalence as a function of distance from the centre of 

urban Blantyre to each neighbourhood centre (Equation 2.1). 
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2. The conditional autoregressive (CAR) random effects for each neighbourhood were 

calculated as follows. We computed an adjacency matrix 𝑊	that	was	𝐽	 × 𝐽, where 

row 1 had 1’s for neighbourhoods that were adjacent (with touching boundaries or 

being nearest to each other) to neighbourhood 1, and 0 otherwise, similarly for rows 

2, 3, …72. 

Then we drew ∅!~𝑁80, 𝜎∅# = 0.002<, 𝑗 = 1,2,3…72 and this was put into a vector   

∅	= (1 × 𝐽). We further calculated a vector of the number of neighbours for each 

neighbourhood 𝑗, 𝑛 = 𝑊 × 1.  

To calculate random effects for each neighbourhood 𝑗 , ∅=$%& = 𝑊∅	=   and then 

divided  	∅=$%&  by the vector of neighbours 𝑛 to get the mean random effects from 

the adjacent neighbours. 

3. The prevalent TB cases for each neighbourhood 𝑗	𝑤𝑒𝑟𝑒	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑎𝑠	𝑌! 	~	𝑃𝑜𝑖𝑠(𝜇! =

	𝜆!𝑝!) (Equation 2.2) 

4. A spatial Bayesian Poisson regression was used with weakly informative prior 𝑁(0,8) 

for intercept and coefficients and Cauchy(0,1)	for the standard deviation of spatial 

random effects. The models were computed using rstan via the brms R package (17). 

Ten thousand samples were drawn from each model posterior distribution using 

Markov Chain Monte Carlo with a burn of 1000 samples. Analysis was done using R 

version 3.5.2 (R Foundation for Statistical Computing, Vienna). 

5. The model fitted to simulated data was specified as below: 

𝑙𝑜𝑔$𝑌! , 𝑝0 = 	 𝑙𝑜𝑔(𝑝!) +	𝛽( +	𝛽"𝑑! +⋯+	∅! 	(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2.3) 

𝑊ℎ𝑒𝑟𝑒		∅! 	~	𝑁(𝜇! , 𝜎!), 

𝜇! =	
1
𝑛!
	 W ∅*
*	,	-!
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𝜎!) =	
𝜎∅
)

𝑛!X  

𝑗 For neighbourhood 𝑗, 𝑗 = 1,2,3…72 

𝑌!,/ Number of prevalent TB cases in neighbourhood 𝑗 as simulated by Equation 

2.2 

𝑙𝑜𝑔(𝑝!) The log offset. 𝑝!  is the number screened for TB in cluster 𝑗. Which was fixed 

to be 215. 

𝛽( Intercept  

𝛽"𝑑!  Coefficient for distance for centre of the city to neighbourhood centroid 

∅!  Spatial random effect of each area that are modelled as  ∅! 	~	𝑁(𝜇! , 𝜎!))	 

 Where:              	𝜇! =	
"
0!
	∑ ∅**	,	-! , 

																												𝜎!) =	
𝜎∅
)

𝑛!X   

                         			𝑁!	𝑎𝑟𝑒	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠	𝑜𝑓	𝑠𝑖𝑧𝑒	𝑛!  

 

2.5.2 Results of the simulation modelling: 

The model computation was good as evidenced by trace plots and Rhat statistics that 

showed model convergence and sufficient effective samples.  
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Figure 2.3: The simulated TB prevalence counts per neighbourhood that were estimated from 

Equation 2.2 below: 

  

The total simulated prevalent TB cases were 92, with a minimum of 0, maximum of 4, and a 

mean of 1.3. The estimated mean prevalence was 0.60%. The simulation successfully 

generated the spatial correlation that was likely plausible given our understanding of the 

local epidemiology of TB in the study setting (15,16). 
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Figure 2.4: A graph of the simulated TB prevalence (from Equation 2.2) versus the model 
predicted prevalence (Equation 2.3) 

 

The mean predicted prevalence was similar to that which was simulated 0.6%. The 

predicted neighborhood-level prevalence’s showed shrinkage towards the mean 

prevalence. 

2.5.3 Simulation and modelling of prevalence to notification ratios 

We used the prevalent cases (𝑌!) that were simulated in Equation 2.2. The data for 

notification cases (𝑌!,() came from 2018 notified TB cases in Urban Blantyre, captured by our 

citywide enhanced TB surveillance system (15).  The adult population for each 

neighbourhood (𝑝!,() came from population census of Urban Blantyre that was done in 

2015. 

The steps for this analysis were: 

1. We fitted Equation 2.1 without covariates to obtain the CAR smoothed 

prevalence rates for each area via 𝜆!,) = exp	(𝛽* +	∅!) (Equation 2.4) 
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2. For each area j (j=1,2,3….72) we have 𝑝!,( person-years at risk for the notified 

cases 𝑌!,( . 

3. A spatial Bayesian Poisson regression was used with weakly informative prior 

𝑁(0,8) for intercepts and model coefficients and Cauchy(0,1)	for the standard 

deviation of spatial random effects.  The models were computed using rstan via 

brms R package (17). The spatial random effects were modelled with an intrinsic 

conditional autoregressive (ICAR) prior.  Ten thousand samples were drawn from 

each model posterior distribution using Markov Chain Monte Carlo with a burn 

of 1000 samples. Analysis was done using R version 3.5.2 (R Foundation for 

Statistical Computing, Vienna). 

4.  The model to predict notified TB cases was specified as below: 

𝑙𝑜𝑔$𝑌!,00 = 	 𝑙𝑜𝑔(𝑝!,0 + 𝜆!,/) +	𝛽( +	𝛽"𝑑! +⋯+	∅! 	(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2.5) 

𝑊ℎ𝑒𝑟𝑒		∅! 	~	𝑁(𝜇! , 𝜎!), 

𝜇! =	
1
𝑛!
	W ∅*
*	,	!

 

𝜎!) =	
𝜎∅
)

𝑛!X  

𝑗 For cluster 𝑗, 𝑗 = 1,2,3…72 

𝑌!,0 Number of notified TB cases in neighbourhood 𝑗 

𝑙𝑜𝑔(𝑝!,0 + 𝜆!,/) +	 The log offset. 𝑝!,0 is the number of TB cases in cluster 𝑗 in 2018. 𝜆!,/ is the 

CAR smoothed prevalence rate for cluster 𝑗 as obtained from step 1. 

𝛽( Intercept  

𝛽"𝑑!  Coefficient for distance for centre of the city to cluster centroid 

∅!  Spatial random effect of each area that are modelled as  ∅! 	~	𝑁(𝜇! , 𝜎!))	 

 Where:              	𝜇! =	
"
0!
	∑ ∅**	,	-! , 

																												𝜎!) =	
𝜎∅
)

𝑛!X   
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                         			𝑁!	𝑎𝑟𝑒	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠	𝑜𝑓	𝑠𝑖𝑧𝑒	𝑛!  

 

5. The model was then used to predict notified cases for each cluster which were 

later used to calculate the prevalence to notification ratios (prevalent TB cases 

per 100,000/Notified TB cases per 100,000). 

2.5.5 Results of the models based on the TB notifications and simulated prevalence 

data 

The empirical TB neighbourhood notification distribution in 2018 was minimum 3, maximum 

37 and mean 18 (15).  
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Figure 2.5: 2018 empirical TB notifications 

  

The following graph shows the neighbourhood prevalence to notification ratios (P:N ratio). The 

prevalence was simulated from Equation 2.1. The P:N ratio was calculated by dividing the posterior 

prevalence rate (from Equation 2.3) by the posterior notification rate (from Equation 2.5) for each of 

the 72 neighbourhoods. The median and 95% credible interval of the posterior P:N ratio samples 

were also calculated for each neighbourhood. 
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Figure 2.6: Neighbourhood prevalence to notification ratios (green dashed line y-axis line at 1) 
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Figure 2.7: A map of the prevalence to notification ratios (red diamond is the location of QECH) 

 

The overall mean neighbourhood P:N ratio from this simulation exercise was 1.87 with a 

95% credible interval of 0.11 to 5.96 and a range of 0.10 to 8.50. The areas with the highest 

P:N ratios were assumed to have a higher likelihood of undiagnosed TB cases based on this 

scenario of simulated prevalent TB cases. This analysis helped in proving the feasibility of 

the methods that were proposed for the PhD thesis. 

2.5.6 Results of the models based on the TB notifications and simulated prevalence 
data 
This exercise demonstrated that even when empirical TB prevalence is low (as was observed 

in the ongoing prevalence survey), we were confident that we would be able to fit multi-

level spatial models with acceptable levels of uncertainty. In addition, this exercise assisted 

in coming up with a code template that was used to run the final models.  
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3 Systematic Review 

3.1 Introduction 

This chapter is a systematic literature review that was undertaken to examine the existing 

evidence regarding the effectiveness of spatially targeted interventions for the control of 

HIV, TB, leprosy, and malaria. I was the lead author of the protocol which was submitted to 

Prospero and I also led the writing of this manuscript, including coordinating with co-

authors so that they were able to complete their assigned tasks. 

In communities, HIV, TB, leprosy and malaria cluster geographically into hotspots, and 

community interventions can be targeted at these hotspots (spatially targeted 

interventions). The other diseases were included because spatially targeted interventions 

are relatively new, and we wanted to also learn the progress that has been made in 

controlling these other epidemics. This review was submitted on 16 September 2020 to BMJ 

Open Journal and was published on 15 June 2021 and has been reproduced below.  

In summary, we concluded that, although data was limited and understanding of 

effectiveness inferred by high risk of bias (particularly in classification of hotspots and 

ascertainment of outcomes), the spatially-targeted interventions demonstrated potential to 

identify communities with a higher yield of identified cases, communities with a high 

prevalence of cases, and hence potentially for accelerating reductions in the TB case 

notifications rates. 
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3.2 Systematic review manuscript 
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Abstract (287 words) 

Background: As infectious diseases approach global elimination targets, spatial targeting is 

increasingly important to identify community hotspots of transmission and effectively target 

interventions. We aimed to synthesise relevant evidence to define best practice approaches 

and identify policy and research gaps. 

Objective: To systematically-appraise evidence for the effectiveness of spatially-targeted 

community public health interventions for HIV, Tuberculosis, Leprosy and Malaria. 

Design: Systematic review.  

Data sources: We searched Medline, Embase, Global Health, Web of Science and Cochrane 

Database of Systematic Reviews between 01 January 1993 and 22 March 2021.  

Study selection:  The studies had to include HIV or TB or leprosy or malaria and spatial 

hotspot definition, and community interventions. 

Data extraction and synthesis: A data extraction tool was used. For each study, we 

summarised approaches to identifying hotpots, intervention design and effectiveness of the 

intervention. 

Results: Ten studies, including one cluster randomised trials and nine with alternative 

designs (before-after, comparator area), satisfied our inclusion criteria. Spatially targeted 

interventions for HIV (one United States of America (USA) study), TB (three USA) and leprosy 

(two Brazil, one Federated States of Micronesia) each used household location and disease 

density to define hotspots followed by community-based screening. Malaria studies (one 

each from India, Indonesia and Kenya) used household location and disease density for 

hotspot identification followed by complex interventions typically combining community 
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screening, larviciding of stagnant water bodies, indoor residual spraying and mass drug 

administration.  Evidence of effect was mixed.  

Conclusions: Studies investigating spatially targeted interventions were few in number, and 

mostly underpowered or otherwise limited methodologically, affecting interpretation of 

intervention impact. Applying advanced epidemiological methodologies supporting more 

robust hotspot identification and larger or more intensive interventions would strengthen 

the evidence-base for this increasingly important approach. 

PROSPERO registration: CRD42019130133 
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Strengths and limitations of the study 

• This was a thoroughly conducted systematic review which only included published 

literature. 

• We developed the search strategy with input from infectious disease experts, 

statisticians and librarians, and we only included studies that met our objective 

assessment criteria.    

• We acknowledge that some studies might still have been missed even with the 

systematic approach that we used. 

• The effect of publication bias cannot be ruled out as it is possible that studies that 

had negative results might not have been published; thereby, they would not have 

been captured by our search strategy. 

• The studies had different interventions and outcomes as such a meta-analysis was 

not done contrary to the initial plans. 
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Introduction 

The world has made tremendous strides in controlling human immunodeficiency virus (HIV), 

tuberculosis (TB), leprosy and malaria epidemics. Despite impressive achievements in 

reductions of new cases, considerable efforts are required to meet and maintain elimination 

targets (1–4). Much of the current progress in disease control is attributable to the 

combination of facility based routine health services, supplemented by community-based 

interventions (1–4).  

The success of disease control strategies provided through facility-based services relies on 

prompt recognition of symptoms by the patient, early health seeking by the patient, and 

correct recognition and management by health providers to provide early diagnosis and 

effective medical care (1–4). However, health-seeking delays can be prolonged, and this 

strategy will also have no effect on transmission during subclinical illness (2,5–7). In low-

income settings, lack of faith in the quality of services, high opportunity and indirect costs, 

and non-adherence to syndromic management protocols can combine to cause substantial 

health-seeking and diagnostic delays, undermining the effectiveness of facility-based 

strategies based on early diagnosis and treatment (2,4,5,8–12). Community interventions 

can be complementary to facility-based services but are more resource intensive, logistically 

challenging and are generally only justifiable when targeted at groups of people at risk or in 

a geographically defined area with high prevalence or incidence of disease (1–4). 

In communities, HIV, TB, leprosy and malaria cluster geographically into hotspots (13–19). 

Hotspots are defined as areas of high incidence or prevalence compared to neighbouring 

geographical areas (20). For malaria, which is vector-borne, environmental characteristics 

conducive to replication of anopheles mosquitos are a key consideration (18). For HIV, TB 
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and leprosy, diseases that are transmitted exclusively person-to-person, hotspots tend to be 

characterised by poverty, poor access to health services, overcrowding, concentrations of 

migrant populations, and poor housing (13–18).  Since hotspots are likely to be areas of 

relatively high transmission, targeting interventions at hotspots may prevent many more 

infections and cases of disease than similar efforts in low-transmission settings or 

untargeted efforts (Figure 3.1) (21). Public health interventions amenable to spatially-

defined hotspot targeting include: screening, case-finding, prevention (including 

vaccination), and improvement in access to services for diagnosis and treatment (15,20). 

Community health and prevention interventions frequently target people in slums or 

informal urban settlements (22). In low and middle income countries (LMIC), many millions 

of people live in informal urban settlements (23), and disease control programmes would 

benefit from more precise identification of high priority areas within these to allow 

interventions to be delivered to communities where the impact is likely to be greatest 

(24,25). At the moment targeting tends to use relatively crude epidemiological criteria such 

as age and gender (1–4,26). But since cases of the diseases in this review are known to 

cluster geographically, targeting of all people in a carefully identified geographically-defined 

hotspots offers an alternative criterion to define at-risk groups for interventions (13–19).  

The main aim of this systematic review was to systematically-appraise evidence for spatially-

targeted community public health interventions directed towards major infectious diseases 

that are transmitted in different ways: HIV is predominantly sexually transmitted; TB by 

respiratory droplet transmission; leprosy by direct contact and droplet transmission; and 

malaria by vector-borne transmission. We aim to summarise lessons learnt from evaluation 

of spatially targeted interventions against these diseases and to make recommendations for 
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researchers, policymakers and disease control programmes, as well as to inform the design 

and evaluation of future studies investigating spatially-targeted interventions.  
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Methods 

Study design  

Systematic literature review. 

Public involvement statement 

We developed the research question for this project after realising the evidence gap on the 

effectiveness of spatially targeted interventions despite the growing interest that this 

approach has. To develop the scope of the research question we engaged experts in public 

health interventions of HIV, tuberculosis, leprosy and malaria.  The search strategy was also 

developed in consultation with the experts. The results of the research will be disseminated 

to researchers and policy makers at local and international conferences.   

Search strategy  

We systematically searched the literature using major subject headings and keywords to 

identify published studies meeting the inclusion criteria following our published protocol 

(PROSPERO ID: CRD42019130133). Databases searched included: Medline, Embase, Global 

Health, Web of Science and the Cochrane Database of Systematic Reviews. The three central 

concepts included in our search strategy (Table 3.1) were the disease condition (HIV, TB, 

leprosy and malaria); space (techniques used to identify hotspots); and community 

interventions.  

Eligibility criteria 

We included studies published between the period from 01 January 1993 and 22 July 2019 

and then updated to 22 March 2021. The start of the search period was chosen as the year 

that TB was declared as a "global emergency" by the World Health Organization (WHO). We 
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focused on studies of spatially targeted interventions for HIV, TB, leprosy and malaria with 

the aim of identifying all the available literature on the effectiveness of spatially targeted 

intervention in the selected diseases, and then summarising the findings. We did not limit 

inclusion by age group of participants or geographic region. We included randomised 

controlled trials, non-randomised observational studies, before-and-after studies and time-

series analysis studies. The following articles were excluded: editorials; narratives; 

systematic reviews; case studies; case reports; case-control studies; contact investigation 

studies; and non- spatially targeted community studies. 

Selection of studies and data extraction 

We imported studies into an Endnote (Thompsons Reuters) database, and duplicates were 

removed. McEwen Khundi (MK) and Marriot Nliwasa (MN) independently screened the title 

and abstracts against inclusion and exclusion criteria (Table 3.2), identified studies eligible 

for full-text review, and subsequently reviewed the full text of each selected study 

independently. Discrepancies between MK and MN were resolved with discussion, and 

where agreement could not be reached, two other reviewers (Peter MacPherson (PM) and 

James Carpenter (JC)) participated in a consensus review.  

We developed a data extraction form that was piloted on a sample of selected manuscripts. 

This form was independently completed for each study selected for full-text review by MK 

and MN.  

Assessment of study quality 

Two reviewers (MK and MN) assessed the quality of each study. We used separate tools to 

assess the methodological quality of cluster randomised trials (Cochrane Collaboration risk 
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of bias tool) (27) and non-randomized studies (ROBINS-I tool for risk of bias assessment) 

(28). 

Definitions 

We defined spatially-targeted interventions as community interventions that targeted 

hotspots of disease. Hotspots were defined as sub-district geospatially-defined areas that 

had a high number of incident or prevalent cases of the infection or disease compared to 

surrounding areas, studies that based their hotspots around diagnosed index cases were not 

included. In practice, as definitions varied considerably between studies, we extracted and 

compared hotspot definitions between studies. 

Statistical analysis 

The main objective of the systematic review was to compare the impact of the intervention 

in the intervention hotspot areas compared to control areas. We report the outcomes 

defined by the included studies, with outcomes being prevalence, incidence, case 

notification rates, and number needed to screen to identify a positive case. We calculated 

measures of effect and uncertainty in effect estimates using data available in manuscripts 

where these were not provided by the authors using R 3.61 (R Core Team). Because of high 

anticipated heterogeneity between and within diseases and interventions investigated, we 

decided not to undertake meta-analysis. 

Ethics statement 

This review used published data, and ethical review was not required. 
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Data sharing statement 

The search strategy and summary data tables for this systematic review have all been 

included in the main text and in the appendix section.   
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Results 

A total of 3919 unique abstracts were identified by the search strategy, from which 3886 

were excluded from the title and abstract review, leaving 28 studies that were reviewed as 

full-text articles. Overall, 10 studies met the inclusion criteria (Figure 3.2). The reasons for 

exclusion are found in Table 3.2. 

One United States of America (USA) based study was identified for HIV. Three TB studies 

were found: all three studies were from the USA. Three leprosy studies were found: two 

from Brazil and one study from the Federated States of Micronesia. For malaria, we 

identified three studies: one each from India, Indonesia and Kenya. The most common study 

design was implementation demonstration studies (i.e. studies in which spatially targeted 

interventions were introduced without random allocation of hotspots to study arms). Nine 

studies had this design: one HIV, three TB, three leprosy and two malaria. We identified one 

cluster randomised trial (CRT), which evaluated interventions targeted against malaria 

(Table 3.3). 

Table 3.4 summarises the characteristics of the included studies, presenting outcomes, 

measures of intervention effects and study quality/risk of bias assessment results. Table 3.5 

synthesises methods used to geolocate cases and identify hotspots in the included studies. 

Table 3.3 has details on why studies were excluded following full text review. 

Spatially-targeted HIV interventions 

In Goswami et al. (29), cases of TB (N=150), HIV (N=665) and syphilis (N=155) notified 

between 1 Jan 2005 and 31 Dec 2007 in Wake County, North Carolina USA, were geocoded 

to households. Kernel density maps of the three diseases were generated; maps identified 
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two areas with the densest number of cases (hotspots). Hotspots were defined as areas with 

more than 10 cases of either TB, HIV or syphilis notified per square mile during the three 

years. A map of streets and local businesses of Wake County was used to identify the 

locations of the hotspot areas.  

Between 2 June 2009 and 3 Nov 2011, adult community screening for HIV was done in the 

defined hotspots at specific sites by community nurses and disease intervention specialists 

from the HIV, syphilis, and TB clinics at the county health department. Of 247 community 

participants screened by the study, 240 had valid HIV test results.  Prevalence of HIV in 

hotspot areas was compared to that among patients presenting to a sexually transmitted 

disease (STD) clinic located outside of the hotspot areas. HIV prevalence was higher among 

community screened participants (8/240, 3%, 95% CI:1.4-6.5) compared to the Wake County 

STD clinic (64/15936, 0.4%, 95%CI: 0.3-0.5) with a risk ratio of 8.3 (95% CI: 4.0-17.1, 

p<0.001). Community HIV screening identified eight HIV positive cases, only one of whom 

was previously undiagnosed. 

Spatially-targeted tuberculosis interventions 

In Moonan et al. (24), notified TB cases from 1 Jan 1993 to 31 Dec 2000 (N=991) were 

geolocated to zip codes in Tarrant County, north-central Texas, USA. Three zip codes were 

found to have the highest TB notification rates per 100,000 of the population, in addition to 

having genotypically-clustered Mycobacterium tuberculosis isolates (24). The TB notification 

rates of the zip codes were 94, 55 and 32 cases per 100,000 while the case notification rate 

for the whole county for the same period was 5.9 cases per 100,000; 95 of 117 (81%) 

isolates were genotypically clustered in these three zip codes (30). Between 1 Sep 2002 and 

31 Dec 2004 community-based organizations offered screening for TB and latent TB 
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infection (LTBI) to hotspot residents. Overall, 3,645 individuals were screened. 1.2% (N = 44) 

people were diagnosed and treated for active TB, and 18.6% (N=681) were diagnosed and 

treated for LTBI. This targeted screening identified one person with active TB for every 83 

screened, and one person with LTBI for every five screened. The yield of the targeted 

approach was considered to be more than what would be expected in a county with an 

active TB notification rate of 5.7 per 100,000 population year. 

Goswami et al. (29) (see above in HIV section) also offered screening for LTBI to the same 

individuals who were offered HIV testing. Both tests were performed from the same blood 

sample. Hotspot prevalence was compared to LTBI prevalence at the Wake County TB clinic, 

which was outside of the hotspot areas. Latent TB testing at the TB clinic was offered to high 

risk individuals who had close contact with a recently diagnosed active TB cases, refugees 

and those referred by primary care providers or employers. 234/247 had valid LTBI 

screening results. LTBI prevalence was higher among community screened participants 

(36/234, 15%, 95% CI:11.0-21.7) versus 6% (95%CI: 5.6-6.6) at the TB clinic with a risk ratio 

of 2.5 (95% CI: 1.9-3.5, p<0.001). 

In Cegielski et al. (31), notified TB cases in Smith County, Texas USA between 1985 to 1995 

(N=128) and all notified LTBI cases from 1993 to 1995 (N=311) were geocoded to their 

households. The geocoded cases were loaded into geographical information systems (GIS) 

software to produce a point map of both active TB and LTBI cases. The two densest 

neighbourhoods of TB and LTBI cases were identified visually from the map. In 1996, study 

field workers went door to door in these neighbourhoods and offered tuberculin skin testing 

(TST). 1236 /2258 had LTBI testing and received results, 229/1236 (18.5%) were TST positive 

and 147 received treatment. To assess the intervention, the notified TB cases from 1996 to 
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2006 in Smith County were mapped to do a before and after intervention comparison. The 

TB notification rates in the targeted hotspots declined from 39.6 per 100,0000 people per 

year (95% CI:30.4-48.8) from 1985 to 1995 to zero from 1996 to 2006 (p<0.001). While for 

the entire Smith County the TB notification rates reduced from 8.1 per 100,0000 people per 

year (95% CI: 5.2-11.0) from 1985 to 1995 to 3.7 per 100,000 people per year (95% CI: 1.2-

6.1) from 1996 to 2006 (p<0.001) 

Spatially-targeted leprosy interventions 

In De Souza Dias et al. (32), leprosy cases notified between 1998 and 2002 (N=368) in the 

municipality of Mossoro, Rio Grande do Norte in Brazil were geocoded to households. The 

geocoded cases were used to create a density map with a radius of 100m, and four 

neighbourhoods with the highest concentration of cases were identified as hotspots. Four 

active case finding (ACF) campaigns were conducted in these hotspots between March and 

September 2005. Study team members went door to door to identify people with symptoms 

of leprosy and referred them to the nearest primary health clinic. 512 possible leprosy cases 

were referred, and 104 leprosy cases were diagnosed. The cases identified through hotspot 

ACF represented 50% of the total cases diagnosed in the city in 2005. In addition, the case 

notification rate in 2005 was higher than in 2004; 9.34 per 10,000 versus 5.16 per 10,000 

respectively. 

In Jim et al. (33), in the state of Pohnpei in the Federated States of Micronesia, notified 

leprosy cases from 2002 to 2006 (N=502) were geocoded to households, producing a point-

density map of 1 mile radius; areas with the densest areas were identified for ACF. During 

2007 to 2008, ACF teams undertook door to door visits and screened household members 

for leprosy. There was an eight-fold statewide decrease in the number of households that 
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were screened between 2007 to 2009, while the number of identified cases was similar to 

the pre-spatially targeted ACF campaign period of 2002 to 2006. 

In Barreto et al. (25), notified leprosy cases from the two municipalities of Castanhal and 

Oriximinal in the state of Para, Brazil from January 2004 to February 2010 (N=633) were 

geocoded to households. The notified leprosy cases were aggregated by census tract to 

calculate census case notification rates, and a spatially empirical case detection rate was 

used to smooth notification rates. Census tracts were classified into four categories, with 

the highest category assigned to areas with >40 cases per 100,000 population. Kulldorff's 

spatial scan statistic was used to define groups of hotspot census tracts with statistically 

higher than average notification rates. Two schools were selected: one within a hotspot and 

one from a census tract with ≥40 notified leprosy cases per 100,000 populations. At these 

schools, 134 students with a mean age of 10 years were screened and 11/134, 8.2% (95% 

CI:3.5-13.0) were diagnosed with leprosy based on clinical signs and symptoms. The 

diagnostic yield in hotspot area schools was significantly higher than in students from 

randomly-selected schools from eight municipalities in the state of Para in a cross-sectional 

study between 2009 to 2011: 63/1592, 3.9% (95% CI:3.0-4.9) with a risk ratio of 2.1 (95% CI: 

1.1-3.8). 

