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Abstract 

Inference of effective population size from genomic data can provide unique information about demographic history and, when applied 
to pathogen genetic data, can also provide insights into epidemiological dynamics. The combination of nonparametric models for popu-
lation dynamics with molecular clock models which relate genetic data to time has enabled phylodynamic inference based on large sets 
of time-stamped genetic sequence data. The methodology for nonparametric inference of effective population size is well-developed 
in the Bayesian setting, but here we develop a frequentist approach based on nonparametric latent process models of population size 
dynamics. We appeal to statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that control 
shape and smoothness of the population size over time. Our methodology is implemented in a new R package entitled mlesky. We 
demonstrate the flexibility and speed of this approach in a series of simulation experiments and apply the methodology to a dataset 
of HIV-1 in the USA. We also estimate the impact of non-pharmaceutical interventions for COVID-19 in England using thousands of 
SARS-CoV-2 sequences. By incorporating a measure of the strength of these interventions over time within the phylodynamic model, 
we estimate the impact of the first national lockdown in the UK on the epidemic reproduction number.
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Introduction
Past fluctuation in the size of a population is reflected in the 
genealogy of a sample of individuals from that population. For 
example, under the coalescent model, two distinct lines of ances-
try coalesce (i.e. find a common ancestor) at a rate that is inversely 
proportional to the effective population size at any given time 
(Kingman 1982; Griffiths and Tavare 1994; Donnelly and Tavare 
1995). More coalescent events are therefore likely when the pop-
ulation size is small compared to when the population size is 
large. This causal effect of population size on genealogies can be 
reversed in an inferential framework to recover past population 
size dynamics from a given pathogen genealogy. This approach to 
inference of past demographic changes was first proposed 20 years 
ago (Pybus, Rambaut and Harvey 2000; Pybus et al. 2001; Strimmer 
and Pybus 2001) and has been fruitfully applied to many disease 
systems (Pybus and Rambaut 2009; Ho and Shapiro 2011; Baele et 
al. 2016).

Population size analysis is often performed within the Bayesian 
BEAST framework (Suchard et al. 2018; Bouckaert et al. 2019), 
which jointly infers a phylogeny and demographic history from 
genetic data. Here we focus on an alternative approach in which 
the dated phylogeny is inferred first, for example using treedater 

(Volz and Frost 2017), TreeTime (Sagulenko, Puller and Neher 
2018), or BactDating (Didelot et al. 2018), and demography is 
investigated on the basis of the phylogeny. Although potentially 
less sensitive, this approach has the advantage of scalability 
to very large sequence datasets, which is why it has attracted 

increasing attention over the past few years (Didelot and Parkhill 
2022). This post-processing approach also allows more focus on 

models and assumptions involved in the demographic inference 
itself as previously noted in studies following the same strategy 

(Lan et al. 2015; Karcher et al. 2017; Volz and Didelot 2018; Volz 
et al. 2020). However, some of the methodologies and results we 

describe here should be applicable in a joint inferential setting as 
well.

The reconstruction of past population size dynamics is usu-

ally based on a nonparametric model, since the choice of any 

parametric function for the past population size would cause 

restrictions and be hard to justify in many real-life applications 
(Drummond et al. 2005; Ho and Shapiro 2011). However, even if a 

nonparametric approach offers a lot more flexibility than a para-
metric one, it does not fully circumvent the question of how to 
design the demographic model to use as the basis of inference. 
For example, the skygrid model considers that the logarithm of 
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2 Virus Evolution

the effective population size is piecewise constant, with values 
following a Gaussian Markov random field, in which each value 
is normally distributed around neighboring values and standard 
deviation determined by a smoothing hyperparameter (Gill et al. 
2013). This model can be justified as an approximation to the 
skyride model in which the logarithm of the population size is 
allowed to change at each coalescent time following a Brownian 
motion (Minin, Bloomquist and Suchard 2008). Alternatively, the 
skygrowth model is a similar Gaussian Markov random field on the 
growth rate of the population size (Volz and Didelot 2018). Both 
models can be conveniently extended to explore the association 
between population size dynamics and covariate data (Gill et al. 
2016; Volz and Didelot 2018).

