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Abstract: Disease control programs are needed to identify the breeding sites of mosquitoes, which
transmit malaria and other diseases, in order to target interventions and identify environmental risk
factors. The increasing availability of very-high-resolution drone data provides new opportunities
to find and characterize these vector breeding sites. Within this study, drone images from two
malaria-endemic regions in Burkina Faso and Côte d’Ivoire were assembled and labeled using
open-source tools. We developed and applied a workflow using region-of-interest-based and deep
learning methods to identify land cover types associated with vector breeding sites from very-
high-resolution natural color imagery. Analysis methods were assessed using cross-validation and
achieved maximum Dice coefficients of 0.68 and 0.75 for vegetated and non-vegetated water bodies,
respectively. This classifier consistently identified the presence of other land cover types associated
with the breeding sites, obtaining Dice coefficients of 0.88 for tillage and crops, 0.87 for buildings
and 0.71 for roads. This study establishes a framework for developing deep learning approaches
to identify vector breeding sites and highlights the need to evaluate how results will be used by
control programs.

Keywords: malaria vector; deep learning; image classification; drone images; epidemiological control

1. Introduction

Land use changes, such as agricultural expansion, can create new aquatic habitats
suitable for breeding sites for mosquito vectors, which transmit malaria and other dis-
eases [1]. The identification of such water bodies can be vital to disease control programs,
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allowing vector control teams to perform targeted malaria control by larval source man-
agement (LSM) [2]. LSM targets the immature aquatic stages of disease vectors through
environmental, chemical or biological modification of the larval habitat, with the overall
aim of reducing adult mosquito populations [3]. While traditional approaches have relied
on ground-based surveys, Earth Observation (EO) data, such as drone and satellite data,
are increasingly utilized to identify potential breeding sites rapidly and target control
measures [2–6]. EO data additionally provide new opportunities to characterize mosquito
habitats and monitor changes in these habitats in response to environmental changes [7].

Obtaining actionable information from EO data requires classifying imagery into
relevant habitat types. The specific classes of interest are highly dependent on the local
vector ecology. For example, An. gambiae breed in small or transient, often man-made,
water bodies across a wide range of habitat types, including puddles on roads, agricultural
irrigation such as rice paddies, sunlit rivers and streams and quarries or construction
sites [8–10]. As these breeding sites are often temporary and may be difficult to directly
observe (e.g., under trees or in small water bodies), identifying important land types where
breeding sites occur can be an important proxy to target vector control measures. Further
information on the locations of houses and other buildings may also aid planning for vector
control campaigns. Additionally, the type of information required when classifying EO
data depends on the end use. While a vector control program may benefit from knowing
the probability of a large area containing habitat types, ecological and epidemiological
studies aiming to identify risk factors for vector breeding sites may require more detailed
segmentation approaches to characterize the shape and configuration of different habitat
types, so as to identify where these breeding sites are likely to occur [11–17].

In contrast to An. gambiae, An. funestus typically breeds in large semipermanent or
permanent water bodies, often characterized by emergent vegetation [2,18–21]. Despite
An. funestus being Africa’s second most important malaria vector, and although the size
and permanence of the species’ breeding sites should make them intuitively easy to locate,
An. funestus breeding sites are notoriously difficult to detect [21]. When compared to the
small and transient An. gambiae breeding sites, the large and stable characteristics of the An.
funestus breeding sites make them a suitable target for identification using EO techniques.
These water bodies have often been associated with agricultural practices, including rice
cultivation, irrigation canals and ditches, pastures and cultivated swamps [22–27]. A review
of the available published literature on An. funestus breeding ecology [2] identified key
characteristics of An. funestus breeding sites, which include irrigated and non-irrigated
forms of agriculture and savannah landscapes. They also identified land classes that are
likely to exist in landscapes where humans and malaria vectors overlap, but which are not
necessarily associated with the breeding cycle, such as roads, buildings and other features
of the built environment. Additional information on infrastructure, including the locations
of houses and other buildings, can aid planning interventions for vector control campaigns.

