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ARTICLE

Multi-response Mendelian randomization: Identification
of shared and distinct exposures for multimorbidity
and multiple related disease outcomes

Verena Zuber,1,2,3,* Alex Lewin,4 Michael G. Levin,5,6,7 Alexander Haglund,8 Soumaya Ben-Aicha,9

Costanza Emanueli,9 Scott Damrauer,10,11,7 Stephen Burgess,12,13 Dipender Gill,1,14

and Leonardo Bottolo15,16,12,*
Summary
The existing framework ofMendelian randomization (MR) infers the causal effect of one or multiple exposures on one single outcome. It

is not designed to jointly model multiple outcomes, as would be necessary to detect causes of more than one outcome and would be

relevant to model multimorbidity or other related disease outcomes. Here, we introduce multi-response Mendelian randomization

(MR2), an MR method specifically designed for multiple outcomes to identify exposures that cause more than one outcome or,

conversely, exposures that exert their effect on distinct responses. MR2 uses a sparse Bayesian Gaussian copula regression framework

to detect causal effects while estimating the residual correlation between summary-level outcomes, i.e., the correlation that cannot

be explained by the exposures, and vice versa. We show both theoretically and in a comprehensive simulation study how unmeasured

shared pleiotropy induces residual correlation between outcomes irrespective of sample overlap. We also reveal how non-genetic factors

that affect more than one outcome contribute to their correlation. We demonstrate that by accounting for residual correlation, MR2 has

higher power to detect shared exposures causing more than one outcome. It also provides more accurate causal effect estimates than

existing methods that ignore the dependence between related responses. Finally, we illustrate how MR2 detects shared and distinct

causal exposures for five cardiovascular diseases in two applications considering cardiometabolic and lipidomic exposures and uncovers

residual correlation between summary-level outcomes reflecting known relationships between cardiovascular diseases.
Introduction

Researchers focus often on understanding, preventing, and

treating specific health conditions in isolation with a dis-

ease-centric approach. Yet, as life expectancy increases,

the incidence of diseases increases, and a growing propor-

tion of the adult population is affected by more than one

chronic health condition.1–3 Multimorbidity describes

the simultaneous presence of two or more chronic condi-

tions in one individual.4 The Academy of Medical Science

considers multimorbidity as a key priority for global health

research,5 and the World Health Organization identifies

people with multimorbidities at higher risk of patient

safety issues.6 To define effective prevention and interven-

tion strategies, it is important to understand disease etiol-

ogy. Recent research into multimorbidity suggests the

presence of disease clusters systematically co-occurring in

subjects with specific genetic predispositions and exposed

to certain exposures.7,8 Yet, to date, it is unclear whether

multimorbidity represents a random co-occurrence of
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seemingly unrelated individual health conditions without

a common cause or whether shared causal exposures are

underpinning multiple health conditions.3,9 Our motiva-

tion is to develop principled causal inference methodology

to detect shared or distinct causes of multiple related

health outcomes using genetic evidence in a multi-trait

Mendelian randomization (MR) framework.

Observational studies may be biased by unmeasured

confounding factors and cannot be used to infer causality.

MR uses genetic variants as instrumental variables (IVs)10

to infer the direct causal effect of an exposure on an

outcome irrespective of unmeasured confounders.11–13

MR has become an important analytical approach to gain-

ing a deeper understanding of how modifiable exposures

impact a single disease outcome.

Yet, while there are methods for multivariable MR

(MV-MR) that can deal with multiple exposures in one

joint model,14,15 to date there is no comprehensive MR

methodology that can jointly model multiple outcomes,

account for information shared between the outcomes,
al College London, London, UK; 2MRCCentre for Environment and Health,

Research Institute, Imperial College London, London, UK; 4Department of

, UK; 5Division of Cardiovascular Medicine, Perelman School of Medicine,

, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
8Department of Brain Sciences, Faculty of Medicine, Imperial College Lon-

, London, UK; 10Department of Surgery, Perelman School of Medicine, Uni-

man School ofMedicine, University of Pennsylvania, Philadelphia, PA, USA;

e, Cambridge, UK; 13Cardiovascular Epidemiology Unit, School of Clinical

or Office, Research and Early Development, Novo Nordisk, Copenhagen,

iversity of Cambridge, Cambridge, UK; 16Alan Turing Institute, London, UK

an Journal of Human Genetics 110, 1177–1199, July 6, 2023 1177

se (http://creativecommons.org/licenses/by/4.0/).

mailto:v.zuber@imperial.ac.uk
mailto:lb664@cam.ac.uk
https://doi.org/10.1016/j.ajhg.2023.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2023.06.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/


and simultaneously detect common and distinct causes of

disease. Consequently, existing MR methodology largely

neglects links between related disease outcomes. For

example, we have recently performed wide-angled MR in-

vestigations to look at genetic determinants of lipids and

cardiovascular disease outcomes (CVDs)16 and blood lipids

and particle sizes as exposures for coronary and peripheral

artery disease (PAD)17 where we have performed MR anal-

ysis for each outcome separately. While this strategy pro-

vides a first scan if similar causal exposures are significantly

detected across different traits, there is no principled MR

methodology available to test and define whether an expo-

sure affects more than one outcome. Moreover, existing

models ignore information shared between outcomes

because each trait is considered in isolation. Thus,

methods are needed tomake full use of the growing knowl-

edge regarding clusters of diseases that may share the same

causes. In addition, genome-wide association studies

(GWASs) are generally sparsely controlled for confounders,

and only a few covariates like age, sex, and principal com-

ponents to control for population stratification are

included in the regression model to derive summary-level

data for genetic associations. While this strategy reduces

the risk of collider bias, there may be potential residual

confounding in the GWASs themselves, which can be ad-

dressed by jointly modeling multiple outcomes.

Here, we propose multi-response MR (MR2) to model

multiple related health conditions in a joint multivariate

(multiple outcomes) and multivariable (multiple expo-

sures) MR model. Our motivations are the following: first,

we seek to distinguish between exposures that are shared

(affecting more than one outcome at the same time) or

distinct (affecting only one outcome). Second, our multi-

response model aims at increasing the power to detect ex-

posures that affect more than one outcome while effec-

tively reducing the number of false positives. Third, MR2

aims to combine information between outcomes to iden-

tify the effect of unmeasured pleiotropic pathways on

the responses as well as the impact of non-genetic factors

(independent of the exposures), such as social health deter-

minants, on the correlation between disease outcomes.

As the first motivating example, we want to identify

which common cardiometabolic risk factors, including

diabetes, dyslipidemia, hypertension, physical inactivity,

obesity, and smoking, are shared or distinct causes of five

cardiovascular diseases, including atrial fibrillation (AF),

cardioembolic stroke (CES), coronary artery disease

(CAD), heart failure (HF), and PAD. We include these out-

comes because there is a priori epidemiological and clinical

evidence that they are strongly connected due to shared

risk factors and because one outcome causes another. For

example, CAD can cause HF18,19 and AF.20 In turn, AF

can cause CES.21 Consequently, in clinal practice, these

cardiovascular diseases are frequently present as multimor-

bidity.22 Patients living with one disease are more likely to

be affected by a second cardiovascular illness than a

healthy individual becoming sick with one cardiovascular
1178 The American Journal of Human Genetics 110, 1177–1199, July
disease.23 Epidemiological evidence24–27 also suggests that

these diseases share a wide range of common exposures.

Determining whether these exposures are universally

causal or influenced by residual confouding/correlation is

challenging to infer from traditional observational study

designs. To date, no study has used genetic evidence in a

joint multi-outcome model to establish which exposures

are shared or distinct. Here, we illustrate the advantage of

using the proposed joint multivariable and multi-response

MR2 model to identify which cardiovascular exposures are

shared or distinct for different cardiovascular conditions.

As a second motivating example, we follow up on the

findings from the first example to define in more detail

which lipid characteristics and lipoprotein-related traits,

as measured by high-throughput metabolomics, are likely

causes of the selected cardiovascular diseases.

The manuscript is outlined as follows: after material and

methods, where we introduce the Bayesian modeling

framework ofMR2, we present in results an extensive simu-

lation study. First, we illustrate how residual correlation is

caused by unmeasured shared pleiotropy, and second, we

compare MR2 with existing multivariable, single-outcome

MR models and with other statistical learning algorithms

for multi-response regression regarding their ability to

detect important causal exposures, distinguish between

shared and distinct exposure, and accurately estimate

causal effects. Then, we present the results from the two

motivating application examples. In the real examples, we

contrast the results obtained by MR2 with standard

MV-MR14 and with MR with Bayesian model averaging

(MR-BMA), a recently proposed method for single-trait

MV-MR15 to highlight the gain of power and the reduction

of false positives when multiple responses are jointly

analyzed. We also compare MR2 with MV-MR-Egger28 to

demonstrate different effects of the unmeasured pleiotropy

whendealingwithmultiple outcomes. Finally,we conclude

with a discussion and directions for future research.
Material and methods

In this section, we illustrate the data input utilized in the proposed

method as well as in existing MR models including univariable

(one exposure and one outcome) and MV-MR (multiple exposures

and one outcome). Then, we describe howmultiple outcomes can

be modeled jointly by considering the seemingly unrelated regres-

sion (SUR) framework and how this can be generalized by the

copula regression model. We show analytically and demonstrate

in the simulation study (see results) how unmeasured shared plei-

otropy affecting more than one outcome can be captured in a

multi-responseMRmodel, which accounts for the residual correla-

tion between outcomes both in overlapping and non-overlapping

samples in the genetic associations with the outcomes. Finally, we

conclude material and methods with an overview of MR2, which

implements a sparse copula regression model and focuses on the

selection of shared and distinct exposures for multiple health con-

ditions. Technical details are presented in appendix A. TheMarkov

chainMonte Carlo (MCMC) implementation of the proposedMR2

method is described in supplemental information.
6, 2023



MR data input
MR2 is formulated on summary-level data of genetic association

with the exposures and outcomes from large-scale GWASs, which

are commonly available in the public domain.

According to the two-sample summary-level MR framework, we

assume that the genetic associations with the exposure and the ge-

netic associations with the outcome are taken from two distinct

cohorts with non-overlapping samples29 and are thus a priori inde-

pendent.30 However, when considering multiple exposures, some

of themmay be derived from cohorts with full or partially overlap-

ping samples. In this case, because MV-MR models do account for

measured pleiotropy between exposures,14,31 overlapping samples

can be analyzed. Besides modeling multiple exposures, MR2 also

explicitly considers the correlation between multiple responses

from cohorts with fully, partially, or no overlapping samples.

In summary, the summary-level design facilitates the inclusion

of different disease outcomes, as well as exposures. Moreover,

they do not necessarily need to be measured on different indepen-

dent cohorts or be fully or partially overlapping.
Overview of existing MR models
Standard MR models for summary-level data, both univariable

(single exposure) and multivariable (multiple exposures), are

formulated as weighted linear regressionmodels where the genetic

associations with exposure are regressed against the genetic associ-

ations with the outcome. Each genetic variant, used as IVs, con-

tributes one data point (or observation) to the regression model,

which we denote with the index i, i ¼ 1;.; n. For each IV, we

take the beta coefficient bXi
and standard error seðbXi

Þ from a uni-

variable regression in which the exposure X is regressed on the ge-

netic variant Gi in sample one and beta coefficient bYi
and stan-

dard error seðbYi
Þ from a univariable regression in which the

outcome Y is regressed on the genetic variant Gi in sample two.

