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Abstract
To help health economic modelers respond to demands for greater use of complex 
systems models in public health. To propose identifiable features of such models 
and support researchers to plan public health modeling projects using these models. 
A working group of experts in complex systems modeling and economic evalu-
ation was brought together to develop and jointly write guidance for the use of 
complex systems models for health economic analysis. The content of workshops 
was informed by a scoping review. A public health complex systems model for 
economic evaluation is defined as a quantitative, dynamic, non-linear model that 
incorporates feedback and interactions among model elements, in order to capture 
emergent outcomes and estimate health, economic and potentially other conse-
quences to inform public policies. The guidance covers: when complex systems 
modeling is needed; principles for designing a complex systems model; and how 
to choose an appropriate modeling technique. This paper provides a definition to 
identify and characterize complex systems models for economic evaluations and 
proposes guidance on key aspects of the process for health economics analysis. This 
document will support the development of complex systems models, with impact on 
public health systems policy and decision making.
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1 | INTRODUCTION

There have been calls for greater use of complex systems methods to inform public health decision making (Diez Roux, 2011; 
Lich et al., 2013; Rutter et al., 2017). Computational models can be useful to evaluate public health interventions operating 
within complex systems, however, there are few examples of economic evaluations employing complex systems models (Shiell 
et al., 2008; Squires & Boyd, 2019).

1.1 | What is a computational model?

A computational model describes a simplified representation of reality in which a system is described using mathematical 
relationships (Caro et al., 2012). Such models combine evidence to quantify the future performance of parts of the system 
and address questions that are difficult to answer using primary empirical research approaches (Brennan et al., 2006). Within 
public health this includes: planning services, supporting infectious disease surveillance, policy impact analysis, economic 
evaluation, testing determinants of disease patterns, investigating disease trajectories, and testing intervention scenarios (Briggs 
et al., 2016). Models can characterize the population at the individual-level, in which people are distinct units, or at the aggre-
gate level, using population averages.

1.2 | Features of a complex system

A system refers to problem situations characterized by having interconnected elements (Meadows, 2008), with multiple causes 
and consequences (Chapman, 2004). System complexity increases with the intricacy of the relationships between elements 
(Rickles et al., 2007). Therefore, it is not the number of interactions that is the defining characteristic of dynamic complexity, 
but rather the nature of interactions and their generation of emergent outcomes (Holland, 2014). Emergent outcomes are proper-
ties, perhaps observed at an aggregate-level of a complex system, that cannot be predicted by considering the elements within it 
in isolation, and are more than just the sum of its parts. Thus, in complex system problems, the effects of any single intervention 
cannot be determined in isolation. Each decision that is made depends on others, multiplying the counterfactuals that need to 
be considered (Ornstein et al., 2020).

Public health challenges can be conceptualized as complex systems problems because they involve: (i) mutual interdependen-
cies between elements of the system, where effect directions, sizes, accumulation and timings are not well-understood or captured 
by research methods grounded in linear models of cause and effect; (ii) actors who have diverse sets of priorities, values and under-
standing of the problem; (iii) costs, benefits and harms spread across many parts of the system; and (iv) deep uncertainties due to 
rapidly shifting geo-political and economic contexts potentially changing population, demographic and/or behavioral dynamics and 
the interplay between social determinants and service system factors that influence the impacts of interventions (Meier et al., 2019).

Obesity provides a public health example of a systems problem in which interplay between numerous biological, environ-
mental, social, political and economic factors influences obesity, which in turn can have implications for policy evaluation. 
A model describing a simple pathway between disease trajectory and health outcomes will be sufficient if the intervention 
produces consistent effects regardless of context. However, if the intervention interacts with other factors affecting the evolu-
tion, and consequences of the disease, this modeling approach will overlook emergent outcomes.

1.3 | Economic modeling in public health

Economic evaluation is a core component of all phases of intervention research in public health (Skivington et  al.,  2021). 
Economic evaluation using modeling techniques can estimate the value of public health investments, exploring incremental 
and population effects of changes in policies (Squires & Boyd, 2019). Modeling approaches used in economic evaluation often 
develop from the methods of health technology assessment, that is, decision-trees and Markov models, in which the implementa-
tion context is not explicitly modeled (Lawson et al., 2022). Discrete Event Simulation has been recommended to extend model 
complexity in economic evaluations (Karnon & Haji Ali Afzali, 2014), whereas in the public health literature complex systems 
models are often identified by other model traditions, such as system dynamics or agent-based models (ABM)s (Atkinson 
et al., 2015; Bicket et al., 2020; Carey et al., 2015; McGill et al., 2021; Xue et al., 2018). Guidance is needed to overcome 
barriers in translating cross-disciplinary knowledge given the breadth of the systems science literature (Trochim et al., 2006).
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1.4 | Complex systems modeling in public health

Complex system methods for public health have been discussed extensively in the literature (Leischow & Milstein, 2006; Lich 
et al., 2013; Luke & Stamatakis, 2012; Rutter et al., 2017; Tracy et al., 2018; Trochim et al., 2006). However, several reviews 
highlight the competing definitions of complex systems (Leischow & Milstein, 2006; Lich et al., 2013; Trochim et al., 2006). 
As such, it is useful to specify the distinguishing features of a Complex System Model (CSM) that can be identified from the 
model structure and mathematical relationships, rather than focusing on modeling traditions for example, Systems Dynamics 
and agent-based models. A definition of a CSM for public health economic modelers will enable consistent labeling of models, 
limit conceptual stretching, a more efficient description of methods, and, where appropriate, encourage the adoption of CSM.

1.5 | Aims of this guidance

The aims of this manuscript are to (i) propose a definition of computational CSM that highlights the critical modeling features 
for economic modelers to use in public health models (Section A), (ii) support economic modelers to identify situations when 
a CSM is needed (Section B), (iii) identify appropriate modeling types for economic modelers to choose from (Section C), (iv) 
highlight useful approaches/methods in CSM (Section D).

2 | METHOD

The guidance was written in consultation with an international consortium of academic experts in CSM and related fields. In 
September 2020, 44 academic experts from the project leader's network and identified using a snowball approach to recruit-
ment were invited to attend two workshops (October 2020 and March 2021). Participants included established academics and 
researchers along with PhD students, to provide an understanding of the challenges involved in modeling in public health. Of 
these, 42 attended the workshops and 36 contributed to the manuscript.

The aims and scope of the first workshop were informed by an organizing committee (PB, AB, HS, KE) and a scoping 
review of the literature on CSMs in public health (Table S1 in the supplementary material). The scoping review aimed to iden-
tify examples of CSM and catalog the various modeling methods used (Table S2 in the supplementary material). The review 
used and adapted a previous systematic review of complex systems methods (Carey et al., 2015).