The skygrid, skygrowth, or other similar models can be assumed 
when performing the inference of the demographic function, and 
the effect of this model choice has not been formally investi-
gated. Furthermore, these nonparametric models require several 
model design choices which are often given little consideration in 
practice. This includes the number of pieces in the piecewise con-
stant demographic function, the location of boundaries between 
pieces, and the prior expectation for the difference from one piece 
to another. All of these model design choices may have a sig-
nificant effect on the inference results. Several previous studies 
have investigated some of these questions, and our study there-
fore represents an additional contribution to the growing body 
of research on this topic. Strimmer and Pybus (2001) used the 
Akaike information criterion (AIC) to choose the number and posi-
tion of pieces in the demographic function. Parag and Donnelly 
(2020) compared this AIC with the Bayesian information criterion 
(BIC) and a frequentist generalization of both. On the other hand, 
Opgen-Rhein, Fahrmeir and Strimmer (2005) proposed a reversible 
jump Markov chain Monte Carlo to estimate the dimension and 
smoothing of the demographic function. Minin, Bloomquist and 
Suchard (2008) developed significance tests for the difference from 
one skyline piece to another, while Palacios and Minin (2013) 
attempted to reframe the smoothing selection problem within 
a Gaussian process framework. Gill et al. (2013) proposed the 
skygrid model described above, whereas the previous Bayesian sky-
line plot (Drummond et al. 2005) sampled across the locations 
of boundaries and used a different demographic function. The 
parameter controlling the smoothness of the population size func-
tion is usually assumed to have an arbitrary non-informative prior 
distribution in a Bayesian inferential setting (Minin, Bloomquist 
and Suchard 2008; Gill et al. 2013). As an exception to this, 
Faulkner et al. (2020) use weakly informative priors and present 
a method for automatically setting the hyperparameter for the 
global scale of the step increments. Most recently, Parag, Pybus 
and Wu (2022) developed metrics for choosing both the resolu-
tion and the smoothness based on how much information they 
contribute to effective population size estimates, and Bouckaert 
(2022) combined conjugate gamma priors on the effective popula-
tion size with Markov chain Monte Carlo integration to implicitly 
perform the regularization.

Here we propose several statistical procedures to optimize 
these variables and implement them in a new R package enti-
tled mlesky. In particular, we propose a frequentist statistical 
approach based on out-of-sample prediction accuracy in order 
to select the smoothness parameter. We tested the effect of 
these procedures on simulated datasets, where the correct demo-
graphic function is known and can be used to assess the relative 
accuracy of inference under various conditions. We applied our 
methodology to real data on HIV-1 in the USA and SARS-CoV-2 in
England.

Materials and methods
Demographic Models
Let the demographic function 𝑁e(𝑡) denote the effective popu-
lation size of a pathogen at time t. Let us consider that 𝑁e(𝑡)
is piecewise constant with R pieces of equal length h over the 
timescale of interest. Let 𝛾i denote the logarithm of the effective 
population size in the i-th piece. In the skygrid model (Gill et al. 
2013), the values of 𝛾i follow a Gaussian Markov random field, with 
the conditional distribution of 𝛾𝑖+1 given 𝛾i equal to: 

where 𝜏 is a precision parameter also known as the ‘smoothing’ 
parameter.

By contrast, the skygrowth model (Volz and Didelot 2018) is 
defined using the effective population size growth rates 𝜌i, which 
are assumed constant in each interval and are equal to: 

These growth rate values form a Gaussian Markov random 
field, with: 

We also define a third model which we call skykappa based on 
the values 𝜅i of the second-order differences of the logarithm of 
the effective population size: 

Once again we consider a Gaussian Markov random field in 
which: 

The skykappa model is a second-order random walk or second-
order Gaussian Markov random field model. Faulkner et al. (2020) 
used the second-order random walk models extensively and called 
them GMRF-2 in the case of the standard Gaussian Markov ran-
dom field as a random walk of order 2. Palacios and Minin (2013) 
used an integrated Brownian motion model, which is a contin-
uous version of the second-order random walk, for testing prior 
sensitivity.

Dependency on known covariate time series can be easily incor-
porated into these models as previously described (Gill et al. 2016; 
Volz and Didelot 2018). Let there be a m × p matrix 𝑋1∶𝑚,1∶𝑝 of p
covariate measurements for each of m time points. Ideally, these 
time points would correspond to the R + 1 boundaries between 
pieces of the demographic function, but otherwise linear inter-
polation can be used to make it so. We model the effect of this 
covariate data as a modification of the expected change in the 
demographic variables defined above (𝛾𝑖,𝜌𝑖, or 𝜅i). For example, in 
the skykappa model (Equation 5), the kernel of the Markov random 
field becomes: 

where 𝛽1∶𝑝 is a vector of coefficients for a linear model of the 
covariate data on the expected value of the stepwise differences 
𝜅𝑖+1 − 𝜅𝑖. Note in particular that if a term in the 𝛽 vector is equal 
to zero, then this covariate measurement has no effect on the 
demographic function, so that testing the significance of covariate 
requires testing whether the corresponding value in the 𝛽 vector 
is nonzero.
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Coalescent framework
Each of the models above defines a demographic function 𝑁e(𝑡)
from which the probability of the genealogy 𝒢 can be calculated 
as briefly described below. Let n denote the number of leaves in 𝒢, 
let 𝑠1∶𝑛 denote the dates of the leaves, and let 𝑐1∶(𝑛−1) denote the 
dates of the internal nodes. Let A(t) denote the number of extant 
lineages at time t in 𝒢, which is easily computed as the number 
of leaves dated after t minus the number of internal nodes dated 
after t: 