Then, univariable MR can be formulated as a weighted linear

regressionmodel inwhich thegeneticassociationswith theoutcome

bYi
are regressed on the genetic associations with the exposure bXi

32

bYi
¼ bXi

qþ ei; ei � N
�
m; d2se

�
bYi

�2�
; i ¼ 1;.;n; (Equation 1)

where q is the effect estimate, m is the intercept, and d2 is an overdis-

persion parameter, d2 R1, that incorporates residual heterogeneity

into themodel.33,34 StandardMRmodels setm ¼ 0,whilems 0 cap-

tures unmeasured horizontal pleiotropy.35 Weighting each genetic

variant i by the first-order weights seðbYi
Þ2 is equivalent to fitting

an inverse varianceweighting (IVW)MRmodel,which gives genetic

variants measured with higher precision larger weights.13 Alterna-

tively, the genetic associations may be standardized before the anal-

ysisby theweightsui ¼ seðbYi
Þ, i ¼ 1;.;n thatonlydependonthe

standard errors of the genetic associations with the outcome.

MV-MR14,31 is an extension of univariable MR to consider not

just one single exposure but multiple exposures in one joint

model. This joint model accounts for measured pleiotropy14 by

modeling explicitly pleiotropic pathways via any of the included

exposures. Additionally, MV-MR can be used to select the most

likely causal exposures from a set of candidate exposures.15,36

In analogywith the univariableMRmodel in Equation 1, inMV-

MR the genetic associations with one outcome are regressed on the

genetic associations with all the exposures37

bYi
¼ bXi1

q1 þ bXi2
q2 þ/þ bXip

qp þ ei; ei � N
�
m; d2se

�
bYi

�2�
;

or, in vector notation,
The Americ
bYi
¼ bXi

qþ ei; ei � N
�
m; d2se

�
bYi

�2�
; (Equation 2)

for each i ¼ 1;.;n, where bYi
are the associations of the genetic

variant Gi with the outcome Y, bXi
contains the associations of

the genetic variant Gi with the p exposures, q ¼ ðq1;.; qpÞT is

the vector of the effect estimates, m is the intercept that models un-

measured horizontal pleiotropy, and d2 > 1 is the overdispersion

parameter.

In MV-MR, a genetic variant is a valid IV if the following criteria

hold: "IV1—relevance," the variant is associated with at least one

of the exposures; "IV2—exchangeability," the variant is indepen-

dent of all confounders of each of the exposure-outcome associa-

tions; and "IV3—exclusion restriction," the variant is independent

of the outcome conditional on the exposures and confounders.

Given these assumptions hold, we consider the effect estimates

q as the direct causal effect37 of the exposure on the outcome after

keeping all other exposures constant.

Multi-response MR
We present here the extension of the MV-MRmodel in Equation 2

for p exposures when q outcomes are jointly considered. Conse-

quently, the observed summary-level input data are a matrix bY

of dimension n3 q, which contains the genetic associations

with n genetic variants with the q outcomes and bX of dimension

n3 p, which includes the genetic associations with the same n

genetic variants with the p exposures.

In the following, we assume that the input data bY and bX have

been standardized according to IVW before the analysis, and, for

ease of exposition, we use the same notation after standardiza-

tion. The IVW is based on first-order weights that are propor-

tional to the inverse of the standard error of the outcome for sin-

gle-response MR models. The IVW MR model is taking into

account the precision of a genetic variant and gives IVs with

higher precision stronger weights in the MR model. Details on

how to define IVW in a multiple-outcome framework are pro-

vided in appendix A.

The aim to model q-related outcomes in one joint model can be

achieved by using the SUR framework,38 which is formulated as a

series of qmultivariable regression equations, one for each of the q

outcomes.

bYi1
¼ bXi

q1 þ ei1
« ¼ «

bYiq
¼ bXi

qq þ eiq

(Equation 3)

For each i ¼ 1; .; n, where bYi
¼ ðbYi1

;.;bYiq
Þ contains the

observed genetic associations with the genetic variant Gi with

the q responses, bXi
are the associations of the genetic variant Gi

with the p exposures, q1 ¼ ðq11;.; q1pÞT , ., qq ¼ ðqq1.; qqpÞT
are the outcome-specific vectors of direct causal effects for each

outcome, and ei1 � Nðm1; d
2
1Þ;.; eiq � Nðmq; d

2
qÞ are the residuals

with m1;.;mq the response-specific intercepts and d21;.; d2q the

overdispersion parameters.

The SUR model connects the q multivariable regressions in

Equation 3 by allowing for correlation between the q residuals of

the summary-level outcomes ek, k ¼ 1;.; q. More precisely, the

SUR model estimates the ðq 3 qÞ-dimensional covariance matrix

between the vector of residuals ei ¼ ðei1;.; eiqÞ.

R ¼

0
BB@

1 rðei1; ei2Þ / r
�
ei1; eq

�
rðei2; ei1Þ 1 / r

�
ei2; eiq

�
« « 1 «

r
�
eiq; ei1

�
r
�
eiq; ei2

�
/ 1

1
CCA: (Equation 4)
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A B C

Figure 1. Multivariable and multi-response Mendelian randomization with multiple exposures and multiple responses
(A) Directed acyclic graph (DAG) with G, genetic variant(s); X ¼ fX1;X2g, exposures; Y ¼ fY1;Y2;Y3g, responses; U, unmeasured con-
founders; A, unobserved pleiotropic pathway.
(B) Schematic representation of the MR2 model, which allows the exploration of the model space consisting of all possible subsets of
exposures (bottom gray circle) directly associated with the responses (top gray circle) while estimating the residual correlation between
the responses (top gray circle) and vice versa. Model depicted in (A) is reported inMR2 as follows:X1 is a shared exposure for outcomes Y1

and Y3, while X2 has a distinct direct causal effect on Y2 (directed edge). Residual dependence between Y1 and Y2 is still present after
conditioning on the associated exposures (undirected edge), and it depends on the unmeasured pleiotropic pathway A.
(C) MR2 model space exploration is equivalent to learning from the summary-level input data, a partitioned non-symmetrical adjacency
matrix. The model depicted in (A) is represented by an adjacency matrix describing the conditional dependence structure among the
responses (top left symmetrical submatrix) and the direct causal association of the exposures with the outcomes (bottom left non-sym-
metrical submatrix). No reverse causation is allowed in the MR2 model (top right non-symmetrical submatrix), and the exposures can
only have direct causal effects on the responses, i.e., no direct effects among the exposures are modeled (bottom right symmetrical
submatrix).
For instance, rðεik; εik0 Þ is the correlation between the residuals

of the MV-MR model for summary-level outcome k and the

residuals of the MV-MR model for summary-level outcome k0,
ksk0 ¼ 1;.;q.

Finally, the possibility to account for response-specific unmea-

sured horizontal pleiotropy can be turned off by setting the vector

of intercepts m ¼ ðm1;.;mqÞT to zero.
Correlation between outcomes in multi-response MR
To understand what contributes to the residuals εk, k ¼ 1;.;q, of

the summary-level MRmodel in Equation 3 and generates correla-

tion between them in Equation 4, we focus on the following

generating model for the kth outcome on individual-level data

considering N subjects, as illustrated in Figure 1A,

Yk ¼ Xqk þ AqA þ UqUY þ εk; k ¼ 1;.; q; (Equation 5)

where qk is the p-dimensional vector of effects of the exposures X

on the kth outcome, qA is the effect of the unmeasured pleiotropic

pathway A on the responses, qUY is the effect of the unmeasured

confounder U on the outcomes, and εk � NNð0; d2k INÞ with d2k the

response-specific residual variance and N the sample size. More-

over, X, A, and U are random quantities that are descendants of

the same set of IVs.

Assuming that the quantitative outcomes Yk, k ¼ 1; ::; q, are

measured on the same N individuals, the n-dimensional vector

of summary-level genetic associations with the kth response bYk

can be derived using the ordinary least squares (OLS) estimate

bYk
¼ �

GTG
��1

GTYk

¼ �
GTG

��1
GT

�
Xqk þAqA þUqUY þ εk

�
¼ �

GTG
��1

GTXqk þ
�
GTG

��1
GT

�
AqA þUqUY þ εk

�
;

where the ðN 3 nÞ-dimensional matrix G describes the n genetic

variants associatedwith the exposures andmeasured onN individ-

uals. Moreover, assuming that the genetic variants G selected as
1180 The American Journal of Human Genetics 110, 1177–1199, July
IVs are independent of each other (achieved by pruning) and inde-

pendent of the confounder U (exchangeability assumption), the

above equation simplifies to

bYk
¼ �

GTG
��1

GTXqk þ
�
GTG

��1
GTAqA þ �

GTG
��1

GT
εk

¼ bXqk þbAq
A þ~εk;

(Equation 6)

where bX ¼ ðGTGÞ�1GTX is the ðn 3 pÞ-dimensional matrix of the

summary-level genetic association with the measured exposures

X, bA ¼ ðGTGÞ�1GTA is the n-dimensional vector of genetic asso-

ciations with the unmeasured pleiotropic pathwayA, and ~εk can be

viewed as the OLS of the projection of εk onto the linear space

spanned by G. Note that Vð~εkÞ ¼ d2kðGTGÞ�1, and, given the

assumption of independence of the genetic variants, it simplifies

to Vð~εkÞ ¼ d2kdiagðv21 ;.; v2nÞ, where diagð $Þ indicates a diagonal

matrix. Thus, ~εk is an n-dimensional vector and ~εk � Nnð0;
d2kdiagðv21 ;.;v2nÞÞ.
Consequently, the residuals in Equation 3 for the kth summary-

level response, k ¼ 1;.;q, using Equation 6, can be decomposed

into

εk ¼ bYk
� bXqk

¼ bXqk þ bAq
A þ~εk � bXqk

¼ bAq
A þ~εk;

(Equation 7)

which shows that residuals in the summary-level MRmodel reflect

unmeasured shared pleiotropy and residual variation.

Because in the designed framework the unmeasured pleiotropic

pathway A is random, bA in Equation 7 is also random, and thus,

bAq
A cannot be treated as the fixed-effect response-specific inter-

cept mk.
28 Instead, it should be interpreted as a random intercept

common to all summary-level responses. Similarly to random-ef-

fect models, the distribution of εk follows an n-dimensional

Gaussian distribution with EðεkÞ ¼ qAmAdiagðv21 ;.; v2nÞGT1N with

1N an N-dimensional vector of ones and VðεkÞ ¼
fðqAÞ2s2A þd2kgdiagðv21 ; .; v2nÞ, assuming A and εk independent,
6, 2023



and EðAÞ ¼ mA1N and VðAÞ ¼ s2AIN with IN the identity matrix of

dimension N. Moreover, it reveals that the residual correlations in

Equation 4 depend on the unmeasured shared pleiotropy, as illus-

trated below for two outcomes k and k0, ksk0,

rðeik; eik0 Þ ¼
�
qA
�2
s2
A þ skk0n�

qA
�2
s2
A þ d2k

o1=2n�
qA
�2
s2
A þ d2k0

o1=2
; (Equation 8)

where skk0 ¼ Covðεk; εk0 Þ is the covariance between individual-

level responses’ errors in Equation 5, which is assumed constant

across all N individuals.

Equation 8 shows that, independently of the sign of qA (the

effect of the unmeasured pleiotropic pathway A on the re-

sponses) and the nature of the shared pleiotropy A (either

‘‘directed,’’ i.e., Al > 0, or ‘‘undirected,’’ i.e., Al + 0, l ¼ 1;.;

N), the effect of unmeasured shared pleiotropy on the correla-

tion between the residuals of the MV-MR model is always posi-

tive and constant across all combinations of responses. More-

over, the residual correlation is different from zero even when

Covðεk; εk0 Þ ¼ 0, i.e., there is no correlation between individ-

ual-level responses’ errors.