Malaria 

In Srivastava et al. (34), notified malaria cases between 2000 to 2005 obtained from the 

State Department of Health in Madhya Predesh were aggregated at block and district level. 

Malaria hotspots were defined based on the percentage of malaria cases that had P. 

falciparum malaria of all notified cases from 2000 to 2005. Unspecified targeted malaria 

interventions in 2007 were evaluated for effectiveness by comparing overall number of 
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confirmed cases notified in 2006 with those notified in 2007. Absolute numbers of notified 

cases decreased by 5.7% (95%CI:4.7-6.7) from 96,042 in 2006 (p < 0.05).  

In Herdiana et al. (35), in Sabang island, Indonesia, documented malaria cases from 2007 to 

2008 and self-reported malaria cases identified during a survey (N=319), were geocoded to 

households to produce point maps that classified 14 out of 18 villages as hotspots, based on 

absolute number of cases. From May 2010, home visits were conducted twice a month in 

hotspot villages, and only once in non-hotspot villages. Malaria blood smears were taken 

from anyone with current or recent history of fever, with smear-positive participants 

referred for treatment. Household contacts and neighbours within 500 meters of smear-

positive participants were also screened. Interventions in hotspot areas included: improving 

malaria diagnostic labs, introduction of Artemisinin-based Combination Therapy (ACT) for 

malaria treatment, scale-up of indoor residual spraying (IRS) and distribution of long-lasting 

insecticide-treated nets (LLINs). The incidence of malaria in hotspot areas decreased by 30-

fold from 3.18 to 0.13 per 1000 population from 2008 to 2011. (34) (35) (36) 

In Bousema et al. (36), between June and July 2011 in Rachuonyo, western Kenya, 17,503 

individuals were screened for a malaria prevalence survey, including P. falciparum 

antibodies. SaTScan software was used to define hotspots based on the prevalence of 

antibody-positivity and age-adjusted antibody density. In total 27 hotspots were identified. 

A randomised controlled trial randomly allocated ten hotspots 1:1 to either intervention or 

control. The intervention activities were weekly larviciding of stagnant water bodies, 

provision of LLINs, IRS and mass drug administration (MDA). MDA was only administered to 

households that had a confirmed malaria case; febrile individuals (temperature > 37.50C) 

and children aged 6 months – 15 years were offered malaria rapid diagnostic tests (RDT). 
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The following standard interventions were available to both arms, hotspots and evaluation 

zones (the area 500 metres around each hotspot): annual IRS, case management at health 

facilities and distribution of LLINs from antenatal clinics. 

There was no statistically significant difference in parasite prevalence in evaluation zones 

(area around the hotspot) at 8 weeks and 16 weeks post-intervention time points. The first 

evaluation zone (1-249m) at the 8th week found 3.6% (95% CI: -2.6 to 9.7%, p=0.216) and 

the second evaluation zone (250-500m) at the 8th week 3.8% (95% CI: -2.4 to 10.0%, 

p=0.187). Neither was there any significant difference in the first evaluation zone (1-249m) 

at the 16th week: 1.0%, (95% CI: -7.0 to 9.1%, p=0.713) and the second evaluation zone (250-

500m) at 16th week: 1.0% (95% CI: -8.3 to 10.4%, p=0.809).  

Influence of study quality on results 

The risk of bias assessment of the studies in this review focused on how the hotspots were 

selected and how the intervention were assessed in each of the studies that were included. 

The studies in this review were found to have issues that would make them susceptible to 

risk of bias. Hotspot selection was based mainly on notified cases (24,25,29,32–35,37,38). 

Relying on notified cases alone can introduce selection bias because notified cases can over-

represent cases from areas that have good access to health systems (15).   

 Further, identified geographical hotspots need to be investigated for stability overtime to 

ensure that they display spatio-temporal consistency in notification trends (15,39). This was 

not accounted for in the studies included in this review (24,25,40,29,32–38).  

The majority of the identified studies were implementation/pragmatic studies (24,25,29,31–

35,40,41). These did not randomise hotspots to interventions and therefore the studies 
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might have compared outcomes of the study in groups of people that had baseline 

characteristics that were different.  
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Discussion  

Main findings 

The key finding of this review is that, despite increasing enthusiasm for the application of 

spatially targeted interventions in public health research addressing infectious diseases (42), 

very few studies have rigorously evaluated the effectiveness of such approaches against 

non-hotspot comparator areas. We identified only 10 studies conducted since 1993, nearly 

all of which had substantial limitations in how hotspots were defined and identified, how 

spatially-targeted interventions were evaluated, or how comparator areas were selected. 

With the limited evidence available, we found some suggestion that hotspot-targeted 

interventions for tuberculosis, malaria and leprosy may be efficient and effective 

approaches in increasing diagnostic yield, reducing unnecessary screening, and perhaps in 

improving disease epidemiology. However, almost all the studies were vulnerable to bias 

due to regression to the mean: hotspots identified by highest prevalence/incidence will 

typically see prevalence/incidence decline, even in the absence of an intervention. As such, 

spatially-targeted approaches hold promise, but require further evaluation in high-quality 

studies to guide policymakers considering implementing this approach. 

Strengths and limitations  

We found fewer studies than we anticipated, potentially due to the challenges of collecting 

spatial data in developing countries where most areas do not yet have municipal address 

systems or subdistrict postal code systems (15,43).  Our search strategy was designed to be 

inclusive, and we did identify one previous systematic review of spatially targeted 

intervention for TB (44). However, for data synthesis we included only primary manuscript 

sources and ensured that studies included in the previous, more narrowly focused 
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systematic review were also included here. Nevertheless, in recent years technologies for 

obtaining spatial data have improved, become cheaper and hence more widely available; 

consequently, the inclusion of spatial data within epidemiological and surveillance studies as 

a tool to identify disease hotspots has become more common (42). In theory, this should 

enable disease control programmes to collect spatial data for identifying and targeting 

hotspots (42)(43). Thus, in future, prioritising complete mapping of low-income countries, 

with introduction of effective residential identification systems should be a major priority. 

This would allow some of the methods for geolocation of notified cases in the studies in this 

review, which used manual and labour intensive approaches that also had high potential for 

imprecision, to be replaced with more efficient approaches (33).  

Investment in national geospatial and surveillance tools that allow rapid, accurate and 

scalable geolocation of cases from within health facilities in settings that lack postal codes 

would greatly facilitate spatial mapping of areas of interest (45). Such tools would enable 

the identification of hotspots at finer scale and limit the use of arbitrary blocks (34). One 

important concern about targeting interventions on the basis of case-notifications alone, 

however, would be the potential for ascertainment bias to further disadvantage 

underserved populations from which cases are already under-notified due to limited access 

to health services (46). For populations where this is likely, the ideal approach would be to 

investigate disease burden using prevalence surveys, or developing models that include data 

on geographical distribution of measures of poverty and health service access that can then 

allow routine notification data to be adjusted to account for likely under-ascertainment 

(46).  
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We report a wide variety of interventions in the studies included in this systematic review.  

For HIV (29), TB (24,29,31) and leprosy (25,32,33), studies tended to focus on community 

screening interventions in suspected geographic hotspots. Malaria studies (34–36), 

however, were more focused on complex interventions that combined community 

screening and mass drug administration, with environmental measures to address the 

vector, including larviciding of stagnant water bodies and indoor residual spraying.   

Despite the above reservations, the studies that we have identified demonstrate the 

feasibility of the spatially targeted approach to direct resources towards community-based 

interventions. For case-finding interventions or community screening, spatially targeted 

interventions are a compromise between tracing known contacts of infectious cases and 

ACF interventions across the entire general populations or sub-population (i.e. whole urban 

slums) (47). One limitation of contact tracing is that it misses out cases that are unknown to 

the index case, and so will fail to identify cases arising from transmission to casual contacts 

outside of the household (48,49). Spatially targeted interventions become increasingly 

important for diseases that are approaching elimination, since these conditions predispose 

the disease cases to cluster into disease hotspots (13–19). Hence spatially targeted 

interventions can help the most successful control programmes to systematically identify 

and address residual disease hotspots (12,19,32,50). Among all of the studies reviewed 

here, only one (Bousema et al.) (36) was assessed as having low risk of bias. This was a 

malaria intervention that evaluated the impact of a spatially targeted intervention in pre-

defined inner and outer regions of hotspots (evaluation zones). This study design allows the 

evaluation of how targeting the hotspots benefits the individuals that are in the hotspot as 

well as the individuals that are in the outer regions of the hotspot. This in turn allows 

assessment of the impact of the intervention on reducing transmission. For vector borne 
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diseases, including malaria, consideration needs to be given to the mobility of the vectors 

themselves when considering spatially targeted interventions (51) i.e., if mosquitoes are 

able to travel over moderate distances the effect of a hotspot targeted intervention might 

end up being diluted. 

However, this study had several limitations (36). It was underpowered to detect small 

changes due to the hotspot targeted intervention. In addition, the intervention was also 

done in one transmission season which might not have been enough to interrupt the 

epidemic (36).  The area of study might also not have been suitable for a hotspot targeted 

intervention because even though malaria was heterogeneous there might have been 

widespread transmission of malaria going on in the non-hotspot areas; this might have 

meant that a non-targeted approach would have been more appropriate for this setting 

(52). 

Overall, our systematic review's limitation was that the studies we identified were 

heterogeneous, and we were unable to do a meta-analysis as planned. Also, the studies' 

methodological quality had challenges due to the lack of validation of disease hotspots and 

the lack of random allocation of clusters to interventions. We also only included 

manuscripts in English due to resource limitations, and only four diseases were included. 

Despite these limitations, we were able to show the potential that spatially targeted 

interventions have towards improving disease epidemiology. 

Recommendations 

In general spatially-targeted interventions are only justifiable in settings where the epidemic 

is heterogenous and secondly where the non-hotspot areas cannot sustain sufficient 

transmission of the disease (36). The influence of the hotspots on the epidemic of the 
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disease in the surrounding communities also depends on the effective contact rates 

between the residents of the hotspots and the surrounding areas; in the case of malaria this 

also depends on how far mosquitoes can travel between the hotspots and the surrounding 

communities. Careful attention needs also to be given to identifying hotspots to make sure 

that the hotspots capture the true burden of the disease by making sure that the hotspots 

are persistent in time and are adjusted for confounding (51–53). 

Conclusion 

The rapid increase in cheap, reliable, geolocation technology now provides such a significant 

tool in the fight to control and eradicate endemic and epidemic infectious diseases that 

support for rapid development of effective patient mapping systems should be considered 

essential for health systems in low-income countries. Ideally, mapping should be combined 

with statistical modelling to identify hotspots with the most pressing need for intervention. 

In this systematic review we provide some evidence in support of the effectiveness of 

spatially targeted intervention, but with the major conclusion being that the current body of 

evidence is weak.  There is an urgent need to define optimal methodology, allowing 

recommendations to be made to support the design of more rigorous studies that allow 

clear evaluation of likely impact to be made for the major categories of infectious diseases, 

including vector-borne and those transmitted person-to-person. Recommendations should 

include strategies for timely identification of hotspots and the critical aspects needed to 

measure the effect of intervention strategies targeting those hotspots. 
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Figure 3.1: Research Overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incident, prevalent, or notified disease cases 

Spatial heterogeneity of incident, 
prevalent or notified disease cases. 

Drivers of heterogeneity include:                                                                   

• Poverty 
• Overcrowding  
• Poor access to diagnosis and 

treatment  

 

Spatially targeted interventions: 

Interventions that target the identified 
cases in the hotspots. 

Community-wide interventions: 

Interventions that are implemented to the 
whole community without regard to spatial 
heterogeneity of incident or prevalent cases 

for disease  

 

Hotspot identification methods:                                                                  

This can be a hotspot of incident, 
prevalent cases or notified cases of 
disease 

 



 96 

Figure 3.2: PRISMA flow diagram for the process of selecting included studies  
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Table 3.1: Search Strategy 

1 (HIV or human immunodeficiency virus or HIV-1 or HIV-2).mp.  
2  exp HIV/  
3  exp HIV Infections/  
4  (aids or acquired immune deficiency syndrome).mp.  
5  exp Acquired Immunodeficiency Syndrome/  
6 (tuberculosis or TB).mp.  
7 exp Tuberculosis/  
8 exp Mycobacterium tuberculosis/  
9  (malaria* or Plasmodium).mp.  
10 exp Malaria/  
11  exp Plasmodium/  
12  (Leprosy or lepra or lepromatosis or hanseniase).mp.  
13  exp Leprosy/  
14 exp Mycobacterium leprae/  
15 (spatial adj3 (analys?s or regression or temporal or autocorrelation* or auto-correlation* or 

statistics or epidemiology)).mp. 
16 exp spatial analysis/  
17 (geographic* adj3 (analys?s or regression or temporal or autocorrelation* or auto-

correlation* or system* or epidemiology)).mp.  
18 (GPS or global position* system* or GIS or global information system* or space?time or 

geospatial or hotspot* or hot-spot*).mp.  
19 exp Geographic Information Systems/  
20 (communit* or neighbo?rhood*).mp.  
21 exp Residence Characteristics/ 
22 (intervention* or target*).mp. 
23  ((high-burden or highburden) adj3 (area* or region* or tract* or setting*)).mp.  
24 (high-incidence adj3 (area* or region* or tract* or setting*)).mp.  
25 (high-prevalence adj3 (area* or region* or tract* or setting*)).mp.  
26 ((hot-spot* or hotspot*) adj3 (area* or region* or tract*)).mp 
27  1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14  
28  15 or 16 or 17 or 18 or 19  
29 20 or 21 or 22 or 23 or 24 or 25 or 26  
30 27 and 28 and 29  
31 limit 30 to english language  
32  limit 31 to yr="1993 -Current"  
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Table 3.2: Reasons for exclusion of studies 

Reference, year Reason for excluding 

HIV (three studies)  

Odek 2014 (1) HIV hotspots not based on geolocated cases 

Ikpeazu 2014 (2) HIV hotspots not based on geolocated cases 

Mburu 2017 (3) HIV hotspots not based on geolocated cases 

Tuberculosis (four studies)  

Clark 1999 (4)  Review 

Wilkinson  1999 (5) No hotspots based on geolocated TB cases. 

Fatima 2016 (6) Contact tracing study 

Vo 2020 (7) Hotspots were not based on TB cases 

Malaria (eleven studies)  

Mnzava 2001 (8) Cluster randomised trial with no standard of care arm. 

Ghosh 2007 (9) Review 

Dongus 2007 (10) Hotspot not based on geolocated malaria cases 

Cook 2007 (11) No spatially targeted intervention was evaluated 

Shiff 2012 (12) No spatially targeted intervention was evaluated 

Marston 2014 (13) Health economics study 

Cook 2014 (14) Hotspot not based on geolocated malaria cases 

Hsiang 2019 (15) Defining optimal strategies for contact tracing strategies 

Ousmane  2019 (16) No clear definition of hotspot and study evaluation not based on hotspots. 

Ngo 2019 (17) Feasibility study of acceptability of geographic information technology 

Bhondoekhan 2020 (18) Contact tracing study 
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Table 3.3: Full description of the characteristics of spatially targeted interventions of HIV, TB, Leprosy and Malaria 

Reference, year Setting Study type Intervention Control 

HIV (one study)     

Goswami2012(19) Wake 

County, 

North 

Carolina USA 

Implementation 

study 

Community screening of HIV at sites in the hotspot areas by 

community nurses and disease intervention specialists from 

the HIV, syphilis and TB clinics at the county health 

department.  

HIV screening of patients going to STD clinic outside 

of hotspot areas in the same county. 

Tuberculosis 

(three studies) 

    

Moonan, 2006(20) Tarrant 

County, north 

central Texas, 

USA 

Implementation 

study 

Community tuberculin skin testing and active TB screening by 

community organisations in hotspots (period 2002-2004) 

No control or comparison group. 

Goswami2012(19) Wake 

County, 

North 

Carolina USA 

Implementation 

study 

Community screening of latent TB at sites in the hotspot areas 

by community nurses and disease intervention specialists from 

the HIV, Syphilis and TB clinics at the county health 

department.  

 Screening latent TB in patients going to a TB clinic 

outside of hotspot areas in the same county. 

Cegielski2013 (21) Smith 

County,  

Texas USA 

Implementation 

study 

Community screening of tuberculin skin testing and treatment 

of diagnosed  in the hotspots (1996 ) 

No control or comparison group 

Leprosy (three 

studies) 
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DE Souza 

Dias2007(22) 

Municipality  

of Mossoro, 

Rio Grande 

do Norte, 

Brazil  

Implementation 

study 

Study team members moved door to door in the hotspots to 

identify people with symptoms of leprosy and referred them to 

the nearest primary health clinic for diagnosis (period 2005) 

No control group 

Jim2010(23) state of 

Pohnpei in 

the 

Federated 

State of 

Micronesia. 

Implementation 

study 

Door to door community Screening of Leprosy cases in the 

hotspots (2007 to 2009) 

No control group 

Barreto2015(24) Municipalitie

s of Castanhal 

and 

Oriximinal in 

the state of 

Para, Brazil 

Implementation 

study 

Community leprosy case screening in two public schools 

located in the hotspot 

Prevalence of leprosy in children from randomly 

selected schools not from the hotspot areas. 

Malaria (three 

studies) 

    

Srivastava2009(25

) 

central Indian 

state of 

Madhya 

Predesh 

Implementation 

study 

Not specifically listed. (2007)  No control 
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Herdiana2013(26) Island district 

of Sabang in 

Indonesia 

Implementation 

study 

Twice a month visit households. At each visit screen for malaria 

from household members with fever or recent history of fever. 

Treat all confirmed malaria cases.(May 2010 onwards) 

Once a month to households in the hotspots. At 

each visit screen for malaria from household 

members with fever or recent history of fever. Treat 

all confirmed malaria cases. (May 2010 onwards) 

Bousema2016(27) Rachuonyo, a 

western 

district in 

Kenya 

Cluster 

randomised trial 

5 intervention cluster. Weekly larviciding of stagnant water 

bodies, long lasting treated nets, Indoor residual spraying and 

mass drug administration to households with confirmed 

malaria case.(2012) 

5 cluster control areas. Annual residual spraying, 

distribution of long lasting treated nets at antenatal 

clinics. No drug mass administration  

Abbreviations: HIV Human Immunodeficiency Virus, STD Sexually Transmitted Disease,TB Tuberculosis.
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Table 3.4: Characteristics of spatially targeted interventions for HIV, TB, Leprosy and Malaria 

Reference, year Outcome Effect of intervention1  Risk of bias assessment 

HIV    

Goswami 2012 (29) Comparison of case detection yield between 

hotspot intervention areas and a county STD clinic 

over the same period (2009-2011)  

HIV prevalence was higher among community screened participants 

(8/240, 3%, 95% CI:1.4-6.5) compared to the Wake County STD clinic 

(64/15936, 0.4%, 95%CI:0.3-0.5) with a risk ratio of (8.3, 95% CI: 4.0-

17.1), p<0.001. 

Moderate 

Tuberculosis    

Moonan2006 (24) Yield of TB case detection in hotspots.  Targeted screening identified one person with TB for every 83 screened 

and one person with LTBI for every five screened. The yield of the 

targeted approach was considered to be more than what would be 

expected in a county with an active TB notification rate of 5.7 per 

100,000 population year. 

Critical 

Goswami 2012 (29) Comparison of case detection yield of LTBI 

between hotspot areas and county TB clinic over 

the same period (2009-2011)  

LTBI prevalence was higher among community screened participants 

(36/234, 15%, 95% CI:11.0-21.7) versus (541/9024, 6%, 95%CI=5.6-6.6) at 

the TB clinic with a risk ratio of (2.5, 95% CI: 1.9-3.5), p<0.001. 

Moderate 

Cegielski 2013 (31) A before and after intervention comparison of 

mapped TB notification rates between 1985-1995 

and 1996-2006 

TB notification rates in the targeted hotspots declined from 39.6 per 

100,0000 people per year (95% CI:30.4-48.8) from 1985 to 1995 to zero 

from 1996 to 2006 (p<0.001) 

Serious 

Leprosy     

De Souza Dias 2007 

(32) 

Percent of notified cases attributable to the 

intervention, and before and after intervention 

case notification rate comparison. 

Active case finding identified 50% of the total cases that were diagnosed 

in 2005. The case notification rate in 2005 was higher compared to pre 

Serious 
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intervention year 2004, 9.34 per 10000 versus 5.16 per 10000 

respectively. 

Jim 2010 (33) Yield of leprosy case detection during intervention 

period compared to the pre-intervention period 

and reduction in households that needed to be 

screened. 

Eight-fold decrease in the number of households that needed to be 

screened from 2007 to 2009. While still identifying a similar number of 

new cases to pre-spatially targeted active case finding period 2002 to 

2006.  

Moderate 

Barreto 2015 (25) The yield of case detection of leprosy cases in 

school children in hotspot intervention schools 

versus in children from randomly selected schools. 

In the hotspot school's (11/134, 8.2%, 95% CI:3.5-13.0) students with a 

mean age of 10 years were diagnosed with leprosy. While (63/1592, 

3.9%, 95% CI:3.0-4.9) students from randomly selected schools with a 

mean age of 12 years were diagnosed with leprosy with a risk ratio of 

(2.1, 95% CI: 1.1-3.8), p<0.05. 

Moderate 

Malaria     

Srivastava 2009 (34) Difference in absolute numbers of notified malaria 

cases between 2006 and 2007.  

 An absolute reduction in numbers of notified cases in 2007 (N = 90829) 

from the notified cases in 2006 (N = 96042), (5.7%, 95% CI:4.7-6.7), p < 

0.05.  

Critical  

Herdiana2013 (35) Change of malaria notification rates from pre-

intervention to post-intervention period. 

30-fold reduction in malaria notifications from 3.83 per 1000 in 2008 to 

0.13 per 1000 in 2011. 

Serious 

Bousema2016 (36) Change in parasite prevalence in the evaluation 

zones (1-500m from hotspots) of intervention 

clusters versus control clusters  

The first evaluation zone 1-249m at 8th week (3.6%, 95% CI: -2.6 to 9.7%), 

p=0.216 and the second evaluation zone 250-500m at 8th week (3.8%, 

95% CI: -2.4 to 10.0%), p=0.187.  The first evaluation zone 1-249m at 16th 

Low 
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week (1.0%, 95% CI: -7.0 to 9.1%), p=0.713 and the second evaluation 

zone 250-500m at 16th week (1.0%, 95% CI: -8.3 to 10.4%), p=0.809 
1 Results calculated from the data published in the papers. 

Abbreviations: TB Tuberculosis, LTBI Latent Tuberculosis Infection, m Metres, N Number, STD Sexually Transmitted Disease.  
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Table 3.5: Geolocation of cases and hotspot identification 

Reference, year Geolocation of cases Hotspot identification 

HIV (one study)   

Goswami2012 (29) Notified cases of either Tuberculosis(TB) (N=150), HIV (N=665) or 

syphilis (155) between 1 Jan 2005 and 31 Dec 2007 were 

geolocated to households. The method for geolocation of the 

cases was not described in the paper. 

A kernel density map of the cases was produced. Areas with the highest densities 

of three diseases of HIV, Syphilis and TB (greater than 10 cases per square mile) 

were classified as hotspots. Two hotspot neighbourhoods were identified in the 

county. 

Tuberculosis (three 

studies) 

  

Moonan, 2006 (24) Notified TB cases (N=991) from 1 Jan 1993 to 31 Dec 2000 in 

Tarrant County, north central Texas, USA were geolocated to zip 

codes using residential addresses and zip codes that patients 

gave at the time of diagnosis with the aid of a GIS software. 

Areas with the highest TB notification rates and high percentage of genotypically 

clustered TB isolates were identified as hotspots. Three neighbourhood hotspots 

were identified. 

Goswami2012 (29) Notified cases of TB (N=150), HIV (N=665) and syphilis (N= 155) 

that were notified between 1 Jan 2005 and 31 Dec 2007 were 

geolocated to households. The method for geolocation of the 

households was not described in the paper 

A kernel density map was developed. Areas with the highest densities of three 

diseases of HIV, Syphilis and TB (greater than 10 cases per square mile) were 

classified as hotspots. Two hotspot neighbourhoods were identified in the county. 

Cegielski 2013 (31) Notified TB cases between 1985 to 1995 (N=128) and all notified 

LTBI from 1993 to 1995 (N=311) were geocoded to their 

households using the addresses that patients gave at the time of 

diagnosis. In addition, field workers tracked addresses to 

households to get household coordinates of addresses that failed 

to geolocate. 

The points of cases were plotted on a map and areas with the densest clusters of 

points of cases were identified as hotspots, 2 neighbourhoods were identified in 

the county. 



 106 

Leprosy (three studies)   

DE Souza Dias2007 (32) Notified leprosy cases that occurred between 1998 and 2002 

(N=368) in the municipality of geocoded to households. The 

method for geolocation of cases was not described. 

Density map with a radius of 100m of the notified leprosy cases was produced.   

Four hotspot areas were identified 

Jim2010(33) Notified leprosy cases from 2002 to 2006 (N=502) were 

geolocated to households. Field workers visited all notified cases 

to get household GPS coordinates using a GIS device. 

A density map based on 1-mile radius of the notified leprosy cases. Areas with 

high concentration of cases classified as hotspots. 

Barreto2015 (25) Notified leprosy cases from January 2004 to February 2010 

(n=633) were geocoded to households. Field workers visited 

households of registered cases to collect GPS coordinates. 

Hotspots were identified using the Kulldorff's spatial scan statistic and by 

stratification of the leprosy notified rates. Two hotspots were identified.  

Malaria (three studies)   

Srivastava2009 (34) Notified malaria cases between 2000 to 2005 were obtained 

from the State Department of Health based on the cases notified 

in clinics in the blocks or districts. 

Blocks or districts with a percentage of plasmodium falciparum malaria cases of all 

notified cases that was either 100% or consistently greater than 30% from 2000-

2005 or greater than 70% in 2005 

Herdiana2013 (35) Notified malaria cases from 2007 to 2008 in addition to other 

self-reported malaria cases that were found during a survey 

(n=319) were geocoded to households. Field workers obtained 

the GPS coordinates of households using GIS devices. 

Villages that had the majority of malaria cases were classified as hotspots. 14 out 

of 18 villages were identified  

Bousema2016 (36) June and July 2011, 17,503 individuals tested in a malaria 

prevalence survey for the prevalence of P. falciparum antibodies 

(AMA-1 or MSP-10). Field workers collected the GPS coordinates 

of the households using GPS devices.  

Segments of the study area were scanned in the 2 x 4 km rolling windows and 

areas with higher (p < 0.05) prevalence of antibodies and age-adjusted antibody 

density than the local average values were identified as hotspots.  