This quantity is important because in the coalescent model, 
each pair of lineages finds a common ancestor at rate 1/𝑁e(𝑡). 
Since there are 𝐴(𝑡)(𝐴(𝑡) − 1)/2 unordered pairs of lineages at time 
t, the total coalescent rate at time t is equal to:

The full probability of the coalescent process is therefore com-
puted as (Griffiths and Tavare 1994; Donnelly and Tavare 1995): 

This computation is straightforward for the models considered 
here where the demographic function 𝑁e(𝑡) is piecewise constant. 
Finally, we can define the likelihood of the joint demographic/phy-
logenetic process as:

This likelihood is the product of the probability of the coa-
lescent process given in Equation 9 times the probability of the 
demographic function, which is determined by Equation 1, 3, or 5, 
depending on the model used.

Selection of the precision parameter
The demographic models described above (skygrid, skygrowth, and 
skykappa) all rely on a precision parameter 𝜏. The value of 𝜏 controls 
the amount of variance between consecutive values of the param-
eters used by each model. The selection of this parameter is there-
fore shaped by competing aims of optimizing the fit to observed 
data and maximizing explanatory power and avoidance of over-
fitting. In frequentist statistics, a standard approach to selecting 
smoothing parameters is to minimize the out-of-sample predic-
tion error. For the problem of phylodynamic inference, Bayesian 
methods have predominated, and there have been few applica-
tions of cross-validation for model selection, although the use of 
such strategies in a hierarchical Bayesian setting has been consid-
ered (Duchêne et al. 2016). Here, we propose a novel strategy based 
on k-fold cross-validation where genealogical data are partitioned 
into k sets, k − 1 of which are used for fitting, and the last one is 
used for prediction. This procedure is equivalent to maximizing 
the following objective function: 

where ̂𝑁e(𝑋𝑗, 𝜏) is the maximum likelihood estimate of the demo-
graphic function 𝑁e(𝑡) on the partial data 𝑋𝑗 ⊂ 𝒢 and assume the 
precision parameter is 𝜏. In this case 𝑋𝑗=1∶𝑘 represents a subset of 
the sample times and internal node times of the genealogy 𝒢.

This is a standard formulation of the cross-validation method, 
but the implementation depends on how genealogical data are 
partitioned. We use the strategy of discretizing the coalescent 
probability (Equation 9) into intervals bordered by the time of 
nodes (leaves si plus internal nodes ci of the tree) and the R − 1 
times when the piecewise-constant 𝑁e(𝑡) function changes value. 
Given R − 1 change points, n leaves, and n − 1 internal nodes 
of 𝒢, there are 𝑅 + 2𝑛 − 3 intervals (𝜄1,⋯,𝜄𝑅+2𝑛−3). Each cross-
validation training set is formed by taking a staggered sequence 
of these intervals and collecting the genealogical data contained 
in each, so that 𝑋𝑗 = {𝜄𝑎=1∶𝑅+2𝑛−3|(𝑎 + 𝑗 − 1) mod 𝑘 ≠ 0}. The cross-
validation test sets are made of the remaining intervals, so 
that 𝒢 \ 𝑋𝑗 = {𝜄𝑎=1∶𝑅+2𝑛−3|(𝑎 + 𝑗 − 1) mod 𝑘 = 0}. For example, if 
n = 5, R = 4, and k = 3 we have 𝑅 + 2𝑛 − 3 = 11 intervals denoted 
(𝜄1,⋯,𝜄11). The training sets are 𝑋1 = {𝜄1, 𝜄2, 𝜄4, 𝜄5, 𝜄7, 𝜄8, 𝜄10, 𝜄11}, 𝑋2 =
{𝜄1, 𝜄3, 𝜄4, 𝜄6, 𝜄7, 𝜄9, 𝜄10}, and 𝑋3 = {𝜄2, 𝜄3, 𝜄5, 𝜄6, 𝜄8, 𝜄9, 𝜄11}. The corre-
sponding test sets are 𝒢 \ 𝑋1 = {𝜄3, 𝜄6, 𝜄9}, 𝒢 \ 𝑋2 = {𝜄2, 𝜄5, 𝜄8, 𝜄11}, and 
𝒢 \ 𝑋3 = {𝜄1, 𝜄4, 𝜄7, 𝜄10}.