Discussions from the two workshops provided direction on the scope, structure, and content of this guidance document. 
Details of the review and workshops are described in Appendix A and Appendix B of the supplementary material.

We tested the application of the definition of complex systems models against a set of CSM case studies. The case stud-
ies were identified by either the literature review or workshop participants to represent different model types, including but 
not limited to economic studies, across a range of public health topics. This process identified eight public health CSMs. We 
systematically cataloged methods used in the development of these models with input from workshop participants.

3 | SECTION A: DEFINITION OF COMPLEX SYSTEMS MODELS

A public health oriented CSM is a quantitative, dynamic, non-linear model that incorporates feedback, and interactions among 
model elements, in order to capture emergent outcomes and estimate health, economic and potentially other consequences to 
inform public policies.

To aid with the interpretation of the definition and guidance, we provide a glossary of terms in Table S3 of the supplementary 
material. The definition recognizes four overlapping critical features: dynamic, non-linear, feedback and interaction that can be 
programmed into an economic model that in combination give rise to the properties of a complex system. A figure illustrating 
the critical features is provided in Figure S1 of the supplementary material. A model incorporating the critical features will add 
complexity and predispose the model to complex properties. In contrast, the quantity of elements, or the intricacy of the inter-
vention (Shiell et al., 2008), may make the model complicated, but not necessarily complex. Complexity is not the same thing 
as complication: non-complex models can be complicated, and complex models can be (relatively) simple. There are numerous 
examples of non-complex, but complicated, system models informing public health decisions linking public health policies to a 
broad range of outcomes (Springmann et al., 2016; Holmes, J et al., 2014; Thomas et al., 2022). These models do not include the 
critical features, that is, not dynamic (Springmann et al., 2016), do not include interactions (Holmes et al., 2014; Springmann 
et al., 2016), and do not include feedback loops (Holmes et al., 2014; Springmann et al., 2016; Thomas et al., 2022).
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High system complexity is characterized by several properties: feedback, adaptation, emergent outcomes and non-linearity. 
These properties can be programmed into a CSM if it has the critical features so that the changes that ripple through a system 
(i.e., an intervention) are non-linear (not proportional to the size of the initial stimulus), adaptive and lead to emergent outcomes. 
In a CSM model changes to one element cause dynamic changes in other parts of the model, which continue to feedback around 
the model amplifying or dampening the initial change and resulting in further changes to the initial element. The ramifications 
of these relationships will be greater with more critical features connecting model elements in the system.

Table 1 describes how the four features of complexity were demonstrated in eight exemplar public health CSMs (Brailsford 
et al., 2012; Dodd et al., 2010; Keogh-Brown et al., 2019; Occhipinti et al., 2021; Probst et al., 2020; Stankov et al., 2019; 
Tobias et al., 2010; Viana et al., 2014).

4 | SECTION B: WHEN SHOULD, AND SHOULDN'T, COMPLEX SYSTEM MODELS BE 
USED?

Figure S2 in the supplementary material illustrates a framework within which the model structure is decided upon and Figure 1 
provides a decision tool to help modelers identify whether to develop a CSM. The following discussion expands on the ques-
tions in Figure 1, relating them to observations from case studies, and practical considerations. Prior to using Figure 1, it would 
be necessary to have a detailed understanding of the system (See Section D).

Public health problems often operate in complex systems. Economic models may be developed to enhance understanding of 
the patterns of behavior, mechanisms and processes of a complex system, or adapted from models with this purpose. Therefore, 
simplification would impact the utility of the model. Probst et al. developed a CSM which aimed to implement a theoretical 
model of social norms in an individual-level model to explain population-level trends in drinking behavior (Probst et al., 2020). 
The interactions and feedback between individual-level drinking behavior and social structures are inherent to the theory. They 
tested the theoretical framework with three hypotheses to provide insights into drinking behavior and identify interventions. In 
other case studies, it was possible to report whether feedback loops enhanced or mitigated intervention effects as they reverber-
ated around the system (Keogh-Brown et al., 2019; Occhipinti et al., 2021; Stankov et al., 2019; Tobias et al., 2010).

It is essential to understand how the intervention interacts with the system, and specifically whether the relationships linking 
the intervention to the consequences include the critical features of complexity. Complex interventions do not need a CSM if the 
effects are not expected to change the properties of a complex system (Shiell et al., 2008), or if the effects can be approximated 
in other ways. CSMs are particularly useful in economic evaluations of multiple interventions, applied to different elements 
or levels (individual or aggregate) within the model (Keogh-Brown et al., 2019; Occhipinti et al., 2021; Probst et al., 2020; 
Stankov et al., 2019; Tobias et al., 2010; Viana et al., 2014). Comparisons of multiple interventions across different parts of 
the system are at greater risk of bias in a non-CSM model. The effectiveness of the intervention may depend on the context in 
which they are applied (Dodd et al., 2010; Occhipinti et al., 2021; Viana et al., 2014), and this context may be modified by other 
interventions. Infectious disease models illustrate the benefits of incorporating spatial structures to characterize the context and 
impact interactions between individuals in the model, and transmission rates (Ferguson et al., 2006; Riley & Ferguson, 2006).

It is also important to consider what consequences, perspectives, and time horizons are important to stakeholders and/or 
policymakers. For example, Tobias et al. simulate the interaction of smoking with the initiation rate of smoking for future gener-
ations (Tobias et al., 2010). This feedback loop is less likely to impact the findings if future costs and QALYs are discounted.

Once the modeler has identified whether a CSM should be considered according to the issues described above it is impor-
tant to consider the practical constraints of model development and these are detailed in the second half of Figure 1. It would 
be advisable to identify what model types might be compatible with the problem (see Section C) and what data is available to 
answer these questions. Model planning needs to be sufficient to consider resources, and consultation with stakeholders, and 
may be iterative as unexpected problems arise.

The model must be fit for purpose and developed with the decision making context in mind. Computationally expensive 
CSMs may limit the capacity to generate timely and comprehensive analysis for fast moving policy decisions. The modeler 
needs to consider where to invest time and resources to respond to the decision problem. Non-complex models may be advan-
tageous if their simplicity allows the modeler to accommodate other model features. The value of the investment in modeling 
must be balanced against opportunity costs. It is wise to keep things as simple as possible, because it can require a lot of time, 
effort and resources to make complexity tractable. The effort should be justified.