Abbreviations: GIS Geographical Information System, GPS Global Positioning System, HIV Human Immunodeficiency Virus, m Metres, N Number, TB Tuberculosis, STD 
Sexually Transmitted Disease. 
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4 TB Case fatality analysis 

4.1 Introduction 

In this chapter, I investigated the clinical, health system, and neighbourhood determinants of 

TB case fatality in urban Blantyre, Malawi. Globally, TB disease was the second leading cause of 

death from a single infectious agent in 2021. TB treatment reduces the risk of death and helps 

individuals recover from the disease. Unfortunately, some individuals die while on TB 

treatment. In this analysis, we set out to investigate the risk factors for death on TB treatment. 

The identified risk factors could be intervened upon to reduce the risk of death in individuals 

that are categorised as having a higher risk of death. 

In a multi-level spatial regression modelling analysis of TB case fatality rates in Blantyre 

identified through a citywide enhanced TB surveillance system, we found strong evidence that 

older age, HIV status, and distance to the TB treatment clinic were all associated with an 

increased risk of death while on TB treatment. Distance to a health facility is a proxy indicator 

of how easy it is to access health care. In our study population, distance increased the odds of 

death only for patients that were registered at the referral clinic but not at a primary health 

care clinic. This is consistent with the hypothesis that high quality facility-based TB screening 

and care is complementary to community-based interventions in reducing TB mortality. 

This paper was submitted on 9 February 2021 to Epidemiology and Infection Journal and was 

published on 27 July 2021 and has been described verbatim below. 
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4.2 The TB case-fatality manuscripts 
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Abstract 

We investigated whether household to clinic distance was a risk factor for death on tuberculosis 

(TB) treatment in Malawi. Using enhanced TB surveillance data, we recorded all TB treatment 

initiations and outcomes between 2015 and 2018. Household locations were geolocated, and 

distances measured by straight line or shortest road network. We constructed Bayesian multi-

level logistic regression models to investigate associations between distance and case fatality. A 

total of 479/4397 (10.9%) TB patients died. Greater distance was associated with higher (odds 

ratio (OR): 1.07 per kilometre (km) increase, 95% credible interval (CI): 0.99, 1.16) odds of death 

in TB patients registered at the referral hospital, but not among TB patients registered at primary 

clinics (OR: 0.98 per km increase, 95%CI: 0.92, 1.03). Age (OR: 1.02 per year increase, 95%CI: 1.01, 

1.02), and HIV-positive status (OR: 2.21, 95%CI: 1.73, 2.85), were also associated with higher odds 

of death. Model estimates were similar for both distance measures. Distance was a risk factor for 

death among patients at the main referral hospital, likely due to delayed diagnosis and 

suboptimal healthcare access. To reduce mortality, targeted community TB screening 

interventions for TB disease and HIV, and expansion of novel sensitive diagnostic tests are 

required. 

 

Keywords: epidemiology, HIV, multilevel modelling, statistics, treatment outcomes, tuberculosis 
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Key message 

• Tuberculosis (TB) causes more deaths than HIV/AIDS and malaria combined. 

• There is limited evidence on whether household to clinic distance is a risk factor for death on TB 

treatment. 

• We used two measures of household to clinic distance (Cartesian distance, and shortest road 

network distance). 

• For both distance measures, household to clinic distance was a risk factor for death among 

patients treated at the main referral hospital only, likely due to delayed diagnosis and suboptimal 

healthcare access.  
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Introduction 

Tuberculosis (TB) remains the leading cause of death from a single infectious disease in the world, 

causing more deaths than HIV/AIDS and malaria combined [1]. Slow progress has been made in 

reducing TB mortality, and the World Health Organization’s (WHO) End TB strategy target of 

achieving a 90% reduction in TB deaths between 2015 and 2030 [1] is unlikely to be met.  

In the WHO Africa (AFRO) region, TB treatment success rates (cured or completed treatment) in 

2017 were 86% for HIV-negative people and 78% for HIV-positive people [1]. Despite these 

improvements from 2007 (when overall TB treatment success was estimated to be 79% in Africa), 

a considerable fraction of people with TB symptoms are delayed in accessing TB diagnosis and 

care at health facilities [1,2].  The reasons for delayed access to treatment are complex and multi-

layered, but include: health care seeking behaviours, clinical and geographical factors, and 

suboptimal care quality in health facilities [3].  

Distance to health facilities is a well-recognised access barrier to prompt diagnosis [4–7].  

Individuals who live far from health facilities are at an increased risk of unfavourable health 

outcomes [4–6] and at an increased risk of death on TB treatment [8–10]. However, there is 

limited evidence about associations between distance and death on TB treatment in urban 

African settings.  

Using prospectively collected data from people initiating TB treatment at health facilities in urban 

Blantyre, Malawi in the era of high antiretroviral therapy coverage for HIV, we hypothesised that 

people initiating TB care at facilities at greater distances from their homes might be at greater risk 

of death on TB treatment compared to people who lived nearer to clinics. Additionally, as 
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accurate measurement of clinic-distance may be challenging under routine programmatic 

conditions, we compared distance measurement using two approaches that could be used by 

health planners and epidemiologists: Cartesian distance and shortest road network distance.   
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Methods 

Study setting and design 

Blantyre District is located in the southern region of Malawi. Blantyre city, in the centre of the 

district, has large areas of densely-populated informal settlements. Blantyre’s 2018 census 

population was 1,264,304 [11] and HIV prevalence was 18% [12].  

Blantyre enhanced TB monitoring and evaluation  

In Malawi, patients diagnosed with TB register to receive treatment at primary health care 

centres and hospitals. In Blantyre, TB registration clinics include one referral hospital (Queen 

Elizabeth Hospital Central Hospital [QECH]), one large private church supported clinic (Mlambe), 

three private clinics and seven government public primary health care clinics [13]. QECH is a 

tertiary referral hospital for the whole southern region of Malawi and offers inpatient care 

including TB diagnosis and treatment [13]. 

In a joint project between the Malawi-Liverpool-Wellcome Trust Clinical Research Programme, 

Blantyre District Health Office, and the Malawi National TB Control Programme (NTP), TB Officers 

(a cadre of health worker employed by the Ministry of Health of Malawi) received training to 

strengthen the TB surveillance system in Blantyre. Since 2015, TB Officers stationed at TB 

treatment clinics in Blantyre provided TB treatment, HIV testing and linkage to treatment in 

accordance with Malawi guidelines. They further recorded TB registration data into NTP TB 

registers and additionally recorded individual-level clinical, sociodemographic and household data 

using an electronic data collection application (ePaL), which we have previously developed and 

validated (18). Using ePaL, TB officers obtained global positioning satellite (GPS) coordinates for 
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the location of TB patients’ households (18). A spot sputum sample was also collected from all 

patients starting TB treatment (where able to provide) that underwent smear microscopy and 

mycobacteria growth indicator tube culture. On a quarterly basis, study and TB programme 

registers were reconciled. 

TB outcomes were defined according to mutually-exclusive WHO TB treatment outcome 

definition guidelines [14], with patients classified as either: cured; completed treatment; 

treatment failed; confirmed died; lost to follow up; and not evaluated (typically because still on 

treatment). The outcome of interest for this analysis was confirmed death on TB treatment; we 

did not follow-up patients to confirm death. The analysis was limited to study participants that 

were registered for treatment from 1st January 2015 to 30th December 2018. 

 Statistical analysis 

Baseline characteristics 

We compared the characteristics of participants, recorded at TB treatment registration, 

between those who died during TB treatment and those who were alive at the end of 

treatment. For categorical variables we calculated percentages and used the chi-square test 

for comparisons; for continuous variables, we calculated medians (and interquartile ranges 

[IQR]), mean (and standard deviation), and compared between groups using the Kruskal-

Wallis test. 

 

 



126 
 

Distance estimation 

We estimated the distance from study participants’ households to their TB treatment 

initiation clinic using two approaches (Figure 4.1). The first approach was to estimate the 

distance based on as a “straight line” distance (Cartesian distance). In the second approach, 

we used Blantyre urban road network downloaded from OpenStreetMap (OpenStreetMap 

Foundation) to calculate the shortest road network distance using the stplanr R package [15].  

Statistical models 

To estimate the causal relationship between clinic distance and TB case fatality, we 

constructed a directed acyclic graph (Figure 4.2). The minimum adjustment set of 

confounders identified from the DAG were: sex, age, HIV, hospital admission (QECH) and 

household wealth score. We included a term for the interaction between household to clinic 

distance and the clinic at which TB registration occurred (QECH, the city’s referral hospital, 

versus other primary health care centres). This was because QECH is a large referral hospital 

known to have a patient population with more advanced TB disease, more complicated TB 

disease, and patients that are likely to have travelled a longer distance compared to patients 

that attend other clinics. 

Using asset ownership data, we created a household wealth score variable, calculated using 

a proxy means test developed for urban populations from the Malawi Integrated Household 

Survey [16]. For individuals for whom components needed to calculate their wealth score 

were missing, their wealth score was imputed using multiple interval imputation, with the 

observed wealth score providing the lower bound.  
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We constructed Bayesian multi-level logistic regression models (Equation 1) to investigate 

the association between participants’ household to clinic distance and their risk of death, 

adjusting for confounders and an interaction between household to clinic distance and clinic 

of registration. Weakly regularising priors, refined by inspecting prior predictive plots, were 

assigned to model intercepts and slopes. Model convergence was assessed by visual 

inspection of trace plots, effective sample numbers, and Gelman-Rubin statistics. 
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Equation 1 

𝐷1!~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝1!) 

𝑙𝑜𝑔𝑖𝑡(𝑝1!, = 	𝛼231012	45	67819:6;:140_! +	𝛽97=_1! +	+𝛽;87_1! + 𝛽>7;3:?92467_1!	 +	𝛽@19:;027_1!	 +
	𝛽AB$C_1! + 𝛽@19:;027"!∗AB$C_1!   

 

PRIORS 

𝛽97=~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽;87~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽?1E9:;:F9~𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

𝛽>7;3:?92467~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽@19:;027~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽GHIJ~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽@19:;027∗	GHIJ	~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝛽231012	45	67819:6;:140_!	~𝛼 + 𝑢!  

𝛼	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

𝑢!~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎K) 

𝜎K~𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.5) 

 

Where Dij indicates death on TB treatment for the ith patient in clinic j, sex indicates sex (male or female), age 
indicates age in years, hivstatus indicates HIV status (positive or negative), wealthscore  indicates household 
wealth score, distance indicates distance to clinic in kilometres, and QECH indicates whether participant 
registered for treatment at QECH or the other primary health centres, distance* QECH is the interaction effect 
between distance and QECH and clinic of registration indicates registering for treatment at the jth TB treatment 
registration heath centre. 

 

Four thousand samples with a burn-in of 600 iterations were drawn from each model 

posterior distribution using Markov Chain Monte Carlo methods implemented within Stan 

via the brms R package [17]. Posterior means and 95% credible intervals (CI) were calculated 

on the log-odds scale and were exponentiated to give odds ratios. In sensitivity analysis, we 

refitted models recoding participants who were lost-to follow-up or transferred out during 
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TB treatment as having died since it was possible that some of these patients had actually 

died [18]. Additionally, we restricted analysis to those with microbiologically-confirmed TB. 

To investigate the predictive accuracy of the two distance estimates we used models that 

just had distance and the interaction effect of distance and registering for TB treatment at 

QECH. We plotted the difference in predicted probability of death for the 100 patients with 

the greatest difference in distance from the two measurement methods. Analysis was 

conducted using R version 3.5.2 (R Foundation for Statistical Computing, Vienna). 

Ethical considerations 

Ethical approval was granted by the London School of Hygiene and Tropical Medicine (16228) and 

the College of Medicine, University of Malawi Research Ethics Committee (P.12/18/2556). 

Participants provided oral consent to participate in TB surveillance with a waiver for written 

consent granted by both research ethics committees. 
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Results 

Baseline characteristics 

A total of 4461/5199 (85.8%) patients that initiated TB treatment at the 12 study clinics were 

included in this analysis. 64/4461 (1.4%) had a missing TB outcome and were excluded from the 

primary analysis (Table 4.s1). Among participants that had treatment outcomes, 479/4397 (10.9%) 

died while taking TB treatment, and 258/4397 (5.9%) were reported as lost to follow up or 

transferred out (Table 1). The percentage of participants who died did not substantially differ across 

the study years (P = 0.313). 

More deaths were reported among participants who initiated TB treatment at QECH (315/2170, 

14.5%) than in the other 11 TB clinics (164/2227, 7.4%, P < 0.001) – Table 1. Similar percentages of 

men (303/2789, 10.9%) and women (176/1608, 10.9%, P = 0.934) died during TB treatment. The 

median age of participants who died was older (median: 37 years, IQR: 30.0-45.0) compared to those 

who were alive at the end of TB treatment (35 years, IQR: 28.0-41.0, P < 0.001). A higher proportion 

of deaths occurred in patients who were HIV-positive (400/2981, 13.4%) compared to HIV-negative 

(79/1416, 5.6%, P < 0.001).  

Participants who did not have microbiologically-confirmed TB (318/2382, 13.4%) were considerably 

more likely to die compared to participants with either sputum smear, Xpert or culture positive 

disease (161/2015, 8.0%, P < 0.001).The median road network household to clinic distance (median: 

5.2km, IQR: 3.2, 7.7) was consistently higher than the Cartesian household to clinic distance 

estimates (median: 3.8km, IQR: 2.1-5.9). Both household to clinic distance estimates showed that 

patients who died on TB treatment lived further from clinics where they initiated TB treatment than 
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those that were alive at the end of TB treatment. For the road network distance measure, those who 

died on TB treatment had greater clinic distances (median: 5.8km, IQR: 4.1, 9.0) compared to 

participants who were still alive at TB treatment completion (median: 5.1km, IQR: 3.1, 7.5, P < 

0.001). Likewise, those who died on TB treatment had a longer Cartesian distance (median: 4.4km, 

IQR: 2.9, 6.8) versus participants who were still alive at the end of TB treatment (median: 3.8km, 

IQR: 2.0, 5.7, P < 0.001). Patients who did not live within geographically-mapped areas of the city 

were excluded 738/5199 (14.2%) because we did not have data to ascertain their household 

location, and so could not calculate their household to clinic distance (Table 4.s1). 

Unadjusted analysis of the association of household to clinic distance and risk of death 

TB patients who lived further from the clinic at which they registered for treatment had higher odds 

of death compared to those who lived nearer, whether measured by the road network distance 

method (odds ratio [OR]: 1.05 per km increase, 95%CI: 1.03, 1.08) or the Cartesian distance method 

(OR: 1.06 per km increase, 95%CI: 1.03, 1.09) – Table 4.2.  

Unadjusted analysis for confounders 

In unadjusted analysis, each one year increase in age was associated with a 2% increase (OR: 1.02, 

95%CI: 1.01, 1.02) in the odds of death. Being HIV-positive was associated with a 2.5-times (OR vs. 

HIV-negative status: 2.53, 95%CI: 2.0, 3.25) increase in the odds of death on TB treatment. TB 

patients who registered at QECH had two-times higher (OR: 2.10, 95%CI: 1.74, 2.56) odds of death 

compared to people registering at the other primary clinics. Each one unit increase in wealth score 

was associated with a 40% (OR: 1.40, 95% CI: 0.98, 2.04) increase in the odds of death. 
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Adjusted analysis for household to clinic distance models  

Greater household to clinic distance (road network) had a higher odds of death in TB patients 

registered at QECH (OR: 1.07 per km increase, 95%CI: 0.99, 1.16), but was not associated with odds 

of death in TB patients registered at other clinics (OR: 0.98 per km increase, 95%CI: 0.92, 1.03). The 

average risk of death varied between clinics by 6% (95%CI: 4%, 11%) holding categorical variables at 

their base level and continuous variables at their average value, with a standard deviation of 0.67 

(0.32, 1.18) - Table 4.2.  

For the model containing Cartesian distance to clinic, model coefficients and uncertainty bounds 

were very similar to those from the road distance model, with distance from household to clinic of 

treatment registration associated with higher odds of death in TB patients registered at QECH (OR: 

1.09 per km increase, 95%CI: 1.0, 1.21), but was not associated with odds of death on TB treatment 

in patients registered at other clinics (OR: 0.97 per km increase, 95%CI: 0.89, 1.04). 

Comparison of model predicted risk of death among 100 participants with biggest difference 

between their road network distance and Cartesian distance estimates 

The majority of the 100 TB patients with the greatest difference in distance between the two 

household to clinic distance measurements registered for treatment at QECH or Mlambe private 

clinic (Figure 4.3). For these participants who had the greatest measurement difference, there was, 

as expected, a trend of increased difference in probability of death with greater difference between 

the two distance measures. The greatest differences were seen at Mlambe private clinic, reflecting 

greater distances travelled by road. However, the maximum difference in predicted probability of 

death over these 100 patients was only 0.79%.  
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Sensitivity analysis 

When we reclassified TB patients who were lost to follow-up or had transferred out during TB 

treatment as having died, model estimates were very similar to our primary analysis (Table 4.3). 

Analysis restricted to participants with microbiologically-confirmed disease did not alter our 

model estimates (Table 4.4).  
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Discussion 

Our primary hypothesis was that greater household to clinic distance would be associated with 

increased risk of death for people starting treatment for TB in urban Blantyre, Malawi. The results 

of the pre-specified unadjusted analysis showed clinic distance was a risk factor for death after 

starting TB treatment. However, in adjusted analysis based on our causal graph, greater clinic 

distance was a risk factor for death only for participants initiating care at the tertiary referral 

hospital (QECH). Treatment initiation at the city’s tertiary hospital, older age and HIV-positive 

status were important predictors of death whilst taking TB treatment. We additionally found 

moderate variation in the risk of death between treatment clinics that was not explained by TB 

patient clinical and sociodemographic characteristics, indicating that clinic quality of care might 

be an important residual determinant of treatment outcomes. 

We used two different measures (Cartesian distance, and shortest road network distance) of 

household to clinic distance that could be applied by public health planners and epidemiologists, 

recognising that road network distance may be considerably more challenging to estimate under 

routine programmatic conditions. Our analysis found that models using either distance 

measurement reached very similar conclusions, and therefore we recommend that in low-

resource settings, the simpler measurement (Cartesian distance) should likely be more 

appropriate for routine programme use. 

For TB patients that were treated at the city’s tertiary hospital (QECH), greater household to clinic 

distance might be a proxy for lack of access to quality health care service [8,19]. Individuals who 

live in the peri-urban areas far from the centre of Blantyre have limited resources for transport, 
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and may struggle to access timely tertiary-level health care compared to those living nearer to the 

centre of the city [20]. Delayed presentation for care will then result in admission to hospital with 

more advanced disease and at a higher risk of death [5,21].   

To reduce the high risk of death on TB treatment, prompt diagnosis and treatment for people 

presenting to health facilities is required [21,22]. At health facilities in high HIV-prevalence 

settings, TB symptoms are common (up to 60% reporting at least one of the WHO four cardinal TB 

symptoms) [23]. Therefore, novel screening approaches—including triage testing using high 

sensitivity initial tests such as chest X-ray or C-reactive protein, followed by highly specific tests 

such as Xpert for those who triage test positive, require evaluation [5,24].  

QECH is a tertiary referral hospital, and most patients treated for TB at QECH will have previously 

sought diagnosis—likely on multiple occasions before referral—at a primary health centre [25]. 

Consequently, earlier diagnosis in primary health care could reduce hospital admission and 

potentially reduce mortality [1]. We need to improve the TB diagnostic capacity of primary health 

facilities in the outskirts of the city and ensure that primary health care facilities can make prompt 

referrals for hospital care where required [1,5,8]. 

 In addition there is a need to evaluate community interventions of TB screening in areas further 

away from the centre of the city (QECH) since prevalent cases identified in community 

interventions are usually diagnosed at earlier stage of disease [1,5]. Our previous work has shown 

that notifications decline with greater distance from the centre of Blantyre city; this might be 

because of lack of access to quality health care, including TB diagnosis, at areas in the periphery of 

the city [20]. Health promotion activities to promote early treatment seeking, and quality 
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improvement activities with health workers to support early diagnosis and reduce variation in 

practice between clinics could contribute to reduced TB case fatality, whilst strengthening 

universal healthcare provision within health facilities [1,5]. 

Malawi has made tremendous progress towards achieving the WHO 90-90-90 HIV targets [26]: 

90% of individuals with HIV are aware of their HIV status, 79% of individuals with a diagnosis are 

on antiretroviral therapy (ART) and 72% of individuals on ART treatment have viral suppression 

[27]. Nevertheless, in this study, HIV-positive status remained strongly associated with increased 

risk of death during TB treatment. Nearly all TB patients in this study were aware of their HIV-

positive status, and 89% were taking ART at TB treatment initiation. Persistently high case fatality 

for HIV-positive people despite high ART coverage suggests that HIV positive people have severe 

acute illness [28], have profound delays in TB diagnosis and treatment initiation [29,30], or have 

virological failure to HIV treatment, which itself confers a high risk of death.  In a study among 

HIV-positive people taking ART who were admitted to hospital in Zomba District, Malawi 32% had 

virological treatment failure, and resistance to first-line ART drugs was near universal [31]. 

Improvements in viral load monitoring and rapid treatment changes linked to supportive 

adherence interventions could reduce the number of patients that present with severe disease at 

the start of TB treatment and save more lives [31,32]. Additionally, implementation of point-of-

care HIV viral load monitoring for people living with HIV who are admitted to hospital could 

identify treatment failure earlier. Following WHO recommendations, the Malawi National HIV 

Programme has recommended that all people living with HIV take a Dolutegravir containing 

regimen, including by switching treatment regimens for those already taking [31,33]. It will be 
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important to investigate the effect of this change on TB case fatality among patients treated at 

primary clinics and in hospital (QECH) [33]. 

A key strength of this study was that we used prospectively collected data at TB registration 

through our citywide enhanced TB surveillance system. Our routine monitoring and evaluation 

records have consistently high agreement with national TB treatment registers. We additionally 

captured TB patients’ household GPS coordinates at the point of registration for TB treatment; 

most previous studies have attempted to retrospectively geolocate patients’ households using 

physical addresses, a method that is prone to error [34,35]. Our analysis of household to clinic 

distance was analysed at a continuous scale rather than on a transformed categorical scale with 

arbitrary value cut off points [36,37]. To investigate the causal relationship between household to 

clinic distance and risk of death, we selected confounding variables for adjustment by 

constructing a directed acyclic graph [38]. Sensitivity analysis restricted to TB patients with 

microbiologically-confirmed TB and where patients who were lost to follow-up or transferred out 

to another clinic did not alter our findings. However, timing of death was not collected meaning 

survival analysis could not be done. A small number of TB patients may not have been able to 

accurately geolocate their household, or may have deliberately misidentified their household; 

monthly quality assurance checking of a 5% random sample of households attempted to mitigate 

this. According to Table 4.s1, TB patients who registered for treatment who were residents in the 

areas of the city not mapped by our GPS system had some different characteristics compared to 

those living in the mapped areas. We excluded TB patients from the unmapped areas from the 

analysis. Nevertheless, the main objective of the analysis was to predict TB case fatality using data 

obtained during treatment registration and there is no reason to believe that the underlying 
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relationships should differ between the TB cases that were included in the analysis versus those 

that were excluded. 