Selection of the grid resolution
Before any of the nonparametric models described above can 
be fitted, the number R of pieces in the piecewise demographic 
function needs to be specified. Setting R too low may lead to an 
oversimplified output that does not capture all the information 
on past population changes suggested by the genealogy, whereas 
setting R too high can lead to overfitting.

We therefore propose to use well-established statistical meth-
ods to select the optimal value of R. First the model is fitted 
for multiple proposed values of R, and then for each output we 
compute the AIC, which is equal to: 

where LR is the maximum value of the likelihood when using R
pieces. The value of R giving the smallest value of AIC𝑅 is selected. 
We also implemented the BIC, which is equal to: 

The AIC and BIC have been used for similar problems before, 
for example to generate the generalized skyline plot (Strimmer 
and Pybus 2001) and to select the number of knots in smoothing 
approaches such as B-splines (Malloy, Spiegelman and Eisen 2009).

Simulation of testing data
In order to test the accuracy of our methodology, we implemented 
a simulator of coalescent genealogies given sampling dates and 
a past demographic function 𝑁e(𝑡), following a similar approach 
as previously used elsewhere (Adams, Murray and MacKay 2009; 
Palacios and Minin 2013; Karcher et al. 2017) and briefly outlined 
below. When the demographic function is constant, the simula-
tion of coalescent genealogies is equivalent to simulating from 
a piecewise homogeneous Poisson process, in which the waiting 
times from one event to the next are exponentially distributed. 
To extend this to the situation where the demographic function 
is non-constant requires to simulate from an equivalent non-
homogeneous Poisson process. The approach we used to achieve 
this is to consider a homogeneous Poisson process with a popula-
tion size 𝑁m, which is lower than any value of 𝑁e(𝑡), i.e. ∀𝑡,𝑁e(𝑡) ≥
𝑁m. We simulate this process using exponential waiting times, but 
filter an event happening at time t according to the ratio 𝑁m/𝑁e(𝑡). 
Specifically, we draw 𝑢 ∼ Unif(0,1) and if 𝑢 < 𝑁m/𝑁e(𝑡) the event 
is accepted and otherwise rejected. The resulting filtered Poisson 
process simulates from the non-homogeneous Poisson process as 
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4 Virus Evolution

Figure 1. Result on a simulated phylogeny under a constant demographic function using the skygrid model, from top to bottom 𝑅 = 5,20,50 and from 
left to right 𝜏 = 1,10,20. The dashed line represents the correct function 𝑁e(𝑡) = 20.
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Table 1. Coverage probabilities over time for the constant demographic function across 500 simulated phylogenies considering different 
sample sizes (𝑛 ∈ {100,200})

 n = 200  n = 100

Time skykappa skygrid skygrowth skykappa skygrid skygrowth

−26.241 0.848 0.936 0.860 0.859 0.922 0.855
−24.711 0.878 0.942 0.888 0.883 0.926 0.881
−23.181 0.912 0.944 0.908 0.912 0.928 0.912
−21.651 0.944 0.950 0.934 0.942 0.948 0.938
−20.121 0.960 0.958 0.958 0.958 0.948 0.964
−18.592 0.968 0.962 0.972 0.964 0.956 0.970
−17.062 0.976 0.966 0.974 0.970 0.954 0.974
−15.532 0.980 0.978 0.988 0.972 0.950 0.974
−14.002 0.980 0.972 0.980 0.972 0.946 0.970
−12.472 0.980 0.970 0.980 0.980 0.952 0.980
−10.943 0.980 0.970 0.986 0.980 0.948 0.978
−9.413 0.982 0.970 0.988 0.974 0.950 0.974
−7.883 0.980 0.968 0.980 0.976 0.946 0.978

Table 2. RMSE mean, median, and IQR estimates across the 500 simulated phylogenies for the constant demographic function 𝑁e(𝑡) = 20
considering different sample sizes (𝑛 ∈ {100,200})

 n = 200  n = 100

RMSE skykappa skygrid skygrowth skykappa skygrid skygrowth

Mean 2.460 4.663 2.521 2.678 2.107 2.749
Median 2.067 1.323 2.066 2.453 1.684 2.481
IQR 1.632 1.414 1.599 2.054 1.821 2.057

required (Ross 2014). The disadvantage of this approach over other 
methods of simulations is that there may be many rejections if 
𝑁e(𝑡) takes small values so that 𝑁m needs to be small too. How-
ever, the efficiency of simulation is not important for our purpose 
here, and this method has the advantage to avoid the computa-
tion of integrals on the 𝑁e(𝑡) function which other methods would 
require.