Alternative scenarios can be also considered. As illustrated in

Figure 1A, some outcomes may not be influenced by the unmea-

sured pleiotropic pathway, so their summary-level residual correla-

tion with other responses is nil. Likewise, there may exist several

unmeasured pleiotropic pathways that are shared by subgroups

of responses (not necessarily distinct). For instance, pathwayA1 af-

fects responses ðk1; k01Þ, k1sk01, and A2 impacts responses ðk2; k02Þ,
k2sk02. In these cases, the derivation of Equation 8 does not

change, although rðeik; eik0 Þ won’t be constant across all outcomes’

pairs. Full details are presented in supplemental information.

Another important quantity in Equation 8 is skk0 , which is

the covariance between individual-level responses’ errors. In

contrast with the correlation induced by unmeasured pleiotropic

pathway A, which is genetically proxied by the selected IVs, skk0 ,

ksk0 ¼ 1;.;q, does not depend on G. Examples of non-genetic

factors that contribute to the outcomes’ correlations are, for

instance, social health determinants39 such as personal features,

socioeconomic status, culture, environment, health behaviors, ac-

cess to care, and government policy. Notably, these intercon-

nected factors that determine an individual’s health status are

not associated with the exposures and, therefore, are not con-

founders. This echoes the instrument strength independent of

direct effect (InSIDE) assumption,35 where the pleiotropic effect

is independent of the genetic associations with the exposure,

albeit here, it induces correlation between responses. Moreover,

while further exposures can be included in the analysis with the

hope to catch the effects of unmeasured shared pathways, the re-

sidual correlations generated by non-genetic factors cannot be

‘‘explained away’’ in the current MR framework. Thus, it should

be considered as the baseline residual correlation between sum-

mary-level outcomes.

Finally, Equation 8 has been derived assuming that the quanti-

tative outcomes Yk, k ¼ 1; ::;q, are measured on the same N indi-

viduals. Equation 8 still holds if non-overlapping samples of size

Nk in the genetic associations with the responses are considered

with the following modification: (1) skk0 is equal to zero and (2)

s2AIn is replaced by GT
k CovðAk; Ak0 ÞGk0, where Gk is the ðn 3

NkÞ-dimensional matrix of genotypes for the group of individuals

k and similarly for Gk0. CovðAk;Ak0 Þ is different from zero if we as-

sume that, since we are dealing with the same pathway A, the ge-

netic associations with A, which are specific for responses k and k0,
The Americ
i.e., bAk
and bAk0 , are correlated. Full details are presented in supple-

mental information.
Bayesian multi-response MR
MR2 is based on a recently proposed Bayesian method to select

important predictors in regressionmodels withmultiple responses

of any type.40 Specifically, a sparse Gaussian copula regression

(GCR) model41 is used to account for the multivariate depen-

dencies between the Gaussian responses bY once their direct

causal association with a set of important exposures bX is esti-

mated. When only Gaussian responses are considered, the GCR

is similar to the SUR model38 (see appendix A). Figure 1B provides

a schematic representation of the MR2 model that allows for the

estimation of important exposures (bottom gray circle) directly

associated with the responses (top gray circle) while estimating

the residual correlation between the responses (top gray circle)

and vice versa.

Regarding MR2 model specification, we use the hyper-inverse

Wishart distribution as the prior density for the residual covari-

ance matrix based on the theory of Gaussian graphical models.42

This prior allows some of the off-diagonal elements of the inverse

covariance matrix to be identical to zero and to estimate the resid-

ual correlation between the summary-level responses. For the ex-

posures, we use a hierarchical non-conjugate model43 to assign a

prior distribution independently on each direct causal effect. A

point mass at zero is specified on the regression coefficient of

the null exposure, whereas a Gaussian distribution is assigned to

the non-zero effect.

From a computational point of view, we design an efficient pro-

posal distribution to update jointly the latent binary vectors for

the selection of important exposures (selection step) and the cor-

responding non-zero effects (estimation step). For Gaussian re-

sponses, the designed proposal distribution allows the ‘‘implicit

marginalization’’ of the non-zero effects in the Metropolis-

Hastings (M-H) acceptance probability,44 which makes our

MCMC algorithm more efficient than existing sparse Bayesian

SUR models45–47 favoring the exploration of important combina-

tions of exposures, i.e., the model space, in a very efficient manner

(see supplemental information). It also guarantees a good accep-

tance rate, which, in turn, prevents slow convergence of the

MCMC algorithm and reduces the autocorrelation of the posterior

samples. Figure 1C shows that MR2 model exploration is equiva-

lent to learning from the input data a non-symmetrical adjacency

matrix partitioned into a symmetrical submatrix (top left), which

describes the conditional dependence structure among the re-

sponses and a non-symmetrical submatrix (bottom left) represent-

ing the direct causal association of the exposures with the

outcomes. Note that neither reverse causation (top right subma-

trix) nor direct causal effects between the responses (bottom right

submatrix) are allowed in the MR2 model.

Two sets of parameters are deemed important in our analysis:

the marginal posterior probability of inclusion (mPPI), which

measures the strength of the direct causal association between

each exposure-response combination and the corresponding

direct causal effect, and the edge posterior probability of inclusion

(ePPI), which describes the strength of the residual dependence be-

tween each pair of summary-level responses and the correspond-

ing residual partial correlation. The posterior distribution of these

quantities is usually summarized by their mean or any relevant

quantile. For instance, the a=2% and ð1 � a =2Þ% quantiles are

used to build the ð1 � aÞ% credible interval (CI). We summarize
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all quantities of interest by their posterior mean (both mPPI and

ePPI can be seen as a posterior mean or frequency that an expo-

sure-response combination or a pair of dependent responses are

selected during the MCMC algorithm) and their 95% CI.

The selection of important exposures for each response and

significantly correlated pairs of responses is based on mPPIs and

ePPIs, respectively. Thresholding these quantities at 0.5 is usually

suggested given that the optimal predictive model in linear regres-

sion is often themedian probabilitymodel, which is defined as the

model consisting of those predictors that have overallmPPIR 0:5,

the optimal predictive model under square loss, i.e., the optimal

model that predicts not-yet-collected data.48 Here, we follow a

different approach based on in-sample selection. A non-para-

metric false discovery rate (FDR) strategy based on two-component

mixture models,49,50 which clusters low and high levels of mPPIs

and low and high levels of ePPIs, is applied to select important ex-

posures for each response and significant dependence patterns

among responses at a fixed FDR level.

Importantly, for the definition of exposures causing more

than one outcome, the availability of the latent binary vectors

for the selection of important exposures for each response re-

corded during the MCMC algorithm also allows the estimation

of the joint posterior probability of inclusion (jPPI), defined as

the number of times an exposure is selected to be associated

with two or more responses at the same time during the

MCMC. Thus, jPPI can be regarded as the jPPI for any combina-

tion of responses. The detection of important direct causal ef-

fects of an exposure on a single response or multiple responses

is carried out by looking at significant mPPIs selected at a nom-

inal FDR level. If an exposure is associated with more than one

response, we declare the existence of a shared direct causal effect

and calculate the jPPIs.

While the residual correlation between summary-level re-

sponses captures ‘‘global’’ unmeasured shared pleiotropy, which

is calculated across all genetic variants, we additionally screen

for individual genetic variants as potential outliers due to their

‘‘local’’ pleiotropic effect.51 Building on Bayesian tools for outlier

diagnostics, we propose the conditional predictive ordinate

(CPO)52 to detect individual genetic variants as outliers or high-

leverage and influential observations in the MR2 model.

Full details of the MR2 model, as well as post-processing of the

MCMC output, are presented in appendix A.
Results

Simulation study: Can the effect of shared pleiotropy be

detected?

Here, we conduct a simulation study to illustrate the

impact of unmeasured shared pleiotropy affecting more

than one outcome. We consider one of the scenarios pre-

sented in the simulation study (scenario III—undirected

pleiotropy) where the residual correlation between out-

comes at the summary level depends only on the unmea-

sured shared pleiotropy and skk0 ¼ 0 for all responses.

We look at two quantities: first, the empirical correlations

between the summary-level genetic associations with the

outcomes measured on the IVs. They can be computed

by simply calculating the pairwise correlation between

the genetic associations with the outcomes on the sum-

mary level. Second, we look at the residual correlation be-
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tween the summary-level genetic associations with the

outcomes measured on the IVs after accounting for the ex-

posures and estimated by MR2.

Figure 2 shows that the larger the pleiotropic effect qA

(ranging from 0.25 to 2), the bigger the empirical correla-

tion. However, the empirical correlation (in gray) is not

able to distinguish between the correlation due to the

direct causal effects of the exposures on the outcomes

and the unmeasured shared pleiotropy. MR2 can separate

the source of correlation with a good agreement between

the estimated values of the residual correlation (in red)

and its theoretical value derived in Equation 8 (black

dashed line).

Simulation study: Comparison of methodologies

Weperform a simulation study to demonstrate the increase

in power, a better estimation of direct causal effects when

accounting for multiple correlated outcomes, and finally,

the ability to detect shared and distinct causal exposures

when using the proposed MR2 method compared with ex-

isting MV-MR models that consider one outcome at a time

and the recently proposed multi-response multivariable

methods. In total, we simulate n ¼ 100 genetic variants

used as IVs, p ¼ 15 exposures, and q ¼ 5 outcomes. Out

of the p3q exposure-outcome combinations, 30% have a

non-zero direct causal effect. For all scenarios, we generate

N ¼ 100;000 individuals, of which half is used to

generate the summary-level genetic associations for the

exposure and half for the outcomes, respectively,

providing data in a summary-level design. As alternative

methods, we include standard MV-MR37 and MR-BMA,15

a Bayesian variable-selection approach for MV-MR. We

consider two multivariable and multivariate variable-

selection approaches, which have to date not been applied

to MR: the multiple responses Lasso (multivariate

regression with covariance estimation [MRCE])46 and the

multiple responses Spike-and-Slab Lasso (mSSL).47 Both

methods perform variable and covariance selection by

inducing sparsity and setting the effect estimates of vari-

ables not included in themodel to zero, as well as inducing

sparsity in the residual covariance matrix. An overview of

the alternative methods is provided in Table S1.

We simulate the following scenarios.

d Scenario I—null: there are no causal exposures for any

of the outcomes and no confounder.

d Scenario II—confounding: there are 30% of exposures

with a non-zero direct causal effect and there is a joint

confounder for all outcomes.

d Scenario III—undirected pleiotropy: residual correla-

tion between outcomes is induced by a shared undi-

rected pleiotropic pathway that can increase or

decrease the level of the responses.

d Scenario IV—directed pleiotropy: residual correlation

between outcomes is induced by a shared directed

pleiotropic pathway that only increases the level of

the responses.
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Figure 2. (Residual) correlation between
the summary-level genetic associations
with the outcomes induced by various
levels of the pleiotropic effect and with
sample overlap between the summary-
level data of the outcomes
Each violin plot depicts the empirical cor-
relations between the summary-level ge-
netic associations with the outcomes
(dark gray) and the posterior mean of
the residual correlations estimated by
MR2 (red) in simulation scenario III—undi-
rected pleiotropy averaged over 50
replicates at different levels of the plei-
otropy effect qA ¼ f0:25;0:50;0:75;1:00;
1:50;2:00g. Confounding effects on the ex-
posures and outcomes are fixed at qUX ¼ 2
and qUY ¼ 1, respectively, without correla-
tion between exposures and responses’
errors and assuming 100% sample overlap
in the summary-level genetic associations
with the outcomes. For each side of the
violin plot, the vertical black thick line dis-
plays the interquartile range, while the
black line indicates the median. Black
dashed line depicts the theoretical value
of residual correlation between summary-
level outcomes as a function of qA as
shown in Equation 8. For more details on
the simulation setting, see Table S2.
d Scenario V—dependence: outcomes are simulated

with correlated errors, mimicking the effect of non-

genetic factors that contribute to their correlation.