CSMs can require more assumptions that are not closely tied to strong experimental evidence. When developing 
CSMs researchers should consider how gaps in evidence will be filled and whether the tools for this are obtainable, that 
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BREEZE et al. 1607

T A B L E  1  Eight selected Public Health Complex System Model (CSM) case studies that demonstrate the key features and insights of the 
approach.

Authors Aims Study description
Why it counts as complex 
systems model

What useful insights did 
the CSM provide?

Dodd et al., 2010 To explore the 
effect of human 
immunodeficiency 
virus (HIV) 
transmission 
epidemiology on the 
impact of universal 
test-and-treat 
interventions.

 Partial differential 
equations.
 The model includes 

infectiousness 
that changes over 
time since HIV 
infection; under 
antiretroviral therapy 
infectiousness is 
reduced and life-
expectancy extended.

Non-linear: The model is 
a non-linear dynamical 
system.

The impact of a universal 
test-and-treat 
intervention was 
shown, for matched 
prevalence, to depend 
on heterogeneity and 
mixing of contacts. In 
some situations, less 
aggressive interventions 
achieved the same 
results, whereas in 
others, reductions were 
lower; annual strategies 
were not necessarily the 
most cost-efficient. The 
potential for incomplete 
implementation or 
coverage to increase 
long-term antiretroviral 
therapy (ART) costs 
was demonstrated.

Dynamic: The model 
accounts for the 
population dynamics 
of HIV infection over 
time.

Interactions: The PDEs 
model assortative 
mixing between high- 
and low-risk segments 
of a heterosexual 
population.

Feedback: There 
is positive 
feedback - higher 
infection prevalence 
drives higher incidence 
of infection.

Brailsford et al., 2012 To evaluate the costs and 
benefits of alternative 
breast cancer screening 
policies in a screening 
model that incorporates 
human behavior.

 Discrete event simulation.
 A three-phase discrete 

event simulation was 
built to model breast 
cancer and screening 
policies and 
extended to include 
patients' behavioral 
characteristics.

Non-linearity: Non-linear 
model specifications 
for tumor growth were 
simulated to allow for 
time dependency in 
tumor growth.

The model enables a broad 
range of experimental 
settings to observe the 
impact of screening 
strategies and health 
behaviors on health 
outcomes. The method 
for modeling behavior 
did not substantially 
alter the model 
outcomes. However, 
incorporating theory-
led models of human 
behavior allow decision 
makers to design public 
health interventions that 
increase the likelihood 
of attendance. The 
frequency of screening 
impacted future 
participation, and in 
this scenario the policy 
more effective.

Dynamic: Individuals are 
simulated from birth 
until death and the 
timing of screening is 
an important parameter 
in policy evaluation.

Interaction: Interaction 
between the individual 
and the screening 
service is determined 
by the timing of 
screening, and 
the actions by the 
individual to attend 
screening.

Feedback: The model 
includes theories of 
human behavior to 
inform attendance at 
screening. Adaptive 
theories in which 
previous attendance 
at screening impacts 
the likelihood of 
future attendance were 
modeled.

(Continues)
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T A B L E  1  (Continued)

Authors Aims Study description
Why it counts as complex 
systems model

What useful insights did 
the CSM provide?

Probst et al., 2020 Aims: To develop a 
theoretical framework 
to explain macro-level 
trends in drinking 
and test the effect of 
policies on alcohol 
consumption.

 Agent-based model.
 An individual-

level model was 
developed to simulate 
dynamic normative 
mechanisms and 
behavioral rules 
underlying drinking 
behavior over 
time. The model 
encompassed 
drinking norms 
and their impact 
on frequency 
and quantity of 
alcohol use. Three 
experiments were 
performed to test the 
modeled normative 
mechanisms.

Non-linearity: Changes 
made to the input 
parameters in the 
model for the three 
experiments did not 
produce proportional 
changes in drinking 
behavior.

 The model allowed 
the researchers to 
examine the degree 
that individual-level 
mechanisms could 
explain more macro-
level phenomena in 
drinking behavior.

 Three experimental 
scenarios were 
programmed to observe 
the effectiveness of 
policies on drinking 
trends.

 An increase in the desire 
to drink led to the most 
meaningful changes 
in the population's 
drinking behavior 
indicating the high 
levels of autonomy 
in decisions to drink. 
A higher degree of 
“receptiveness” toward 
normative influence 
can be considered 
a prerequisite to 
behavioral changes.

Dynamic: The model 
simulates micro-level 
decisions to drink and 
changes in dynamic 
social-level norms to 
observe macro-level 
trends in alcohol 
consumption over time.

Interactions: The 
individual interacts 
with the environment 
through the social 
norms that influence 
the likelihood that they 
and other individuals in 
the model would drink. 
Therefore, individual 
decisions to drink 
modify the macro-level 
social norms.

Feedback: Two 
feedback loops 
were programmed 
to adjust injunctive 
norms (perceived 
acceptability) over 
time in response to 
perceived harm to 
society or prevalence 
of drinking in their 
age/gender reference 
group. A further 
feedback loop adjusts 
descriptive norms over 
time (perceptions of 
drinking by people 
in their age/gender 
reference group).
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(Continues)

T A B L E  1  (Continued)

Authors Aims Study description
Why it counts as complex 
systems model

What useful insights did 
the CSM provide?

Tobias et al. (2010). To compare the impact 
of different smoking 
cessation services 
in New Zealand on 
smoking prevalence, 
tobacco consumption, 
and tobacco-
attributable mortality. 
To provide a decision 
tool to support the 
design and evaluation 
of tobacco control 
policies.

 Systems dynamics.
 The model has six 

components. 
The population 
component 
describes the flow 
of people between 
smoking states 
(‘never- smokers’, 
‘current- smokers’, 
‘ex-smokers’ etc.), 
conditional on rates 
of initiating, quitting, 
and mortality 
among smokers and 
ex-smokers. These 
rates are affected 
by role modeling 
and household 
composition. Other 
components describe 
smoking prevalence; 
tobacco consumption; 
second- hand smoke; 
relative risks; and 
tobacco attributable 
deaths as a result of 
smoking or exposure 
to second-hand 
smoke.

Non-linearity: Non-linear 
behavior occurs as 
a result of feedback 
loops.

 The model enables the 
evaluation of a range 
of policies that aim to 
prevent tobacco-related 
harm. The authors 
tested the effects of an 
intervention package 
that acts through a range 
of channels from price 
changes, marketing, 
and service provision. 
They estimated that 
this package could 
reduce tobacco-related 
mortality by 11% 
within 35 years. This 
information informed 
the decision in 2007 
to increase funding 
for smoking cessation 
interventions by NZ$42 
million.