For these applications, it is critical that EO data are collected simultaneously as ground-
based vector surveys or are recent enough to provide actionable information for control
programs. Anopheles’ breeding sites are difficult to detect from coarse, freely available,
satellite-based EO data such as Sentinel or LandSat, with aquatic habitats often small (<1 m),
vegetated or obscured depending on local vector ecology. Additionally, breeding sites
may be temporary or exist in landscapes that are rapidly modified, requiring temporally
accurate EO data to link with ground-based surveys. This can be challenging with satellite-
based EO sources where data are collected infrequently (weekly or monthly) and limited
by cloud cover or other factors [28,29]. This has led to the increased use of EO data
with high spatial and temporal resolutions, such as user-defined imagery collected by
drones (unmanned aerial vehicles or UAVs) or daily commercial satellite data (e.g., Planet).
These data typically have a low spectral resolution, limiting the utility of traditional
pixel-based approaches requiring data measured outside the visible spectrum [30,31].
Alternatively, deep learning approaches, such as convolutional neural networks (CNNs),
have revolutionized image analysis by efficiently analyzing image textures, patterns and
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spectral characteristics using self-learning artificial intelligence approaches to identify
features in complex environments [16,32–34].

Multiple approaches have been applied in identifying habitats and their characteristics
from EO imagery for operational use by vector-borne disease control programs. In Malawi,
Stanton et al. [3] assessed approaches to identifying the aquatic habitats of larval-stage
malaria mosquitoes. They assessed geographical object-based image analysis (GeoOBIA),
which groups contiguous pixels into objects based on prespecified pixel characteristics.
The objects were classified by a random-forest-supervised classification and demonstrated
strong agreement with test samples, successfully identifying larval habitat characteristics
with a median accuracy of 98%. Liu et al. [35] developed a framework for mapping
the spatial distribution of suitable aquatic habitats for the snail hosts of the debilitating
parasitic disease Schistosomiasis along the Senegalese River Basin. A deep learning U-Net
model was built to analyze high-resolution satellite imagery and to produce segmentation
maps of aquatic vegetation. The model produced predictions of snail habitats with higher
accuracy than commonly used pixel-based classification methods such as random forest.
Hardy et al. [36] developed a novel approach to classify and extract malaria vector larval
habitats from drone imagery in Zanzibar, Tanzania. This used computer vision to assist
manual digitization. This approach significantly outperformed supervised classification
approaches, which were unsuitable for mapping potential vector larval habitats in the study
region based on accuracy scores. Examples of methods for other applications, data sources
and the performance of different classification techniques are summarized in Table 1.

Table 1. Summary of land cover classification methods.

Location Application Imaging Source Method Result

Senegal River,
West Africa
[35]

Mapping snails’
aquatic habitats

Satellite: 8-band World
View 2 for training
UAV: used to assess
labeling

Semantic segmentation
using
U-Net 8-band + GLCM
features

Accuracy
4 classes
Test: 82.7%
4 classes hold-out
validation: 96.5%

Anbandegi,
Korea
[37]

Crop classification
Kimchi cabbage

UAV: green, red,
NIR bands

SVM and RF. Using
GLCM features
to reduce noise

Overall accuracy
4 classes: 98.72%

Queensland,
Australia
[38]

Ground coverage
Wheat crops

UAV:
RGB
Real image set (RISs)
Synthetic image set (SISs)

Two-step approach:
per-pixel segmentation,
sub-pixel segmentation
using regression tree
classifier

RMSE
RISs: <6%
SISs: <5%

Pardubice,
Czech
Republic
[39]

Land cover
identification
near small
water body

UAV: RGB Comparing 8 different
vegetation indexes

Visual comparison
Best performance:
NGRDI, GLI2,
VARI

Chengdu,
China
[40]

Mapping vegetation,
impervious surface
and soil in
urban environment

Satellite: Landsat-8
Operational Land
Imager (OLI)

Applied multiple
criteria spectral mixture
analysis
(MCSMA) with
multi-step approach
for spectral unmixing

RMSE
Vegetation: 0.143
Soil: 0.170
Impervious: 0.151

Ghana and
South Sudan
[41]