In the following, we consider for simplicity only the case

of 100% overlapping samples in the genetic associations

with the outcomes. Full details regarding the simulation

study setup are presented in appendix A. An overview of

the simulations setting and the open parameters (qA and

qYU in Equation 5, qXU , the effect of the unmeasured

confounder U on the exposures, and rY , the correlation be-

tween individual-level responses’ errors in Equation 5) that

vary across the simulation scenarios are shown in Table S2.

Fixed parameters, including the number of subjects in the

individual-level data, the number of IVs, the range of the

simulated direct causal effects, the heritability of the expo-

sures, and the proportion of variance explained when

simulating the responses, are also detailed in the same

table. In supplemental information, we also provide details

regarding MR2 hyper-parameters setting, including the

number of MCMC iterations after burn-in, as well as tech-

nical details of the alternative methods and their software

implementations we used in the simulation study.

The performance in terms of exposure selection is evalu-

ated using the receiver operating characteristic (ROC)

curves where the true positive rate (TPR) is plotted against

the false positive rate (FPR). As a baseline, all methods
The Americ
perform equally well in the case of no correlation between

exposures, as seen in Figure S1. In contrast, when the expo-

sures are correlated, all variable-selection approaches

improve over the standard MV-MR, as seen in Figure 3.

This improvement depends on the correlation between ex-

posures, as shown in Figure S2.

In the following, we set the correlation between expo-

sures at rX ¼ 0:6, while the confounding effects on the ex-

posures and outcomes are fixed at qUX ¼ 2 and qUY ¼ 1,

respectively. In scenario III—undirected pleiotropy and

scenario IV—directed pleiotropy, the pleiotropic effect is

set at qA ¼ 1. Finally, in scenario V—dependence, the cor-

relation between individual-level responses’ errors in Equa-

tion 5 is fixed at rY ¼ 0:6.

When residual correlation is induced by shared undi-

rected (Figure 3B) and directed pleiotropy (Figure 3C),

MR2 shows a better detection of true causal exposures

than MR-BMA, which in turn improves over a basic MV-

MRmodel. As shown in Figure 4 for shared undirected plei-

otropy and Figure S3 for shared directed pleiotropy, the

degree of improvement depends on the strength of the

pleiotropic pathway effect. In this scenario, the mSSL

approach provides strong sparse solutions with many

direct causal effects set to zero. In contrast, MRCE includes

many more exposures in the model at the cost of a high

FPR. Similar results are observed when the residual correla-

tion between outcomes is induced directly through the
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Figure 3. Receiver operating character-
istic (ROC) curves in different simulated
scenarios when the correlation between ex-
posures is set at rX ¼ 0:6, averaged over
50 replicates, illustrating the performance
of different MR implementations and
multi-response multivariable methods to
distinguish between true and false causal
exposures for five simulated outcomes by
plotting the true positive rate (TPR) against
the false positive rate (FPR)
(A) Depicts baseline scenario II—confound-
ing where only the confounding effects on

the exposures and outcomes, qUX ¼ 2 and

qUY ¼ 1, respectively, are used to simulate
the data.
(B–D) Residual correlation induced by
shared undirected pleiotropy (scenario
III—undirected pleiotropy) and shared
directed pleiotropy (scenario IV—directed
pleiotropy) with pleiotropic effect set at

qA ¼ 1 are shown in (B) and (C), respec-
tively. (D) Displays the performance of the
different methods in scenario IV—depen-
dence where the correlation between indi-
vidual-level responses’ errors is fixed at
rY ¼ 0:6. Vertical bars in each ROC curve,
at specific FPR levels, indicate standard error.
For more details on the simulations setting,
see Table S2.
correlation between individual-level responses’ errors

(Figure 3D) with the degree of improvement depending

on the level of correlation (Figure S6). For these scenarios,

the corresponding area under the ROC curve (AUC) along

with standard deviation across 50 replicates is provided in

Table 1. When a pleiotropic pathway is simulated, the rela-

tive gain compared with one outcome at a time MR

methods, i.e., MV-MR and MR-BMA, is around 7.15%

and 4.45%, respectively, while it decreases to 2.37% and

1.71% when dependence is simulated. The relative gain

is also marked with respect to mLLS and small compared

with MRCE due to the opposite sparse Lasso solutions of

the two methods, conservative and liberal, respectively.

The AUCs of all simulated scenarios across the full range

of open parameters are reported in Tables S3–S6.

Next, we compare methods according to their perfor-

mance in estimating the direct causal effect strength.

This is evaluated by the sum of squared errors (SSEs) pre-

sented in Table 2 and Figures S7–S11. As can be seen

from Table 2, all methods show a comparable performance

with negligible SSEs in scenario I—null when there are no

causal exposures. In the other scenarios, when there is cor-

relation between the exposures, the largest SSE is consis-

tently seen for the MV-MR approach. This is in keeping

with other simulation studies15 that have shown that

MV-MR is unbiased but suffers from large variance. MR2

has almost everywhere the lowest SSE compared with alter-
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native methods as well as the lowest

standard deviation across 50 replicates.

The largest improvement with respect
to MR-BMA is in scenario III—undirected pleiotropy and

scenario IV—directed pleiotropy when the summary-level

outcomes are correlated by a shared pleiotropic pathway.

The multi-response implementations MRCE and mSSL

perform roughly as MR-BMA in terms of SSEs but suffer

either from too little (mSSL) or too much (MRCE) sparsity,

which biases the direct causal effect estimates. Notably,

MR-BMA performs better than both MRCE and mSSL in

scenario V—dependence across all ranges of open parame-

ters (Table S11) because the two multi-response multivari-

able methods are not able to identify the simulated

correlation pattern between the responses’ errors, thus de-

grading the estimation of the direct causal effects. Instead,

MR2 can detect it, resulting in the lowest SSE across the full

range of open parameters.

We also assess the ability of MR2 to detect shared and

distinct direct causal effects. To this aim, we calculate the

proportion of significant causal effects associated with

either single or multiple outcomes in the same scenarios

presented in Tables 1 and 2, where the correlation between

exposures is fixed at rX ¼ 0:6. For a fair comparison, we fix

the type I error to be the same in all the methods, and, in

particular, we set it at the level detected by mSSL given its

sparse Lasso solutions with a low FPR. Specifically, we

selected the threshold of Benjamini-Hochberg FDR proced-

ure53 for MV-MR and mPPI for MR-BMA and MR2, respec-

tively, to match the number of false positives detected by
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Figure 4. Receiver operating characteristic (ROC) curves for different levels of the pleiotropic pathway effect qA and when the cor-
relation between exposures is set at rX ¼ 0:6, averaged over 50 replicates, illustrating the performance of different MR implemen-
tations and multi-response statistical methods to distinguish between true and false causal exposures for five simulated outcomes by
plotting the true positive rate (TPR) against the false positive rate (FPR)
Pleiotropic pathway effect varies from (A)–(F) with values qA ¼ f0:25;0:5;0:75;1;1:5;2g. Confounding effects on the exposures and out-
comes are fixed at qUX ¼ 2 and qUY ¼ 1, respectively. Vertical bars in each ROC curve, at specific FPR levels, indicate standard error.
mSSL. This was not possible for MRCE given the fixed solu-

tion of the multiple responses Lasso. Table S12 shows the

power of the methods considered. MR2 is the most power-

ful method to detect distinct direct causal effects, which is

also the most likely simulated case (on average 37.3% of all

exposure-response combinations), across all simulated sce-

narios. When the residual correlation between summary-

level outcomes is simulated (scenario III—undirected plei-

otropy, scenario IV—directed pleiotropy, and scenario

V—dependence), MR2 is also the most powerful method

to detect shared direct causal effects. This is apparent

when two and three shared direct causal effects are simu-

lated. Together they account for 95% of all possible simu-

lated shared cases. There is a clear advantage over one-
The Americ
response-at-a-time MR methods and less gain with respect

to alternative multi-response methods as the number of

the shared direct causal effects increases. When four out-

comes are associated with the same risk factor, the limited

number of simulated cases may not be large enough to

discriminate between the power of MR2 and alternative

multi-response methods. Similar results are also obtained

for different levels of correlation between individual-level

exposures (data not shown).

Finally, results do not change much if the number of

raw-level individuals is decreased toN ¼ 20; 000, of which

half is used to generate the summary-level genetic associa-

tions for the exposure and half for the outcomes, as well as

if in the simulation study the proportion of variance
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Table 1. Area under the curve (AUC) in different simulated
scenarioswhen thecorrelationbetweenexposures is set at rX ¼ 0:6

Scenario II Scenario III Scenario IV Scenario V

Confounding
Undirected
pleiotropy

Directed
pleiotropy Dependence

MV-MR 0.922 (0.040) 0.850 (0.059) 0.857 (0.057) 0.930 (0.037)

MR-
BMA

0.932 (0.034) 0.875 (0.050) 0.876 (0.058) 0.936 (0.032)

MRCE 0.926 (0.035) 0.896 (0.046) 0.904 (0.048) 0.932 (0.037)

mSSL 0.876 (0.044) 0.834 (0.068) 0.840 (0.055) 0.869 (0.067)

MR2 0.939* (0.033) 0.912* (0.042) 0.917* (0.043) 0.952* (0.031)

The ability to distinguish between true and false causal exposures is evaluated
by the area under the ROC curve averaged over 50 replicates with standard de-
viation across 50 replicates in brackets. In baseline scenario II—confounding,
only the confounding effects on the exposures and outcomes, qUX ¼ 2 and
qUY ¼ 1, respectively, are used to induce residual correlation between the re-
sponses. Residual correlation induced by shared undirected pleiotropy and
shared directed pleiotropy with pleiotropic effect qA ¼ 1 are presented in
scenario III—undirected pleiotropy and scenario IV—directed pleiotropy,
respectively. In scenario IV—dependence, outcomes are simulated with the
correlation between individual-level responses’ errors fixed at rY ¼ 0:6. Best
results are denoted with an asterisk. For more details on the simulations setting,
see Table S2.
explained to generate the outcomes from the exposures

is decreased to hX ¼ 0:05. For a visual comparison,

interested readers can contrast Figure 4 when N ¼
100;000 and hX ¼ 0:10 with Figures S4 and S5 when

N ¼ 20;000 and hX ¼ 0:10, and when N ¼ 100;000

and hX ¼ 0:05, respectively.

Cardiometabolic exposures for cardiovascular diseases

For the first real application example, as CVDs, we consider

AF, CES, CAD, HF, and PAD. Importantly, the summary-

level genetic associations for PAD were derived from the

Million Veteran Program, and there is no overlap in sam-

ples with the other responses, except for CES (data source:

GIGASTROKE Consortium þ Global Biobanks [including

UK Biobank and Million Veteran Program]). Common

polygenic exposures were selected according to the Na-

tional Health Service guidelines on causes for CVD website

(https://www.nhs.uk/conditions/coronary-heart-disease/

causes/; last reviewed on the March 10, 2020). For high

cholesterol, we include five major lipoprotein-related

traits (apolipoprotein A1 [ApoA], apolipoprotein B

[ApoB], high-density lipoprotein [HDL], low-density lipo-

protein [LDL], and triglycerides [TGs]). Obesity is

measured by body mass index (BMI); exercising regularly

(moderate-to-vigorous intensity exercises during leisure

time) is measured by physical activity (PA), defined by

moderate-to-vigorous intensity exercises during leisure

time; and high blood pressure is measured by systolic

blood pressure (SBP). We also include a lifetime smoking

index (SMOKING), a composite of smoking initiation,

heaviness, duration, and cessation, and type 2 diabetes

(T2D) as exposures. Given the strong epidemiological,

genetical, and causal relationships between these expo-

sures, an MV-MR design is necessary to account for po-

tential horizontal pleiotropy and to facilitate selection
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of likely causal exposures. Genetic associations with ex-

posures and outcomes are derived from publicly available

summary-level data; see Table S13 for an overview of the

data sources.