 The same model in a 
previous study was 
used to test the effect of 
hypothetical cigarette 
modifications (i.e. 
manufacturing either 
less toxic or less 
addictive cigarettes) 
on smoking prevalence 
and harm. They found 
that these policies 
would lead to a degree 
of compensatory 
smoking and the 
possible expansion of 
the tobacco market, 
and so could only be 
helpful in combination 
with regulations like 
marketing bans and tax 
increases.

Dynamic: The model 
can be simulated for 
50 years, with the 
emphasis on the first 
20–30. Variables can 
change over time. The 
model produces yearly 
estimates of smoking 
prevalence & harm, 
reflecting the dynamic 
effects of interventions.

Interactions: The six 
components of 
the model interact 
and produce 
model outcomes. 
For example, the 
tobacco consumption 
component interacts 
with the relative risk 
component, which 
affects the mortality 
component and the 
size of the smoking 
population, which 
affects the exposure to 
second-hand smoke and 
so on.

Feedback: Peer smoking 
and parental smoking 
both create reinforcing 
feedback loops that 
increase the number 
of youth smoking 
initiations and the 
persistence of smoking 
in adulthood through 
role modeling effects.
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T A B L E  1  (Continued)

Authors Aims Study description
Why it counts as complex 
systems model

What useful insights did 
the CSM provide?

Occhipinti, A et al., 2021 The study aimed to i) 
identify the likely 
impact over time of 
mental health and 
suicide prevention 
interventions (ii) 
determine the value 
and balance of 
investments across the 
social determinants 
of mental health 
in the region, and 
(iii) determine the 
best combination of 
strategies to deliver 
the greatest impacts on 
suicidal behavior.

 Systems dynamics.
 The model is separated 

into several 
components. 
The population 
component describes 
the characteristics of 
the population. The 
population moves 
between states of 
psychological distress 
conditional on 
social determinants 
of psychological 
distress components, 
including adverse 
early life exposures, 
homelessness, 
employment, 
domestic violence, 
and substance abuse. 
A mental health 
service component 
represented the 
pathway of care 
for psychological 
distress. Suicidal 
behavior was a key 
outcome.

Dynamic: The model 
reported dynamic 
changes in model 
outputs over 40 years.

 The model provided 
decision makers and 
stakeholders with a 
tool to investigate 
alternative scenarios 
related to the timing 
of implementation of 
interventions, their scale 
and intensity, and to test 
alternative assumptions 
regarding level of 
intervention uptake 
to inform strategic 
decision making. 
Initiatives to improve 
social connectedness 
were the most effective.

 The model demonstrated 
that the greatest impacts 
on suicidal behavior are 
observed when mental 
health and suicidal 
initiatives are combined 
with interventions 
to address key social 
determinants.

 Adding all mental health 
initiatives was only 
marginally better than 
providing a targeted 
combination. This 
suggests that there 
are diminishing 
returns from investing 
additional investing 
in programs and 
initiatives beyond the 
best combination, 
and complex systems 
models can assist by 
prioritizing services 
when resources are 
limited.

Feedback: Bi-directional 
relationships between 
model components 
lead to unpredictable 
dynamic changes in 
outputs. Bidirectional 
relationships are 
observed between 
social determinants, 
social determinants and 
psychological distress, 
and psychological 
distress and the mental 
health system.

Non-linearity: 
Non-linearity is 
assumed due to 
structures and 
connections between 
elements in the system.

Interactions: Interactions 
between model 
components affect the 
dynamic relationships 
in the model. For 
example, the flow 
through the mental 
health care system is 
impacted by health 
care capacity, which 
is affected by rates of 
psychological distress 
and suicidal behavior.
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BREEZE et al. 1611

(Continues)

T A B L E  1  (Continued)

Authors Aims Study description
Why it counts as complex 
systems model

What useful insights did 
the CSM provide?

Keogh Brown (2019) To generate an integrated 
quantification 
of the combined 
macroeconomic, 
disease and 
population burden 
of palm cooking oil 
consumption in a major 
palm oil consuming 
country context, 
Thailand.

 Macroeconomic model
 The model describes 

a Computable 
General Equilibrium 
framework (CGE) 
sectoral mathematical 
model of the 
whole economy to 
describe productive 
labor supply, 
consumption and 
savings, government 
taxation and trade. 
The model includes 
a non-economic 
sub-model to 
simulate changes in 
household nutritional 
intake on health, 
health spending, 
and labor supply. 
This feeds back into 
the macroeconomic 
model to generate a 
new equilibrium.

Dynamic: The simulations 
are run over a 20 years 
time horizon.

 The model estimated 
the health-related 
economic, disease and 
population burden 
of palm cooking 
oil consumption in 
Thailand.

 The multi-sector CGE 
model comprehensively 
captured economic 
spill-overs, interactions 
and wage effects to 
value productive labor.

 The model allowed the full 
integration of a health 
sub-model to capture 
transmission between 
consumption of food 
commodities and health 
outcomes. The feedback 
between health and 
the economy could be 
captured in the model.

 The model provides a 
full valuation of the 
macroeconomic impacts 
of the policies and can 
estimate these impacts 
by sectors to observe 
how the impacts are 
distributed across the 
economy.

Feedback: The model 
captures feedback from 
the macroeconomy 
to household 
consumption, health, 
and the population. 
Changes in palm oil 
consumption lead to 
changes in health, 
which impacts the 
demographic profile, 
labor market supply, 
income, savings and 
further modifies 
consumption behavior 
in the population.

Non-linearity: The disease 
burden model accounts 
for interactions and 
feedback effects 
between health, the 
macro-economy and 
the population. These 
feedback loops create 
non-linear relationships 
between the policies 
and model outcomes.

Interactions: The CGE 
framework captures 
interactions between 
economic sectors.
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BREEZE et al.1612

T A B L E  1  (Continued)

Authors Aims Study description
Why it counts as complex 
systems model

What useful insights did 
the CSM provide?

Stankov et al. (2019) To explore factors 
that influence the 
prevalence of alcohol 
misuse and depression 
in adults and to 
investigate the impact 
of tax policies and 
social connectedness 
interventions on 
the prevalence of 
depression and alcohol 
misuse.