To measure 𝑁e(𝑡) estimation accuracy through time across 

different demographic models and sample sizes, 500 dated phylo-
genies were simulated with a total of 𝑛 ∈ {100,200} leaves sampled 

uniformly at regular intervals between 2000 and 2020, which are 
also represented as the times to the most recent sample -20 to 0. 
Additionally, constant and variable (sinus and bottleneck) demo-
graphic functions were applied. Since the 𝑁e(𝑡) for the constant 
and bottleneck functions do not have a characteristic timescale 
(one change in 𝑁e(𝑡) at maximum), we let the algorithms described 
above select R (see Methods section ‘Selection of the grid res-
olution’) and 𝜏 (see Methods section ‘Selection of the precision 
parameter’) for all trees. For the sinus function, which has a 
period of 2𝜋, we have used a fixed R based on prior information 
(R = 30) and the cross-validation method to choose 𝜏 as for the 
other functions.

Coverage probabilities, defined as the proportion of samples for 
which the known population parameter is contained in the con-
fidence interval according to the parametric bootstrap procedure 
(see Methods section ‘Implementation’), were calculated for each 
time point and summarized over the entire time axis. Since the 
confidence interval is of 95 per cent, we would expect around 475 
of the 500 replicates to contain the true 𝑁e(𝑡) value for each time 
point and the overall coverage probability to be 0.95. Finally, mean 
absolute error (MAE) and root mean squared error (RMSE) were 
computed for the 𝑁e(𝑡) maximum likelihood estimate for each 

simulation and summarized over all simulations. Importantly, 
we discarded the simulated trees in which the optimal solution 
for grid resolution was 𝑅 ≤ 2 without replacement. This choice 
is anchored in subsequent considerations (see Methods section 
‘Selection of the grid resolution’) about lack of power to retrieve 
all potential fluctuations on past population changes. Coverage 
probability, MAE, and RMSE plots were compared considering the 
three different demographic functions implemented by mlesky and 
sample sizes defined above.

Since the time of the pieces (knots) of the demographic func-
tion are variable across different simulated phylogenies, we 
defined a common time axis based on linear interpolation of 
time and 𝑁e(𝑡) estimates using the approx function from the 
stats package (R Core Team 2022) and getting the most recent 
first time of the pieces, as well as the older of the latest piece 
times across all simulations as respective boundaries for this com-
mon time axis. Then we define the new number of pieces of the 
unique time axis by dividing the total quantity of pieces across 
all 500 simulations by the amount of simulated trees and make 
their respective time points equally spaced. Using this approach, 
we could obtain comparable 𝑁e(𝑡) estimates across different
simulations.

Implementation
We implemented the simulation and inference methods described 
in this paper into a new R package entitled mlesky which is 
available at https://github.com/emvolz-phylodynamics/mlesky. 
The optimization of the demographic function makes use 
of the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
method implemented in the optim command (Nash 2014). Con-
fidence intervals (95 per cent) can be computed using (a) a stan-
dard bootstrap procedure if multiple samples from the bootstrap
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6 Virus Evolution

Figure 2. Coverage probabilities over time for the sinusoidal demographic function across 500 simulated phylogenies considering different sample 
sizes (𝑛 ∈ {100,200}) and colored by demographic model

distribution of the ML phylogeny can be provided or (b) a paramet-
ric bootstrap procedure whereby coalescent trees are simulated 
conditional on the ML estimated of 𝑁𝑒(𝑡) and known sample 
times (see Methods section ‘Simulation of testing data’). If mul-
tiple CPU cores are available, these resources are exploited within 
the procedure of selection of the smoothing parameter where the 
computation can be split between the different cross values in the 
cross-validation. Multicore processing is also applied in the proce-
dure of selection of the grid resolution where computation can 
be split between different values of the resolution parameter R. 
All the code and data needed to reproduce our results on simu-
lated and real datasets is available at https://github.com/mrc-ide/
mlesky-experiments.

Results
Application to simulated phylogenies with 
constant population size
A dated phylogeny was simulated with 200 leaves sampled at reg-
ular intervals between 2000 and 2020 and a constant past popula-
tion size function 𝑁e(𝑡) = 20 (Fig. S1). To illustrate the importance 
of the resolution R and precision 𝜏 parameters, we inferred the 
demographic function under the skygrid model (cf Equation 1) 

for a grid of values with 𝑅 ∈ {5,20,50} and 𝜏 ∈ {1,10,20} (Fig. 1). 

The equivalent analyses under the skygrowth model (Equation 3) 

and the skykappa model (Equation 5) are shown in Figs. S2 and 
S3, respectively. The results look quite different depending on 
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the parameters used, and in particular when R is large and 𝜏 is 
small, fluctuations in the population size are incorrectly inferred. 
When applying the AIC procedure to this dataset, the correct 
value of R = 1 was inferred for which the parameter 𝜏 becomes 
irrelevant. In these conditions the effective population size was 
estimated to be 19.65 with confidence interval ranging from 17.10 
to 22.57, which includes the correct value of 20 used in the
simulation. 