IVW is performed before the analysis for all outcomes

and exposures using weights derived jointly from all re-

sponses, as described in appendix A. Moreover, the sum-

mary-level genetic associations with the exposures are

standardized before the analysis. This allows us to interpret

and compare the estimated exposures effect size for each

outcome and, more importantly, across outcomes. For a

complete description of the pre-processing and IV selec-

tion steps, we refer to supplemental information. Briefly,

we select n ¼ 1;540 independent genetic variants associ-

ated with any of the ten exposures as IVs after clumping.

Results are obtained after removing outliers or high-

leverage and influential observations using scaled CPO

and fitting the proposed model on the remaining

n ¼ 1;533 IVs (see Figure S10).

MR2 identifies several exposures shared among CVDs, as

highlighted in Figures 5A and 5B, which show the mPPI

and the posterior mean direct effect sizes (95% CI) for

each exposure-outcome combination, respectively. Signifi-

cant mPPIs and corresponding direct effect estimates are

selected, controlling FDR at 5% (see appendix A), which

corresponds to mPPIs R0:77 (Figure S11A). For clarity of

presentation, mPPIs and direct effect sizes for non-selected

outcome-exposure pairs are not plotted.

Results provided by MR2 can be read in two different

ways: a traditional ‘‘vertical’’ way where, for each

outcome, the significant exposures are highlighted. For

instance, CAD has four significant exposures, i.e., ApoB,

SBP, T2D, and SMOKING in order of importance by look-

ing at the posterior mean direct effect estimates. PAD and

HF have the same ones, although in a different order. On

the other hand, genetically predicted levels of SBP and

BMI are associated with AF, and genetically predicted

levels of SBP and risk of T2D are associated with CES,

respectively.

The main feature of the proposed methodology is that

it allows reading, interpreting, and comparing the results

also ‘‘horizontally’’ across outcomes. For instance, ApoB

shows the strongest risk-increasing effect on CAD among

all exposure-outcome combinations with a posterior

mean direct causal effect of 0.48. Moreover, it is also

selected for PAD with halved effect estimate (0.23) and

around four times lower risk increase for HF (0.11). Simi-

larly, the jPPI can be interpreted as the relevance of an

exposure for a group of outcomes. For instance, ApoB

has a strong jPPI of 0.78 to be jointly causal for CAD,

PAD, and HF (Figure S11C). Taken together, these find-

ings extend the results of a previous study, which found

ApoB as a shared exposure for CAD and PAD17 and for

the first time implicates a likely causal role of ApoB

also for HF.

MR2 also provides a more rigorous statistical control of

the null hypothesis (no causal effects) because it takes
6, 2023
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Table 2. Sum of squared errors (SSEs) in different simulated
scenarioswhen thecorrelationbetweenexposures is set at rX ¼ 0:6

Scenario I Scenario II Scenario III Scenario IV Scenario V

Null Confounding
Undirected
pleiotropy

Directed
pleiotropy Dependence

MV-
MR

0.001
(< 0.001)

1.246
(0.490)

3.869
(1.502)

3.613
(1.409)

1.200
(0.464)

MR-
BMA

0.000*
(< 0.001)

0.673
(0.302)

1.714
(1.036)

1.508
(0.663)

0.700
(0.348)

MRCE 0.001
(< 0.001)

0.904
(0.516)

1.434
(0.877)

1.172
(0.618)

0.849
(0.423)

mSSL 0.000*
(< 0.001)

0.881
(0.374)

1.104
(0.790)

1.050
(0.700)

0.891
(1.167)

MR2 0.000*
(< 0.001)

0.567*
(0.269)

0.858*
(0.722)

0.821*
(0.681)

0.521*
(0.278)

The quality of the direct causal effect estimation is evaluated by sum of squared
errors (SSEs), averaged over 50 replicates, with standard deviation across 50
replicates in brackets. Scenario I—null is simulated with the correlation be-
tween individual-level responses’ errors fixed at rY ¼ 0:6. In baseline scenario
II—confounding, only the confounding effects on the exposures and out-
comes, qUX ¼ 2 and qUY ¼ 1, respectively, are used to induce residual correla-
tion between the responses. Residual correlation induced by shared undirected
pleiotropy and shared directed pleiotropy with pleiotropic effect qA ¼ 1 are
presented in scenario III—undirected pleiotropy and scenario IV—directed
pleiotropy, respectively. In scenario IV—dependence, outcomes are
simulated with the correlation between individual-level responses’ errors fixed
at rY ¼ 0:6. Best results are denoted with an asterisk. For more details on the
simulations setting, see Table S2.
into account both the conditional independence among

exposures (multivariable) and across responses (multi-

trait). For example, conditional on ApoB, there is no evi-

dence for any other major lipoprotein-related trait to

have a likely causal role for any outcome, and conditional

on CAD, PAD, and HF, there is no evidence for ApoB on

any other outcome. It is an important positive control

that MR2 selects ApoB as the only lipid trait for CAD. Pre-

vious studies using genetic evidence and MV-MR

models17,36,54–56 have shown that ApoB, representing the

total number of hepatic-derived atherogenic lipoprotein

particles, is the most likely causal lipid determinant of

CAD, and the evidence for LDL is attenuated toward the

null when accounting for ApoB.

A second example regarding the ability of MR2 to disen-

tangle complex causal relationships and advance cardio-

vascular domain knowledge is related to SBP. SBP is shown

to increase the risk for all five CVDs considered, with a sub-

stantial jPPI of 0.77 for all five outcomes. However, SBP has

the strongest posterior mean direct effect on CAD (0.46)

and then it decreases steadily across the other responses

(PAD [0.26], HF [0.24], AF [0.2], and CES [0.13]), suggesting

that SBP lowering may not be a broad therapeutic target (as

already shown in randomized clinical trials, [RCTs]) or it

would require potent SBP lowering tomeaningfully impact

(in increasing order) HF, AF, and CES at a population level.

Similar considerations can be extended to other exposures

selected.

Almost all significant exposures have a large causal effect

on CAD and PAD but much lower on HF, AF, and CES,

except BMI on HF and AF. Therefore, it seems plausible
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that these traditional cardiovascular exposures are not

able to fully describe the disease etiology of HF and, in

particular, AF and CES. In turn, these results suggest that

there may be other exposures not considered here as the

main causes of these diseases. In contrast, other exposures

included in this analysis, such as PA, that although consid-

ered an important exposure in medical practice (NHS

guidelines), conditionally on all the others, are not signif-

icant for any CVD. This suggests that beneficial effects of

PA on these outcomes is likely mediated by the other tradi-

tional cardiometabolic risk factors.

MR2 also acknowledges residual correlation among sum-

mary-level responses, which is not accounted for by the

selected exposures as shown in Figures 5C–5E, which de-

pict the ePPI, the indirect graph estimated by using the

selected ePPIs, and the posterior mean (95% CI) of the par-

tial correlations between outcomes, respectively. Signifi-

cant ePPIs and corresponding partial correlation are

selected controlling FDR at 5%, which corresponds to

ePPIs R0:78 (see Figure S11B).

Significant residual dependence between the outcomes

not explained by the exposures is identified between CAD

and HF and between CAD and PADwith summary-level re-

sidual partial correlation of 0.26 and 0.25, respectively, re-

flecting known vertical and horizontal pleiotropy of CAD

being a likely cause of HF18,19 and horizontal pleiotropy

between CAD and PAD. In contrast, PAD and HF show sig-

nificant but four times lower-level residual partial correla-

tion (0.06). Other important residual partial correlations

highlight the disease pathway HF-AF-CES, as illustrated

in Figure 5C. Compared with the empirical partial correla-

tions between summary-level genetic associations with

the responses without conditioning on the exposures

(Figure S8B), the genetically predicted levels of exposures

are able to explain around 32% and 21% of the summary-

level partial correlation between CAD and PAD and

between CAD and HF, respectively, and almost 62% of the

residual correlation between PAD and HF. However, not

all exposures contribute in the sameway to this remarkable

decrease. ApoB seems not as important (jPPI ¼ 0:8) as the

other associated exposures (jPPI > 0:96) to explain the

dependence betweenPADandHF (see Figure S11C). Finally,

a little reduction is observed for the disease pathwayHF-AF-

CES, supporting the earlier hypothesis that other important

shared exposures may be missing from the proposed MR

model. However, as mentioned earlier and shown in Equa-

tion 8, we cannot rule out that, besides shared pleiotropy,

some non-genetic factors may be responsible for the

observed residual correlation.

We conclude this section comparing the results obtained

by MR2 with existing MV-MR methods (see Table S1),

including MV-MR-Egger28 to confirm that, when dealing

with multiple outcomes, there are different assumptions

regarding the effect of the unmeasured pleiotropy and

MV-MR-Egger may not able to detect it.

MV-MR is not able to identify any lipid exposure for

any outcome considered except for TGs for AF at 5%
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Figure 5. Results of the multivariable multi-response MR2 model in application example 1 on common exposures for cardiovascular
disease outcomes (CVDs)
(A) Marginal posterior probability of inclusion (mPPI) of each exposure (y axis) against each outcome (x axis). Selected mPPIs for each
exposure indicate whether an exposure is shared or distinct among multiple CVDs.
(B) Posterior mean (95% credible interval) of the direct causal effect of each exposure (y axis) against each outcome (x axis). For clarity of
presentation, mPPIs and estimated direct effect sizes for non-selected outcome-exposure pairs (mPPI < 0:77 at 5% FDR) are not plotted.
(C) Edge posterior probability of inclusion (ePPI) among outcomes. Only the upper triangular matrix is depicted.
(D) Undirected graph estimated by using the selected ePPIs showing the residual dependence between outcomes not explained by the
exposures.
(E) Posterior mean (95% credible interval) of the partial correlations between outcomes. For clarity of presentation, ePPIs and partial cor-
relations for non-selected outcomes pairs (ePPI < 0:78 at 5% FDR) are not plotted. Only the upper triangular matrix is depicted.
Benjamini-Hochberg FDR (Table S14). MV-MR is not de-

signed for the analysis of many exposures that are highly

correlated.15 Indeed, multi-collinearity reduces the preci-

sion of the estimated direct causal effects, which

weakens the statistical power of the MV-MR model.

Due to the strong correlation between genetic associa-

tions with lipid exposures (Figure S8C), MV-MR misses

ApoB as likely causal exposure for CAD, PAD, and HF.

Consequently, an intersection-union test57 will miss

ApoB as an important risk factor jointly for CAD, PAD,

and HF in contrast with MR2, which assigns to ApoB a
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jPPI ¼ 0:78 for this group of responses. Similar results

in terms of exposures selected and effect sizes are seen

when MV-MR-Egger is used, with a significant unmea-

sured horizontal pleiotropy identified only in CES

(Table S15). Note that neither MV-MR nor MV-MR-

Egger can provide a clear picture of the effect size of

SBP across disease outcomes, with much larger effect es-

timates and a narrow difference between the largest

(CAD) and the smallest (CES).

MR-BMA is not able to draw a clear distinction between

the exposures selected and excluded, as shown in
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Table S16. This is exemplified in CAD where the exposures

included depend on the multiple testing correction

applied. When using a strict Bonferroni threshold, MR-

BMA identifies, in decreasing order, SBP, SMOKING, T2D,

and ApoB with 0.66 as the smallest mPPI, while with a

more lenient FDR threshold HDL, LDL, and BMI are also

included with the smallest mPPI of 0.29. Regarding the

other outcomes, the order of importance of the exposures

is different from MR2 with remarkably larger model-aver-

aged causal effect estimates (MACEs) for PAD and HF.