 Agent-based model.
 The model included 540 

agents representing 
older adults (65 years 
old or above) and 
the alcohol outlets in 
their neighbourhoods. 
Agents' drinking 
status was assigned in 
each time step based 
on a combination 
of individual, social 
and environmental 
factors. Individual 
factors included 
affinity for excessive 
consumption and 
depression, social 
factors included 
alcohol consumption 
of neighbors and 
cohabitants, and 
environmental factors 
alcohol pricing and 
access to retailers. 
Depression was 
influenced by past 
predisposition to 
depression, social 
connectedness, 
and affinity toward 
excessive drinking.

Dynamic: Individuals 
are simulated over a 
5-year period. 260 
time steps were used, 
with each time step 
covering a week of real 
time. An individual's 
characteristics such as 
risk of depression, risk 
of excessive drinking 
change over time.

 The model was able to 
adequately reproduce 
the prevalence of 
depression and alcohol 
misuse found in the 
real-world data. The 
model calibration 
suggested that 
alcohol misuse and 
depression were related 
bi-directionally, but 
the size of the best fit 
parameters were quite 
small suggesting that 
the feedback effect 
might only be slight.

 The model also provides 
quantitative evidence on 
the plausible effects of 
various interventions, 
specifically the effect 
of increasing taxation 
on alcohol and the 
effect of increasing 
social connectedness 
on depression and 
alcohol consumption. 
Within the model, tax 
interventions resulted 
in lower alcohol 
consumption, but had 
a minimal impact on 
depression, whilst 
social connectedness 
interventions reduced 
the prevalence of 
depression without 
substantially impacting 
alcohol misuse. 
Combinations of the 
interventions did not 
impact depression or 
alcohol misuse more 
than each intervention 
alone. This further 
suggested that feedback 
processes within the 
model were relatively 
weak.

Feedback: Feedback exists 
in the model between 
individuals' likelihood 
of excessive drinking 
and their likelihood of 
being depressed.

Non-linearity: 
Non-linearity exists 
in the model through 
feedback loops, as well 
as through effects from 
the agents' personal 
networks. Individuals 
both affect and are 
affected by the drinking 
status of those in their 
personal network.

Interactions: Agents 
interact with both 
other agents and their 
environment. The 
characteristics of the 
other agents within this 
personal network, and 
the characteristics of 
the local environment 
around their residence 
influence the agents' 
likelihood of being 
depressed and drinking 
excessively.
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BREEZE et al. 1613

is, theory, data, or calibration. Combining multiple theories and adding parameters to be calibrated will make it harder 
to validate using external data, takes time and risks becoming less transparent and useful to stakeholders (Whitty, 2015). 
Increasing the number of model parameters to estimate with calibration may lead to overfitting to the data (Basu & 
Andrews, 2013).

It is worth considering how data gaps and the features of complexity might amplify uncertainty in the model. Calibrating 
multiple inputs can identify combinations of inputs that generate very different outcomes. Similarly, increasing the number of 
complex relationships can make the model highly sensitive to initial conditions and increase uncertainty in model outcomes. 
As the stimulus works its way through each set of relationships it can result in large differences in consequences (Calder 
et al., 2018). Additional resources may be needed to understand which relationships impact outcomes and communicate uncer-
tainty to decision makers. Nevertheless, decisions are uncertain and simplification of the relationships risks generating incor-
rect and artificially precise results. Decision uncertainty is not removed by adopting a simple model, and simplification can be 
damaging to user confidence. Complexity will affect how the model is used and valued, so it is important to be sensitive to the 
needs of the decision maker in order to avoid over-simplification or overwhelming the audience with complexity.

T A B L E  1  (Continued)

Authors Aims Study description
Why it counts as complex 
systems model

What useful insights did 
the CSM provide?

Viana et al., 2014 To understand how 
chlamydia screening 
and service provision 
impact interact to 
reduce overall disease 
incidence

 Hybrid models.
 A systems dynamic 

model generates the 
monthly demand 
for Chlamydia 
services to input 
into a discrete 
event simulation. 
The discrete event 
simulation exports 
the treated and 
untreated populations 
back to the systems 
dynamics model.

Dynamic: The two models 
would produce data to 
input into each model 
in monthly intervals.

 Each individual model 
produced interesting 
insights. In the DES 
model staffing levels 
can be altered. In the 
SD screening strategies 
were tested.

 When interventions were 
combined the models 
illustrated that poor 
performance at the 
Chlamydia clinic could 
lead to higher rate 
of infections in the 
community because of 
the bad reputation (long 
waiting times) from the 
clinic.

 The model can support 
decision making for 
community screening, 
or within the clinic, 
to observe how the 
changes impact on 
the other aspects of 
the system and will 
feedback to the primary 
system of interest.

Feedback: In the systems 
dynamics model there 
are feedback loops 
to determine the 
susceptible and infected 
populations. These 
are impacted by the 
proportion of patients 
with a full recovery 
and one representing 
recovery with sequelae.

Non-linearity: In 
the DES waiting 
times influence the 
proportion of untreated 
patients. In the SD 
model Chlamydia 
infections were 
conditional on many 
dynamic parameters 
including feedback and 
interactions with the 
DES model.

Interactions: The 
aggregate population 
prevalence and detected 
levels of Chlamydia 
interact with the DES 
model, to produce 
estimates of transitions 
between high and low 
risk groups and update 
the level of infection in 
the population.

Abbreviation: DES, Discrete Event Simulation.
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BREEZE et al.1614

Non-CSMs impose assumptions that exposure variables are independent, and relationships between exposures and outcomes 
are unidirectional, linear, and constant through time (Page et al., 2018). If a non-CSM modeling approach is adopted, it is 
important to consider how the system violates these assumptions and be explicit about the direction of bias in the description of 
the model. If the features of complexity are believed to be important to the decision problem, but cannot be incorporated it will 
be necessary to discuss the potential limitations. Occhipinti et al. modeled suicidal behavior due to psychological distress where 
social determinants of psychological distress are also consequences of it (Occhipinti et al., 2021). It would be possible to have 
a unidirectional relationship between the social determinants and psychological distress, without feedback and under-estimate 

F I G U R E  1  A decision tool to identify whether a complex systems model is recommended to address a decision problem.
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BREEZE et al. 1615

the benefits of interventions to reduce psychological distress. By recognizing this limitation, a discussion of the direction and 
implications of bias in the model is possible. However, some complex relationships will be difficult to assess without incorpo-
rating the complexity in the model. For example, a similar CSM illustrated how unintended consequences for service demand 
negated intervention effects to produce much lower health benefits than predicted in a linear model, allowing policymakers to 
have strategic discussion about the whole system (Atkinson et al., 2020).

5 | SECTIONS C: WHAT MODEL TYPES SHOULD BE USED?

5.1 | How to select model types?