After simulating 500 dated phylogenies and applying a con-
stant past demographic function 𝑁e(𝑡) = 20, we attempted to 
reconstruct the demographic function based on the phylogeny 
under the three models skygrid, skygrowth, and skykappa described 
in Equations 1, 3, and 5, respectively. Regarding coverage probabil-
ities (i.e. the probability that estimated confidence intervals given 
by mlesky cover the constant 𝑁e(𝑡) = 20 function in this case), all 
sample sizes and demographic models kept near entire coverage 
over time as expected (Table 1). Moreover, RMSE estimates were 
lower for n = 200 in comparison with n = 100, except for the sky-
grid model that presented more extreme error values (Fig. S4). The 
skykappa and skygrowth models performed very similarly for both 
sample sizes (Table 2 and Fig. S4).

Application to simulated phylogenies with 
varying population size
Subsequently, we simulated 500 dated phylogenies with the same 
scheme of leaf number and dates as previously defined, but now 
using a demographic function 𝑁e(𝑡) that was sinusoidal with min-
imum 2 and maximum 22 and period 6.28 years. Figure S5 shows 
an example of both the demographic sinus function used and the 
resulting simulated phylogeny and Fig. S6 gives an example of 
inference using the three models.

Remarkably, the coverage probabilities for both sample sizes 
suffered from three main drops, each approximately occurring 
around the sinusoidal function period (6.28 years). The skygrid
model performs slightly better than the other models for n = 200 
and is significantly superior for n = 100 (Fig. 2). As expected, higher 
sample size was associated with lower RMSE values (Fig. S7). 
Despite RMSE estimates similar across models, the IQR for sky-
growth and skykappa when n = 100 is >3, showing that error esti-
mates are more spread out in these cases (Table 3). Figure S8 
illustrates the effect of optimizing the value of 𝜏 using the new 
cross-validation procedure compared to several fixed values.

One situation in which all three models are expected to per-
form poorly is when there are sudden changes to the demographic 
function (Palacios and Minin 2013). To exemplify this, we simu-
lated another set of 500 dated phylogeny with the same scheme of 
leaf number and dates as before, but using a bottleneck function 
for 𝑁e(𝑡) which was equal to 10 at all times except between 2005 
(i.e. -15 years before most recent sample) and 2010 (i.e. -10 years 
before most recent sample) when it was equal to 1. An example is 
shown in Fig. S9.

Under the bottleneck simulation scenarios, all models per-
formed well for the time where the 𝑁e(𝑡) reproduced a constant 

function (𝑁e(𝑡) = 10), but badly when the abrupt change (bottle-
neck event) to 𝑁e(𝑡) = 1 was reached. In the middle of the bot-
tleneck interval there is also a noticeable improvement. Different 
models performed similarly in this case, even though there are 
some minor coverage probability peaks favoring the new skykappa
model. Importantly, in the higher sample size scheme (n = 200), the 
𝑁e(𝑡) estimates are covered in around 25 per cent of the simula-
tions in the bottleneck event boundaries, whereas there are points 
with zero coverage for the lower sample size (n = 100), demonstrat-
ing that higher sample sizes can mitigate major estimation errors 
when the population process generating the data go against the 
priors of the employed demographic models (Fig. 3). RMSE esti-
mates were slightly higher for the skygrid model with n = 100 but 
similar in the remaining scenarios (Fig. S10).

Collectively, these results suggest that when the precision 
parameter is optimized using the cross-validation method, the 
choice between these three models becomes less important. How-
ever, in practice, the choice of using one model rather than 
another is sometimes guided by the presence of covariate data 
and whether these are expected to correlate with the effective 
population size directly or some other function of it such as the 
population growth rates (Gill et al. 2016; Volz and Didelot 2018).

Application to simulated phylogeny with 
covariate data
Finally, we used simulations to test our procedure for the analysis 
of association between demography and covariate data. An exam-
ple is shown in Fig. S11 where the covariate data follows a simple 
function in order to create a boom and bust dynamic (Fig. S11A). 
The growth rate of the population is equal to this function times a 
multiplicative factor. From this growth rate we compute the effec-
tive population size function over time (Fig. S11B) and simulate a 
phylogenetic tree as previously, with 200 leaves sampled at regular 
intervals between 2000 and 2020 (Fig. S11C). We then analyzed this 
simulated phylogeny alongside the covariate data and found in 
this case an association with coefficient 𝛽 = 0.44. We repeated this 
procedure 100 times with values of the multiplicative factor vary-
ing from zero (in which case the growth rate is constant equal to 
0 and there is no association with the covariate) to nine times the 
factor used for Fig. S11. The results are summarized in Fig. S12. As 
expected, we found that as the multiplicative factor increases, the 
coefficient of association 𝛽 between growth rate and the covari-
ate increases, and that the association becomes zero when the 
multiplicative factor is zero.