In conclusion, in prespecified multilevel modelling using a citywide enhanced surveillance data 

linked to our satellite GPS location system, we found that household to clinic distance was 

associated with increased risk of death for patient starting TB treatment at the city’s central 

hospital. This could be explained by barriers in accessing prompt diagnosis and treatment, and by 

variable quality of care at primary health facilities. HIV-positive status and older age remain 

important risk factors for death. Therefore, interventions that improve access to TB diagnosis 

through community based active case finding, and improved quality of health facility TB 

screening, and prioritise HIV-positive people with potentially high-levels of viral failure for TB 

screening and ART optimisation are required to reduce the unacceptably high case fatality.  
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Figure 4.1. Illustration of the two methods for measurement of household to clinic distance: 

Cartesian distance (2.7km), shortest road network distance (4.5km) 

 

Note: The patient place of residence is a randomly generated point for illustration and does not 
correspond to any patient in the dataset. 
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Figure 4.2. Directed Acyclic Graph (Causal Diagram) 

Illustrating the relationship between distance to TB clinic and risk of death on TB treatment 

and other covariates. The variables sex, age, HIV, Queens Elizabeth hospital registration 

(QECH) versus registration at other clinics and poverty were selected as the minimum 

adjustment set. 
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Figure 4.3. Plot of difference between network and Cartesian distance, versus fitted 
probability of death, for the 100 notified TB cases with the largest distance differences  

 

Abbreviations: q, Queen Elizabeth Central Hospital; m, Mlambe Private Hospital; l, Limbe Health Centre; g, 
Bangwe Health Centre; z, Zingwangwa Health Centre; a, Blantyre Adventist Hospital; c, Chilomoni Health Centre 
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    Table 4.1: Characteristics for notified Tuberculosis cases in Urban Blantyre Malawi, 2015-2018 

 Alive (N=3918) Died (N=479) Total (N=4397) P-value 

Year of registration    0.313 

   2015 860 (89.1%) 105 (10.9%) 965 (100.0%)  

   2016 1187 (89.5%) 139 (10.5%) 1326 (100.0%)  

   2017 1238 (88.0%) 169 (12.0%) 1407 (100.0%)  

   2018 633 (90.6%) 66 (9.4%) 699 (100.0%)  

Gender    0.934 

   Female 1432 (89.1%) 176 (10.9%) 1608 (100.0%)  

   Male 2486 (89.1%) 303 (10.9%) 2789 (100.0%)  

Age, years    < 0.001 

   Median (IQR) 35.0 (28.0, 
41.0) 

37.0 (30.0, 
45.0) 

35.0 (28.0, 
42.0) 

 

   Mean (SD) 35.1 (13.4) 38.3 (13.7) 35.4 (13.4)  

HIV status    < 0.001 

   Negative 1337 (94.4%) 79 (5.6%) 1416 (100.0%)  

   Positive 2581 (86.6%) 400 (13.4%) 2981 (100.0%)  

TB classification    < 0.001 

   Extrapulmonary TB 1375 (85.5%) 233 (14.5%) 1608 (100.0%)  

   Pulmonary TB 2543 (91.2%) 246 (8.8%) 2789 (100.0%)  

Micro confirmed TB    < 0.001 

   Not microbiologically -
confirmed TB 

2064 (86.6%) 318 (13.4%) 2382 (100.0%)  

   Microbiologically-confirmed 
TB 

1854 (92.0%) 161 (8.0%) 2015 (100.0%)  

Distance Km (Cartesian)    < 0.001 

   Median (IQR) 3.8 (2.0, 5.7) 4.4 (2.9,6.8) 3.8 (2.1, 5.9)  

   Mean (SD) 4.3 (3.1) 4.9 (3.1) 4.3 (3.1)  

Distance Km (Road network)    < 0.001 

   Median (IQR) 5.1 (3.1, 7.5) 5.8 (4.1, 9.0) 5.2 (3.2, 7.7)  

   Mean (SD) 5.7 (3.7) 6.5 (3.7) 5.8 (3.7)  

Wealth scorea    0.461 

   Missing 3446 417 3863  

   Median (IQR) 2.5 (2.2, 3.0) 2.6 (2.2, 3.1) 2.5 (2.2, 3.0)  

   Mean (SD) 2.6 (0.5) 2.6 (0.6) 2.6 (0.5)  

Clinic of registration    < 0.001 

   Other clinics 2063 (92.6%) 164 (7.4%) 2227 (100.0%)  
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   Queen Elizabeth Central 
Hospital 

1855 (85.5%) 315 (14.5%) 2170 (100.0%)  

Abbreviations: HIV, Human immunodeficiency virus; km, Kilometres; (Q1,Q3) interquartile range; SD standard 
deviation; TB tuberculosis. 

aWealth score, household wealth developed using household asset ownership. 
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Table 4.2:  Statistical model results for the main analysis, notified TB cases in Urban Blantyre, 
Malawi from 2015 - 2018 

Variable Unadjusted OR 
(95% CI) 

Adjusted OR 
(95% CI) 

Adjusted OR 
Network 
distancee 

(95% CI) 

Adjusted OR 
Cartesian 
distancef 

 (95% CI) 

Sex (Male) 0.99 (0.81, 1.21)  {1.06 (0.87, 
1.29) 

{1.06 (0.87, 
1.30) 

Age (Years)a 1.02 (1.01, 1.02)  1.02 (1.01, 1.02) 1.02 (1.01, 1.02) 

HIV Positive 2.53 (2.00, 3.25)  2.21 (1.73, 2.85) 2.21 (1.73, 2.86) 

Wealth scorea,b 1.40 (0.98, 2.04)  1.15 (0.80, 1.73) 1.14 (0.80, 1.72) 

Queen Elizabeth 
Central Hospital 

2.10 (1.74, 2.56)    

Network distance 
(km)a 

1.05 (1.03, 1.08)    

Cartesian distance 
(km)a 

1.06 (1.03, 1.09)    

     

Road network 
distance 

 {1.02 (0.99, 
1.06) 

0.98 (0.92, 1.03)  

Queen Elizabeth 
Central Hospital 

 1.93 (1.57, 
2.38) 

2.00 (0.93, 4.25)  

Network distance 
(km)* Queen 
Elizabeth Central 
Hospital 

 1.02 (0.96, 
1.08)}c 

1.07 (0.99, 1.16)  

     

Cartesian distance  {1.03 (0.99, 
1.07) 

 0.97 (0.89, 1.04) 

Queen Elizabeth 
Central Hospital 

 1.91 (1.55, 
2.35) 

 2.00 (0.92, 4.27) 

Cartesian distance 
(km)* Queen 
Elizabeth Central 
Hospital 

 1.03 (0.96, 
1.11)}d 

 1.09 (1.00, 1.21) 
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Abbreviations: km, Kilometres; OR, Odds ratio. 

aAge in years, household to clinic distance and household wealth score were cantered by subtracting by the 
mean. 

bWealth score of household wealth developed using household asset ownership. 

c,dAdjusted for TB treatment registration at  Queens Elizabeth Central Hospital (QECH) vs. the other health care 
facilities,  household to clinic distance, and the interaction effect of QECH and household to clinic distance 

e,fAdjusted for Sex (Male vs. Female), Age in years, HIV status (HIV positive vs HIV negative), Wealth score the 
household wealth score, TB treatment registration at QECH vs. the other health care facilities, distance 
household to clinic distance in kilometres, distance (km)* QECH interaction effect of QECH and household to 
clinic distance and a term for the random intercept of clinic of registration. 

The analysis was done for all the data at once (N = 4397) using Bayesian multi-level logistic regression models.  

 

  

Clinic of registration 
intercept   

  0.06 (0.04, 0.11) 0.06 (0.04, 0.11) 

Clinic of registration 
intercept  standard 
deviation 

  0.67 (0.32, 
1.18)} 

0.69 (0.33, 
1.19)} 
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Table 4.3: Statistical model results for the sensitivity analysis: patients with loss to follow-up or 
transfer out treatment status recoded as having died, in Urban Blantyre, Malawi, 2015-2016 

Variable Unadjusted OR 
(95% CI) 

Adjusted OR 
(95% CI) 

Adjusted OR 
Network 
distancee 

(95% CI) 

Adjusted OR 
Cartesian 
distancef 

 (95% CI) 

Sex (Male) 1.10 (0.94, 1.28)  {1.06 (0.87, 
1.29) 

{1.06 (0.87, 
1.29) 

Age (Years)a 1.01 (1.01, 1.02)  1.02 (1.01, 1.03) 1.02 (1.01, 1.03) 

HIV Positive 1.76 (1.47, 2.11)  2.21 (1.73, 2.85) 2.21 (1.73, 1.84) 

Wealth scorea,b 1.39 (0.97, 2.04)  1.15 (0.80, 1.72) 1.15 (0.80, 1.72) 

Queen Elizabeth 
Central Hospital 

1.44 (1.23, 1.68)    

Network distance 
(km)a 

1.03 (1.01, 1.05)    

Cartesian distance 
(km)a 

1.01 (0.98, 1.05)    

     

Road network 
distance 

 {1.02 (0.99, 
1.04) 

0.98 (0.92, 1.03)  

Queen Elizabeth 
Central Hospital 

 1.37 (1.16, 
1.64) 

2.02 (0.94, 4.31)  

Network distance 
(km)* Queen 
Elizabeth Central 
Hospital 

 1.01 (0.96, 
1.07)}c 

1.07 (0.99, 1.16)  

     

Cartesian distance  {1.02 (0.99, 
1.05) 

 0.97 (0.89, 1.04) 

Queen Elizabeth 
Central Hospital 

 1.37 (1.17, 
1.61) 

 2.00 (0.92, 4.26) 

Cartesian distance 
(km)* Queen 
Elizabeth Central 
Hospital 

 1.02 (0.96, 
1.09)}d 

 1.09 (1.00, 1.21) 
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Abbreviations: km, Kilometres; OR, Odds ratio. 

aAge in years, household to clinic distance and household wealth score were centered by subtracting by the 
mean. 

bWealth score of household wealth developed using household asset ownership. 

c,dAdjusted for TB treatment registration at  Queens Elizabeth Central Hospital (QECH) vs. the other health care 
facilities, household to clinic distance, and the interaction effect of QECH and household to clinic distance. 

e,fAdjusted for Sex (Male vs. Female), Age in years, HIV status (HIV positive vs HIV negative), Wealth score the 
household wealth score, TB treatment registration at QECH vs. the other health care facilities, distance 
household to clinic distance in kilometres, distance (km QECH interaction effect of QECH and household to 
clinic distance and a term for the random intercept of clinic of registration. 

The analysis was done for all the data at once (N = 4397) using Bayesian multi-level logistic regression models 
with participants that defaulted and those that transferred out (N = 258) recoded as died. 

  

Clinic of registration 
intercept   

  0.06 (0.04, 0.11) 0.06 (0.04, 0.11) 

Clinic of registration 
intercept  standard 
deviation 

  0.68 (0.33, 
1.17)} 

0.69 (0.33, 
1.19)} 
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Table 4.4: Statistical model results for the sensitivity analysis: Restricted to patients with 
microbiologically-confirmed Tuberculosis disease only in Urban Blantyre Malawi, 2015-2018 

Variable Unadjusted OR 
(95% CI) 

Adjusted OR 
(95% CI) 

Adjusted OR 
Network 
distancee 

(95% CI) 

Adjusted OR 
Cartesian 
distancef 

 (95% CI) 

Sex (Male) 0.93 (0.69-1.28)  {0.99 (0.72-
1.38) 

{0.99 (0.72-
1.38) 

Age (Years)a 1.02 (1.00-1.03)  1.01 (1.00-1.03) 1.01 (1.00-1.03) 

HIV Positive 3.06 (2.12-4.59)  2.65 (1.79-4.06) 2.66 (1.78-4.03) 

Wealth scorea,b 1.85 (0.95-3.49)  1.63 (0.84-3.04) 1.62 (0.84-3.37) 

Queen Elizabeth 
Central Hospital 

2.22 (1.62-3.04)    

Network distance 
(km)a 

1.07 (1.02-1.11)    

Cartesian distance 
(km)a 

1.06 (0.98-1.14)    

     

Road network 
distance 

 {0.97 (0.88-
1.04) 

0.97 (0.88-1.04)  

Queen Elizabeth 
Central Hospital 

 1.67 (0.86-
3.42) 

1.67 (0.86-3.42)  

Network distance 
(km)* Queen 
Elizabeth Central 
Hospital 

 1.14 (1.01-
1.29)}c 

1.14 (1.01-1.29)  

     

Cartesian distance  {1.01 (0.94-
1.08) 

 0.98 (0.87-1.06) 

Queen Elizabeth 
Central Hospital 

 1.73 (1.18-
2.43) 

 1.66 (0.86-3.37) 

Cartesian distance 
(km)* Queen 
Elizabeth Central 
Hospital 

 1.14 (1.00-
1.29)}d 

 1.16 (1.01-1.35) 
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Abbreviations: km, Kilometres; OR, Odds ratio. 

aAge in years, household to clinic distance and household wealth score were centered by subtracting by the 
mean. 

bWealth score of household wealth developed using household asset ownership. 

c,dAdjusted for TB treatment registration at Queens Elizabeth Central Hospital (QECH) vs. the other health care 
facilities,  household to clinic distance, and the interaction effect of QECH and household to clinic distance 

e,fAdjusted for Sex (Male vs. Female), Age in years, HIV status (HIV positive vs HIV negative), Wealth score the 
household wealth score, TB treatment registration at QECH vs. the other health care facilities, household to 
clinic distance in kilometres, distance (km)* QECH interaction effect of QECH and household to clinic distance 
and a term for the random intercept of clinic of registration. 

The analysis was done using N= 2015 participants that had a microbiologically confirmed TB diagnosis using 
Bayesian multi-level logistic regression models. 

 

  

Clinic of registration 
intercept   

  0.04 (0.02-0.09) 0.04 (0.02-
0.0.09) 

Clinic of registration 
intercept  standard 
deviation 

  0.45 (0.02-
1.22)} 

0.43 (0.02-
1.20)} 
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Table 4.s1: Characteristics for notified Tuberculosis cases in Urban Blantyre Malawi, 2015-
2018. Comparing participants who were included in the study versus those who were not part 
of the study but were from Blantyre  

 In study (N=4461) Not in study 
(N=738) 

Total (N=5199) 

Year of registration    

   2015 966 (21.7%) 149 (20.2%) 1115 (21.4%) 
   2016 1330 (29.8%) 191 (25.9%) 1521 (29.3%) 
   2017 1437 (32.2%) 222 (30.1%) 1659 (31.9%) 
   2018 728 (16.3%) 176 (23.8%) 904 (17.4%) 
Gender    

   Male 2827 (63.4%) 405 (54.9%) 3232 (62.2%) 
   Female 1634 (36.6%) 333 (45.1%) 1967 (37.8%) 
Age, years    

   Median (Q1, Q3) 35.000 (28.0, 42.0) 35.0 (21.3, 45.0) 35.0 (27.0, 42.0) 
   Mean (SD) 35.5 (13.4) 34.206 (19.0) 35.3 (14.4) 
HIV status    

   HIV negative 1428 (32.0%) 333 (45.1%) 1761 (33.9%) 
   HIV positive 3033 (68.0%) 405 (54.9%) 3438 (66.1%) 
TB classification    

   Extrapulmonary TB 1637 (36.7%) 466 (63.1%) 2103 (40.5%) 
   Pulmonary TB 2824 (63.3%) 272 (36.9%) 3096 (59.5%) 
Micro confirmed TB    

   Not microb-confirmed TB 2420 (54.2%) 621 (84.1%) 3041 (58.5%) 
   Microb-confirmed TB 2041 (45.8%) 117 (15.9%) 2158 (41.5%) 
TB treatment outcome    

   N-Miss 64 15 79 
   Cured 916 (20.8%) 31 (4.3%) 947 (18.5%) 
   Treatment completed 2715 (61.7%) 419 (58.0%) 3134 (61.2%) 
   Died 479 (10.9%) 94 (13.0%) 573 (11.2%) 
   Treatment failure 29 (0.7%) 2 (0.3%) 31 (0.6%) 
   Lost to follow up 258 (5.9%) 177 (24.5%) 435 (8.5%) 
Clinic of registration    

      Other clinics 2257 (50.6%) 113 (15.3%) 2370 (45.6%) 
      Queen Elizabeth Central     
      Hospital 

2204 (49.4%) 625 (84.7%) 2829 (54.4%) 
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Abbreviations: HIV, Human immunodeficiency virus; (Q1, Q3) interquartile range; SD standard deviation; TB 
tuberculosis 
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5 TB hotspot identification 

5.1 Introduction 

This chapter was aimed at developing a modelling strategy for identifying hotspot 

neighbourhoods of burden of undiagnosed TB cases. This was achieved by analysing of 

neighbourhood prevalence-to-notification ratios for adult bacteriologically-confirmed 

tuberculosis using data from systematic surveillance of notified TB cases and a citywide TB 

prevalence survey form Urban Blantyre, Malawi.  I led the analysis of this manuscript and also 

led the writing of the paper. The paper was submitted on 4 November 2021 to Plos One and 

was published on 6 May 2022. The paper has been described verbatim below.  

In summary, I found that, overall, there remains a substantial burden of undiagnosed TB in 

urban Africa. However, there is significant variation by neighbourhood, implying that ACF 

interventions should be prioritised to reach communities with higher barriers to accessing TB 

care at health facilities. Since these communities are likely to have fewer resources to afford 

the diagnosis offered through routine care, community screening using spatially targeted 

interventions would help achieve equitable access to TB diagnosis. This model should enable 

other places with similar characteristics to urban Blantyre to highlight potential hotspot 

neighbourhoods without the need to carry out a full prevalence survey. 
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5.2 TB hotspots manuscript 
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Abstract (279) 

Local information is needed to guide targeted interventions for respiratory infections such as 

tuberculosis (TB). Case notification rates (CNRs) are readily available, but systematically 

underestimate true disease burden in neighbourhoods with high diagnostic access barriers. We 

explored a novel approach, adjusting CNRs for under-notification (P:N ratio) using 

neighbourhood-level predictors of TB prevalence-to-notification ratios. We analysed data from 

1) a citywide routine TB surveillance system including geolocation, confirmatory 

mycobacteriology, and clinical and demographic characteristics of all registering TB patients in 

Blantyre, Malawi during 2015-19, and 2) an adult TB prevalence survey done in 2019. In the 

prevalence survey, consenting adults from randomly selected households in 72 neighbourhoods 

had symptom-plus-chest X-ray screening, confirmed with sputum smear microscopy, Xpert 

MTB/Rif and culture. Bayesian multilevel models were used to estimate adjusted 

neighbourhood prevalence-to-notification ratios, based on summarised posterior draws from 

fitted adult bacteriologically-confirmed TB CNRs and prevalence. From 2015-19, adult 

bacteriologically-confirmed CNRs were 131 (479/371,834), 134 (539/415,226), 114 

(519/463,707), 56 (283/517,860) and 46 (258/578,377) per 100,000 adults per annum, and 

2019 bacteriologically-confirmed prevalence was 215 (29/13,490) per 100,000 adults. Lower 

educational achievement by household head and neighbourhood distance to TB clinic was 

negatively associated with CNRs. The mean neighbourhood P:N ratio was 4.49 (95% credible 

interval [CrI]: 0.98- 11.91), consistent with slow/underdiagnosis of TB, and was most 

pronounced in informal peri-urban neighbourhoods. Here we have demonstrated a method for 

the identification of neighbourhoods with high levels of under-diagnosis of TB without the 
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requirement for a prevalence survey; this is important since prevalence surveys are expensive 

and logistically challenging. If confirmed, this approach may support more efficient and 

effective targeting of intensified TB and HIV case-finding interventions aiming to accelerate 

elimination of urban TB.  
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Introduction 

Despite substantial investment under global health initiatives, progress towards ending 

tuberculosis (TB) epidemics has been disappointingly slow. TB remained the leading infectious 

cause of adult death in 2019, with an estimated 1.4 million deaths, and was second only to 

COVID-19 in 2020 [1,2]. Estimated incidence has been falling, but not rapidly enough to meet 

the EndTB Strategy goals [1,2]. The World Health Organization (WHO) African Region achieved a 

19% reduction in TB incidence between 2015 and 2020, mainly attributable to improving HIV 

and TB prevention and treatment services [1,2]. Early diagnosis of TB is essential for prevention 

of TB deaths and new infections, as undiagnosed TB patients can remain infectious for many 

years if not effectively treated [3]. In 2020, however, 4.1 million (or 41% of all incident TB 

patients), globally, were estimated to remain undiagnosed or unnotified – with substantial 

increases in these “missing millions” partly because of COVID-19 disruptions in TB diagnostic 

services [1,2,4].  

Reaching the ambitious WHO EndTB Strategy targets for incidence (90% reduction from 2015) 

and death (95% reduction from 2015) from TB by 2035 will require innovative strategies [2,5]. 

Efficient diagnosis of self-presenting patients reporting TB symptoms at health facilities, 

although critical to patient management, is unlikely to be sufficient unless accompanied by 

community-based interventions [3,6]. Active case-finding for undiagnosed TB disease (ACF), 

using approaches such as door-to-door enquiry for chronic cough, can rapidly reduce 

undiagnosed TB prevalence, but is limited to very high prevalence populations by the cost and 

performance of currently available TB diagnostics [3,6–8].  
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Previous attempts to define “hotspots” of TB disease in urban and rural Africa and Asia have 

used locally-resolved case notification rates [9] that cannot distinguish poorer access to TB 

diagnostic services from true low disease burden [10,11]. True TB burden is highly 

heterogeneous but, even in the same District or City, substantial heterogeneity in routine TB 

service access [3,12] tends to obscure hotspots, which typically represent the combined effects 

of adverse social and environmental determinants with high barriers to accessing health 

services [3,13,14].  

Data from TB prevalence surveys can provide detailed neighbourhood-level data on TB 

determinants and undiagnosed TB burden to guide National TB Programmes and District Health 

Officers [9,12,15,16], allowing neighbourhoods with delayed detection and incomplete 

detection [16,17] of TB to be identified through high prevalence-to-notification (P:N) ratios 

[17,18]. TB prevalence surveys are, however, costly and logistically demanding. Identification of 

neighbourhoods with high levels of under-diagnosis without requirement for prevalence 

surveys could be of major benefit to National TB Programmes. Here, we aimed to develop 

simple, accurate models that could be used by researchers and TB Programme Managers using 

high-quality spatially-resolved TB neighbourhood level data from urban Blantyre, Malawi. We 

used multilevel Bayesian modelling to generate neighbourhood level P:N ratios [9,17], aiming to 

smooth over sparse prevalence data and borrow strength across neighbourhoods and make 

predictions beyond available prevalence data to support better prioritisation of community-

based ACF.  
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Methods 

Study setting 

Blantyre District is in the Southern Region of Malawi, Central Africa. Blantyre City, in the centre 

of the District, is a major commercial centre and has several densely-populated informal 

settlements, as well as more-established urban and peri-urban neighbourhoods where rates of 

poverty are high and access to municipal and health services are limited [19]. In the 2018 

Malawi National census the Blantyre City population was 800,264 (502,018 adults ≥ 15y) [20] 

and adult HIV prevalence was 18% in a recent population-based survey [21].  

Blantyre enhanced TB monitoring and evaluation of TB notifications 

Patients diagnosed with TB in Malawi are registered by the National TB Programme. TB 

registration clinics in Blantyre include a government referral hospital, free public clinics and a 

small number of private health facilities [22]. TB Officers (a cadre of health workers employed 

by Malawi's Ministry of Health with responsibility for delivering TB services) [22] were 

supported to strengthen the TB notification surveillance system in Blantyre as part of a joint 

project between the Malawi-Liverpool-Wellcome Trust Clinical Research Programme (MLW), 

the Blantyre District Health Office, and the Malawi National TB Control Programme (NTP). All TB 

patients are offered provider-initiated HIV testing and antiretroviral therapy if newly diagnosed 

with HIV [22].  

From 2015, TB Officers have been supported to use an electronic data capture application 

(ePaL) to collect additional clinical, sociodemographic, and household level data and a 

confirmatory sputum for microscopy and culture as part of the citywide enhanced surveillance 
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system [4,11]. ePAL supports capture of global positioning satellites (GPS) coordinates 

identifying the place of residence for each TB patient, using high resolution satellite maps with 

locally-captured reference locations within each neighbourhood of the city. The ePAL 

application has previously been validated and described elsewhere [11,23]. All patients starting 

TB treatment were asked to provide an additional single spot sputum sample for smear 

microscopy and mycobacteria growth indicator tube (MGIT) culture, performed at the 

MLW/University of Malawi College of Medicine TB Research Laboratory. The enhanced TB 

surveillance data and NTP registers were reconciled on a quarterly basis, and monthly 5% of 

patients were traced to home for data validation purposes. 

TB prevalence survey 

In 2019, a TB prevalence survey was carried out in Blantyre City by the MLW study team at the 

start of a planned cluster-randomised trial of community-based TB screening interventions, 

subsequently interrupted by COVID-19 (ISRCTN11400592). 72 neighbourhood clusters were 

defined, each comprised of several community health workers (CHW) areas, with the goal of 

having approximately 4000 adults in each neighbourhood. CHW areas are the smallest health 

administrative unit in the city, and each is affiliated to a primary health clinic [11,24]. Using 

Google Earth, a geographical information specialist captured the GPS coordinates of all the 

houses in the 72 neighbourhood clusters to be used as the prevalence survey sampling frame. 

In each neighbourhood, 115 households were selected at random for participation into the 

prevalence survey with the aim of recruiting 215 adults (≥18 years old) per neighbourhood.  
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Adults from the randomly selected households were visited and invited to attend a study tent 

located at a central point within the neighbourhood for TB and HIV investigations. TB screening 

was provided at the tent using a digital chest radiograph that was immediately read by an 

experienced radiographer trained in TB prevalence surveys, and with interpretation supported 

by computer assisted diagnostic software (Qure.ai version 2.0). Participants who had an 

abnormal chest X-ray or reported cough of any duration were asked to provide two spot 

sputum samples for Xpert MTB/Rif, smear microscopy, and MGIT culture. Positive Xpert MTB/Rif 

and smear microscopy results were provided within two days, and culture results within 

approximately six weeks; a prevalent TB case was defined as a positive result for Xpert MTB/Rif 

or smear microscopy, with a positive MGIT culture result that was speciated as Mycobacterium 

tuberculosis. HIV testing was offered using both OraQuick (OraSure Technologies, 

manufactured in Thailand) oral HIV test kits and a rapid fingerprick kits (Determine 1/2, Alere, 

USA) in parallel. Positive HIV results were confirmed using Uni-Gold (Trinity Biotech, Ireland). If 

participants verbally reported being HIV positive, only a Uni-Gold confirmation test was done. 

All participants with newly diagnosed HIV were provided with post-test counselling and assisted 

to register for HIV treatment at their nearest primary care clinic. 

Neighbourhood populations 

In 2015, the MLW study team conducted a population census in all of the city’s CHW areas [11]; 

in an independent exercise the Malawi National Statistical Office (NSO) conducted the Malawi 

Population and Household National Census in 2018 that included Blantyre City [20]. Population 

denominators were derived from the MLW study team’s 2015 census and the NSO’s 2018 

census. The 2018 NSO and 2015 MLW study census data were used to calculate annual 
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population growth rates, which were then used to estimate annual population denominators 

for the 72 study neighbourhoods from 2015 to 2019. The growth rates were calculated 

separately for ages 0 to 4yrs, 5 to 14yrs, 15yrs or older adult males and 15yrs and older adult 

females. Growth rates were assumed to be the same for all the neighbourhoods. 

Calculation of empirical TB notification and prevalence rates and predictors 

Empirical neighbourhood-level TB case notification rates (CNR) from 2015 to 2019 and 2019 TB 

prevalence rates were calculated by summing the adult (≥18y) TB notifications or prevalent 

cases at neighbourhood level and dividing by respective adult population denominators and 

multiplying by 100,000 to scale the rate to per 100,000 population. The percentage of adults in 

each neighbourhood and the percentage of male adults aged 15 years or older were calculated 

using data from the 2015 study team Blantyre City census and were assumed to be consistent 

from 2016 to 2019. The distance to the nearest TB clinic was estimated by calculating the 

cartesian (straight line) distance between the centroid of each neighbourhood and the nearest 

TB clinic; this served as a proxy indicator for access to TB diagnosis and treatment [25]. 

Neighbourhood HIV prevalence was calculated using prevalence survey data, and the 

percentage of households whose head never finished primary school — a proxy variable for 

poverty — was estimated using data from the TB prevalence study. According to the Malawi 

Integrated Household Survey, household head education level was closely associated with 

household poverty [26,27]. 
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Neighbourhood baseline characteristics 

We report the neighbourhood-level percentage of adults aged 15 years or older, percentage of 

male adults (15 years or older), distance to nearest TB clinic, percentage of households with 

head of house who never finished primary school and HIV prevalence, summarised by their 

mean, range, and standard deviation (sd). We plotted the spatial distribution of the covariates 

across the 72 neighbourhood clusters on choropleth maps. 

Statistical modelling 

We fitted Bayesian multilevel models to estimate neighbourhood-level adult (≥ 18y) annual 

bacteriologically-confirmed TB case notification rates for each year between 2015 and 2019, 

and separately for prevalence rates for 2019. Models were fitted using Markov chain Monte 

Carlo (MCMC) sampling using the brms package as an interface to Stan in R, with inference 

based on three chains of 14,000 posterior samples after discarding 1000 burn-in samples [28]. 

Since the notification and prevalence data were from two different and independent datasets 

they were modelled separately to allow greater control in exploring covariates. The 

bacteriologically-confirmed case notification data were modelled using a Poisson response 

distribution (Equation 5.1), we included a dummy variable for year with the reference level of 

2019.The prevalence data were modelled using a zero-inflated-Poisson distribution (Equation 

5.2) to account for overdispersion and excess neighbourhoods with zero prevalent cases. 

Neighbourhood-level random effects were modelled with a spatial intrinsic conditional 

autoregressive (ICAR) term (5.S1 and 5.S2 Equations) or a random intercept term (Equation 5.1 

and 5.2), but not with both random terms in the same model. Possible combination of 
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neighbourhood-level variables were derived for the TB case notification and prevalence data. 

The set of variables considered for inclusion in the model were selected based on previous 

research [11], ease of measurement for TB programmes, and availability within the datasets. 