The selection of the type of model should be integrated into the decision on whether a CSM is needed with similar consider-
ations for the decision problem, system features, and data (Figure 1). Each model type will imply different abstractions and 
assumptions about the system being modeled. Whilst there is a range of modeling types available, they typically differ across a 
few dimensions namely deterministic/non-deterministic, static/dynamic, discrete/continuous, individual/population, mathemat-
ical logic/algebra (Calder et al., 2018). Therefore, modelers can consider the problem across these dimensions when selecting 
a model type. Some will accommodate certain features more easily than others.

A toolkit for model selection can be used to guide modelers to what methodology is preferred for a given problem (Jin 
et al., 2021). The revised Brennan toolkit includes three tools: (a) the taxonomy (Table 2), (b) the checklist (Jin et al., 2021) and 
(c) a decision flowchart (Squires et al., 2016). Other useful resources have been developed to map the purpose and object of the 
problem to system dynamics, ABM and discrete-event simulation models simulations (Marshall et al., 2015).

5.2 | Suggested model types for Complex System Model

System dynamics models and ABMs are commonly presented as the methods available in complex systems problems (Morshed 
et al., 2019). Typically, a system dynamics approach adopts an aggregate perspective, whereas ABMs allow for individual-level 
simulation of behaviors, heterogeneity, and interactions between agents. However, the options for CSMs extend beyond these 
two dominant methods.

In other disciplines different labels may be used for model types and these are also relevant to the public health context. For 
example, Computable General Equilibrium (CGE) models have been used to model choices that have cross sector impacts that 
influence the indicators of the national economy (Keogh-Brown et al., 2019). Partial differential equation models can be used 
to describe the dynamics of infectious disease transmission (Dodd et al., 2010). Both CGE and Partial differential equation 
models have key similarities to system dynamics and describe aggregated populations. In infectious disease modeling, the term 
individual-based model is often used for ABMs. IBMs have long been used to include spatial and social population structure 
relevant to transmission (Riley & Ferguson, 2006), and have been commonly used in modeling COVID-19 and impacting 
policy decisions (Ferguson et al., 2020). IBMs allow easy inclusion of behavioral change to project its effects on transmission 
dynamics (Verelst et al., 2016). Moreover, multiple approaches can be combined in what some have called Hybrid models 
(Brailsford et al., 2019), integrating ABM, system dynamics and discrete-event simulation approaches into a unified model. A 
framework for hybrid simulation methods has been proposed (Mykoniatis & Angelopoulou, 2020), although to date very few 
applications have been identified within public health (Brailsford et al., 2019; Freebairn et al., 2020). We provide summary 
descriptions of modeling approaches in Appendix C as an introduction to the broad range of modeling options available, also 
providing links to relevant examples, good practice guides and web resources for further information.

Given the broad overlap among the methods described above, it may not be advisable to prescribe model types to specific 
public health problems, as it should depend on the nature of the question to be answered. Clusters in the adoption of model 
types can be driven by the research disciplines, expertise, and traditions from which they develop. Systems dynamics and 
CGE models are often used where the problem has broad boundaries, such as policies impacting more than public service 
(Keogh-Brown et al., 2019; Occhipinti et al., 2021); ABMs tend to be used in public health where human behavior and social 
networks are considered important, such as understanding health behaviors around alcohol, smoking, diet and physical activ-
ity (Probst et al., 2020; Stankov et al., 2019); and discrete-event simulations where healthcare resource constraints need to 
be modeled, such as cancer screening and mental health services (Brailsford et al., 2012; Viana et al., 2014). Individual level 
models are better at estimating the effects of heterogeneity, and exploring equity impacts.
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BREEZE et al.1616

6 | SECTION D: WHAT PROCESSES ARE IMPORTANT WHEN DEVELOPING CSMS?

CSMs introduce additional challenges for the modeler, which can be addressed with processes, approaches, and methods 
described in this section and highlighted in case study examples (Table S4: supplementary material).

6.1 | Stakeholder engagement

Strong communication with all relevant stakeholders throughout model development is essential to ensure that the model is fit 
for purpose (Squires et al., 2016). Within a CSM there may be broad and diverse perspectives and the choice of stakeholders 
may evolve during the project as the understanding of the complex system develops. Engaging stakeholders in co-production 
of a CSMs has been shown to improve model transparency, understanding of the modeling process, and may build trust and 
acceptability of the model and its outputs (Freebairn et al., 2018). Stakeholder engagement should also include engagement 
with public representatives in line with recommendations for public health research (Staniszewska et al., 2021).

6.2 | Understand and identify the problem

A documented understanding of the problem is imperative to develop and justify the model structure and type (Squires 
et al., 2016). The understanding of the problem will evolve as evidence becomes available, new stakeholder perspectives iden-
tified, or changes to the system occur within the timeframe of the project.

Diagrammatic representation of the system can be very useful to develop consensus and agreement between modelers and 
stakeholders, particularly where stakeholders have diverse perspectives. There is a vast array of approaches and methods that can 
be employed to develop a systems map. Commonly used methods in public health modeling include: group concept mapping (Koh 
et al., 2019; Lich et al., 2017), causal loop diagrams (Urwannachotima et al., 2019), and soft systems methodology (Checkland, 2000).

6.3 | Setting the model boundary

The specification of the model boundary is somewhat subjective. The decision on the model boundary should be made transpar-
ently, justifying and documenting reasons for inclusion and exclusion of each component in the understanding of the problem 
(Squires et al., 2016). It is important that CSM boundaries are well described, including the level of detail for each element 
(Robinson, 2008). This will facilitate appropriate interpretation of the model results, considering the broader elements of the 

T A B L E  2  Brennan taxonomy of model structures.

A B C D

Cohort/aggregate-level/counts Individual-level

Expected value, continuous 
state, deterministic

Markovian, discreet 
state, stochastic

Markovian, 
discrete date

Non-markovian, 
discrete state

1 No interaction Untimed Decision tree rollback 
or comparative risk 
assessment

Simulation decision 
tree or comparative 
risk assessment

Individual sampling model. Simulated 
patient-level decision tree or 
comparative risk assessment

2 Timed Markov Model deterministic Simulation Markov 
Model

Individual sampling model: Simulated 
patient-level Markov model

3 Interaction between 
entity and 
environment

Discrete time System dynamics (finite 
difference equation)

Discrete Markov chain 
model

Discrete-time 
individual event 
history model

Discrete-time 
discrete event 
simulation

4 Continuous time Systems dynamics (ordinary 
differential equations)

Continuous time 
Markov chain 
model

Continuous time 
individual event 
history model

Continuous-time 
discrete event 
simulation

5 Interaction between heterogenous 
entities/spatial aspects important

x x x Agent-based 
simulation

Note: Based on the original Brennan taxonomy, and revisions (Brennan et al., 2006; A. D. Briggs et al., 2016).
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BREEZE et al. 1617

system which have not been quantified. Understanding the key variables and concepts will aid the parameterization of the 
model and help to prioritize where investment of resources is justified.