Semantic segmentation
of crops in Africa

Satellite:
Sentinel-1 (VV and VH),
Sentinel-2 (10 bands) and
Planet Scope (RGB + NIR)

Compared:
2D U-Net + CLSTM
and 3D CNN using
multi-temporal images

Accuracy
South Sudan:
2D U-Net 88.7%,
3D 90%
Ghana:
2D U-Net 65.7%,
3D 63.5%

Building on these methods, we aimed to develop and validate deep learning ap-
proaches to identify land classes associated with the breeding sites of malaria mosquito
vectors in West Africa. Data were assembled from multiple sites in Burkina Faso and Côte
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d’Ivoire to develop an approach able to generalize to different malaria-endemic landscapes.
We developed a land classification system based on habitats of interest for the breeding
ecology of the malaria vector An. funestus and An. gambiae, which are present in the study
sites. We used RGB drone images from the study sites to build a training dataset and to
implement two CNN-based frameworks using the U-Net and attention U-Net architectures
to identify features of interest for Anopheles breeding. The specific objectives of this study
were to (i) collect and assemble a labeled dataset of drone images in malaria-endemic areas
in Côte d’Ivoire and Burkina Faso; (ii) develop a protocol to label land classes of interest
based on the local vector ecology; (iii) assemble a labeled dataset for each class and (iv)
train, validate and test the U-Net and attention U-Net deep learning architectures. The
final algorithms were assessed based on the performance in predicting the presence of the
classes of interest in test images using the best model after cross-validation.

2. Materials and Methods
2.1. Drone Mapping

Drone surveys were conducted in two malaria-endemic sites in West Africa—Saponé,
Burkina Faso and Bouaké, Côte d’Ivoire—where the incidence of malaria (per 1000 pop-
ulation at risk) is 389.9 and 287, respectively (the World Bank: https://data.worldbank.
org/indicator/SH.MLR.INCD.P3 (accessed on 19 April 2023)). Both sites are rural, with
extensive small-scale agriculture and highly seasonal rainfall and malaria transmission
patterns. Saponé is located 45 km south-west of Ouagadougou, Burkina Faso and has re-
ported an extremely high malaria prevalence of predominantly Plasmodium falciparum [42].
The main malaria vector in this site is An. gambiae s.l., with low densities of other species
also reported. Between November 2018 and November 2019, with an average temporal
resolution of 5 months, fixed-wing (Sensefly eBee) and quadcopter (DJI Phantom 4 Pro)
drones were used to collect 26 RGB images at 2–10 cm per pixel resolution. Similarly,
in Bouaké, we conducted targeted drone surveys from June to August 2021 using a DJI
Phantom 4 Pro drone to collect RGB data at a 2 cm per pixel resolution, as described by [2];
77 images were used in this study. This area was also rural and dominated by small-scale
agriculture; however, this site had different vector compositions, including high densities
of An. funestus. For both sites, drone images were processed using Agisoft Metashape
Professional (Agisoft: https://www.agisoft.com/ (accessed on 19 April 2023)). The steps
performed were photo alignment (using high accuracy, selecting the generic preselection,
reference preselection and adaptive camera model fitting options; the key point was set to
40,000), building a dense point cloud (high quality and moderate depth filtering), building
a digital elevation model (extrapolated option) and finally performing the orthomosaic
generation. The drone images covered a 11.52 km2 and 30.42 km2 area for Burkina Faso
and Côte d’Ivoire, as illustrated in Figure 1. Both sites were dominated by agriculture,
mainly yams, cassava, cashews, peanuts and maize.

https://data.worldbank.org/indicator/SH.MLR.INCD.P3
https://data.worldbank.org/indicator/SH.MLR.INCD.P3
https://www.agisoft.com/
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Figure 1. Drone image collection sites with example drone imagery from each site.