The models’ predictive performance were evaluated using leave-one-out (LOO) cross-validation 

[29]. The best fitting models were selected based on their expected log pointwise predictive 

density (ELPD) LOO statistic [29] (5.S5 and 5.S6 Tables). Weakly regularising priors were 

assigned to model intercepts and slopes. Model convergence was assessed by visual inspection 

of trace plots, effective sample sizes and Gelman-Rubin statistics [28].  
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Equation 5.1 

Let 𝑌~	𝑃𝑜𝑖𝑠(𝜇)	 

 

Pr	(Y1! = 𝑦1!) = b
𝜇1!
L"! 	𝑒𝑥𝑝(−𝜇1!)

𝑦1!!
d 

log(𝜇1!, = 	𝛼 + 𝛼1 +	𝛽"𝑥"1 +	𝛽)𝑥)1 …+ 𝛽*𝑥*1 	+ 	𝛽L7;6)("M𝑦𝑒𝑎𝑟2015! +	𝛽L7;6)("N𝑦𝑒𝑎𝑟2016!
+	𝛽L7;6)("O𝑦𝑒𝑎𝑟2017! + 𝛽L7;6)("P𝑦𝑒𝑎𝑟2018! +	log(𝑃𝑜𝑝1!, 

				𝛼	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇K = 0, 𝜎K) = 10) 

𝛽* 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇Q = 0, 𝜎Q
) = 10,			 

	𝛼1 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎K"
) , 

	𝜎K" 	~	𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

The expectation of Y1! = 𝑦1!	 given by: 

𝐸(𝑌1! = 𝑦1!) = 	𝜇1!  

 

Where i refers to neighbourhood i for i =1,2,3..72, and j indexes year (2015,…2019), (𝛼 + 𝛼#) intercept parameters and 

			𝛽$, 𝛽%…𝛽& are unknown regression coefficients that are estimated from the data for the cluster level covariates 𝑥$# , 𝑥%#	… 

𝑥&#	, and sigma (𝜎(!) is the standard deviation for the random intercept for neighbourhood i.  𝑃𝑜𝑝#) is the total population of 

neighbourhood in year j that is used as the offset. Here 𝑦𝑒𝑎𝑟2015), 𝑦𝑒𝑎𝑟2016), 𝑦𝑒𝑎𝑟2017) and	𝑦𝑒𝑎𝑟2018) are dummy 

variables which take the value of one for that year and take the value of zero for the other years (the baseline year was 2019). 

Equation 5.2 

To define the zero-inflated Poisson model, let 𝑍~	𝐵𝑒𝑟𝑛(1 − 𝑝) (so Pr{𝑍 = 0} = 𝑝) and 
independently 𝑊~	𝑃𝑜𝑖𝑠(𝜇). Then the data are modelled by the zero-inflated variable Y which 
is defined as 

𝑌 = 𝑍𝑊 

 

Pr	(Y+ = 𝑦+) =

⎩
⎪
⎨

⎪
⎧ 8𝑝 + (1 − 	𝑝)𝑒𝑥𝑝(−𝜇+)<	𝑖𝑓	𝑦+ = 0	

i(1 − 𝑝)
𝜇+
,! 	𝑒𝑥𝑝(−𝜇+)

𝑦+!
k 𝑖𝑓	𝑦+ 	≥ 1	

	

 

𝑙𝑜𝑔𝑖𝑡(𝑝+) = 	𝜗 
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𝜗~	𝑁𝑜𝑟𝑚𝑎𝑙8𝜇 = 0, 𝜎-# = 10< 

log(𝜇+) = 	𝛼 + 𝛼+ +	𝛽.𝑥.+ +	𝛽#𝑥#+ …+ 𝛽/𝑥/+ 	+ log(𝑃𝑜𝑝+) 

							𝛼	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇0 = 0, 𝜎0# = 10) 

𝛽/ 	~	𝑁𝑜𝑟𝑚𝑎𝑙8𝜇1 = 0, 𝜎1# = 10<			 

	𝛼+ 	~	𝑁𝑜𝑟𝑚𝑎𝑙80, 𝜎0!
# < 

	𝜎0! 	~	𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

 

The expectation of 	Y+ = 𝑦+	is given by: 

𝐸(𝑌+ = 𝑦+) = (1 − 𝑝)	𝜇+  

 

Where i refers to neighbourhood i for i =1,2,3…72 (note we only have prevalence data for one year, 2019). 𝜗, (𝛼 + 𝛼#) intercept 

parameters and 			𝛽$, 𝛽%…𝛽& are unknown regression coefficients that are estimated from the data for the covariates 𝑥$# , 𝑥%#	… 

𝑥&#	, and sigma (𝜎(!) is the standard deviation for the random intercept for neighbourhood i.  𝑃𝑜𝑝# is the total population of 

neighbourhood that is used as the offset. 

The intercept, mean rate ratios and 95% credible intervals (CrI) of the selected models are 

presented in a model summary table. We drew 42,000 posterior samples of the prevalence and 

notification rates from the selected models. The posterior bacteriologically-confirmed P:N 

ratios were calculated by dividing the posterior prevalence rates by the posterior notification 

rates (Equation 5.3).  We obtained the posterior mean of the P:N ratios and their 95% posterior 

Crl, and summarised their distribution in a choropleth map and a caterpillar plot [30]. Analysis 

was conducted using R version 4.0.3 (R Foundation for Statistical Computing, Vienna). 
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Equation 5.3 

Posterior	notification	rate+! 	= exp8𝛼! + 𝛼+!< ∗ 100,000 (From equation 5.1) 

Posterior	prevalance	rate+! 	= 81 − 𝑝!< ∗ exp8𝛼! + 𝛼+!< ∗ 100,000	(From equation 
5.2) 

 

Where j indexes the posterior sample j	 = 	1, 2, 3, … 	42,000	and i is for neighbourhood i = 1,2,3 … 72. 

The P:N ratio posterior was calculated by first drawing a sample of 42,000 posterior samples of the posterior notification and 

prevalence rates per 100,000. The jth posterior P:N ratio was calculated by dividing the jth posterior prevalence rate by the jth 

posterior notification rate. 

Sensitivity analysis 

Neighbourhood-level TB prevalence was post-stratified according to age-sex groups in 

neighbourhood populations from WorldPop in order to correct for under-participation of some 

age-sex groups in the prevalence survey [31]. WorldPop population estimates were used 

because they had more granular age-sex groups than our census-based denominators. The post 

stratified TB prevalence was used to reproduce P:N ratios. We additionally undertook sensitivity 

analysis to estimate neighbourhood P:N ratio for all adult forms of TB, including both 

bacteriologically-confirmed and clinically-diagnosed cases. 

Ethical considerations 

Ethical approval was granted by the London School of Hygiene and Tropical Medicine (16228) 

and the College of Medicine, University of Malawi Research Ethics Committee (P.12/18/2556). 

Participants in both the prevalence survey and MLW study census provided written informed 

consent.  
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Results 

Neighbourhood characteristics 

From 2015 to 2019, the estimated total population of the 72 study neighbourhoods increased 

from 612,792 to 905,419, with 60.90 % (range: 54.80-70.60, sd: 3.00) adults (≥15 years). There 

was substantial neighbourhood-level variability in the mean percentage of adults who were 

men (51.54%, range: 46.89-55.23, sd: 1.55), living in households headed by someone who had 

not completed primary education (low education: 16.90%, range 4.30-32.40%, sd: 6.10) and HIV 

prevalence 13.80% (range: 4.21-27.44%, sd: 4.32). The mean distance from the centroid of the 

neighbourhoods to the nearest TB clinic was (1.74 km, range: 0.36-3.68 km, sd: 0.89) Table 5.1. 

Neighbourhoods located near the centre of the city had higher population density, and higher 

proportions of adults and male residents (Figure 5.1).  The peri-urban neighbourhoods tended 

to have higher distance to the nearest TB clinic, higher HIV prevalence, and a greater 

percentage of household heads without primary education.  
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Figure 5.1. Choropleth maps all covariates considered in predictive models of TB case 

prevalence and notification rates 
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Table 5.1: Neighbourhood-level summary data for the 72 neighbourhoods 

Characteristic Mean (sd) Range n N 

2015 bacteriologically-confirmed adult 
TB notification rate (per 100,000) 131 (77) 0—383 479 371,834 

2016 bacteriologically-confirmed adult 
TB notification rate (per 100,000) 134 (70) 32—328 539 415,226 

2017 bacteriologically-confirmed adult 
TB notification rate (per 100,000) 114 (57) 28—291 519 463,707 

2018 bacteriologically-confirmed adult 
TB notification rate (per 100,000) 56 (38) 0—167 283 517,860 

2019 bacteriologically-confirmed adult 
TB notification rate (per 100,000) 46 (29) 0—144 258 578,377 

2019 adult bacteriologically-confirmed 
TB prevalence rate  
(per 100,000) 

215 (335) 0—1,415 29 13,490 

2015 adult TB notification rate†  
(per 100,000) 242 (119) 23—639 884 371,834 

2016 adult TB notification rate†  
(per 100,000) 273 (128) 47—629 1,106 415,226 

2017 adult TB notification rate†  
(per 100,000) 251 (101) 42—451 1,157 463,707 

2018 adult TB notification rate†  
(per 100,000) 127 (66) 13—287 642 517,860 

2019 adult TB notification rate†  
(per 100,000) 150 (65) 28—349 849 578,377 

Percentage of adults (≥15y) (%) 60.90 (3.00) 54.80—70.60 371,834 612,792 

Percentage of male adults (%) 51.54 (1.55) 46.89—55.23 191,855 371,834 

Household head without primary 
education (%) 16.90 (6.10) 4.30—32.40 2,700 15,897 

Distance to TB clinic (km) 1.74 (0.89) 0.36—3.68 NA NA 

HIV prevalence (%) 13.80 (4.32) 4.21—27.44 1631 11705 

n (numerator), N (denominator), range (minimum—maximum), sd (standard deviation, sum (total), NA (not applicable), km  
(kilometre). Numerator and denominators for TB notifications and TB prevalence limited to adults. 

†All forms of TB 
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Empirical neighbourhood adult bacteriologically-confirmed TB cases notification and 

prevalence rates 

During 2015-19 there were a total of 2,078 adults aged 18 years or older with bacteriologically -

confirmed TB registered for treatment from the study neighbourhoods. CNR’s declined during 

this period; neighbourhood mean adult bacteriologically-confirmed TB CNR’s from 2015 to 2019 

were 131 (range: 0-383, sd: 77), 134 (range: 32-328, sd:70), 114 (range: 28-291, sd:57), 56 

(range: 0-167, sd:38) and 46 (0-144, sd:29) per 1000,000 adults Table 5.1. HIV prevalence 

among TB cases was 65.45 % (3394/5260) and 64.56 % (1864/5260) of registered patients were 

men.   

A total of 29 (range: 0-3, sd: 0.6) bacteriologically-confirmed previously undiagnosed adult TB 

patients were identified during the prevalence survey, with an empirical neighbourhood mean 

of bacteriologically-confirmed TB prevalence rate of 215 (29/13,490) per 100,000 (range: 0-

1,415, sd: 335). The rates of empirical TB notifications were higher in the city centre and were 

lower in the city’s outskirts, whereas empirical TB prevalence rates were higher on the outskirts 

of the city Fig 5.2.  
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Figure 5.2: Empirical bacteriologically-confirmed adult TB case notification rates (CNR) 2015-
2019 (A-E), and TB case prevalence rates (CPR) 2019 (F); both per 100,000 
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Neighbourhood-level predicted TB prevalence and notifications rates 

For analysis of microbiologically-confirmed adult TB CNRs, the model that was selected included 

a neighbourhood-level random intercept, and neighbourhood-level covariates including the 

percentage of adults (≥15y), distance to the nearest TB clinic, and percentage of household 

heads who had not completed primary school education (5.S2 and 5.S6 Tables).  

There was an overall trend of a reduction in rates of annual adult bacteriologically-confirmed 

TB notification rates. In comparison to 2019, the years 2015 (rate ratio [RR]: 2.89, 95% CrI: 

2.48–3.37), 2016 (RR: 2.91, 95% CrI: 2.51–3.38), 2017 (RR: 2.51, 95% CrI: 2.16–2.92) and 2018 

(RR: 1.23, 95% CrI: 1.03–1.45) had substantially higher CNRs (Table 5.2).  

Table 5.2: Parameter estimates for selected regression models for predicting neighbourhood 
level TB prevalence and notifications.  

 
Adult bacteriologically-confirmed 

TB notification model 
Adult bacteriologically -

confirmed TB prevalence model 
Fixed effects 
Parameters 

Mean rate 
ratio 

95% CrI Mean rate 
ratio 

95% CrI 

Percentage of adult residents (≥15y)a 0.96 (0.93, 1.00) 0.94 (0.80, 1.10) 
Distance to nearest TB clinic (km)a 0.78 (0.69, 0.88)   
Percentage of household heads that did 
not complete primary schoola 

0.98 (0.96, 0.99)   

Year: 2019 Reference     
Year: 2015 2.89 (2.48, 3.37)   
Year: 2016 2.91 (2.51, 3.38)   
Year: 2017 2.51 (2.16, 2.92)   
Year: 2018 1.23 (1.03, 1.45)   

Intercept 50.88*10-5 (42.99*10-5, 
60.00*10-5) 

232.08*10-5 (132.05*10-5, 
404.96*10-5) 

Zero inflation intercept   0.18 (0.01, 0.46) 
Random effects SD: cluster 0.31  (0.24, 0.39) 0.33  (0.01, 0.90) 

km kilometre; sd standard deviation; Crl Credible interval. 

aPercentage of adults was centred by subtracting by its mean (60.90 %), Distance to nearest TB clinic (km) was 
centred by subtracting by 1km, Percentage of household head that did not complete primary school was centred by 
subtracting by its mean (16.90 %). 
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For the prevalence rates, the model with a random intercept for neighbourhood and 

neighbourhood percentage of adults (≥15y), was selected (5.S1 and 5.S5 Tables). In this model, 

there was no association between the neighbourhood TB prevalence rate and the percentage 

of neighbourhood adults (≥15y) (Table 5.2).  

Neighbourhood level hotspots of TB underdiagnosis, ratio of prevalence to notifications 

The mean neighbourhood posterior P:N ratios for adult bacteriologically-confirmed TB varied 

considerably between neighbourhoods (range: 1.70-10.40, sd: 1.79), with the mean posterior 

P:N  ratio of the 72 neighbourhoods being 4.49 (95% CrI: 0.98-11.91) Figure 5.3.  
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Figure 5.3: Neighbourhood level TB prevalence to notification ratios (with 95% Crls) using final 
models. The neighbourhoods were ordered according to prevalence to notification ratio size. The dashed 
line is the mean prevalence to notification ratio. Crl Credible interval. 
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Neighbourhoods with high-case notification rates and low P:N ratio were likely to have good access to 

TB diagnosis, and as a result, they were less likely to be hotspots of undiagnosed active TB. (Figure 5.3). 

Overall, P:N ratios were higher in neighbourhoods in the outskirts of the city, characterised by 

rapidly-growing informal settlements (Figure 5.4). 

Figure 5.4: Map of TB prevalence to notification ratios predicted from final models including 
estimated neighbourhood random effects (Inset map of Malawi with Blantyre in red). Models include 
neighbourhood random effects. Neighbourhoods outlined in blue are in the highest quartile for P:N  ratios. Inset map of Malawi 
with Blantyre District in red. Map tile data from OpenStreetMap. 
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Sensitivity analysis 

The model coefficients were mostly similar to that in the primary analysis (5.S7 and 5.S8 

Tables). The mean posterior P:N ratio of the 72 neighbourhoods was 5.04 (95% CrI: 1.86-10.26) 

and was 1.39 (95% CrI: 0.30-3.58) for the post stratified TB prevalence base analysis and the 

analysis based on all notified TB cases respectively. Overall, the distribution of the P:N ratios 

was similar to the primary analysis (5.S1-5.S5 Figures). The sensitivity analysis of all TB case 

notifications classified 14 neighbourhoods into the 4th quartile of the 18 neighbourhoods that 

were classified as having 4th quartile P:N  ratios by the primary analysis, while the analysis 

based on post-stratified TB prevalence classified 16 neighbourhoods into 4th quartile of the 18 

neighbourhoods that were classified as having 4th quartile P:N ratio by the primary analysis 

(5.S9 Table). Similarly to the primary analysis, the P:N ratios were higher in the outskirts of the 

city and in the informal urban settlement areas (5.S3 and 5.S5 Figures). 
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Discussion 

Our main finding was that urban Blantyre in Malawi, a city with free health services and high 

coverage of treatment for HIV but high rates of poverty, has a significant burden of delayed and 

undiagnosed TB, with an overall estimated mean neighbourhood TB P:N ratio of 4.49:1. The 

18/72 neighbourhoods with P:N ratios in the highest quartile were likely to be “hotspots” of 

delayed diagnosis or missed diagnosis of TB cases. Most neighbourhoods with high P:N ratios 

were located in the rapidly-growing informal settlements on the periphery of the city and were 

adjacent to forest reserves or mountainous terrain where the city is expanding. However, we 

did not directly capture informality, and further research is required to quantitatively define 

“the degree of formality of settlement”; these are residential areas that are not registered by 

the authorities or have makeshift housing structures and are likely to be important areas of 

focus for TB case finding activities. Our approach, which uses data that can be collected by 

District Health Officers in urban African cities (neighbourhood distance to clinic, percentage of 

male residents, and percentage of households where the head has not completed primary 

education), could be used to prioritise neighbourhoods for community-based TB ACF and 

prevention interventions, potentially a more efficient and effective way of delivering TB 

screening and prevention interventions [32]. 

A major strength of this analysis was that we used data from an enhanced TB surveillance 

system and a well-conducted subdistrict area prevalence survey. We used a systematic 

modelling strategy to identify a parsimonious model with variables that are predictive of 

neighbourhood TB notification and prevalence rates. Our strategy of combining notification and 

prevalence data offers important improvements in identifying high-burden areas compared to 
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approaches based solely on notification rates [11,12]. When only notifications are used, we 

might erroneously identify areas with easier access to TB diagnosis as hotspots and miss areas 

with a high burden of undiagnosed TB that have more limited access to TB diagnosis [17]. By 

using both notification and prevalence we can identify areas where the underlying notification 

of TB cases misses a higher proportion of undiagnosed TB cases [17]. But, by using the 

covariates identified in our models, our hope is that a new setting with similar characteristics to 

Blantyre might successfully rank its neighbourhoods to identify areas likely to have 

underdiagnosis. Hence our approach may reduce the need to carry out a relatively expensive 

across-the-board prevalence survey [33]. 

The End TB goal of 90 percent reduction in TB incidence between 2015 and 2035 is difficult to 

track in the majority of high-TB settings where TB incidence cannot be estimated directly from 

notifications but is estimated through inference methods that can produce imprecise estimates 

[1,2,34]. Developing methods for identifying areas of TB underdiagnosis is therefore critical to 

guide targeted intervention [12,35,36], which will be more important as epidemics become 

more concentrated. CNRs in Blantyre Malawi declined between 2015 to 2019, reflecting the 

general trend in other African countries in this period [1,2]. Blantyre has also achieved high 

coverage of HIV treatment and isoniazid preventive therapy [21,37].  

The P:N ratio, which is used to assess TB burden in this study, is a proxy for the time between 

onset of TB infectiousness and diagnosis, and it is typically given the unit of years in 

mathematical modelling studies; its inverse is known as the patient diagnostic rate [17,38]. 

While the P:N ratio does not directly measure incidence, it can be used as an indicator of 

neighbourhood delayed TB case diagnoses or missed diagnosis [17]. We found overall across 
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Blantyre that the P:N ratio was high (4.49:1), indicating substantial underdiagnosis and delayed 

diagnosis of TB. 

Our data suggests that the efficiency of selecting communities for community-based 

interventions, such as those based on poverty and population density, could be improved by 

incorporating neighbourhood-level prevalence survey and notification data which allows a 

more granular understanding of TB epidemiology [3,9,32,39]. District TB programmes benefit 

the most when they have information that enable them to prioritise their efforts, because they 

usually operate under resource constraints [3,39,40]. TB programmes must collect additional 

data to what is routinely collected through national TB case notification systems at the time of 

registering patients to gain a better understanding of the local TB epidemiology and guide 

public health interventions [15,32,36]. The majority of people who are disproportionately 

affected by TB, live in informal urban settlements that lack postal or zip codes [1,11,19]. 

Collection of neighbourhood location of TB patients’ households may provide additional 

epidemiological insights for planning spatially-targeted interventions of TB hotspots 

[12,13,36,40,41].  

Community-based TB ACF interventions have been shown to be most effective when conducted 

intensively, through repeated screening of communities over a short period of time [7,8]. For 

example, the ACT3 trial in Vietnam, conducted between 2014 and 2016, demonstrated 

reductions in TB prevalence through community ACF by offering annual Xpert MTB/Rif 

screening in 60 intervention neighbourhoods with approximately 54,000 adults over three years 

[8]. In a post intervention prevalence survey the intervention clusters showed a 44% reduction 

in TB prevalence [8]. TB screening interventions such as those tested in the ACT3 study would 
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be logistically and financially challenging in a setting like urban Blantyre, where health systems 

budgets are severely constrained [20,22]. Mathematical modelling work in Rio de Janeiro 

demonstrated that reducing TB transmission within TB hotspot neighbourhoods could reduce 

the city-wide TB incidence [13]. 

Both the distance to the nearest TB clinic and the percentage of household heads who did not 

finish primary school were positively associated with lower case notification rates. Both the 

notification and prevalence rate models had random intercept standard deviations with lower 

bounds of their 95% credible intervals that were well away from zero, indicating that TB 

epidemiology varied by city neighbourhood even after adjusting for covariates. We considered 

modelling neighbourhood random effects with the spatial ICAR term (5.S1 and 5.S2 Equations 

and 5.S3 and 5.S4 Tables), but models with random intercept terms gave a better description of 

the data because the spatial proximity of neighbourhoods with very different historical levels of 

interventions caused the ICAR model to over-smooth the data (5.S5 and 5.S6) Tables. In 

addition, we did not have enough data to support both random effects in the same model.  

Our analysis had some limitations. The prevalence survey detected a low number of prevalent 

cases in the city. This meant that the models for prevalence had less power for identifying 

predictive covariates. Other work modelling regional TB prevalence has also found most 

potential covariates were unable to improve predictions [33]. The prevalence survey was also 

just done once; it is possible that if we had a repeat prevalence survey, we could have found a 

different distribution of TB prevalence than what was captured in this study [42]. Some groups 

were also under sampled by the prevalence trial, particularly men; we accounted for this in our 

post-stratified sensitivity analysis, showing similar results. In addition, P:N ratios based on 
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microbiologically-confirmed notified TB had higher mean rate ratios than in the sensitivity 

analysis that included all forms of TB, although the neighbourhoods identified with high P:N 

ratios were similar. The lower bound of the 95% CrI of some of the neighbourhood P:N ratios 

were less than one (Figure 3), although this represents low statistical power rather than a 

possibility of “overdiagnosis” of TB. More details on the goodness of fit of the models have 

been provided in the supplementary section (5.S3 Equation), which suggests that our models 

sufficiently describe the data well. Antiretroviral therapy (ART) coverage data was also not 

included in the model but there was a high percentage coverage of ART for people living with 

HIV across all neighbourhoods (mean: 95.41 %, range: 84.01- 95.41, sd: 0.03); we instead 

included HIV prevalence as people living with HIV are still at an increased risk of TB compared 

to HIV negative individuals even when they are on ART [1]. 

Countries in WHO Africa region need to accelerate the rate of TB incidence reduction from the 

current rate of about 4% per year to at least 10% by 2025 in order to meet the End TB goals 

[1,2,43]. For this to be achievable it is important that we have effective methods for prioritising 

communities for TB interventions to efficiently use the available resources [3]. National TB 

programmes that need to prioritise neighbourhood areas for TB interventions such as ACF, can 

collect the variables identified by our method which will be used by the model to predict the 

P:N ratios. By focusing on underserved communities, this will ensure universal health coverage 

for communities that are underserved by facility-based health care. The P:N ratios should be 

interpreted alongside the CNRs to obtain the full nature of the epidemic i.e., Figure 3. There is 

also a need to externally validate the model, as well as to investigate the effectiveness of 

spatially targeted interventions in randomised controlled trials [36]. 
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Conclusion  

Using a citywide enhanced surveillance data and prevalence survey data, we developed a 

predictive model to prioritise neighbourhoods for TB case detection and prevention activities 

based on readily available local data. In most low-resource settings, current active case-finding 

strategies are inefficient and resource-intensive. We have demonstrated a method for 

identifying neighbourhoods with high rates of underdiagnosis. Researchers and programme 

managers could prioritise identified TB hotspots for TB control and prevention interventions to 

focus efforts on urban TB elimination. 
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5.S1 Equation. 

Let 𝑌~	𝑃𝑜𝑖𝑠(𝜇)	 

 

Pr	(Y1! = 𝑦1!) = b
𝜇1!
L"! 	𝑒𝑥𝑝(−𝜇1!)

𝑦1!!
d 

log(𝜇1!, = 	𝛼 +	𝛽"𝑥"1 +	𝛽)𝑥)1 …+ 𝛽*𝑥*1 	+ 	𝛽L7;6)("M𝑦𝑒𝑎𝑟2015! +	𝛽L7;6)("N𝑦𝑒𝑎𝑟2016!
+	𝛽L7;6)("O𝑦𝑒𝑎𝑟2017! + 𝛽L7;6)("P𝑦𝑒𝑎𝑟2018! +	log(𝑃𝑜𝑝1!,+𝜙𝑖 

				𝛼	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇0 = 0, 𝜎0# = 10) 

𝛽/ 	~	𝑁𝑜𝑟𝑚𝑎𝑙8𝜇1 = 0, 𝜎1# = 10<			 

	𝜙+ 	|	𝜙/ , 𝑖 ≠ 𝑘, ~	𝑁𝑜𝑟𝑚𝑎𝑙 �	
∑ 𝑤+/𝜙++~/

𝑑+
,
𝜎+#

𝑑+
� 

	𝜎+ 	~	𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

The expectation of Y56 = 𝑦+!	 given by: 

𝐸(𝑌+! = 𝑦+!) = 	𝜇+!  

Where i refers to neighbourhood i for i =1,2,3..72, and j indexes year (2015,…2019), W is a 72 by 

72 adjacency matrix where entries {i,i} are 0 and the off-diagonal elements are 1 if regions i and 

k are neighbours and 0 otherwise. di is the number of neighbours for neighbourhoodi, di was 

fixed to be 4.	𝜙+	, 𝛼 and 			𝛽., 𝛽#…𝛽/ are unknown regression coefficients that are estimated 

from the data for the covariates 𝑥.+ , 𝑥#+	… 𝑥/+	, and sigma (𝜎+ 	) is the standard deviation for the 

spatial random term 𝜙+.  𝑃𝑜𝑝+!  is the total population of neighbourhood that is used as the 

offset. Here 𝑦𝑒𝑎𝑟2015!, 𝑦𝑒𝑎𝑟2016!, 𝑦𝑒𝑎𝑟2017!  and	𝑦𝑒𝑎𝑟2018!  are dummy variables which 
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take the value of one for that year and take the value of zero for the other years (the baseline 

year was 2019). 
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S2 Equation. 