6.4 | Incorporating data and evidence

Health economic models are often based on epidemiological models derived from empirical data. However, CSMs can be based on 
empirical observations or abstract constructions. For health economic policy evaluation CSM may use both techniques, but in most 
cases will require some empirical estimates and statistical techniques and causal inference. Table S4 in the supplementary material 
shows example statistical techniques used in our eight exemplar complex systems models. Model building and data processing 
require expert methodological knowledge to implement, and this can increase the expertise required for a modeling project.

6.4.1 | Creating synthetic individual data from observed data

Synthetic data creation techniques can be used if individual level data are not available for individual-level models (Probst 
et al., 2020) and data are not available for all parts of the system. Drawing on spatial microsimulation techniques, microdata can 
be constructed where there is detailed attribute information available from a survey or sample dataset and sample representation 
from census or administrative data. Techniques such as Iterative Proportional Fitting (Lomax & Norman, 2016) can be used to 
reweight sample data. Alternatively, Combinatorial Optimization (Smith et al., 2021), can be used to synthesize and replicate 
individuals. In both cases the resulting dataset is a combination of the attribute rich (micro) data and the sample representation 
of the administrative (macro) data.

6.4.2 | Making causal inferences from observational data

Feedback loops are a critical feature of CSM, but the model parameters within feedback loops may be difficult to measure due 
to time-varying confounding by other variables. A confounder is a variable that influences both the exposure and outcome 
variable. Time-varying confounding occurs when confounders have values that change over time because they are also 
affected by the (changing) exposure (Daniel et al., 2013). Therefore, in feedback loops between exposures and confounders, 
time-varying confounding is expected. In the presence of such exposure-confounder loops, simple regression does not identify 
causal effects because it provides a biased estimate of the true effect of the exposure on outcome (Kuehne et al., 2022). It may 
be necessary to develop bespoke statistical analyses if resources and data availability allow it. Analyses should be designed 
alongside the conceptual mapping. A taxonomy of methods to control for time-fixed confounding in observational studies 
has been developed to support statistical model selection (Ali et al., 2019). The causal analysis of empirical data affected 
by time-varying confounding requires more sophisticated causal inference methods (e.g., g-methods) (Johnson et al., 2009; 
Robins et al., 2004).

6.4.3 | Calibration of model inputs to model outputs

Calibration is the process of estimating the model parameters to obtain a match between observed and simulated patterns. A 
Bayesian calibration framework seeks to generate a posterior distribution of calibration parameters and model outputs, condi-
tional on the calibration target (Chrysanthopoulou et al., 2021; Menzies et al., 2017). Non-Bayesian methods aim to identify 
sets of calibration parameters for which the model best reproduces the calibration target (Chrysanthopoulou et al., 2021). 
Bayesian calibration has the advantage of capturing uncertainty using probability distributions, which is compatible with 
probabilistic sensitivity analyses (Chrysanthopoulou et al., 2021; Vanni et al., 2011), but it can be computationally demand-
ing (Chrysanthopoulou et al., 2021). In contrast frequentist calibration methods can overfit the model by implying no uncer-
tainty exists in the model parameters (Vanni et al., 2011). Calibration will be a necessary step in the parameterization of many 
CSMs, and a strength of a modeling approach, as certain parts of the model will not have data that can be used to parame-
terize them a priori (Occhipinti et al., 2021; Probst et al., 2020). Regardless of what calibration process is used, calibration 
can encounter identifiability problems where there is insufficient data for the number of parameters to calibrate (Basu & 
Andrews, 2013).

 10991050, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hec.4681 by T

est, W
iley O

nline L
ibrary on [01/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BREEZE et al.1618

There are a broad range of calibration methods, although their use is often poorly documented, and non-reproducible 
(Hazelbag et al., 2020). Calibration reporting guidelines have been developed (Stout et al., 2009), and should be adopted when 
reporting calibration.

6.5 | Computational efficiency

Complex System Model models may encounter problems with computational capacity, particularly with micro-level models. A 
computational expensive model that has many parameters to calibrate may exceed the project resource limits. Consideration of 
computational efficiency is important and will depend on how and when the outputs will be used. Computational limitations may 
require the model boundary to be revised to reduce complexity and still maintain tractability. Approaches to deal with computa-
tional efficiency, such as model emulation (Rothery et al., 2020) and distributed simulation (Taylor, 2019), could be used.

6.6 | Model uncertainty

Sensitivity analysis and parameter uncertainty analysis can be used to communicate uncertainty to stakeholders. This can be 
challenging in CSMs because analyses of uncertainty may be limited by computational capacity, and other time constraints 
(Rothery et al., 2020), the model developers may not understand the source of uncertainty, and uncertainty  can affect how 
answers from the model are used. Model structures, as well as parameters, may be uncertain and recent approaches have 
used machine learning to search across different structural configurations of a CSM (Vu et al., 2020). Proponents of a 
Weight of Evidence approach to evaluate and weight evidence (Dion et al., 2021) advocate holding space for multiple ways 
of understanding the same issue. The modeler should consider what uncertainties exist beyond what has been programmed 
into the model and report where complex features have not been included in the model, and how this might impact findings.

6.7 | Model validation

Model verification and validation ensures that results from models are accurate and can be confidently used by decision 
makers. Model developers should consult validation typologies (Eddy et al., 2012), recommendations (Vermeer et al., 2022) 
and validation assessment tools, which can help assess whether sufficient validation of a CSM has been undertaken (Vemer 
et al., 2016). Verifying and validating a CSM is a continuous process to be performed throughout the life-cycle of a study 
(Balci, 1994) and needs to be designed based on the resources and data available. CSM's may introduce additional challenges 
during validation, and we propose potential solutions (Table 3). It is impossible to prove that a model is valid, so verifi-
cation and validation is a process of increasing confidence in a model to the point that it can be used for decision-making 
(Robinson. 1999).