MR-BMA suffers the same problems as MV-MR and MV-

MR-Egger regarding the magnitude of the direct causal ef-

fect estimates of SBP on the outcomes, demonstrating

that this problem affects all single-trait methods regardless

of their implementation. Interestingly, MR-BMA does not

identify T2D as an exposure for CES, which is instead de-

tected by MR2, MV-MR, and MV-MR-Egger, favoring in

contrast BMI.

Lipidomic risk factors for cardiovascular diseases

The first application example prioritizes ApoB as a

shared exposure for three out of five CVDs. Moreover,

conditional on ApoB, no other major lipoprotein-related

trait has a likely causal role for any outcome. Our next

step is to better understand molecular determinants

of ApoB by considering ten ApoB-containing lipopro-

tein subfractions of different sizes, ranging from small-

large to extra-extra-large, very-large-density lipopro-

teins, measured using nuclear magnetic resonance

(NMR) spectroscopy.58 In particular, we are considering

S.LDL.Ps, small large-density lipoprotein particles;

M.LDL.Ps, medium large-density lipoprotein parti-

cles; L.LDL.Ps, large large-density lipoprotein parti-

cles; IDL.Ps, intermediate-density lipoprotein particles;

XS.VLDL.Ps, extra-small very-large-density lipoprotein

particles; S.VLDL.Ps, small very-large-density lipopro-

tein particles; M.VLDL.Ps, medium very-large-density li-

poprotein particles; L.VLDL.Ps: large very-large-density

lipoprotein particles; XL.VLDL.Ps: extra-large very-

large-density lipoprotein particles; and XXL.VLDL.Ps,

extra-extra-large very-large-density lipoprotein particles.

Identification of specific subfractions to different CVD

manifestations can help our understanding of the path-

ophysiology of the disease and provide insights into

pathophysiology, molecular mechanisms, risk stratifica-

tion, and treatment.17 However, performing MR using

metabolites as exposures is a difficult task given the

strong correlation and intricate dependence that exist

between them (see Figures S13B and S13C).

For a description of the pre-processing, including IVW

and instrument selection steps, we refer to supplemental

information. Briefly, given the prior hypothesis of ApoB

as the leading exposure for CVDs, we select genetic vari-

ants associated with ApoB in UK Biobank at genome-

wide significance, resulting in n ¼ 148 IVs after clumping.

This three-sample MR design is known to reduce bias due

to winner’s curse bias.59 Results are obtained after
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removing outliers or high-leverage and influential observa-

tions using scaled CPO and fitting the proposed model on

n ¼ 141 IVs (see Figure S15).

When lipidomic risk factors are used for CVDs, results ob-

tained by MR2 are very sparse with few significant direct

causal effects at 5% FDR (mPPI < 0:29). Moreover, the sep-

arationbetween significant andnon-significant causal asso-

ciations is difficult (see Figure S16A). The proposed model

identifies XS.VLDL.Ps as a shared exposure for both PAD

and HF with mPPIs of 0.32 and 0.31, respectively, and a

jPPI of 0.14 (Figure S16C) with direct causal effects of 0.15

and 0.13 (Figures 6A and 6B). Distinct exposures are de-

tected for CAD, where smaller particle sizes, IDL.Ps and

L.LDL.Ps, are prioritized with mPPIs of 0.41 and 0.59 and

direct causal effects of 0.4 and0.63, respectively.No subfrac-

tions are identified for the other disease outcomes.

In contrast with the previous application example, when

dealing with molecular exposures, CIs are large, confirm-

ing the complexity of the analysis. For the strongest signal,

L.LDL.P-CAD combination, the 95% CI ranges between

0 and 1.41. This is due to a combined effect of multi-collin-

earity (although the designed independent prior in Equa-

tion 13 protects against it; see appendix A) and the small

number of genetic variants associated with ApoB in UK

Biobank. Thus, while L.LDL.Ps (or IDL.Ps) could be a likely

cause for CAD, the large CI suggests caution.

As expected, there is a substantial residual partial correla-

tion in almost all combinations of summary-level out-

comes, as depicted in Figures 6C and 6D, highlighting

the existence of non-lipoprotein pleiotropic pathways be-

tween these traits not intercepted by the selected expo-

sures (SBP, BMI, SMOKING, T2D pathways are missing by

design) and, possibly, the effects of non-genetic factors

on the responses.

When high levels of residual correlation are present and

cannot be ‘‘explained away’’ or be ‘‘accounted for’’ by the

exposures, the advantage of an MR multi-response model

to reduce false positives is evident. For instance, MR-BMA

(Table S19) identifies genetically predicted levels of

L.VLDL.Ps to be associated also with AF, possibly because

AF and CAD are correlated at the summary level

(Figure S13). Similarly, the causal effect of S.VLDL.Ps on

AF is likely a false positive by looking at its small MACE.

MV-MR is not able to identify any exposure for any

outcome that is significant after multiple testing correction

(Table S17), even with a less conservative Benjamini-

Hochberg FDR procedure, demonstrating that standard

methodology is not adapted to handle highly correlated

exposure data. Similar conclusions can be extended to

MV-MR-Egger (Table S18) with no significant intercept

identified for any outcome.
Discussion

Here, we present MR2, an MR design to analyze multiple

related outcomes in a joint model and to define shared
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Figure 6. Results of the multi-response MR (MR2) model in application example 2 on molecular exposures for cardiovascular disease
outcomes (CVDs)
(A) Marginal posterior probability of inclusion (mPPI) of each exposure (y axis) against each outcome (x axis). Selected mPPIs for each
exposure indicate whether an exposure is shared or distinct among multiple CVDs.
(B) Posterior mean (95% credible interval) of the direct causal effect of each exposure (y axis) against each outcome (x axis). For clarity of
presentation, mPPIs and estimated effect sizes for non-selected outcome-exposure pairs (mPPI < 0:29 at 5% FDR) are not plotted.
(C) Edge posterior probability of inclusion (ePPI) among outcomes. Only the upper triangular matrix is depicted.
(D) Posterior mean (95% credible interval) of the partial correlations between outcomes. For clarity of presentation, ePPIs and partial
correlations for non-selected outcomes pairs (ePPI < 0:85 at 5% FDR) are not plotted. Only the upper triangular matrix is depicted.
and distinct causes of related health outcomes. Based on a

Bayesian copula regression model, MR2 detects causal ef-

fects while estimating the residual correlation between

MV-MR models for each outcome and vice versa. Thus,

the proposed model makes the estimated causal effects

robust to the residual correlation induced by shared pleiot-

ropy. MR2 is formulated on the summary level where the

genetic variants used as IVs are considered observations.

Residual correlation in the proposed model is conse-

quently interpreted as the correlation between summary-

level outcomes measured on the IVs not accounted for
1190 The American Journal of Human Genetics 110, 1177–1199, July
by the genetic associations with the exposures. We show,

both theoretically and in a simulation example, how un-

measured shared pleiotropy induces residual correlation

between summary-level genetic associations with the

outcomes.

While residual diagnostics is an important strategy in

summary-level univariable MRmodels to detect horizontal

pleiotropy51,60 affecting one outcome, only multi-

response MR models, like MR2, can detect how much

cross-variation between outcomes is unexplained after ac-

counting for the exposures of interest. We show in an
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extensive simulation study that MR2 has more power to

detect true causal exposures, yields a better separation be-

tween causal and non-causal exposures, and improves

the accuracy of the effect estimation over existing MV-

MR methods that consider only one outcome at a time,

such as MV-MR and MR-BMA. Moreover, MR2 demon-

strates more power when an exposure is causal for more

than one outcome.

Thanks to the formulation as a joint multi-response

model, MR2 can distinguish between shared and distinct

exposures for the disease, which is essential to define inter-

ventions that reduce the risk of more than one disease. We

illustrate this in our application examples considering five

CVDs. Multi-response models like MR2 are a necessary

contribution to better understanding the causes of multi-

morbidity. In particular, the discovery of shared and

distinct causes of diseases may help define interventions

with co-benefits, i.e., interventions that reduce the risk of

more than one outcome. For instance, in our first applica-

tion example, we have identified ApoB as likely causal

exposure for CAD, PAD, and HF even when accounting

for other lipoprotein measures including LDL cholesterol.

These results of the applied analyses, considering effects

of cardiometabolic risk factors on cardiovascular disease

subtypes, are consistent with the existing epidemiological

literature.61 Cholesterol is integral to the development of

atherosclerosis and penetrates the arterial wall within

those ApoB-containing lipoprotein particles that are small

enough to pass to the tunica intima from the circulation;

these particles include small VLDL, IDL, and LDL particles

as well as lipoprotein(a). Taken together, this body of evi-

dence suggests that the lipid content of the particles is

secondary to ApoB.55 However, these results do not inval-

idate LDL cholesterol as a causal risk factor for the cardio-

vascular outcomes, as LDL particles also contain an ApoB

molecule.55

While ApoB is an established exposure for CAD and

PAD based on genetic evidence,17,36,56 we demonstrate

that there is an independent effect of ApoB also on HF.

This has the following two implications: for one, existing

lipid-lowering therapies should be evaluated in terms of

their impact on reducing ApoB, and second, future lipid-

lowering therapies may be better tailored to reduce

ApoB concentration. Moreover, this highlights the impor-

tance of including various disease endpoints in RCTs

because the intervention may have benefits not just for

the main disease of interest but also for other related

diseases.

In our application examples, we discover residual corre-

lation between CAD and PAD and between CAD and HF,

as well as between the disease pathway HF-AF-CES, which

was not accounted for by either common cardiometabolic

disease exposure, including lipid traits, blood pressure,

and obesity, or by lipid characteristics measured using

NMR spectroscopy. Important contributors to the residual

correlation when considering common cardiovascular dis-

ease exposures are molecular pathways, which are not ac-
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counted for when considering traits like ApoB or obesity.

These pathways, such as inflammation or stress response,

are highly polygenic with hundreds of independent re-

gions in the genome associated with them. Another

source of residual correlation between outcomes is the

consequence of non-genetic factors that act exclusively

on the responses. Another possible source of the observed

residual correlation can be mediation, where genetic pre-

disposition for one outcome may cause another, as may

be the case for CAD and HF, as suggested, for example,

by the Framingham Heart Study.19 Finally, sample overlap

between the summary-level data of the outcomes may

contribute to residual correlation, but it is not a necessary

condition. As we show in extension of the simulation

study (Figure S7) and we observed in the application ex-

amples, a residual correlation exists even if responses’

samples are non-overlapping. For example, we detect a

substantial residual correlation between CAD, which was

derived from the CARDIOGRAM Consortium and UK Bio-

bank,62 and PAD, which was derived from the Million Vet-

eran Program,63 where there is no overlap in the samples

between these two outcomes. Sample overlap is a very

common feature when working with summary-level

data that are commonly built by integrating all available

public data resources and, in particular, from large-scale

biobanks.30

There are also limitations to our work. First of all, weak

instrument bias is toward the null in univariable MR64

but can go toward any direction for MV-MR depending

on the correlation between exposures.15 A necessary

future extension of the approach is to make MR2 more

robust concerning weak instruments.65 Second, special

care needs to be taken when selecting genetic variants

as IVs. Importantly, the interpretation of any MR model

is conditional on the IVs selected. For example, in our

second data example, we have selected genetic variants

based on their association with ApoB, which we identi-

fied in our primary analysis. Therefore, results need to

be interpreted considering this choice and may differ

when re-selecting, for example, based on LDL choles-

terol. In practice, we recommend following the guide-

lines for reporting MR studies66,67 for further details.