To define the zero-inflated Poisson model, let  (so ) and 
independently . Then the data are modelled by the zero-inflated variable Y which 
is defined as 

 

 

 

 

 

 

 

 

𝜙+ 	|	𝜙/ , 𝑖 ≠ 𝑘, ~	𝑁𝑜𝑟𝑚𝑎𝑙 �	
∑ 𝑤+/𝜙++~/

𝑑+
,
𝜎+#

𝑑+
� 

 

The expectation of  given by: 

 

Where i refers to neighbourhood i for i =1,2,3..72 (note we only have prevalence data for one 
year, 2019). W is a 72 by 72 adjacency matrix where entries {i,i} are 0 and the off-diagonal 
elements are 1 if regions i and k are neighbours and 0 otherwise. di is the number of neighbours 
for neighbourhoodi, di was fixed to be 4.  and  are unknown regression 
coefficients that are estimated from the data for the covariates  , and sigma ( ) is 
the standard deviation for the spatial random term .   is the total population of 
neighbourhood that is used as the offset. 
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5.S1 Figure: Neighbourhood level TB prevalence to notification rate ratios (with 95% CIs) 
using final models. The neighbourhoods were ordered according to prevalence to notification 
ratio size. Analysis based on post stratified TB prevalence with microbiologically-confirmed 
TB notifications kept the same as in the primary analysis. The dashed line is the mean prevalence to 
notification ratio. Crl Credible interval. 
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5.S2 Figure: Differences of neighbourhood level TB prevalence to notification rate ratios (P:N 
rate ratios), the P:N rate ratio based on post stratified prevalence TB subtracted by the P:N 
ratio based on the primary analysis. 
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5.S3 Figure: Map of TB prevalence to notification ratios predicted from final models (Inset 
map of Malawi with Blantyre in red). Analysis based on post stratified TB prevalence and with 
microbiologically-confirmed TB notifications kept the same as in the primary analysis. Models 
include neighbourhood random effects. Neighbourhoods outlined in blue are in the highest quartile for P:N  ratios. Map tile 
data from OpenStreetMap. 

 

  



194 
 

5.S4 Figure: Neighbourhood level TB prevalence to notification rate ratios (with 95% CIs) 
using final models. The neighbourhoods were ordered according to prevalence to notification 
ratio size. Analysis based on microbiologically-confirmed TB and clinically-diagnosed cases 
and with TB prevalence kept the same as in the primary analysis. The dashed line is the mean 
prevalence to notification ratio. Crl Credible interval. 
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5.S5 Figure: Map of TB prevalence to notification ratios predicted from final models (Inset 
map of Malawi with Blantyre in red). Analysis based on microbiologically-confirmed TB and 
clinically-diagnosed cases and with TB prevalence kept the same as in the primary analysis. 
Models include neighbourhood random effects. Neighbourhoods outlined in blue are in the highest quartile for P:N  ratios. Map 
tile data from OpenStreetMap. 
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5.S6 Figure: Observed versus predicted mean CNRs (95% Crls). Analysis based on 
microbiologically-confirmed TB as in the primary analysis. Crl Credible interval.

 

5.S7 Figure: Observed versus predicted mean prevalence rates (95% Crls). Analysis based on 
microbiologically-confirmed TB as in the primary analysis. Crl Credible interval. 
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5.S3 Equation. Model goodness of fit assessment. 

We now present a chi-square-statistic goodness of fit statistic for the models as an approximate 
guidance to the goodness of fit of the models to the data. 

Let 𝑌1  be the observed number of cases and   𝜇Rm   the model predicated cases in neighbourhood i = 1, 2, 3, 
…72 

𝜒) =W
(𝑌1 −	�̂�1))

�̂�11
 

The value of chi-square was calculated separately for TB case notifications and also for prevalent TB 
cases. We also calculated the approximate degrees of freedom of each as 

 72 – number of parameters in each model. 

 

The calculated chi-squared statistic of the case notifications was 73.06, while the degree of freedom was 
64, giving an approximate p-value of 0.21 

Similarly, the calculated chi-squared statistic of the prevalent cases was 56.81, while the degree of 
freedom was 70, giving an approximate p-value of 0.87. 

 

While, because expectations in the 72 locations are often small, this only provides an approximate 
measure of goodness of fit, nevertheless taken together with our careful choice of models (e.g. zero-
inflated Poisson for the prevalence) and systematic variable selection approach means are confident our 
models describe the data sufficiently well to justify their application.  
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5.S1 Table. Table of all the TB prevalence neighbourhood level models with a random intercept of clinic of treatment registration. Coefficients 
(mean rate ratio) were exponentiated and intercepts were multiplied by 100,000 (Equation 2). 

Model names Intercept Percentage of 
adults (≥15y) 

Percentage of 
household 
heads that did 
not complete 
primary school 

Distance to 
nearest TB clinic 
(km) 

Percentage of 
HIV prevalence 

Percentage of 
male adults 

Random effects 
SD: cluster 

Probability Zi=0 
(Refer to 
Equation 2) 

prevalence 
model 1 

218.46 (98.53-
463.00) 

0.90 (0.72-1.13) 0.99 (0.91-1.08) 0.98 (0.55-1.74) 1.03 (0.91-1.16) 0.92 (0.64-1.33) 0.39 (0.02-1.05) 0.19 (0.01-0.48) 

prevalence 
model 2 

210.26 (96.11-
449.69) 

 1.01 (0.93-1.09) 1.08 (0.63-1.86) 1.02 (0.91-1.15) 0.98 (0.70-1.38) 0.38 (0.02-1.04) 0.19 (0.01-0.48) 

prevalence 
model 3 

220.73 (101.37-
462.95) 

0.91 (0.73-1.12)  0.99 (0.55-1.75) 1.02 (0.91-1.14) 0.92 (0.63-1.32) 0.37 (0.01-1.00) 0.19 (0.01-0.48) 

prevalence 
model 4 

212.01 (97.42-
448.19) 

  1.09 (0.64-1.85) 1.03 (0.92-1.15) 0.98 (0.71-1.36) 0.36 (0.02-0.99) 0.19 (0.01-0.47) 

prevalence 
model 5 

217.90 (116.83-
396.19) 

0.90 (0.73-1.11) 0.99 (0.91-1.08)  1.03 (0.91-1.15) 0.92 (0.64-1.32) 0.37 (0.02-1.01) 0.19 (0.01-0.47) 

prevalence 
model 6 

226.71 (125.32-
406.29) 

 1.01 (0.94-1.09)  1.02 (0.91-1.15) 0.99 (0.73-1.36) 0.36 (0.01-0.97) 0.19 (0.01-0.47) 

prevalence 
model 7 

220.83 (119.92-
398.84) 

0.91 (0.75-1.10)   1.02 (0.91-1.14) 0.92 (0.64-1.31) 0.36 (0.01-0.98) 0.18 (0.01-0.47) 

prevalence 
model 8 

230.62 (129.55-
405.77) 

   1.02 (0.92-1.14) 1.00 (0.75-1.34) 0.34 (0.02-0.94) 0.18 (0.01-0.47) 

prevalence 
model 9 

223.22 (104.13-
461.02) 

0.91 (0.72-1.12) 1.00 (0.92-1.08) 0.97 (0.54-1.73)  0.89 (0.64-1.24) 0.37 (0.01-1.02) 0.19 (0.01-0.47) 

prevalence 
model 10 

214.86 (102.66-
445.87) 

 1.01 (0.94-1.09) 1.07 (0.62-1.80)  0.95 (0.71-1.28) 0.36 (0.01-0.99) 0.18 (0.01-0.47) 

prevalence 
model 11 

226.52 (105.67-
462.82) 

0.91 (0.74-1.10)  0.97 (0.55-1.71)  0.89 (0.65-1.23) 0.36 (0.02-0.98) 0.18 (0.01-0.47) 
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Model names Intercept Percentage of 
adults (≥15y) 

Percentage of 
household 
heads that did 
not complete 
primary school 

Distance to 
nearest TB clinic 
(km) 

Percentage of 
HIV prevalence 

Percentage of 
male adults 

Random effects 
SD: cluster 

Probability Zi=0 
(Refer to 
Equation 2) 

prevalence 
model 12 

216.23 (103.84-
443.79) 

  1.08 (0.65-1.80)  0.95 (0.71-1.27) 0.35 (0.01-0.97) 0.18 (0.01-0.46) 

prevalence 
model 13 

221.57 (120.89-
394.66) 

0.91 (0.74-1.11) 1.00 (0.92-1.08)   0.89 (0.65-1.23) 0.36 (0.01-0.98) 0.18 (0.01-0.46) 

prevalence 
model 14 

229.64 (128.60-
402.07) 

 1.01 (0.95-1.09)   0.96 (0.74-1.26) 0.35 (0.01-0.93) 0.18 (0.01-0.46) 

prevalence 
model 15 

225.02 (125.63-
394.43) 

0.91 (0.75-1.09)    0.89 (0.65-1.22) 0.35 (0.01-0.94) 0.18 (0.01-0.46) 

prevalence 
model 16 

233.95 (132.60-
407.26) 

    0.97 (0.75-1.26) 0.33 (0.01-0.91) 0.18 (0.01-0.46) 

prevalence 
model 17 

223.37 (103.70-
459.25) 

0.92 (0.74-1.12) 0.99 (0.91-1.08) 0.97 (0.55-1.71) 1.04 (0.93-1.16)  0.36 (0.01-1.00) 0.19 (0.01-0.47) 

prevalence 
model 18 

214.82 (102.48-
438.95) 

 1.01 (0.93-1.08) 1.07 (0.64-1.76) 1.03 (0.92-1.14)  0.35 (0.01-0.98) 0.18 (0.01-0.47) 

prevalence 
model 19 

227.46 (108.74-
461.39) 

0.93 (0.77-1.11)  0.97 (0.55-1.68) 1.03 (0.93-1.14)  0.35 (0.01-0.95) 0.18 (0.01-0.46) 

prevalence 
model 20 

216.39 (105.62-
431.03) 

  1.08 (0.66-1.74) 1.03 (0.93-1.13)  0.35 (0.01-0.95) 0.18 (0.01-0.47) 

prevalence 
model 21 

220.72 (122.28-
392.12) 

0.92 (0.76-1.10) 0.99 (0.91-1.07)  1.04 (0.93-1.15)  0.35 (0.01-0.97) 0.18 (0.01-0.46) 

prevalence 
model 22 

228.49 (128.32-
398.52) 

 1.01 (0.94-1.08)  1.02 (0.92-1.12)  0.35 (0.01-0.95) 0.18 (0.01-0.46) 

prevalence 
model 23 

224.93 (125.81-
395.68) 

0.93 (0.79-1.09)   1.03 (0.93-1.14)  0.34 (0.01-0.92) 0.18 (0.01-0.46) 

prevalence 
model 24 

233.05 (133.04-
405.34) 

   1.02 (0.93-1.12)  0.33 (0.01-0.91) 0.18 (0.01-0.46) 
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Model names Intercept Percentage of 
adults (≥15y) 

Percentage of 
household 
heads that did 
not complete 
primary school 

Distance to 
nearest TB clinic 
(km) 

Percentage of 
HIV prevalence 

Percentage of 
male adults 

Random effects 
SD: cluster 

Probability Zi=0 
(Refer to 
Equation 2) 

prevalence 
model 25 

236.34 (112.67-
479.93) 

0.93 (0.77-1.13) 1.00 (0.93-1.08) 0.94 (0.54-1.61)   0.36 (0.01-0.97) 0.19 (0.01-0.47) 

prevalence 
model 26 

225.87 (111.64-
445.27) 

 1.01 (0.94-1.08) 1.02 (0.63-1.64)   0.35 (0.01-0.95) 0.18 (0.01-0.46) 

prevalence 
model 27 

240.36 (117.23-
479.19) 

0.93 (0.78-1.12)  0.94 (0.54-1.61)   0.34 (0.01-0.94) 0.18 (0.01-0.47) 

prevalence 
model 28 

226.74 (112.73-
448.23) 

  1.04 (0.65-1.65)   0.34 (0.01-0.92) 0.18 (0.01-0.46) 

prevalence 
model 29 

227.68 (125.87-
401.40) 

0.94 (0.79-1.12) 1.00 (0.93-1.08)    0.35 (0.01-0.95) 0.18 (0.01-0.46) 

prevalence 
model 30 

233.71 (133.43-
407.32) 

 1.01 (0.94-1.08)    0.33 (0.01-0.90) 0.18 (0.01-0.46) 

prevalence 
model 31 

232.08 (132.05-
404.96) 

0.94 (0.80-1.10)     0.33 (0.01-0.90) 0.18 (0.01-0.46) 

prevalence 
model 32 

237.63 (136.98-
410.81) 

     0.32 (0.01-0.89) 0.17 (0.01-0.46) 
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5.S2 Table. Table of all the TB notified neighbourhood level models with a random intercept of clinic of treatment registration. 
Coefficients(mean rate ratio) were exponentiated and intercepts were multiplied by 100,000 (Equation 1). 

Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
cluster 

notification 
model 1 

50.85 
(42.97-
59.94) 

0.96 (0.92-
1.00) 

0.98 (0.96-
0.99) 

0.78 (0.69-
0.88) 

0.99 (0.97-
1.02) 

0.98 (0.91-
1.05) 

2.89 (2.48-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.32 (0.24-
0.40) 

notification 
model 2 

49.12 
(41.57-
57.84) 

 0.98 (0.97-
1.00) 

0.82 (0.73-
0.91) 

0.99 (0.97-
1.01) 

1.00 (0.94-
1.07) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.33 (0.25-
0.41) 

notification 
model 3 

50.98 
(42.89-
60.45) 

0.98 (0.95-
1.02) 

 0.78 (0.69-
0.88) 

0.98 (0.96-
1.01) 

0.98 (0.91-
1.05) 

2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.33 (0.26-
0.42) 

notification 
model 4 

50.11 
(42.33-
59.15) 

  0.80 (0.71-
0.89) 

0.98 (0.96-
1.01) 

0.99 (0.93-
1.06) 

2.89 (2.49-
3.37) 

2.92 (2.52-
3.39) 

2.51 (2.16-
2.93) 

1.23 (1.04-
1.45) 

0.33 (0.26-
0.42) 

notification 
model 5 

42.17 
(36.26-
48.91) 

1.00 (0.95-
1.04) 

0.98 (0.96-
1.00) 

 1.00 (0.97-
1.02) 

0.97 (0.90-
1.05) 

2.89 (2.48-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.37 (0.29-
0.46) 

notification 
model 6 

42.23 
(36.36-
49.07) 

 0.98 (0.96-
0.99) 

 1.00 (0.97-
1.02) 

0.97 (0.91-
1.04) 

2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.37 (0.29-
0.46) 

notification 
model 7 

42.21 
(36.14-
49.03) 

1.02 (0.98-
1.06) 

  0.99 (0.96-
1.01) 

0.97 (0.90-
1.05) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.39 (0.31-
0.48) 
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Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
cluster 

notification 
model 8 

42.32 
(36.38-
49.15) 

   0.99 (0.96-
1.01) 

0.95 (0.89-
1.02) 

2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.22 (1.04-
1.45) 

0.39 (0.31-
0.48) 

notification 
model 9 

50.76 
(42.87-
59.71) 

0.96 (0.92-
1.00) 

0.98 (0.96-
0.99) 

0.78 (0.70-
0.88) 

 0.98 (0.92-
1.05) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.04-
1.45) 

0.31 (0.24-
0.40) 

notification 
model 10 

48.99 
(41.45-
57.62) 

 0.98 (0.97-
1.00) 

0.82 (0.73-
0.92) 

 1.01 (0.95-
1.07) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.39) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.32 (0.25-
0.41) 

notification 
model 11 

50.77 
(42.73-
60.12) 

0.98 (0.95-
1.02) 

 0.78 (0.69-
0.89) 

 0.99 (0.93-
1.06) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.34 (0.26-
0.42) 

notification 
model 12 

49.89 
(42.22-
58.85) 

  0.80 (0.72-
0.89) 

 1.00 (0.94-
1.07) 

2.89 (2.49-
3.36) 

2.91 (2.50-
3.38) 

2.51 (2.17-
2.92) 

1.22 (1.04-
1.45) 

0.34 (0.26-
0.42) 

notification 
model 13 

42.19 
(36.24-
48.95) 

1.00 (0.96-
1.04) 

0.98 (0.96-
0.99) 

  0.97 (0.90-
1.04) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.04-
1.45) 

0.37 (0.29-
0.46) 

notification 
model 14 

42.21 
(36.26-
48.83) 

 0.98 (0.96-
0.99) 

  0.97 (0.92-
1.04) 

2.89 (2.49-
3.37) 

2.91 (2.52-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.36 (0.29-
0.45) 

notification 
model 15 

42.24 
(36.28-

1.02 (0.98-
1.06) 

   0.98 (0.91-
1.06) 

2.89 (2.49-
3.37) 

2.92 (2.52-
3.39) 

2.51 (2.16-
2.91) 

1.23 (1.04-
1.45) 

0.38 (0.31-
0.48) 
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Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
cluster 

49.13) 

notification 
model 16 

42.33 
(36.34-
49.19) 

    0.96 (0.90-
1.03) 

2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.91) 

1.22 (1.04-
1.45) 

0.38 (0.31-
0.48) 

notification 
model 17 

50.89 
(43.09-
59.87) 

0.97 (0.93-
1.00) 

0.98 (0.96-
0.99) 

0.78 (0.69-
0.87) 

1.00 (0.98-
1.02) 

 2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.91) 

1.23 (1.03-
1.45) 

0.31 (0.24-
0.40) 

notification 
model 18 

49.14 
(41.71-
57.90) 

 0.98 (0.97-
1.00) 

0.82 (0.73-
0.91) 

0.99 (0.97-
1.01) 

 2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.32 (0.25-
0.41) 

notification 
model 19 

51.11 
(42.94-
60.52) 

0.99 (0.95-
1.02) 

 0.78 (0.68-
0.88) 

0.99 (0.97-
1.01) 

 2.89 (2.48-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.03-
1.45) 

0.33 (0.26-
0.42) 

notification 
model 20 

50.35 
(42.72-
59.25) 

  0.79 (0.71-
0.88) 

0.99 (0.97-
1.01) 

 2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.22 (1.03-
1.45) 

0.33 (0.26-
0.42) 

notification 
model 21 

42.22 
(36.22-
48.96) 

1.00 (0.97-
1.04) 

0.98 (0.96-
1.00) 

 1.00 (0.98-
1.03) 

 2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.03-
1.45) 

0.37 (0.29-
0.46) 

notification 
model 22 

42.24 
(36.26-
48.91) 

 0.98 (0.96-
0.99) 

 1.00 (0.98-
1.02) 

 2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.37 (0.29-
0.46) 

notification 42.25 1.03 (0.99-   0.99 (0.97-  2.89 (2.48- 2.91 (2.51- 2.51 (2.16- 1.23 (1.03- 0.39 (0.31-
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Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
cluster 

model 23 (36.19-
49.10) 

1.06) 1.01) 3.36) 3.39) 2.92) 1.45) 0.48) 

notification 
model 24 

42.29 
(36.29-
49.16) 

   0.99 (0.97-
1.02) 

 2.89 (2.48-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.04-
1.45) 

0.39 (0.31-
0.48) 

notification 
model 25 

50.88 
(42.99-
60.00) 

0.96 (0.93-
1.00) 

0.98 (0.96-
0.99) 

0.78 (0.69-
0.88) 

  2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.31 (0.24-
0.39) 

notification 
model 26 

48.75 
(41.40-
57.19) 

 0.98 (0.97-
1.00) 

0.83 (0.74-
0.91) 

  2.89 (2.49-
3.37) 

2.91 (2.51-
3.39) 

2.51 (2.17-
2.92) 

1.23 (1.03-
1.45) 

0.32 (0.25-
0.40) 

notification 
model 27 

50.82 
(42.83-
60.12) 

0.99 (0.95-
1.02) 

 0.78 (0.69-
0.88) 

  2.89 (2.49-
3.36) 

2.91 (2.52-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.03-
1.45) 

0.33 (0.26-
0.42) 

notification 
model 28 

49.89 
(42.27-
58.58) 

  0.80 (0.72-
0.89) 

  2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.33 (0.26-
0.42) 

notification 
model 29 

42.22 
(36.35-
48.93) 

1.00 (0.97-
1.04) 

0.98 (0.96-
0.99) 

   2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.37 (0.29-
0.45) 

notification 
model 30 

42.22 
(36.24-
48.94) 

 0.98 (0.96-
0.99) 

   2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.36 (0.29-
0.45) 
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Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
cluster 

notification 
model 31 

42.27 
(36.22-
49.20) 

1.03 (0.99-
1.06) 

    2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.38 (0.31-
0.47) 

notification 
model 32 

42.33 
(36.38-
49.28) 

     2.89 (2.48-
3.36) 

2.91 (2.51-
3.39) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.39 (0.31-
0.48) 
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5.S3 Table. Table of all the TB prevalence neighbourhood level models with spatial random effect. Coefficients (mean rate ratio) were 
exponentiated and intercepts were multiplied by 100,000 (S2 Equation).  

Model names Intercept Percentage of 
adults (≥15y) 

Percentage of 
household 
heads that did 
not complete 
primary school 

Distance to 
nearest TB clinic 
(km) 

Percentage of 
HIV prevalence 

Percentage of 
male adults 

Random effects 
SD: CAR 

Probability Zi=0 
(Refer to S2 
Equation) 

prevalence 
model 33 

250.55 
(128.71-
481.99) 

0.91 (0.73-
1.13) 

0.99 (0.92-
1.08) 

0.76 (0.42-
1.39) 

1.02 (0.90-
1.14) 

1.03 (0.72-
1.47) 

0.11 (0.01-
0.50) 

0.18 (0.01-
0.45) 

prevalence 
model 34 

238.84 
(121.98-
469.25) 

 1.01 (0.94-
1.08) 

0.84 (0.48-
1.48) 

1.01 (0.90-
1.13) 

1.07 (0.78-
1.49) 

0.12 (0.01-
0.53) 

0.18 (0.01-
0.45) 

prevalence 
model 35 

252.89 
(130.36-
480.74) 

0.91 (0.75-
1.11) 

 0.78 (0.42-
1.42) 

1.01 (0.91-
1.13) 

1.01 (0.71-
1.45) 

0.13 (0.01-
0.53) 

0.18 (0.01-
0.45) 

prevalence 
model 36 

243.80 
(126.45-
467.87) 

  0.85 (0.48-
1.50) 

1.02 (0.91-
1.13) 

1.08 (0.78-
1.49) 

0.12 (0.01-
0.50) 

0.18 (0.01-
0.45) 

prevalence 
model 37 

214.62 
(124.68-
375.95) 

0.93 (0.76-
1.14) 

0.99 (0.92-
1.07) 

 1.02 (0.91-
1.15) 

0.99 (0.70-
1.39) 

0.11 (0.01-
0.47) 

0.19 (0.01-
0.47) 

prevalence 
model 38 

217.74 
(128.17-
380.36) 

 1.01 (0.94-
1.08) 

 1.01 (0.90-
1.14) 

1.03 (0.76-
1.39) 

0.14 (0.01-
0.55) 

0.18 (0.01-
0.45) 

prevalence 
model 39 

218.09 
(125.32-
385.46) 

0.94 (0.78-
1.12) 

  1.02 (0.91-
1.14) 

0.98 (0.70-
1.37) 

0.10 (0.00-
0.45) 

0.18 (0.01-
0.46) 

prevalence 
model 40 

218.17 
(128.15-

   1.02 (0.92-
1.13) 

1.04 (0.79-
1.38) 

0.11 (0.01-
0.45) 

0.17 (0.01-
0.44) 
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Model names Intercept Percentage of 
adults (≥15y) 

Percentage of 
household 
heads that did 
not complete 
primary school 

Distance to 
nearest TB clinic 
(km) 

Percentage of 
HIV prevalence 

Percentage of 
male adults 

Random effects 
SD: CAR 

Probability Zi=0 
(Refer to S2 
Equation) 

370.56) 

prevalence 
model 41 

255.54 
(132.62-
486.46) 

0.91 (0.74-
1.12) 

1.00 (0.93-
1.07) 

0.76 (0.41-
1.37) 

 0.99 (0.72-
1.37) 

0.16 (0.01-
0.60) 

0.17 (0.01-
0.45) 

prevalence 
model 42 

244.08 
(128.82-
462.85) 

 1.01 (0.95-
1.08) 

0.85 (0.48-
1.48) 

 1.05 (0.78-
1.42) 

0.11 (0.00-
0.47) 

0.17 (0.01-
0.44) 

prevalence 
model 43 

258.89 
(136.73-
481.87) 

0.91 (0.75-
1.10) 

 0.76 (0.42-
1.36) 

 1.00 (0.73-
1.38) 

0.11 (0.01-
0.45) 

0.17 (0.01-
0.44) 

prevalence 
model 44 

244.95 
(128.15-
469.47) 

  0.88 (0.49-
1.60) 

 1.04 (0.76-
1.41) 

0.11 (0.00-
0.47) 

0.18 (0.01-
0.46) 

prevalence 
model 45 

216.07 
(126.61-
368.62) 

0.94 (0.77-
1.14) 

1.00 (0.93-
1.07) 

  0.96 (0.70-
1.30) 

0.12 (0.00-
0.52) 

0.18 (0.01-
0.45) 

prevalence 
model 46 

218.86 
(129.77-
367.12) 

 1.01 (0.94-
1.08) 

  1.00 (0.78-
1.30) 

0.13 (0.01-
0.53) 

0.17 (0.01-
0.44) 

prevalence 
model 47 

221.65 
(130.22-
380.42) 

0.94 (0.78-
1.11) 

   0.95 (0.70-
1.28) 

0.13 (0.00-
0.54) 

0.18 (0.01-
0.45) 

prevalence 
model 48 

221.61 
(131.66-
378.89) 

    1.01 (0.78-
1.31) 

0.11 (0.00-
0.47) 

0.17 (0.01-
0.44) 



208 
 

Model names Intercept Percentage of 
adults (≥15y) 

Percentage of 
household 
heads that did 
not complete 
primary school 

Distance to 
nearest TB clinic 
(km) 

Percentage of 
HIV prevalence 

Percentage of 
male adults 

Random effects 
SD: CAR 

Probability Zi=0 
(Refer to S2 
Equation) 

prevalence 
model 49 

245.92 
(127.78-
462.08) 

0.91 (0.74-
1.10) 

0.99 (0.92-
1.07) 

0.78 (0.44-
1.39) 

1.01 (0.91-
1.13) 

 0.12 (0.01-
0.50) 

0.17 (0.01-
0.44) 

prevalence 
model 50 

236.68 
(124.73-
448.18) 

 1.01 (0.94-
1.09) 

0.89 (0.53-
1.51) 

1.00 (0.90-
1.11) 

 0.11 (0.00-
0.47) 

0.18 (0.01-
0.45) 

prevalence 
model 51 

252.77 
(131.70-
476.30) 

0.91 (0.76-
1.09) 

 0.79 (0.43-
1.43) 

1.01 (0.91-
1.12) 

 0.14 (0.01-
0.52) 

0.17 (0.01-
0.44) 

prevalence 
model 52 

234.16 
(125.30-
435.37) 

  0.91 (0.55-
1.49) 

1.01 (0.91-
1.11) 

 0.11 (0.01-
0.47) 

0.17 (0.01-
0.44) 

prevalence 
model 53 

215.44 
(126.71-
366.04) 

0.93 (0.78-
1.11) 

0.99 (0.92-
1.07) 

 1.03 (0.92-
1.14) 

 0.15 (0.01-
0.55) 

0.17 (0.01-
0.45) 

prevalence 
model 54 

221.54 
(130.86-
378.80) 

 1.01 (0.94-
1.08) 

 1.01 (0.92-
1.11) 

 0.11 (0.00-
0.51) 

0.17 (0.01-
0.44) 

prevalence 
model 55 

215.88 
(127.63-
366.28) 

0.94 (0.80-
1.10) 

  1.02 (0.93-
1.12) 

 0.10 (0.00-
0.45) 

0.17 (0.01-
0.44) 

prevalence 
model 56 

221.22 
(131.40-
372.99) 

   1.01 (0.92-
1.11) 

 0.12 (0.01-
0.50) 

0.16 (0.01-
0.44) 

prevalence 
model 57 

257.33 
(136.61-

0.91 (0.75-
1.09) 

1.00 (0.93-
1.07) 

0.75 (0.42-
1.32) 

  0.10 (0.01-
0.43) 

0.17 (0.01-
0.43) 
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Model names Intercept Percentage of 
adults (≥15y) 

Percentage of 
household 
heads that did 
not complete 
primary school 

Distance to 
nearest TB clinic 
(km) 

Percentage of 
HIV prevalence 

Percentage of 
male adults 

Random effects 
SD: CAR 

Probability Zi=0 
(Refer to S2 
Equation) 

472.56) 

prevalence 
model 58 

239.85 
(130.33-
435.46) 

 1.01 (0.94-
1.08) 

0.88 (0.55-
1.42) 

  0.12 (0.01-
0.50) 

0.17 (0.01-
0.44) 

prevalence 
model 59 

255.43 
(134.76-
471.50) 

0.91 (0.76-
1.08) 

 0.75 (0.42-
1.33) 

  0.08 (0.01-
0.38) 

0.16 (0.01-
0.43) 

prevalence 
model 60 

241.39 
(130.69-
449.39) 

  0.90 (0.56-
1.44) 

  0.13 (0.01-
0.49) 

0.17 (0.01-
0.44) 

prevalence 
model 61 

217.40 
(127.68-
373.39) 

0.95 (0.81-
1.12) 

1.00 (0.93-
1.07) 

   0.08 (0.00-
0.39) 

0.17 (0.01-
0.45) 

prevalence 
model 62 

226.08 
(134.78-
389.44) 

 1.01 (0.94-
1.08) 

   0.14 (0.01-
0.51) 

0.17 (0.01-
0.45) 

prevalence 
model 63 

221.43 
(131.31-
373.68) 

0.96 (0.82-
1.10) 

    0.09 (0.00-
0.47) 

0.17 (0.01-
0.44) 

prevalence 
model 64 

224.66 
(133.79-
384.09) 

     0.09 (0.00-
0.44) 

0.16 (0.01-
0.44) 
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5.S4 Table. Table of all the TB notified neighbourhood level models with spatial random effect. Coefficients (mean rate ratio) were 
exponentiated and intercepts were multiplied by 100,000 (S1 Equation). 

Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
CAR 

notification 
model 33 

47.05 
(39.69-
55.57) 

0.95 (0.92-
1.00) 

0.98 (0.96-
1.00) 

0.87 (0.74-
1.02) 

1.00 (0.98-
1.02) 

0.94 (0.87-
1.00) 

2.89 (2.49-
3.36) 

2.91 (2.52-
3.38) 

2.51 (2.16-
2.91) 

1.22 (1.03-
1.45) 

0.56 (0.40-
0.74) 

notification 
model 34 

44.84 
(37.88-
52.89) 

 0.99 (0.97-
1.00) 

0.92 (0.79-
1.08) 

1.00 (0.98-
1.02) 

0.96 (0.90-
1.03) 

2.89 (2.49-
3.37) 

2.91 (2.52-
3.39) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.59 (0.43-
0.77) 

notification 
model 35 

47.90 
(40.38-
56.69) 

0.97 (0.93-
1.01) 

 0.85 (0.72-
1.00) 

0.99 (0.97-
1.01) 

0.94 (0.87-
1.00) 

2.89 (2.48-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.59 (0.43-
0.77) 

notification 
model 36 

46.15 
(39.01-
54.30) 

  0.89 (0.77-
1.03) 

0.99 (0.97-
1.01) 

0.95 (0.89-
1.02) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.60 (0.44-
0.78) 

notification 
model 37 

42.32 
(37.40-
47.77) 

0.97 (0.93-
1.01) 

0.98 (0.96-
0.99) 

 1.00 (0.98-
1.03) 

0.93 (0.86-
1.00) 

2.89 (2.48-
3.35) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.91) 

1.22 (1.03-
1.45) 

0.59 (0.44-
0.76) 

notification 
model 38 

42.31 
(37.31-
47.70) 

 0.98 (0.97-
1.00) 

 1.00 (0.98-
1.02) 

0.95 (0.89-
1.01) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.22 (1.04-
1.45) 

0.60 (0.45-
0.77) 

notification 
model 39 

42.32 
(37.35-
47.72) 

0.99 (0.95-
1.03) 

  0.99 (0.97-
1.01) 

0.92 (0.86-
0.99) 

2.89 (2.49-
3.37) 

2.91 (2.52-
3.38) 

2.51 (2.16-
2.91) 

1.23 (1.03-
1.45) 

0.62 (0.47-
0.80) 
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Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
CAR 

notification 
model 40 

42.33 
(37.31-
47.79) 

   0.99 (0.97-
1.01) 

0.93 (0.88-
1.00) 

2.89 (2.49-
3.37) 

2.91 (2.51-
3.39) 

2.51 (2.16-
2.92) 

1.23 (1.04-
1.45) 

0.62 (0.46-
0.79) 

notification 
model 41 

47.20 
(39.91-
55.71) 

0.95 (0.92-
0.99) 

0.98 (0.97-
0.99) 

0.86 (0.74-
1.01) 

 0.94 (0.88-
1.00) 

2.89 (2.48-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.55 (0.40-
0.73) 

notification 
model 42 

44.87 
(38.02-
52.75) 

 0.99 (0.97-
1.00) 

0.92 (0.80-
1.07) 

 0.96 (0.90-
1.03) 

2.89 (2.48-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.91) 

1.22 (1.04-
1.45) 

0.58 (0.43-
0.76) 

notification 
model 43 

47.52 
(40.04-
56.19) 

0.97 (0.93-
1.01) 

 0.86 (0.73-
1.01) 

 0.94 (0.88-
1.01) 

2.89 (2.49-
3.35) 

2.91 (2.51-
3.37) 

2.51 (2.16-
2.91) 

1.22 (1.03-
1.45) 

0.58 (0.42-
0.76) 

notification 
model 44 

45.74 
(38.85-
53.83) 

  0.90 (0.78-
1.04) 

 0.96 (0.90-
1.02) 

2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.91) 

1.22 (1.04-
1.45) 

0.59 (0.44-
0.77) 

notification 
model 45 

42.34 
(37.42-
47.78) 

0.97 (0.93-
1.01) 

0.98 (0.97-
0.99) 

  0.92 (0.86-
0.99) 

2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.58 (0.43-
0.75) 

notification 
model 46 

42.35 
(37.31-
47.84) 

 0.98 (0.97-
1.00) 

  0.95 (0.89-
1.01) 

2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.59 (0.44-
0.76) 

notification 
model 47 

42.35 
(37.35-

0.99 (0.95-
1.02) 

   0.93 (0.86-
1.00) 

2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.22 (1.04-
1.45) 

0.61 (0.45-
0.79) 
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Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
CAR 

47.79) 

notification 
model 48 

42.39 
(37.43-
47.84) 

    0.94 (0.88-
1.00) 

2.89 (2.49-
3.37) 

2.91 (2.52-
3.37) 

2.51 (2.17-
2.92) 

1.22 (1.03-
1.45) 

0.61 (0.46-
0.78) 

notification 
model 49 

47.94 
(40.41-
56.77) 

0.97 (0.93-
1.01) 

0.98 (0.96-
1.00) 

0.85 (0.72-
0.99) 

1.00 (0.98-
1.02) 

 2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.57 (0.42-
0.75) 

notification 
model 50 

45.85 
(38.89-
53.81) 

 0.98 (0.97-
1.00) 

0.90 (0.78-
1.04) 

1.00 (0.98-
1.02) 

 2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.22 (1.04-
1.45) 

0.59 (0.44-
0.77) 

notification 
model 51 

48.80 
(41.10-
57.81) 

0.98 (0.94-
1.02) 

 0.83 (0.70-
0.97) 

0.99 (0.97-
1.01) 

 2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.91) 

1.23 (1.04-
1.45) 

0.61 (0.45-
0.79) 

notification 
model 52 

47.45 
(40.43-
55.66) 

  0.86 (0.75-
0.99) 

0.99 (0.97-
1.01) 

 2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.61 (0.45-
0.79) 

notification 
model 53 

42.27 
(37.33-
47.71) 

0.98 (0.95-
1.02) 

0.98 (0.96-
0.99) 

 1.01 (0.99-
1.03) 

 2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.61 (0.46-
0.79) 

notification 
model 54 

42.29 
(37.33-
47.75) 

 0.98 (0.97-
1.00) 

 1.01 (0.99-
1.03) 

 2.89 (2.49-
3.37) 

2.91 (2.52-
3.38) 

2.51 (2.17-
2.92) 

1.22 (1.03-
1.45) 

0.61 (0.46-
0.78) 

notification 42.32 1.01 (0.97-   1.00 (0.98-  2.89 (2.48- 2.91 (2.51- 2.51 (2.16- 1.22 (1.03- 0.65 (0.49-



213 
 

Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
CAR 

model 55 (37.36-
47.74) 

1.04) 1.02) 3.36) 3.38) 2.92) 1.45) 0.83) 

notification 
model 56 

42.29 
(37.29-
47.71) 

   1.00 (0.98-
1.02) 

 2.89 (2.49-
3.36) 

2.91 (2.52-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.64 (0.49-
0.82) 

notification 
model 57 

48.29 
(40.74-
56.87) 

0.97 (0.93-
1.01) 

0.98 (0.97-
1.00) 

0.84 (0.72-
0.98) 

  2.89 (2.48-
3.36) 

2.91 (2.51-
3.37) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.57 (0.42-
0.75) 

notification 
model 58 

45.99 
(39.20-
53.76) 

 0.98 (0.97-
1.00) 

0.89 (0.78-
1.03) 

  2.89 (2.49-
3.37) 

2.91 (2.52-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.04-
1.45) 

0.58 (0.43-
0.76) 

notification 
model 59 

48.50 
(40.78-
57.23) 

0.98 (0.94-
1.02) 

 0.83 (0.71-
0.98) 

  2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.17-
2.92) 

1.22 (1.04-
1.45) 

0.60 (0.44-
0.78) 

notification 
model 60 

47.12 
(40.11-
55.09) 

  0.87 (0.76-
0.99) 

  2.89 (2.48-
3.37) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.60 (0.44-
0.77) 

notification 
model 61 

42.31 
(37.32-
47.75) 

0.99 (0.95-
1.03) 

0.98 (0.97-
1.00) 

   2.89 (2.49-
3.36) 

2.91 (2.51-
3.39) 

2.51 (2.16-
2.92) 

1.22 (1.03-
1.45) 

0.61 (0.47-
0.79) 

notification 
model 62 

42.28 
(37.32-
47.75) 

 0.98 (0.97-
1.00) 

   2.89 (2.49-
3.37) 

2.91 (2.52-
3.38) 

2.51 (2.17-
2.92) 

1.23 (1.04-
1.45) 

0.61 (0.46-
0.78) 
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Model 
names Intercept 

Percentage 
of adults 
(≥15y) 

Percentage 
of 
household 
heads that 
did not 
complete 
primary 
school 

Distance to 
nearest TB 
clinic (km) 

Percentage 
of HIV 
prevalence 

Percentage 
of male 
adults 

Year: 2015 Year: 2016 Year: 2017 Year: 2018 
Random 
effects SD: 
CAR 

notification 
model 63 

42.30 
(37.29-
47.78) 

1.01 (0.97-
1.04) 

    2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.03-
1.45) 

0.64 (0.49-
0.82) 

notification 
model 64 

42.33 
(37.38-
47.84) 

     2.89 (2.49-
3.36) 

2.91 (2.51-
3.38) 

2.51 (2.16-
2.92) 

1.23 (1.04-
1.45) 

0.63 (0.48-
0.81) 
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5.S5 Table. Table of top ten prevalence models using the ELPD LOO statistic, comparing the 
models in S1 and S3 Tables. 

Model names ELPD differences Standard error of differences 
prevalence model 32 0.0000000 0.0000000 

prevalence model 31 -0.6439814 0.5953633 

prevalence model 64 -0.8100483 4.2533603 
prevalence model 30 -0.8401287 0.2957389 

prevalence model 24 -0.8426507 0.4155533 
prevalence model 16 -0.8837806 0.2603595 
prevalence model 28 -1.0206936 0.2818817 

prevalence model 15 -1.2537159 0.7767991 
prevalence model 23 -1.4261711 0.8171422 

prevalence model 63 -1.4481648 4.1704611 
 

  



216 
 

5.S6 Table. Table of top ten notification models using the ELPD LOO statistic, comparing the 
models in S2 and S4 Tables. 

Model names ELPD difference Standard error of ELPD difference 
notification model 62 0.000000000 0.0000000 

notification model 25 -0.006516547 3.2225076 

notification model 45 -0.164705190 1.6514375 
notification model 61 -0.214042393 0.3547003 

notification model 9 -0.228767982 3.3141359 
notification model 26 -0.267034261 3.1569474 
notification model 17 -0.322702170 3.1960427 

notification model 18 -0.340474087 3.0894852 
notification model 2 -0.433583819 3.0863202 

notification model 46 -0.477146663 1.1087664 
 

5.S7 Table. Parameter estimates for final regression models for predicting neighbourhood 
level TB prevalence and notifications. Analysis based on post stratified TB prevalence and 
with confirmed TB notifications kept the same as in the primary analysis. 

 Notification model Prevalence model 
Fixed effects 
Parameters 

Mean rate 
ratio 

95% CrI Mean rate 
ratio 

95% CrI 

Percentage of adults (≥15y) 0.96 (0.93, 1.00) 1.00 (0.97, 1.02) 
Distance to nearest TB clinic (km) 0.78 (0.69, 0.88)   
Percentage of household heads that did 
not complete primary school 

0.98 (0.96, 0.99)   

Year: 2019 Reference     
Year: 2015 2.89 (2.48, 3.37)   
Year: 2016 2.91 (2.51, 3.38)   
Year: 2017 2.51 (2.16, 2.92)   
Year: 2018 1.23 (1.03, 1.45)   

Intercept 50.88*10-5 (42.99*10-5, 
60.00*10-5) 

234.85*10-5 (219.71*10-5, 
250.68*10-5) 

Zero inflation intercept   0.01 (0.00, 0.05) 
Random effects SD: cluster 0.31  (0.24, 0.39) 0.03  (0.00,0.08) 
aPercentage of adults was centred by subtracting by its mean (60.90%), Distance to nearest TB clinic (km) was 
centred by subtracting by 1km, Percentage of household head that did not complete primary school was centred by 
subtracting by its mean (16.90%). 
Abbreviations: km kilometre, sd standard deviation, Crl Credible interval 
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5.S8 Table. Parameter estimates for final regression models for predicting neighbourhood 
level TB prevalence and notifications. Analysis based on both microbiologically-confirmed TB 
and clinically-diagnosed cases and with TB prevalence kept the same as in the primary 
analysis. 

 Notification model Prevalence model 
Fixed effects 
Parameters 

Mean rate 
ratio 

95% CrI Mean rate 
ratio 

95% CrI 

Percentage of adults (≥15y) 0.98 (0.95, 1.01) 0.94 (0.80, 1.10) 
Distance to nearest TB clinic (km) 0.81 (0.73, 0.90)   
Percentage of household heads that did 
not complete primary school 

0.98 (0.97, 0.99)   

Year: 2019 Reference     
Year: 2015 1.62 (1.47, 1.78)   
Year: 2016 1.82 (1.66, 1.99)   
Year: 2017 1.70 (1.56, 1.86)   
Year: 2018 0.84 (0.76, 0.94)   

Intercept 163.54*10-5 (144.68*10-5, 
184.93*10-5) 

232.08*10-5 (132.05*10-5, 
404.96*10-5) 

Zero inflation intercept   0.18 (0.01, 0.46) 
Random effects SD: cluster 0.30  (0.24, 0.37) 0.33  (0.01, 0.90) 
aPercentage of adults was centred by subtracting by its mean (60.90%), Distance to nearest TB clinic (km) was 
centred by subtracting by 1km, Percentage of household head that did not complete primary school was centred by 
subtracting by its mean (16.90%). 
Abbreviations: km kilometre, sd standard deviation, Crl Credible interval 
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5.S9 Table. Comparing model results of prevalence to microbiologically confirmed notification rations 
primary analysis, compared to analysis based on post stratified TB prevalence and based on all TB case 
notifications. Only neighbourhoods that were included in the 4th quartile were included in the table. 

Neighbourho
od 

TB 
prevalence to 
confirmed TB 
notification 
ratio 

Post-
stratified TB 
prevalence to 
confirmed TB 
notification 
ratio 

TB 
prevalence to 
all TB 
notification 
ratio 

TB 
prevalence to 
confirmed TB 
notification 
ratio quartile 

TB 
prevalence to 
all TB 
notification 
ratio quartile 

Post-
stratified TB 
prevalence to 
confirmed TB 
notification 
quartile 

1 5.882872 6.961638 1.741540 4 3 4 
2 5.835493 6.902129 2.107328 3 4 4 

14 7.265753 8.613159 1.874598 4 4 4 

15 5.891822 6.865971 1.624834 4 3 4 
20 5.640371 6.577177 1.707080 3 3 4 

22 6.245970 6.274060 1.841799 4 4 3 
23 6.763737 7.160686 1.854707 4 4 4 
31 6.696159 7.908075 1.823901 4 4 4 
34 6.079875 7.172957 1.682113 4 3 4 
37 6.293189 7.377623 1.867094 4 4 4 

40 5.391903 5.657743 1.791965 3 4 3 
41 5.982987 7.113974 2.239345 4 4 4 
44 8.829594 9.244351 2.662622 4 4 4 
47 7.544831 8.024778 2.375998 4 4 4 
48 6.277072 7.441708 2.262311 4 4 4 

52 5.640333 6.596341 1.643353 3 3 4 

55 6.184062 6.329324 1.854457 4 4 3 
56 5.979641 6.155832 1.857542 4 4 3 

57 10.369700 12.219568 2.923005 4 4 4 
61 6.253442 7.287852 1.870250 4 4 4 

63 6.355325 6.691939 2.239623 4 4 4 
64 6.889153 8.139249 2.091773 4 4 4 

69 5.218804 6.024331 2.056106 3 4 3 
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6 Summary discussion, recommendations and conclusions 

6.1 Summary of rationale, objectives and key findings 

While African countries are making progress in combating the TB pandemic, there is still a 

significant gap between what has been accomplished and what is required to attain the EndTB 

targets (1). To make additional progress, current approaches to TB case finding must be 

improved, and new effective approaches developed and implemented (2). Facility-based TB 

case-finding is still an important part of case-finding and will be for the foreseeable future (3). 

But due to access to care barriers that exist at the individual-, family- and community-levels, 

access to TB screening, diagnosis, and treatment remains challenging for many, exacerbating 

treatment delays and resulting in continued high-levels of community transmission (4). Even if 

implemented with optimal operating capacity, strategies wholly reliant upon facility-based 

case-finding will result in considerable numbers of missed and delayed TB diagnoses (5). 

Systematically screening people for TB (for example through community-based active case 

finding (ACF) interventions delivered to priority populations) identifies people with 

symptomatic and asymptomatic TB earlier (6), and so identifies cases that would have been 

missed by passive case finding (PCF) (5,7). WHO recognises the importance of community ACF 

to tackling TB epidemics, and has developed recommendations to guide the implementation of 

community-based ACF (5). However, the current WHO recommendations on selection of 

populations for community ACF are still not specific enough for most cities, especially in Africa 

where rapid urbanisation means that TB risk profiles and epidemiology are likely to be highly 

heterogenous. WHO guidelines have two broad recommendations for prioritising communities 
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for ACF: (1) populations with a TB prevalence of 0.5% prevalence or more, and (2) populations 

with structural risk factors for TB, these include urban poor communities, homeless 

communities, communities in remote or isolated areas, migrants, refugees, internally displaced 

persons and other vulnerable or disadvantaged groups with limited access to health care (5). 

This thesis proposes that leveraging surveillance data and spatial modelling techniques to 

identify hotspots of underdiagnosis of TB has substantial potential to provide further guidance 

for prioritisation of communities for implementation of ACF interventions (5). 

However, prior to commencing this thesis, there were critical knowledge gaps about how to 

best investigate the spatial epidemiology of TB, and how these data may be used to improve 

community ACF interventions and reduce the mortality of TB patients. This led to our research 

aims, hypothesis and objectives of the thesis that were first stated in the introduction (Section 

1.6). To recap: 

We hypothesised that we could find epidemiologically-important spatial variability in TB 

epidemiology in urban Malawi, which may be used to guide better-targeted and perhaps more 

successful TB care and prevention activities, based on recent research and TB notification and 

prevalence data. 

The specific objectives were to: 

1. Systematically review the available literature on the effectiveness of spatially targeted 

interventions for HIV, TB, leprosy, and malaria. Note that, since spatially-targeted 

interventions of TB are still relatively new, I included the other infectious diseases to 

broaden the scope of our understanding of spatially targeted interventions.  
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2. Identify spatial and non-spatial risk factors for case fatality rates of notified TB cases in 

urban Blantyre Malawi. 

3. Estimate neighbourhood level TB case prevalence to notification ratios (P:N ratios) using 

data from systematic surveillance of notified TB cases and a citywide TB prevalence 

survey form Urban Blantyre, Malawi. To help identify neighbourhoods that have a 

higher burden of undiagnosed TB that may be being missed by the routine TB 

notification surveillance system. 

4. Discuss the findings of Objectives 1 to 3 to inform design of effective community ACF 

interventions. 

6.2 Overview of the main findings  

The systematic review of the effectiveness of spatially targeted community interventions 

showed that these interventions are feasible and that they have potential as alternative 

strategies in targeting communities for ACF (8). Through a systematic literature search, we 

identified ten studies from six countries between 1 January 1993 and 22 March 2021.  The 

spatially targeted interventions that were evaluated were three against TB, three against 

leprosy, three against malaria and one against HIV. Synthesising these data, we concluded that, 

although data were limited and understanding of effectiveness also limited by high risk of bias 

(particularly in classification of hotspots and ascertainment of outcomes), the spatially-targeted 

interventions demonstrated potential to identify communities with a higher yield of identified 

cases, communities with a high prevalence of cases, and also for reducing the TB case 

notifications based on before-and-after analyses.  
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There were key weaknesses when it comes to evaluating the utility of hotspot-targeted 

interventions. Only one study used random allocation of communities in evaluation of the 

outcome of interest, with the remainder being observational (8). The hotspot communities in 

most of the studies were selected based on notified disease cases (8,9). Since disease 

notifications can be affected by barriers to access to care (1,10), hotspots based on notification 

only can end up selecting communities that have greater access to care.  Therefore, better 

methods for defining hotspots are needed to address bias (11).  

In multi-level regression modelling analysis of TB case fatality rates across the city of Blantyre, 

(in which we evaluated 4397 newly diagnosed TB cases, 10.9% (479) of whom died), we found 

that older age, being HIV positive, and distance to TB treatment clinic were associated with an 

increased odds of death on TB treatment (12). Distance to health facility is a proxy indicator of 

ease of access to care: populations that have to travel longer distances to get health care are at 

an increased risk of adverse health outcomes which include delayed diagnosis, treatment 

default and death (13–16).  In this population distance increased the odds of death only for 

patients that were registered at the referral clinic but not a primary health care clinic (12). 

We have already commented that the majority of studies in the systematic reviews defined 

hotspots based on routine notifications data, which might be affected by barriers to access to 

care (8,17,18). The systematic reviews highlighted the need for using other methods in areas 

where access to health care may be uneven across neighbourhoods  (8,17,18). Most African 

cities such as Blantyre have populations that are unevenly served by routine health care 

services because of geographical distance to health care facilities and because individuals in 

some communities may lack resource to access care even when the services are free (19).  
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Using data from prevalence survey and a routine TB surveillance system from Blantyre Malawi, 

we developed a statistical modelling approach to enable identification of TB hotspot 

neighbourhoods based on ranking of neighbourhood prevalence to notification ratios (11). 

Adult bacteriologically-confirmed TB case notification rates were decreasing between 2015 to 

2019; 131, 134, 114, 56 and 46, per 100, 000 population respectively. In 2019, the prevalence of 

TB in Blantyre was 215 per 100, 000 population. Model derived mean neighbourhood 

prevalence to notification ratios were 4.49 (95% credible interval (CrI): 0.98–11.91) and (range: 

1.70–10.40, standard deviation: 1.79). The neighbourhoods were ranked according to the size 

of the prevalence to notification ratio from lowest to highest number. Neighbourhoods with the 

highest prevalence to notification ratios were likely to have a higher burden of undiagnosed TB.  

Our model should enable other places with similar characteristics to urban Blantyre to highlight 

potential hotspot neighbourhoods without the need for carrying out a full prevalence survey. 

This would provide a cost saving strategy for prioritising neighbourhoods because most TB 

programmes cannot afford a prevalence survey (20). Once individuals are diagnosed and are 

put on TB treatment, generally they have a good prognosis if they adhere to the treatment 

regimen and can again be productive members of society (1).   