Co-production and model transparency can be used to ensure models are subject to face validity and verification checks, 
which will help build trust from decision-makers. Examples include testing face validity and model verification through discus-
sion of model structures with experts (Brailsford et al., 2012; Occhipinti et al., 2021; Tobias et al., 2010), Verification through 
discussions with stakeholders should be an iterative and multifaceted process throughout all stages of conceptual modeling, 
model formulation, coding and use (Williams, 2018). Model transparency should at a minimum require detailed documentation 
of the model to allow for it to be reproduced (Eddy et al., 2012; Vermeer et al., 2022). However, calls for “Open-Source” models 
provide an opportunity to build trust in models, and improve validity (Dunlop et al., 2017).

External validation compares CSM output with retrospective data (Brailsford et al., 2012), and cross-validation compares 
CSM output with other models (Viana et al., 2014). The processes of external validation and calibration may be inherently 
intertwined, and the stages of model calibration and validation may be indistinguishable if there are not enough data available 
to separate these tasks (Stankov et al., 2019). Comparing model outcomes against data not used in to inform model parameters 
can be challenging for public health CSM models. The data may not be routinely measured, or only measured with sampling or 
reporting bias. Furthermore, the feedback loops may change over time changing the relationships between exposure, confound-
ers and outcomes. CSMs should be validated at the individual-level, or in constituent parts, to test whether each part represents 
the real world with sufficient accuracy, and system-level, or overall model, to confirm if the emergent dynamics of the system 
outcomes are reproduced, adding to the validation tasks required (Vermeer et al., 2022).
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T A B L E  3  Summary of challenges when undertaking validation of Public Health Complex Systems Models—categorized by ISPOR task force 
types of validation.

Validation type Description
Challenges for complex systems 
models Recommendations for CSM

Face validity A review of the model structure, 
evidence used, and results to 
ensure they all make clinical 
and logical sense.

Challenge 1: Face validity 
may be more challenging 
to interpret due to the 
complexities of relationships 
included, meaning it is not 
always possible to know what 
results are expected given 
the emergent properties and 
feedback loops.

 1)  Use scenario and sensitivity 
analysis.

 2)  Identify which parts of the model 
contribute to outcomes or behaviors 
and assess whether these are 
plausible. Techniques developed 
in systems dynamics models, but 
applicable elsewhere, can be used 
to understand the contribution of 
feedback loops in a model and 
understand the origins of model 
behavior (Schoenberg et al., 2020)

 3)  Discuss results and outcomes 
with stakeholders to comment on 
whether results are consistent with 
expert opinion.

Verification (internal validity) Tests the accuracy of 
mathematical equations and 
whether model structure and 
parameters agree with the data 
informing them.

Challenge 2: Complex systems 
computation models often 
involve a large amount of 
coding, which may make 
internal validity more 
challenging in terms of the 
time required.

 1)  Maintain up to date documentation 
of the code.

 2)  Report visual representation of 
model boundary to allow the 
code to be verified against model 
structure.

 3)  Structured walk throughs of model 
processes.

 4)  Validate inputs against their 
sources.

 5)  Independent code review
 6)  Double programming

Check the model coding 
corresponds to the description 
of the model.

Cross-validation The process of comparing model 
results with those of other 
models produced for the same 
problem.

Challenge 3: There are less likely 
to be other models developed 
to address similar public health 
problems to compare against.

 1)  Adoption of our definition of 
complex systems models will 
help to identify similar modeling 
approaches.

 2)  Greater investment is needed to 
fund cross-validation of model 
programmes.

External validity Compares model results with real 
world data.

Challenge 4: If calibration 
is needed the process of 
calibration and validation 
becomes connected.

A detailed description of calibration 
and validation processes is needed 
to ensure transparency in model 
development methods. It should be 
clear that the process of validation 
uses different data sources from the 
calibration process.

Challenge 5: Real world data 
may not be available for all 
variables and consequences.

Detailed documentation of what 
variables and consequences have 
been, and have not, been validated.

(Continues)
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T A B L E  3  (Continued)

Validation type Description
Challenges for complex systems 
models Recommendations for CSM

Predictive validity Compares the predicted model 
results to prospective real 
world observed events when 
they become available.

Challenge 6: The predictive 
validity of complex systems 
models may be difficult to 
establish. Real-world shocks to 
the system, such as the Covid-
19 pandemic, may distort 
observations and change the 
mechanisms of the system. 
The feedback loops between 
exposure confounder and 
outcomes might change with 
time.

CSMs should be revisited and assessed 
for predictive validity as new data 
become available. The timelines 
and funding structures of public 
health projects may not facilitate 
this. However, public health CSMs 
require substantial investment 
and can be adapted and updated 
to address new public health 
questions. Adapting and updating 
models provides an opportunity for 
the model to develop and evolve as 
evidence and understanding of the 
system evolve.

7 | DISCUSSION

This paper provides a definition for CSMs and guidance on developing CSMs for public health economic modelers. It is 
intended as a helpful tool for economic modelers, but may also help stakeholders, those commissioning models, and those 
critically appraising models to identify when a CSM is justified. The definition specifies key features that distinguish complex 
models from non-complex models to provide clarity to health economic modelers in the context of growing demands for 
complex systems approaches to public health evaluations. The absence of a clear definition of a CSM may have led to incon-
sistent labeling of models, less effective evidence reviews, less efficient description of methods, barriers to interdisciplinary 
research, and may have hampered the adoption of complex systems models.

We recommend that CSMs are required when there are processes involving dynamics, feedback loops, non-linearity and 
interactions which produce emergent outcomes that matter to the decision problem. Such modeling provides a deeper under-
standing and analysis of the likely impact of changing factors which affect the system. We discussed useful resources to select 
and implement macro-level complex system models and individual-level models as well as hybrids of these. Finally, we identify 
challenges that modelers will face when modeling public health decisions and propose approaches and techniques that research-
ers may need to consider when designing CSMs.

Complex System Model is developing apace to support and inform public health and health policy decisions. Our hope in 
producing this guidance is that it can provide an accelerated learning curve, both for those new to this field and for those already 
involved in developing such models. We hope this document will be a lever for improved understanding and engagement with 
CSM and hence have an impact on public health systems policy and decision making.

This guidance document provides a step toward classifying computational models in public health according to the inclu-
sion of complexity. The aims of this guidance document do not extend to setting research priorities for methodological devel-
opment. However, workshop participants identified a lack of technical guidance specific to the task of developing CSMs for 
public health, meaning researchers need to access a diffuse and diverse literature from across multiple disciplines. Further 
research should consolidate best-practice guidance to support skills development and training in this field. Understanding and 
overcoming the barriers to CSMs, for example, the resources and technical expertise needed, data requirements, limitations of 
model validation, will be critical to support the adoption of these methods by modelers and policymakers.
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