2.2. Image Labeling and Development of Labeled Dataset

We identified specific land cover classes of interest associated with Anopheles breeding
sites, including water bodies and irrigated agricultural land types [2]. Within these settings,
crops, roads and tillage areas were identified as land types with a high probability of
containing small water bodies where An. gambiae breeds, the predominant vector in the
Burkina Faso site. For An. funestus, a dominant vector in areas of the Cote d’Ivoire site,
we differentiated between vegetated and non-vegetated water bodies as An. funestus is
most commonly identified only in vegetated water bodies. We additionally identified
habitat types associated with human activities, including roads and buildings. The final
land cover classes of interest for this analysis included vegetated and non-vegetated water
bodies, irrigated crops (planted vegetation with no tree cover), tillage (land cleared for
planting crops), buildings and roads. While this classification cannot specifically identify
whether or not an area is an Anopheles breeding site, this provides the basis for targeting
future entomological surveys and wider epidemiological studies on how landscape impacts
malaria transmission.

To identify these classes using a supervised deep learning approach, we first needed
to assemble a dataset of harmonized labeled images. We manually labeled a total of
103 drone acquisitions to generate gold-standard (i.e., labeled images) masks for each of
the specific land classes. Trained personnel familiar with the study area validated the
labels. This process was performed using two different tools: GroundWork (GroundWork:
https://groundwork.azavea.com (accessed on 19 April 2023)) and QGIS (QGIS: https:
//qgis.org/site/forusers/download.html (accessed on 19 April 2023)). The former is a
cloud-based licensed tool where the images are uploaded for labeling. In this cloud-based
interface, a grid is overlaid in the image as illustrated in Figure 2A. The user is then able to
select one of the predefined classes to assign the corresponding class over the images, as
shown in Figure 2B. While this tool has a streamlined workflow to facilitate labeling, this
required internet access, had a limited data allowance and was not suitable in all contexts.
Therefore, we also used QGIS, which, on the other hand, is a Geographic Information
System (GIS) open-source desktop application that allows one to input geo-referenced
images and annotate them manually using polygons (Figure 3). Images labeled with each

https://groundwork.azavea.com
https://qgis.org/site/forusers/download.html
https://qgis.org/site/forusers/download.html
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software were randomly selected. The obtained polygons from both tools were checked to
detect invalid polygons and were corrected manually.

(A) (B)

Figure 2. Example of image labeling using GroundWork. (A) Grid over an image for labeling.
(B) Polygon selection.

Figure 3. Example of image labeling using QGIS.

Once all the images were labeled, ground truth masks were created for the supervised
image classification. As shown in Figure 4, first, we create a subset of vector layers, one
for each class. Then, we rasterized the vector layers to create a separate raster image for
each class. The land class presence depended on the acquisition site’s characteristics. For
example, Figure 5 shows a labeled region from Burkina Faso where all the land classes
are present; however, this was not the case for all the images. Images that did not contain
labeled polygons were not considered in this study.

Figure 4. Gold-standard (ground truth) mask process.

We built six land class datasets: crops, tillage, roads, buildings, vegetated water
bodies and non-vegetated water bodies (defined at the beginning of this section). For each
dataset, we selected only the drone images that contained labels of the corresponding
land class. From each dataset, we randomly selected images for training, validation
and testing. To avoid bias related to the training data, we considered using a 3-fold
cross-validation scheme.

Due to GPU memory constraints, the entire drone image and its corresponding labels
were split into several patches, which were used to train, validate and test the deep learning
models. In addition, because of the variable extension of each labeled polygon, splitting
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the image in a grid pattern resulted in a highly unbalanced dataset where the background
predominated over the class of interest. Instead, we used a new approach for data patching
and augmentation based on ROI shifting, described in [43], to avoid this imbalance. This
method also prevented potential bias caused by the network focusing on the background
instead of the class of each patch. The augmentation aimed to train the models robustly in
the presence of variable neighborhood context information. Thus, we identified the ROIs
and framed them in rectangles, which could contain one or more polygons, as illustrated in
Figure 6. Patches of 256 × 256 and 512 × 512 pixels were extracted from these rectangles
and assigned to each training, validation and testing dataset. A summary of the number of
images and patches in each dataset is reported in Table 2. For each patch size, we report
in Table 3 the average percentage of the class present in the dataset. This was computed,
per patch, as the ratio of the pixels belonging to each class and the background pixels.
Patches with classes representing less than 10% (256 × 256) or 20% (512 × 512) of the patch
size were eliminated from the datasets. The total number of patches obtained for each
class differed by study site; while Burkina Faso contained more tillage areas, Côte d’Ivoire
had more irrigated crops. Considering both sites, water body datasets contained the least
number of patches. On average, non-vegetated water bodies, tillage and crops covered
greater percentages of patches as these classes were more likely to be larger.