HIV-1 in the USA
To examine how effective population size is related to inde-
pendent estimates of incidence and prevalence we investigated 
a dataset based on HIV-1 in North Carolina, USA. Several fac-
tors related to HIV epidemiology and the natural history of 
HIV infection may cause the relationship between HIV preva-
lence and Ne to be complex: The rate of diagnosis and treat-
ment has increased over time. HIV infection leads to a treatable 

Table 3. RMSE mean, median, and IQR estimates across the 500 simulated phylogenies for the sinusoidal demographic function 
considering different sample sizes (𝑛 ∈ {100,200})

 n = 200  n = 100

RMSE skykappa skygrid skygrowth skykappa skygrid skygrowth

Mean 3.311 3.481 3.7 5.381 4.768 5.802
Mean 3.134 3.363 3.475 4.817 4.496 5.449
IQR 1.223 1.036 1.411 3.598 1.575 3.236
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8 Virus Evolution

Figure 3. Coverage probabilities over time for the bottleneck demographic function across 500 simulated phylogenies considering different sample 
sizes (𝑛 ∈ {100,200}) and colored by demographic model

chronic infection resulting in low mortality. While prevalence has 
increased in the recent past due to reduced mortality, incidence 
has decreased, and a growing proportion of the infected pop-
ulation receives antiretroviral therapy and has suppressed viral 
loads. The frequency of transmission of HIV is typically concen-
trated in the early period (first year) of HIV infection because 
of higher viral loads, lower probability of being diagnosed and 
treated, and fluctuating risk behavior (Romero-Severson et al.
2015).

In Dennis et al. (2021) a dated phylogenetic tree was estimated 
using treedater (Volz and Frost 2017) based on 1,850 HIV-1 par-
tial pol sequences sampled from North Carolina between 1997 
and 2019. An estimate of new infections per year (denoted 𝜄(𝑡)) 
and an estimate of the number of people living with HIV (denoted 
𝜋(𝑡)) in North Carolina were reported by the US Centers for Dis-
ease Control for the period 2010–2019 (Linley et al. 2019). We fit 
a skygrid model to these data, estimating the smoothing param-
eter by 5-fold cross-validation (which took approximately 30 s on 
a standard laptop computer) and estimating CIs with parametric 

bootstrap (which took approximately 90 s). Three covariates were 
considered:

1 log(𝑁𝑒(𝑡)) was modeled as proportional to log(𝜋(𝑡));
2 log(𝑁𝑒(𝑡)) was modeled as proportional to log(𝜄(𝑡));
3 log(𝑁𝑒(𝑡)) was modeled as proportion to 𝜈(𝑡) = log(𝜋(𝑡)2/𝜄(𝑡)).

This final formulation was derived as the asymptotic behav-
ior of Ne in a population with variable incidence and prevalence. 
During periods where there is a stable relationship between inci-
dence and prevalence (e.g. during exponential growth) there is 
a linear relationship between 𝑁𝑒(𝑡) and 𝜋(𝑡). Skygrid analysis 
showed that neither incidence nor prevalence had a significant 
association with Ne. A highly significant association was seen for 
𝜈(𝑡), with a coefficient 𝛽𝜈 = 2.05 (95 per cent CI: 1.05–3.56).

COVID-19 in England
In order to demonstrate the ability of the mlesky model to esti-
mate the impact of public health interventions, we analyzed 
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Figure 4. The epidemiological trajectory of SARS-CoV-2 lineage B.1.1.7 in England during spring 2020 inferred using mlesky and 3000 SARS-CoV-2 
sequences. Dashed lines show dates (December 19, 2020 and January 6, 2021) when NPIs were implemented in England. (A) Effective population size 
𝑁e(𝑡) through time. (B) Lines(black) show growth rate (1/year) in 𝑁e(𝑡) corresponding to panel A. Points (orange, right axis) show the human mobility 
score over time. (C) Estimated coefficient and 95 per cent confidence interval of the human mobility score on effective population size computed using 
mlesky. The mobility time series is shifted by a lag shown on the x axis.

time-scaled phylogenies which were previously estimated for the 
B.1.1.7 (Alpha) SARS-CoV-2 lineage (Volz et al. 2021). In response 
to growing case numbers resulting from B.1.1.7, a national lock-
down was implemented on 5 January 2021, resulting in a large 
decrease in human mobility outside of households. We combined 
phylogenetic data with information about human mobility col-
lected from smartphone location tracking and publicly released 
by Google (Google LLC 2022) in the period of 1 November 2020 to 
13 February 2021. We focus on the metric describing smartphone 
presence in transit stations, which is reported as a difference from 
historic baseline levels. We hypothesize that the decline in mobil-
ity and concomitant decline in incidence will be reflected by a drop 
in the growth rate of 𝑁e and mlesky will estimate the strength of 
the association.