Taken together, this body of research has provided novel insights into the epidemiology of TB in 

a densely-populated African city, typical of many urban centres on the continent. We have, for 

the first time, identified a modelling approach that can assist policymakers with targeting 

critically-needed community-case finding interventions towards neighbourhoods with the 

highest prevalence of undiagnosed TB. Moreover, we have shown that spatially-targeted 

interventions have potential to be effective in improving community TB epidemiology (11), but 
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that access to clinic-based TB diagnosis and care, and quality of care, remain critically important 

components of a comprehensive TB control strategy (11,21).  

6.3 Findings in context 

The systematic literature review that was done as part of this thesis in Chapter 3 (8), should be 

seen in the context of other systematic literature reviews that have been done in this area, 

covering separate but relevant topics on the subject of community spatially targeted ACF 

(17,18). In particular, Shaweno et.al 2018 (17), present a systematic review of methods used for 

identification of TB hotspots, providing collective evidence that TB is a disease that is spatially 

heterogenous in the population, as well as the common approaches for identifying these 

hotspots. Cudahy et al. 2018 (18), undertook a systematic review of spatially targeted ACF 

interventions of TB, identifying TB studies that used spatially targeted community ACF 

approaches. 

 The systematic review in Chapter 3 (8), was aimed at investigating the effectiveness of spatially 

targeted interventions of TB. The focus of the systematic review was to review the methods 

that were used to identify hotspots in spatially targeted interventions and to evaluate the 

outcome of the studies. Unlike the two other systematic reviews, this systematic review also 

included spatially targeted interventions of HIV, leprosy, and Malaria. The other diseases were 

included because spatially targeted interventions are a new study design so we wanted to learn 

what has been accomplished in these other infectious diseases.  

The systematic reviews (8,17,18) recognise that for TB control efforts to advance further, they 

must begin to take advantage of the fact that TB cases tend to cluster more in particular sectors 
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of the population than in others. Our systematic review gathered all relevant information for 

assessing the level of evidence available to aid in determining the feasibility and effectiveness 

of spatially targeted ACF interventions (8).  

Since we completed the systematic review of the effectiveness of spatially-targeted 

interventions for infectious diseases, three additional studies have been published. 

Robsky et al (2020) (22) developed a method for ranking neighbourhoods using TB notification 

rates. The study was done in Kampala Uganda in an area with 33 contiguous zones 

(neighbourhoods), each zone had at least a population of 500 and a median size of 0.005 km2. 

Zonal level notification rates were calculated for the period May 2018 to January 2019. 

Neighbourhoods that were selected as TB hotspots were those that had had the highest 

notification rates and whose total population comprised at least 20% of the 33 neighbourhood 

populations.  Five zones (neighbourhoods), which made up 22 % of the total population and 

were responsible for an estimated 62% (95% CI:47–75%) of the TB case notifications, were 

defined as hotstpots of TB in this analysis. A door-to-door ACF intervention was subsequently 

done in all the neighbourhoods to verify if the five identified hotspot neighbourhoods would be 

the source of most undiagnosed TB cases. In total, the five “hotspot” neighbourhoods 

accounted for 42% (95% CI:34–51%) of the total 128 cases that were identified during the 

community ACF intervention; this was double compared to what could have been expected by 

chance (P < 0.001). While this shows the potential for the use of TB notifications in defining 

hotspots, it does not readily generalise to some other areas. The main reason for this was 

because the study setting was small (about 2.2 km2) with a population of 49,527 and hence 

access to care might have been similar across neighbourhoods because of the small size of the 
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area and population. Access to care barriers are likely to affect TB notification from populations 

distributed across a greater area, like in Blantyre. 

In Alba et. al 2022 (23), the Pakistan National TB Control Programme organised a data 

modelling competition (“hackathon”) for groups of independent data modelling teams to 

develop models for predicting the subnational district-level TB burden estimates for Pakistan to 

inform disease control efforts. Investigator were provided with individual-level data from the 

2010-2011 national TB prevalence survey, and additional data include census denominators and 

TB notification data. Each of the five teams employed different modelling strategies and found 

a different set of predictor variables and predicted district level notification to prevalence 

ratios. Nevertheless, several districts were consistently identified as areas with low notification 

to prevalence ratios by all the competing teams. The statistic used here notification to 

prevalence ratio is an inverse of our calculated statistic in Ch 5. Low values of notification to 

prevalence ratio were indicative of higher likelihood of having undiagnosed TB cases in the 

district. This work also raises the important aspect that predictors of notification to prevalence 

ratios might not only be setting dependent but also are dependent on the modelling strategy 

used. This highlights the need for principled model building approaches and better methods for 

comparing the validity of models. Also, the models need to be evaluated on a new data source 

because there is a limit to what can be learnt from the data source that was used to define the 

model.  A major limitation of the analysis was sparsity of data, with small number of TB 

prevalent cases in most districts. District level hotspots are still at a very top level, while in this 

thesis we argue that in cities or districts that are considered to have a high burden of TB, there 
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is still heterogeneity in the burden of TB and further stratification is necessary to exclude areas 

with low risk of TB out of ACF interventions (11).  

Brooks et. al 2022 (24) undertook a study in 74 contiguous neighbourhoods in Lima, Peru with a 

population of approximately 212,000.  A community screening ACF intervention was 

implemented in the neighbourhoods using mobile screening units. In exploratory analysis, 

economic indicators were identified as better predictors of screening yield (number of 

individuals tested to identify one positive case). However, previous year's TB case notification 

rates were not associated with the screening yield. The finding by Brook et.al that notification 

rates of previous years was not associated with screening yield adds further evidence to why 

hotspots defined based on notifications only, can be biased. The analysis identified percentage 

of vehicle ownership, percentage of blender ownership and percentage of TB patients with 

prior TB episode as important univariate predictors of screening yield.  

6.4 A framework for including targeted public health interventions within TB 

control programmes  

We now consider how the findings of this thesis can aid public health policymakers and 

researchers in improving case detection of TB and other infectious diseases. The conceptual 

diagram below Figure 6.1, depicts where spatially targeted interventions fit in, in the cascade of 

community interventions of TB. Spatial heterogeneity in the burden of TB is associated with 

neighbourhood TB risk determinants. Data on these determinants when combined with data on 

indicators of TB burden can be used through modelling to identify hotspots of undiagnosed TB. 

These identified hotspots can be targeted with spatially targeted ACF interventions. Availability 
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of quality data for TB surveillance underpins the extent to which data on determinants of TB 

spatial heterogeneity and TB burden are available for use for identification of hotspots. Other 

interventions can be untargeted, these are interventions that do not take into consideration 

the variation in neighbourhood risk of undiagnosed TB at subdistrict level. Newly diagnosed TB 

cases are referred to their closest health facility that offers TB treatment. The figure was 

created using the available literature on TB and the findings of our systematic review in Chapter 

3 (4,8,17,18,25). 
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Figure 6.1: Conceptual diagram to describe the mechanisms by which spatial epidemiology of TB vary by neighbourhood 

 

 

 



234 
 

6.4.1 Contributions to public health (Recommendations for future directions) 

The findings of the systematic review lend support to the potential and feasibility of spatially 

targeted community case finding interventions of TB and infectious diseases (8). The current 

WHO recommendation for community ACF in generalised populations is to do community ACF 

in populations with a prevalence of 0.5% (5). This guidance is difficult to follow in a resource 

limited setting that cannot afford to carry out a prevalence survey to ascertain it. In Africa, 

when TB prevalence surveys are done, they are mostly done at the country level resolution and 

have inefficient sample size to provide meaningful direction for subnational level prevalence 

estimates (26,27).  With such a lack of subnational prevalence level data, it is challenging to 

prioritise district, or sub-district level areas for ACF interventions.  

The other WHO recommendation for generalised populations is directed at subpopulations 

with structural risk factors for TB (5). These include urban poor communities and people living 

in slums. A category such as “people living in slums” is a wide category, without a clear cut off 

point, for instance Malawi had about 1.8 million urban slum dwellers in 2014 (28). Even within 

this category it is possible that the risk of TB would be heterogenous to warrant further 

stratification of the group according to risk of undiagnosed TB (19). By understanding 

community risk factors for concentration of high burden of undiagnosed TB cases, these 

communities can further be categorised to identify those that are at most need of additional 

intervention (17).  

The work on TB case-fatality identified familiar risk factors of death on TB treatment that have 

been previously reported (12). But our finding that straight line distance estimate had the same 
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association with case-fatality as road network distance estimate adds to the evidence that in 

this population straight line distance estimate can roughly be as good as shortest road network. 

This conclusion is similar to what others found in a Kampala Uganda (29), using the centroid of 

the residential neighbourhood area of a patient as the approximate household location of the 

TB patient, in a retrospectively enrolled cohort of TB patients. Unlike the Kampala study, ours 

(Chapter 4) was based on prospectively enrolment TB patients who had their household 

captured at enrolled (12). Hence distance was estimated between the TB treatment facility and 

the patient’s household (12). This is an important finding since a straight-line distance estimate 

is an easier estimate to measure and requires less technical capability compared to a road 

network distance estimate. With this evidence, TB programmes and public health officers can 

calculate and use the simpler straight-line distance estimate for use in public health modelling 

analysis of TB case fatality risk. 

This PhD has developed an innovative modelling approach that can be used by a new district 

that is similar to urban Blantyre to prioritise its neighbourhoods for community ACF (11). This 

can be achieved by collecting relatively easy to measure neighbourhood variables, namely the 

percentage of adult residents, distance to the nearest TB clinic and the percentage of 

household heads who did not finish primary school, and then using the model to produce 

prevalence to notification ratios for neighbourhoods (Figure 6.1). These predicted prevalence to 

notification ratios can then be used to rank the neighbourhoods, where high rank order would 

indicate a high likelihood of presence of undiagnosed TB cases in that neighbourhood. This 

would be much less demanding compared to carrying out a TB prevalence survey. 
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  While data on TB notifications are a readily available estimate of TB burden, in most countries 

–including those in the African region – they provide a suboptimal measure of the true 

underlying TB incidence because of missed incident cases that never get notified (10). TB 

hotspots based on TB notifications are bound to inherit the same bias that TB notifications have 

(17). TB prevalence provides the next best level evidence but on their own are also not enough 

to properly stratify neighbourhoods based on barriers to access to TB care. The areas with the 

most limited access to care will be those with a high TB prevalence rate and low TB notification 

rates, indicating that routine TB care in those areas is not performing optimally. (1,30). By 

calculating prevalence to notification ratios, this enables the identification of areas likely to 

have a higher burden of prevalent TB cases, especially areas where barriers to access to routine 

passive care surveillance system are greater (11).  

Even in districts that meet the 0.5% prevalence cut-off level for recommending community ACF, 

the burden of undiagnosed cases in such a population would be unevenly distributed (11,17). 

For instance, low density high social economic neighbourhoods are likely to have a low burden 

of undiagnosed TB cases to warrant an ACF intervention in such communities (11,31). Since 

community ACF interventions are logistically challenging and resource intensive further 

stratification at subdistrict level to reduce the number of individuals that need to be screened is 

an important step (11,31). Overall, therefore, based on the findings from this thesis, we suggest 

that the WHO-recommended prevalence threshold for community ACF should be revised to 

consider the use of surveillance data and models to guide targeted implementation (Figure 1.6) 

(5). This is to enable achievement of the EndTB goal of equitable access to TB care, by making 
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sure that those that are at the most risk of undiagnosed TB and have access to care barriers are 

reached (30). 

6.4.2 Measuring impact of spatially targeted community case finding interventions  

There are a variety of outcomes that can be used to assess the impact of community 

interventions that are geographically targeted (8). This is because the burden of TB can be 

estimated using various methods as illustrated in Figure 6.1. These outcome measures are 

similar to those that would be utilised in a non-spatially targeted community-based ACF 

programme (7). A prevalence survey, can be used to compare the prevalence of active TB 

disease in the intervention and control arms, this is expensive and resource intensive (7). The 

yield of prevalent TB cases diagnosed can also be used, this is the number of individuals that 

have to be tested to diagnose one individual with active disease (8).  

Before and after analysis of notification of TB cases from the TB hotspots can be used to assess 

the impact of the intervention on notifications (8).  The ideal impact assessment for ACF 

interventions is to assess the effect on new incident cases, unfortunately incident cases are 

impossible to directly estimate (7). Instead, incidence is inferred by conducting prevalence or 

incidence surveys of latent TB infection in young children to estimate the annual risk of TB 

infection (7). This is also challenging because the sensitivity of latent tests can be affected by 

the BCG vaccine and they are expensive and require complicated logistics (32).   

Community ACF interventions have both benefits at the individual level and at the community 

level. At the individual level they help individuals with undiagnosed active TB, some of which 

who would not have had access to diagnosis and treatment with passive ACF interventions to 
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get diagnosis and treatment (5). Hence reducing their risk of mortality, morbidity and improving 

their quality of life (7). At the community level screening programmes in the short term usually 

increase notifications and the uptake of facility-based TB care (33). This is due to the cases that 

get directly diagnosed by the ACF and because the general public is becomes more aware of TB 

symptoms and where they should go to get a TB test (33).  

Community ACF interventions are required to be done in corroboration with routine facility-

based health care to ensure that the respective health facilities are equipped to accommodate 

the demand generated by the community ACF  (5,33). This preparedness includes the 

availability of WHO-recommended tests, treatment, and competent medical professionals at 

the health facilities (5). But in the long term the notifications of a disease in the ACF 

intervention area are expected to decrease as most cases get diagnosed and undiagnosed cases 

become fewer (33).  

The spatially targeted intervention can also have positive effect on the general population by 

reducing the transmission of infection but this depends on factors such as the rate of effective 

contact (34) between the members of the hotspot and the members of the general population, 

immigration of residents between the general population and the general public and others 

(figure 6.1) (35). Mathematical modelling can be used to assess the impact of a spatially 

targeted intervention on the surrounding communities (20,35).  

Spatially targeted community ACF interventions are complimentary to routine facility-based TB 

care just as untargeted community ACF interventions (5). Spatially targeted interventions are 

meant to aid in reaching individuals that have the most difficulty in accessing facility-based TB 
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care (5). In terms of having a sustainable solution, areas that benefit from spatially targeted ACF 

should be supported to have increased access to routine TB care (36). Health facilities that offer 

the recommended TB care need to be available at a walkable distance and be financially 

accessible. Other initiatives to support individuals affected by TB should be considered this 

includes financial support to avoid catastrophic costs in accessing TB diagnosis and treatment 

(37). 

6.4.3 Cost-effectiveness considerations 

Cost effectiveness analysis is used to inform decision makers in deciding resource allocation 

where there are competing interventions (38). We were only able to identify one study for cost 

effectiveness of spatially targeted interventions of TB. 

A spatially explicit transmission model was used to evaluate the cost effectiveness of spatially 

targeted ACF compared to passive surveillance and untargeted community ACF, ten years from 

intervention commencement (20). The intervention was door to door screening for chronic 

cough (greater than 2 weeks) followed by 2 sputum sample submission for microscopy. The 

setting was rural Ethiopia (39). 

The hotspot region comprised 20% of the overall population. The spatially targeted ACF 

intervention at a community screening coverage of 95% in the hotspot communities reduced 

the overall incidence of TB by 52% compared to the baseline (20). To achieve a similar decline in 

incidence an untargeted community ACF intervention would have to screen 80% of the overall 

population (20). Compared to the passive case surveillance the spatially targeted ACF 

intervention was expected to avert 1,023 new TB cases over ten years saving $170 per averted 
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case. While the untargeted ACF intervention was expected to avert 1, 316 new TB cases over 

ten years saving $3 per averted TB case.  

To compare the cost effectiveness of the spatially targeted intervention versus the untargeted 

intervention, an incremental-cost effectiveness-ratio was done and the untargeted intervention 

averted an additional 293 more TB cases at a cost of $528 per averted cost, corresponding to an 

additional cost of about $170,700 for these additional averted cases. This analysis suggested 

that TB spatially targeted interventions would be cost effective in this population and would 

also significantly reduce the overall TB incidence. 

6.5 Limitations 

Here we acknowledge, describe and discuss the limitations of the PhD thesis. The study setting 

was Blantyre Malawi, a country that is classified as a low-income country by the World Bank 

(40). This might limit the generalisability of our models in other countries. This is especially 

because the highest burden of TB is currently in middle to upper-middle-income countries in 

Africa, Asia, South America and Eastern Europe according to the WHO 2021 report (1). 

Characteristics such as access to health care, determinants of TB, social-economic support 

systems and available health systems are likely to be different in these settings compared to 

Blantyre. Therefore, there is a need to carry out similar studies and analysis in other areas to 

which we cannot be confident our findings generalise, to identify predictors of prevalence to 

notification ratios for these settings and the risk factors of death on TB treatment (11). 

Further, the population in the study setting have been involved in various research studies 

overtime (41), this might have affected the way the population participated in the research 
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studies that contributed to the data of this PhD (the Harthorne effect) (42).  It is possible that 

the population could have been fatigued by research from prior participation in research and 

could therefore have tried to avoid participation in the research studies whose data are 

analysed in this PhD thesis (42). This might also affect different groups differently, for instance 

people living with HIV, who have frequent appointments with medical practitioners, might be 

more willing to get involved in research trials (42). Indeed, a qualitative study in the study area, 

identified that community members retained high awareness and positive opinions of 

community wide case finding two years after the intervention, suggesting that the Hawthorne 

effect made this community more positive towards participation in research (43). Other 

settings might have a different experience. 

Malawi has also achieved excellent results in meeting the 90:90:90 targets of HIV care cascade, 

according to a 2020 to 2021 population HIV impact assessment (MPHIA) survey:  88.3% of 

people living with HIV already knew their status, 97.9% of HIV positive individuals who were 

aware of their positive HIV status were on HIV treatment and 96.9% of people who were on HIV 

treatment were virally suppressed (44). This is in contrast to other high TB and HIV burden 

settings that are struggling to meet their HIV care cascade goals like South Africa: there only 

72.8% of people living with HIV were aware of their status, 91.5% individuals who were aware 

of their HIV positive status were on ART treatment and 81.4% of HIV positive individuals who 

were on ART treatment were virally suppressed (45). In general, other settings may have higher 

heterogeneity in their coverage of HIV diagnosis and treatment than Blantyre (46). Since people 

living with HIV who have untreated TB tend to develop symptoms earlier and potentially die 

sooner than those who do not have the disease, they contribute less to the transmission of TB 
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compared to HIV-negative individuals (47,48). In addition, since having symptoms is a precursor 

to seeking care, people living with HIV are likely to seek care through facility-based TB care 

(47,49). Also, when on HIV treatment, scheduled visits at health facilities for HIV treatment refill 

offers an opportunity for TB screening (50). Thus, our models would have a limited 

generalisation to areas who have an uncontrolled HIV epidemic since they were based on data 

from Blantyre. Settings that have high TB and high HIV undiagnosed cases the type of targeted 

interventions might also have to be different than those that were done in low TB and low HIV 

settings as reported in the systematic review in Chapter 3 (8,18). 

While the focus of my PhD thesis is improving community ACF methods and TB care in health 

facilities, it is important to keep in mind that TB is exacerbated by low social economic status 

factors such as poor nutrition and poor housing conditions (4). Therefore, interventions to 

reduce incidence should be multisectoral, and not only focus on medical interventions (4). 

Historical data from Europe show that TB incidence was falling as the economic conditions were 

improving even before improvements in TB case-finding and treatment were implemented (4). 

Other Asian countries experienced similar trends (4). The WHO guideline recognises this and 

has highlighted all the sustainable goals that are related towards achieving TB eradication goals 

(51). Mathematical modelling estimated that ending extreme poverty and expanding social 

protection coverage could result in about 11% annual reduction in TB incidence (25).  

I have written the thesis with emphasis on improving community ACF and facility-based care of 

TB patients and have given little attention to how social economic interventions could be 

implemented to reduce inequalities that are responsible for TB risk heterogeneity, this was out 

of the scope of my PhD thesis.  Disease control programmes have limited resources that they 
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can use for interventions, hence they allocate resources to activities that they can afford to, 

improving housing conditions and nutrition of individuals may improve populations resilience to 

TB disease but these interventions would be out of the budget of disease control programmes 

(38). Social economic status was included as a confounder in the models of the PhD thesis but 

measuring social economic status in a setting with a lot of informal employment like Blantyre is 

hard. I used completion of primary school education of head of household in the model of 

Chapter 5, but it is possible that this indicator misclassified households (11), although a Malawi 

Integrated Housing Survey found that the household head education level was associated with 

poverty (52). In the case-fatality analysis we used household ownership of items to develop an 

indicator of social economic status (12), again this can be biased, as individuals can end up 

being classified as belonging to upper social economic status because they have the specified 

household items but when they are poor in terms of income available for food and health care 

(53).  

The prevalence survey that contributed to the hotspot identification analysis was a one-off 

cross-sectional survey (9). It is possible that a different prevalence survey in the same setting 

would have resulted into the analysis identifying a different set of hotspots (9). Nevertheless, 

the prevalence survey was based on random sampled households in the setting and was less 

likely to be affected by selection bias of the households who took part in the survey (11).  We 

were also unable to verify if the hotspots would remain with time because we only had one 

prevalence survey. Ideally, we were supposed to have data from sequential prevalence surveys 

to assess the permanency of the hotspots.  
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In routine care in Blantyre, symptom screening is used and when available a chest X-ray can 

also be done at the recommendation of a physician (54).  By contrast in the prevalence survey 

screening used a combination of symptom screening and chest X-ray, this increased the 

sensitivity of the screening algorithm (11). The accuracy of the TB diagnostic tests that were 

used in the prevalence survey and the routine notification surveillance are important, this helps 

ensure that only people with active TB cases are diagnosed as such (55). In routine care, a 

diagnosis can also be done based on a clinical judgement by the physician regardless of the 

absence of a confirmatory positive result (54). While in the prevalence survey a TB case had to 

have a positive confirmatory TB test result (11). The gold standard test for TB diagnosis is the TB 

culture test (47). In Blantyre enhanced laboratory support (11) was able to provide MTB culture 

tests to routinely collected samples and the prevalence survey participants. Both modelling 

analyses have a primary analysis and a sensitivity analysis with one based on all the cases and 

another based on only confirmed MTB diagnosed cases, the results of the primary analysis and 

the sensitivity analysis agreed (11,12).   

The prevalence survey identified sparse prevalent cases (11). This meant that the predictive 

models were unlikely to have enough power to identify more than one or two predictive covariates 

for prevalence. However, prevalence surveys are extremely costly and resource intensive, and 

only a few ever get conducted at the city scale (11,23). In addition, to the best of our knowledge, 

there is no established model based on covariates that predicts prevalence. Indeed, in a recent 

publication from Pakistan using subnational prevalence survey data from Pakistan, five separate 

research groups were unable to identify a unifying set of predictors for prevalence (23). 
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The models that were run in our analysis lack external validation. A natural next step is 

therefore to repeat this analysis in a different setting to see if the conclusions arrived at are   

like the ones in this analysis. The prevalence to notification analysis could be done in this 

different setting and we could check the predicators that would be identified, and the hotspots 

identified. The same applies to our analysis of case fatality. 

6.6. Future directions of research 

As noted above, model validation using data from a different setting would help improve our 

understanding of how the models perform in other settings. This could be achieved by 

collecting data from another setting that is similar to Blantyre and re-producing the models of 

Chapter 4 and 5 using the data from that setting. This would enable us to redo our analysis to 

check if the predictors   identified in the validation setting are similar to those that we identified 

in Blantyre, and also to check the characteristics of the identified hotspots. Depending on the 

results of the model validation exercise, the models could remain the same or be changed to 

accommodate the newly found knowledge. 

The identification of hotspots in Chapter 5 was based on prevalence of active TB cases and TB 

notifications. These identified prevalent active TB cases might have contracted the infection 

elsewhere other than their residential neighbourhoods (18). Therefore, it is not possible to 

know whether these identified hotspots are also areas of high transmission of TB (18). To 

address this, we might focus future work on prevalence of LTBI in under 5-year-olds, in order to 

better understand TB transmission. This is because LTBI in under 5-year-olds is a recent event 

and can be assumed to have occurred while the child was a resident of the neighbourhood. 
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Therefore, it can be used in identifying areas of high TB transmission (7). In addition, genetic 

analysis to find transmission links between TB isolates would enable to identify areas where 

transmission is taking place (18).  Combining this information with the approach developed in 

this thesis should further improve identification of areas where transmission is occurring. This 

in turn will allow development of appropriate interventions for these areas to interrupt 

transmission, and to protect vulnerable populations that are at risk of progressing to active TB 

disease such as people living with HIV (18).  

Calculation of prevalence and notification rates relies on denominators that accurately 

represent the population. National census data are a common source of denominators but they 

are done periodically and can get out of date. Linear interpolation of the census data to project 

the population in the future, based on observed population growth rates, can be used to 

update population estimates (11).  This assumes that the population growth that was observed 

in the past will be the same in the future, but this assumption can be broken if the growth rates 

changes. Census surveys are also done at census tracts level, these differ from the geographical 

demarcations that are used as the catchment area for health facilities. Alternatively, the 

worldPop project has produced 100 by 100 m gridded population estimates based on census 

data using machine learning (19,56). These do allow for arbitrary neighbourhood demarcations 

to have census-based estimates once a defined shapefile boundary is submitted to the 

WorldPop API to obtain the population estimates (56). 

Research is only good if it gets adopted into policy and is implemented. For this to be possible 

there is a need to engage with the technical working groups within the National TB 

programmes and also the WHO. Since resource allocation is always competitive, to justify 
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allocation of the resources to spatially targeted interventions, cost effective analysis work 

needs to be done to prove that this would be cost effective (20). This can be achieved by using 

transmission models parameterised with data from the setting of interest and also based on 

empirically collected data from trials (20,38). 

6.7. Conclusion 

In summary, by using high-resolution surveillance data at the neighbourhood-level to better 

understand the epidemiology of TB in urban Africa, this thesis has confirmed that there are 

high-levels of spatial heterogeneity in the risk factors for TB, burden of TB disease, and access 

to high quality TB diagnosis and care. The approaches advanced here could be used in other 

similar urban settings to prioritise neighbourhoods by burden of undiagnosed TB, and 

efficiently direct community-based ACF interventions. WHO supports countries in the collection 

of notification and prevalence data; spatially explicit models that capture the spatial 

heterogeneity of the TB epidemic can help countries to stratify communities into areas of low 

risk to high risk of undiagnosed TB. As the TB epidemic declines and undiagnosed TB cases 

concentrate among high-risk and vulnerable populations to form hotspots of undiagnosed TB, 

spatially targeted ACF interventions are going to come to the forefront. 

 This thesis suggests that targeting these neighbourhood hotspots could contribute to 

accelerated improvements in TB case detection and reduction in transmission. This thesis opens 

promising avenues of research that that involves the use of spatially explicit models to direct TB 

programmes where to do community ACF interventions. It also highlights the need for 

additional evidence for the impact assessment of spatially targeted interventions involving 
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random allocation of hotspots in evaluation of outcome of interest and cost effectiveness 

analysis. This evidence could be informed by empirical studies or spatially explicit transmission 

models. 
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