Figure 5. Image example from Burkina Faso.

Table 2. Number of images and patches by class for training, validation and test.

Class
# Drone # Train/Val # Train/Val Patches # Test # Test Patches

Images Images 256 × 256 512 × 512 Images 256 × 256 512 × 512

Buildings 48 36 7441 1324 12 4835 714
Crops 93 69 229,522 58,738 24 64,357 16,440
Roads 60 45 38,799 3908 15 14,330 2106
Tillage 42 31 86,988 22,817 11 39,025 10,264

Non-vegetated 37 27 9194 2232 10 79 1
Vegetated 20 15 4660 1107 5 564 125
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Figure 6. Classification methodology schema.

Table 3. Summary of the percentage of the class per patch in each category.

Burkina Faso

Patch size 256 × 256 512 × 512

Class patches min (%) mean (%) max (%) patches min (%) mean (%) max (%)

Buildings 6584 10.01 33.72 100 778 20.05 35.81 87.9
Crops 14,440 10.00 76.70 100 3662 20.00 71.23 100.0
Roads 42,810 10.00 29.51 100 4513 20.00 36.72 100.0
Tillage 121,952 10.00 75.49 100 32,089 20.00 70.35 100.0
Non-vegetated 7734 10.09 91.73 100 1900 20.08 89.51 100.0
Vegetated 251 10.17 65.89 100 58 20.49 61.03 100.0

Côte d’Ivoire

Patch size 256 × 256 512 × 512

Class patches min (%) mean (%) max (%) patches min (%) mean (%) max (%)

Buildings 5692 10.0 46.5 100 1260 20.0 35.6 82
Crops 279,439 10.0 79.5 100 71,516 20.0 74.2 100
Roads 10,319 10.0 31.4 100 1501 20.0 26.7 96
Tillage 4061 10.0 69.4 100 992 20.1 62.3 100
Non-vegetated 1539 10.1 55.3 100 333 20.0 56.3 100
Vegetated 5646 10.0 62.3 100 1107 20.1 58.5 100

2.3. Algorithm Development

We developed a multi-step approach to classifying multiple land classes from patches,
as shown in Figure 6. Following the dataset preparation, two deep learning segmentation
models were selected: U-Net and attention U-Net. U-Net is a widely used architecture
for semantic segmentation tasks. This method relies on the upsampling technique, which
increases an image’s dimensions (i.e., the number of rows and/or columns). Thus, the
present method builds on a conventional network with successive layers by using up-
sampling operators to replace pooling operations, which implies using contraction and
expansion paths (i.e., encoder and decoder, respectively). The contraction part reduces the
spatial dimensions in every layer and increases the channels. Meanwhile, the expansive
part increases the spatial dimensions while reducing the channels. Finally, using also
skip connections between the encoder and decoder, the spatial dimensions are restored to
predict each pixel in the input image. An important modification in U-Net is that many
feature bands are in the upper sampling part, allowing the network to propagate context
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information to higher-resolution layers. Consequently, the expanding trajectory is more or
less symmetric to the contracted part and produces a U-shaped architecture [44]. Attention
U-Net adds a self-attention gating module in every skip connection of the U-Net architec-
ture, without increasing the computation overhead. These modules are incorporated to
improve the sensitivity and accuracy and add visual explainability to the network. The
improvement is performed by focusing on the features of the regions of interest rather than
the background [45,46].