Similarly, dedicated domain knowledge is necessary

when deciding which exposures to include and whether

a trait is more suitable as exposure or as outcomes. For

example, in the first application example, we include ge-

netic liability to T2D as an exposure because diabetes is

considered a risk factor for CAD in the NHS guidelines.

Yet, being a case-control phenotype, it may be consid-

ered an outcome as well. Regarding the required number

of IVs, MR2 can only be used when there are enough IVs

that allow the estimation of the main parameters of in-

terest. As a rule of thumb, for each response, the number

of IVs n should be greater than the number of exposures

p. Moreover, n should be also large enough to permit

the estimation of dkjY, k ¼ 1;.; q, and the lower trian-

gular matrix of RjY. A conservative choice would be
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data from cohorts with similar ethnicity. All other param-

eters are specific for trait Y and do not depend on the ge-

netic variant i and, consequently, are not relevant when

weighting individually the genetic variants.

When considering q outcomes, we propose to use as

weight ui, i ¼ 1;.; n, the mean of the q standard errors

of the genetic associations with each outcome, i.e., ui ¼Pq
k¼1se ðbYik

Þ=q, which essentially, under the hypothesis

of cohorts with similar ethnicity, will result in weighting

by the average of the inverse of the genetic variant stan-

dard errors defined by f2MAFið1 � MAFiÞg1=2.

Bayesian multi-response MR

An alternative way to the SUR model in Equation 3 to

model jointly the q-related outcomes is to describe their

dependence through a copula function. A q-variate func-

tion Cðu1;.;uqÞ, where C : ½0;1�q/½0;1�, is called a copula

if it is a continuous distribution function and each mar-

ginal is a uniform distribution function on [0,1]. If

FY1
ð $Þ;.; FYq

ð $Þ are the marginal cumulative density func-

tions (cdfs) of the random variables Y1;.;Yq, their joint cdf

can be described through a specific copula function C as

FY1 ;.;Yq

�
y1;.; yq

�
¼ C

n
FY1

�
y1
�
;.; FYq

�
yq
�o

:

The Gaussian copula C is described through the function

C
�
u1;.; uq;R

� ¼ Fq

�
F�1ðu1Þ;.;F�1

�
uq

�
;R

�
;

whereFqð$;RÞ is the cdf of a q-variate Gaussian distribution

with zeromean vector and correlationmatrix R andF�1ð $Þ
is the inverse of the univariate standard Gaussian cdf. If all

the marginal distributions are continuous, the matrix R

can be interpreted as the correlationmatrix of the elements
n > q3ðpþ1Þ þ q3ðq � 1Þ= 2 with q the number of re-

sponses. However, given the sparseness assumption, for

each response, the number of important direct causal ef-

fects is much smaller than p, and the number of non-zero

cells in RjY is smaller than qðq � 1Þ= 2. In addition, in

real applications, the required number of IVs should

not pose any problems when considering polygenic ex-

posures because it is usually much larger than the whole

number of exposures and responses.

The development of multi-response MR models on the

individual level is another important future direction

given the availability of large-scale biobanks with sufficient

follow-up time allowing for the development of multiple

disease outcomes. Such an analysis would let us study

the presence of more than one disease in the same individ-

ual instead of analyzing the shared genetic basis of the out-

comes as in our current work.

While our study has been motivated to detect common

causal exposures for multi-morbid health conditions,

MR2 can be applied to any type of related outcomes. Poten-

tial application examples may include molecular bio-

markers as outcomes; for example, a recent study has

investigated the effect of sleep deprivation on the metabo-

lome68 or of morning cortisol levels on inflammatory cyto-

kines.69 Similarly, MR2 can be used to define exposures for

heritable imaging phenotypes measured on the brain,70

heart,71 or body composition.72

In conclusion, we present here MR2, the first summary-

level MR method that can model multiple outcomes

jointly and account for residual correlation between the

outcomes. Moreover, MR2 can distinguish between shared

or distinct causes of diseases, enhancing our understand-

ing regarding which interventions can target more than

one disease outcome.
Appendix A

IVW for multiple responses

When considering one outcome at a time, the univariable

MR model in Equation 1 and MV-MR model in Equation 2

weight a genetic variant i ¼ 1;.;n, used as IV, by the stan-

dard error of the genetic association with the outcome

seðbYi
Þ. These weights are also known as the ‘‘first-order

weights.’’73

In order to generalize the IVW formultiple outcomes, we

note that the standard error of the genetic association with

a binary trait Y of a genetic variant i, with minor allele fre-

quency (MAF) MAFi, is
74

se
�
bYi

� ¼ fN3 prð1 � prÞ32MAFið1 � MAFiÞg�1=2
;

(Equation A1)

where pr is the percentage of cases andN is the total sample

size. In Equation A1, the only quantity that depends on

the genetic variant i is the MAF MAFi, which may be

considered as comparable when taking summary-level

of Y and zeros in its inverse imply the conditional indepen-

dence between the corresponding elements of the

responses.

The GCR model is described by the transformation

yik ¼ h�1
ik ðzikÞ; Zi�iidNqð0;RÞ; (Equation A2)

where zi1;.; ziq are realizations from Zi and

hikð $Þ ¼ F�1fFkð$; xik; qk; s2kÞg for each i ¼ 1;.; n and

k ¼ 1;.; q, xik is the p-dimensional vector of predictors

for the ith sample and the kth response, and

qk ¼ ðqk1;.; qkpÞT is a p-dimensional vector of regression

coefficients.

A detailed discussion of the Bayesian formulation of the

GCR model in Equation A2 with multiple responses of any

type is presented in ref. 40. In the following, we summarize

the main aspects of the proposed multi-response MV-MR

model when all margins are univariate Gaussian. Details

of the MCMC algorithm are presented in supplemental

information.

The SUR model is a special case of Equation A2 when all

margins are univariate Gaussian with mean xikqk and vari-

ance s2k and R is the correlation matrix. Thus, Equations 3

and 4 can be written in terms of a GCR model as
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bYik
¼ h� 1

ik ðzikÞ; Zi�iidNqð0;RÞ; (Equation A3)

with hikð $Þ ¼ F�1fFð $; bXi
;qk;d

2
kg or;equivalently;

bYik
¼ bXi

qk þ dkzik (Equation A4)

for each i ¼ 1;.;n and k ¼ 1;.; q and with R as in

Equation 4.

Priors specification

The selection of important exposures is achieved by utiliz-

ing a binary latent vector gk ¼ ðgk1;.;gkpÞ, k ¼ 1;.;q,

where gkj is 1 if, for the jth exposure and the kth response,

the effect estimate is different from zero and 0 otherwise.

Specifically, we assume that for each k, the effects in Equa-

tion A4 are distributed as

qkj

���gkj �
�
1 � gkj

�
d0 þgkjNð0; vÞ; j ¼ 1;.; p;

(Equation A5)

where d0 denotes a point mass at zero and v is a fixed value.

Sparsity for the selection of important exposures for the

kth response is enforced by specifying the hierarchical

structure

gkj

��pk�iidBerðpkÞ; j ¼ 1;.; p (Equation A6)

pk � Betaðak; bkÞ:

Integrating out pk in Equation A6, it is readily shown

that marginally

pðgkÞ ¼
Bðak þ jgkj; bk þ p � jgkjÞ

Bðak; bkÞ ; (Equation A7)

where Bð$; $Þ is the beta function and jgkj ¼ Pp
j¼1gkj. The

hyperparameters ak and bk can be chosen using prior infor-

mation about the average number of important exposures

associated with the kth response and its variance.

Because the GCR model in Equation A3 is defined

through the correlation matrix R, we need first to expand

R into a covariance matrix. We define the transformation

W ¼ ZD, where Z is the ðn 3 qÞ-dimensional matrix of

the Gaussian latent variables obtained by inverting

Equation A4

zik ¼ bYik
� bXi

qk

dk

and D is a q3q diagonal matrix with elements dk, k ¼ 1;.;

q. Then,

vecðWÞ � Nnqð0; In 5SÞ; (Equation A8)

where S ¼ DRD and In is a diagonal matrix of dimension n

that encodes the independence assumption among the ge-

netic variants G (achieved by pruning). In this framework,

the correlation matrix can be obtained by the inverse

transformation R ¼ D�1SD�1. We utilize the theory of

decomposable graphical models42 to perform a conjugate

analysis of the covariance structure of the model because

the hyper-inverse Wishart distribution is a conjugate

prior distribution for the covariance matrix S with respect

to the symmetric adjacency matrix G of a decomposable

graph G.
Finally, we assign the following prior structure on the

symmetric adjacency matrix G and D. Let g[ , [ ¼ 1; .;

qðq � 1Þ=2, be the binary indicator for the presence of

the [ th off-diagonal edge in the lower triangular part of

the symmetric adjacency matrix G of the decomposable

graph G. To select important elements of the inverse covari-

ance matrix, we assume the sparsity prior

g[�iidBerðpGÞ; pG � Unifð0;1Þ; [ ¼ 1;.; qðq � 1Þ =2:
(Equation A9)

We denote by pðGÞ the induced marginal prior on the

symmetric adjacency matrix and define the joint distribu-

tion of D, R, and G as pðD;R;GÞ ¼ pðDjRÞpðRjGÞpðGÞ, where

dk
��rkk � IGam

�ðqþ1Þ	2; �R�1
�
kk

	
2
�
; k ¼ 1;.; q;

(Equation A10)

with ðR�1Þkk the kth diagonal element of R�1.75

Outliers, high-leverage and influential observations

Detection of outliers is performed by using the CPO52 to

detect genetic variants Gi, i ¼ 1;.; n, as outliers in the

multi-response MR model. The CPO is also known as the

leave-one-out cross-validation predictive density,76 which,

for the multi-response MR model in Equation A3, is

defined as

p
�
bYi

��bY� i
; bX

� ¼
Z

p
�
bYi

��bXi
;J

�
p
�
J
��bY� i

; bX� i

�
dJ

¼ EJjbY� i
;bX� i

n
p
�
bYi

��bXi
;J

��1
o�1

;

where (bYi
, bXi

) and (bY� i
, bX� i

) are the IVW-standardized

summary-level associations with the genetic variant Gi

and all the remaining genetic variants, respectively, and

J is the whole parameter space J ¼ fG;Q;G;D;Rg with

G ¼ ðg1;.;gqÞT and Q ¼ ðq1;.; qqÞT .
The CPO describes the posterior probability of observing

the q-dimensional vector of values of bYi
when themodel is

fitted to all data except bYi
, with a larger value implying a

better fit of the model for bYi
and a very low CPO value sug-

gesting that the summary-level associations with the ge-

netic variant Gi are either an outlier or a high-leverage

and influential observation.

The CPO can be calculated by using the output of the

MCMC algorithm. Let T be the number of recorded

MCMC iterations. By considering the inverse likelihood

across T iterations, the estimated CPO for each genetic

variant Gi, i ¼ 1;.;n, is

CPOi ¼ TPT
t ¼1p

�
bYi

��bXi
JðtÞ�� 1

; (Equation A11)

where JðtÞ is tth posterior sample of J obtained from the

MCMC algorithm. Thus, the Monte Carlo estimate of the
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CPO is obtained without actually omitting ðbYi
; bXi

Þ from
the estimation of the posterior distribution ofJ and is pro-

vided by the harmonic mean of the likelihood.77

Regarding the threshold for the detection of outliers or

high-leverage and influential observations, log-inverse

CPOs larger than 40 can be considered as possible outliers

and higher than 70 as extreme values.78 Congdon79 rec-

ommends scaling CPOs by dividing each one by its indi-

vidual maximum (likelihood) recorded across the MCMC

iterations and considering observations with scaled CPOs

under 0.01 to be outliers or high-leverage and influential

observations. If few CPOs are less than 0.01, the model is

considered to fit adequately.