Effective population size may not decline immediately follow-
ing lockdown since transmission can continue in some settings 
(households and hospitals) while transmission is heavily curtailed 
in the community. This can produce a lag between mobility met-
rics based on public transport attendance and the decline in 

transmissions. We investigated the time dependency of the asso-
ciation by first smoothing the mobility metrics (smooth.spline
in R with 5-fold cross-validation) and then time-shifting the met-
ric by between -15 and +36 days. For each shifted time series, we 
fit mlesky under a skygrid model with the shifted mobility met-
ric as a single covariate. This was repeated for 500 time-scaled 
phylogenies, each reconstructed from 3,000 B.1.1.7 sequences. The 
running time for each lag value was less than 3 min on a standard 
laptop computer.

Figure 4A shows the estimated effective population size 
through time, which peaked on 14 January 2021. The growth rate 
of effective size versus the mobility metric is shown in Fig. 4B. 
Note that human mobility declined precipitously in the period 
preceding lockdown with increasing awareness of B.1.1.7 and 
the end of the Christmas holiday. We find that human mobil-
ity has a large and significant impact on growth rate of 𝑁e; 
however, this effect is only apparent in the time-shifted data. 
The time lag showing the strongest association is +21 days
(Fig. 4C).
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Discussion
Nonparametric phylodynamic inference of population size
dynamics is usually carried out in a Bayesian framework 
(Drummond et al. 2005; Minin, Bloomquist and Suchard 2008; 
Gill et al. 2013). Here we presented methods for performing such 
inference in a frequentist setting with a particular view toward 
model selection and avoiding over-fitting. Optimal smoothing can 
be obtained in a natural way using standard cross-validation 
methods, and the optimal resolution of the discretized demo-
graphic function is achieved using the well-established AIC. This 
approach can be advantageous when prior distributions are diffi-
cult to design or results are sensitive to arbitrarily chosen priors. 
Methods based on likelihood maximization are also fast and scal-
able to datasets much larger than is conventionally studied with 
Bayesian methods, and the selection of smoothing parameters 
does not require arbitrarily chosen hyperparameters. Conven-
tional AIC metrics also alleviate the difficulty of model selection. 
In most of our simulations, we find relatively little difference in our 
estimates when parameterizing the model in terms of log(𝑁e(𝑡))
(Equation 1), the growth rate of 𝑁e(𝑡) (Equation 3), or the second-
order variation of log(𝑁e(𝑡)) (Equation 5), as long as the precision 
parameter 𝜏 for each model is optimized as we proposed.

Our methodology assumed that a dated phylogeny has been 
previously reconstructed from the genetic data. It is therefore well 
suited for the post-processing analysis of the outputs from tree-
dater (Volz and Frost 2017) or TreeTime (Sagulenko, Puller and Neher 
2018). A key assumption of our method, as with its Bayesian coun-
terparts, is that all samples in the phylogeny come from a single 
population ruled by a unique demographic function. To ensure 
that this is indeed the case, complementary methods are emerging 
that can test for the presence or asymmetry or hidden popu-
lation structure in dated phylogenies (Dearlove and Frost 2015; 
Volz et al. 2020). Conversely, if multiple phylogenies follow the 
same demographic dynamic, they can be analyzed jointly to pro-
vide a more precise reconstruction of the demographic function 
and epidemiological parameters (Xu et al. 2019), and our soft-
ware implementation is able to perform such a joint analysis when 
appropriate. It should be noted that Bayesian phylogenetics is also 
increasingly concerned with the adequacy of the phylodynamic 
model used (Duchene et al. 2019) and has made considerable 
improvements in scalability over the past few years (Fisher et al. 
2022).

Past variations in the effective population size of a pathogen 
population can reveal key insights into past epidemiological 
dynamics and help make predictions about the future. It is impor-
tant to note that the effective population size is not generally 
equal to or even proportional to the number of infections over time 
(Volz et al. 2009; Dearlove and Wilson 2013). On the other hand, the 
growth rate of the effective population size can be used to estimate 
the basic reproduction number over time R(t) (Wallinga and Lip-
sitch 2007; Volz, Koelle and Bedford 2013; Volz and Didelot 2018) 
as we used in our application to COVID-19 in England. Having 
good estimates of this quantity is especially important for assess-
ing the effect of infectious disease control measures (Fraser 2007), 
and phylodynamic approaches provide a useful complementary 
approach to more traditional methods of estimation based on case 
report data (Cori et al. 2013).

Supplementary data
Supplementary data are available at Virus Evolution online.
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