FDR

The mPPI, which measures the strength of direct causal as-

sociation between each exposure-response combination,

and the ePPI, which describes the strength of the residual

conditional correlation between each responses’ pair, are

utilized to select significant exposure-response combina-

tions and important pairs of dependent responses.

Let

mPPIh � p0Betaða0; b0Þþp1Betaða1; b1Þ; h ¼ 1;.; pq;

(Equation A12)

be the two-component mixture model that classifies the

mPPI for each exposure-response combination into the

null ðH0Þ or the alternative distribution ðH1Þ parameterized

as beta densities with parameters ða0; b0Þ and ða1; b1Þ,
respectively, with weights p0;p1 R0 and p0 þ p1 ¼ 1.

In the real application examples, the parameters of the

mixture model in Equation A12 are estimated using the

expectation-maximization algorithm.80 The posterior

probability of allocation to the alternative hypothesis of

each mPPI is

PðmPPIhjH1Þ¼ p1BetaðmPPIh; a1; b1Þ
p0BetaðmPPIh; a0; b0Þþp1BetaðmPPIh; a1; b1Þ

¼ p
H1

h :

Finally, let fpH1

ðhÞg, h ¼ 1; .; pq, the sequence in

decreasing order of the posterior probabilities of allocation

to the alternative hypothesis of the mPPIs for each expo-

sure-response combination. Significant mPPIs are chosen

such that

arg maxh

X
h

p
H1

ðhÞ % FDR;

where FDR is the designed level.

Simulation study

Our simulation study is formulated in a summary-level MR

design, where N ¼ 100;000 independent individuals are

simulated, of which half are used to compute the genetic

associations with the exposures and half to compute the

genetic associations with the outcomes. In the following,

we indicate with the subscripts ‘‘X’’ and ‘‘Y’’ the relevant

quantities that are associated with the exposures and the

responses, respectively. For instance, NX and NY indicate

the sample size used in the genetic associations with the

exposures and the outcomes, respectively.Moreover, we as-

sume that the quantitative outcomes Yk, k ¼ 1;.; q are

measured on the same individuals NY .

In all simulation scenarios, we consider p ¼ 15 expo-

sures, q ¼ 5 outcomes, and n ¼ 100 independent genetic

variants as IVs. Genotypes for the ith genetic variant and

each individual l are simulated independently according

to a binomial distribution with MAF equal to 0.05, i.e.,

Gli�iidBinð2;0:05Þ, l ¼ 1;.; N, and i ¼ 1; .; n. Without

loss of generality, the resulting matrix of genotypes G is

split into two equally sized groups, GX and GY , of dimen-

sion NX3n and NY3n with NX ¼ NY ¼ N=2, respectively.

All genetic variants are considered with equal weights, and

thus no IVW is needed given that the same MAF at 5% is

used to simulate the genotypes.

Overall, the data-generation process consists of two

steps. In the first step, the raw data for the exposures X

and the responses Y are simulated. Then, in the second

step, summary-level data are obtained as the regression co-

efficients bXij
, i ¼ 1;.; n, j ¼ 1;.; p, from a univariable

regression in which the exposure Xj is regressed on the ge-

netic variant Gi in sample one and the regression coeffi-

cients bYik
, i ¼ 1; .; n, k ¼ 1;.; q from a univariable

regression in which the outcome Yk is regressed on the ge-

netic variant Gi in sample two. In the following, we detail

each step and how we simulate the quantities involved.

For the first stage of the simulation study, the jth expo-

sure, j ¼ 1;.;p, is generated by

Xj ¼ GXbXj
þ UXq

U
X þ εj; (Equation A13)

where GX and UX are the matrix of genotypes of the n IVs

and the confounder U measured on the same

NX ¼ 50; 000 individuals, respectively, and εj � NNX
ð0;

HXj
INX

Þ. HXj
is the jth diagonal element of the ðp 3

pÞ-dimensional matrix HX ¼ 1�hX
hX

ðGXbX þ UXq
U
X1

T
p Þ

T

ðGXbX þUXq
U
X1

T
p Þ with 1p a p-dimensional vector of ones,

bX ¼ ðbX1
;.; bXp

Þ and hX the desired level of heritability,

or how much variation G can explain in X, fixed at 10%

in all simulated scenarios.

The confounder U is drawn from a multivariate standard

Gaussiandistribution, i.e.,U � NNð0; INÞ and then split into

two equally sized vectors UX and UY with effect qUX impact-

ing all the exposures X and qUY effecting all the outcomes

Y. Their value is fixed at qUX ¼ 2 and qUY ¼ 1 inmain results.

Instrument strength depends on the degree of confound-

ing, where the average F-statistic is on average around 45

and 35 for the weakest degrees of confounding

qUX ¼ qUY ¼ 1 and for the strongest confounding effects

qUX ¼ qUY ¼ 2, respectively.

The effects bXj
of the genetic variants on the jth expo-

sure, j ¼ 1; .; p, across n IVs are drawn independently
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from a multivariate Gaussian distribution, i.e., bXj
� Nnð0;

cXInÞ, where cX is a scaling factor related to the sought

range of the simulated bX and defined as the difference be-

tween themaximum andminimumdesired value of the ef-

fect size divided by four. The range of the simulated bX is

chosen between �2 and 2 with 95% of the simulated

values within this interval. It also implies a unit variance

for the summary-level genetic associations with the

exposures.

We prepare different scenarios in which the exposures

are either independent or correlated by inducing a depen-

dence between exposures by multiplying the ðn 3

pÞ-dimensional matrix bX with the ðp 3 pÞ-dimensional

matrix DX, where DX is the Cholesky decomposition of

the Toeplitz matrix RX with r
jj� j0 j
X for the ðj; j0Þ element of

RX, j ¼ j0 ¼ 1;.; p. The matrix RX implies a tridiagonal

sparse inverse correlation matrix R�1
X . We use different

levels of correlation between the exposures, ranging from

independence to strong correlation, i.e., rX ¼ f0;0:2;
0:4;0:6; 0:8g, where rX ¼ 0:6 represents a medium correla-

tion strength.

For the second stage of the simulation study, according

to Equation 5, an outcome k, k ¼ 1;.;q, is generated on

another independent set of NY ¼ 50;000 individuals

Yk ¼ Xqk þ AqA þ UqUY þ εk; (Equation A14)

where qk is p-dimensional vector that contains the direct

causal effects of the exposures on the kth outcome, X ZX is

the ðNX 3 pÞ-dimensional matrix of exposures simulated

using Equation A13, qA and qUY are the effects of the unmea-

sured pleiotropic pathway A and the unmeasured

confounder U on the same outcome, respectively, and

εk � NNY
ð0; HYk

INY
Þ, where HYk

¼ 1�hY
hY

fðXqk þ AqAþ
UqUY ÞT ðXqk þAqA þUqUY Þg with hY the desired level of the

proportion of variance explained, fixed at 25% for all out-

comes in all simulated scenarios, except for scenario

I—null setting. We also simulate different second-level

data with various values of the pleiotropic effect on the

outcomes qA ¼ f0:25; 0:50;0:75;1:00;1:50;2:00g.
In the simulation V—dependence scenario, we induce

the correlation between the outcomes by directly con-

trolling the responses’ error correlation. Specifically, we

simulate the errors ε ¼ ðε1;.; εqÞ for all k in Equation

A14 from a multivariate Gaussian distribution with

mean vector 0 and correlation structure based on the

Toeplitz matrix RY with r
jk� k0 j
Y for the ðk; k0Þ element of

RY , k ¼ k0 ¼ 1;.; q and the level of rY chosen in the

set rY ¼ f0;0:2;0:4;0:6; 0:8g such that it induces correla-

tion between the responses’ errors

vecðεÞ � NNYqð0;HNY
5RYÞ;

where HNY
¼ hY

1�hY
diagfðXqþUqUY1

T
p ÞðXqk þ UqUY1

T
p Þ

Tg is

anNY3NY diagonal matrix with q ¼ ðq1;.; qpÞT the vector

of the direct effect estimates.

To evaluate the impact in Equation A14 of the unmea-

sured shared pleiotropy on the outcomes, we generate

the NY -dimensional vector A as follows,

A ¼ GYbA þ εA; (Equation A15)

where bA is the n-dimensional vector of genetic

associations with the unmeasured pleiotropic pathway

A drawn from a uniform distribution defined on a

range between � 2 and 2, i.e., bAi
�iidUnifð�2;2Þ, 1; .; n,

mimicking shared ’’undirected’’ pleiotropy, i.e., Al W0,

l ¼ 1;.;N. Similarly to the simulation of the exposures,

the error term in Equation A15 is simulated controlling

the level of variance explained εA � NNY
ð0; HAÞ, where

HA ¼ 1�hX

hX
diagfðGYbAÞðGYbAÞTg. Additionally, we

consider shared ‘‘directed’’ pleiotropy, where the effect

direction on the pleiotropic pathway A is drawn from a

uniform distribution defined only on a positive range be-

tween 0 and 2, i.e., bAi
�iidUnifð0;2Þ. In case of non-over-

lapping samples in the genetic associations with the out-

comes, the simulation strategy for Ak, k ¼ 1;.;q, follows

the same principles we have described earlier to induce

correlation between the exposures.

Finally, the direct causal effects qk, k ¼ 1;.;q, are drawn

independently from a multivariate Gaussian distribution,

i.e., qk � Npð0; cYIpÞ, where cY is a scaling factor related to

the sought rangeof the simulated qk anddefinedas thediffer-

ence between themaximum andminimum desired value of

the direct causal effects divided by four. For the direct causal

effects, the desired interval lies between� 2 and 2, implying

unit variance for the direct causal effects. Note that with this

choice, 70%of all direct causal effects are simulated between

ð� 1;1Þ.
In the simulation study, we include one ‘‘null’’ setting

with no direct causal effects. All other settings consider a

ðq 3 pÞ-dimensional sparse matrix of direct causal effects

Q ¼ ðq1;.; qqÞT , where 30% cells of the matrix are non-

zero and where several exposures are either shared or

distinct for the outcomes. Specifically, we select at random

the same proportion of cells in the matrix Q and assign

them the simulated values, while the other cells are set to

zero. On average, the most likely configuration is with a

distinct exposure (37.3%) followed by a shared exposure

between two outcomes (31.5%), no direct causal effects

(16.6%), and an exposure shared by more than two out-

comes (14.5%) (see Table S12 for an overview). On the

other hand, the most likely number of associated expo-

sures for each outcome is four (24.4%), five (22.5%), three

(18%), six (14.5%), two (8.5%), and seven (6.6%).

After creating data on the individual level, we compute

the corresponding summary-level statistics from the two

independent groups of individuals. The input data for

the simulation are the summary-level statistics bX, an

ðn 3 pÞ-dimensional matrix, and bY , a ðn 3 qÞ-dimensional

matrix, derived from a univariable linear regression

model where each genetic variant Gi, i ¼ 1; .; n, is
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regressed against exposure Xj, j ¼ 1;.;p, or outcome Yk,

k ¼ 1; .; q, at a time. Additionally, we monitored the

average F-statistic in the first stage to control for instru-

ment strength. All genetic variants are considered with

equal weights, and thus no IVW is needed given the

same MAF at 5%.

All simulation runs are repeated 50 times, each of which

is initialized with a different random seed.
Data and code availability

MR2 is freely available on https://github.com/lb664/MR2/. It in-

cludes examples that explain how to generate the simulated data

and run the algorithm. Post-processing routines are also included.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.06.005.
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