Regarding the computational features used in this study, data preparation and deep
learning experiments were executed on an 8-core Intel(R) Xeon E5-2686 @ 2.3 GHz CPU
with 60 GiB RAM and one 16 GiB RAM Nvidia Tesla V100 GPU on the Amazon Elastic
Compute Cloud service (AWS).

2.4. Evaluation Metrics

To quantitatively assess the similarities between the predicted and gold-standard
object areas, we used the Dice coefficient. This divides two times the area of overlap by the
total number of pixels in both images, as shown in Equation (1).

DICE =
2× |A ∩ B|

|A ∩ B|+ |A ∪ B| (1)

The Dice coefficient takes values from 0 to 1, in which 1 represents a complete match
between the ground truth and the prediction. We additionally calculated the precision and
recall metrics, which are computed based on true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN), as described in Equations (2) and (3), respectively.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Based on the aforementioned elements, we performed different experiments, which
are described in the following section.

3. Results

As the number of ROIs in every drone image was not the same, the number of patches
(generated from the ROIs) in each fold varied from class to class. As a result, we used up to
90% of the CPU RAM capacity in the experiments containing the higher number of patches.
This computational load was due to caching the data and annotations in CPU RAM prior
to moving the batches to the GPU RAM in the training, validation and test phases. This
approach reduces the number of CPU–GPU data transfers, which can intensively impact
the training time. The average training and cross-validation time was approximately 12 h.

The U-Net and attention U-Net architectures were used to classify the different classes
organized in sets of patches of 256 × 256 and 512 × 512 pixels in size using a three-fold
cross-validation procedure. Table 4 shows the results for the U-Net using patches with a
size of 256 × 256 pixels. For vegetated water bodies, one of our primary classes of interest,
the model reached its highest Dice score at 0.68 in the first fold and an average of 0.63.
Non-vegetated water bodies had a higher Dice score of 0.75 and 0.58 on average, showing
the worst performance among all the classes. Crops, tillage and buildings had the best
overall performance, above 0.80 in all validation sets, followed by roads, which reached
0.71. The same U-Net architecture was also trained with patches of 512 × 512 pixels in
size. For both training approaches, all classes achieved comparable results; however, the
model trained with 256 × 256 pixel size patches outperformed, on average, the 512 × 512
model in every class. The detailed table showing the performance of the 512 × 512 pixel
size model is provided in the Supplementary Information.

Similarly to the U-Net experiments, we trained the attention U-Net with patches of
256 × 256 pixels. The evolution of the training using a heatmap in a jet color scale is shown
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in Figure 7. The areas where the network found relevant features for segmentation are
displayed in red, while the blue areas correspond to less essential regions. The first column
shows the original patch, and the following columns are the heatmaps according to an
iteration number indicated above; however, they correspond to different epochs. In general,
for non-vegetated water body (Figure 7c), road (Figure 7d) and vegetated water body
(Figure 7f) patches, we noticed that, as the number of iterations increased, the network
focused more on the areas of interest for learning. Nevertheless, in the case of buildings
(Figure 7a), the initial iteration focused more on the construction than the final one because
it corresponded to a different epoch and batch, meaning that iteration 212 corresponded to
an early epoch where the network was not fully updated or a batch with a different data
distribution than the patch analyzed. Another important aspect to highlight is that, in some
iterations, the network concentrated not on the class but on the shadows of the patch, such
as in Figure 7d iteration 327 and Figure 7d iteration 3.

Table 4. Results of the classification process using a U-Net architecture for 256 × 256 pixels patch
size, where the best fold is reported in bold font. The results are reported in terms of cross-validation
(CV), false positives (FP), false negatives (FN), true negatives (TN), true positives (TP), precision,
recall and Dice.

Class CV FP FN TN TP Precision Recall Dice

Vegetated
water body

1 0.17 0.15 0.15 0.53 0.75 0.78 0.68
2 0.25 0.19 0.20 0.37 0.59 0.66 0.56
3 0.21 0.12 0.22 0.45 0.68 0.78 0.65

Avg. 0.21 0.15 0.19 0.45 0.67 0.74 0.63

Tillage

1 0.10 0.03 0.13 0.74 0.88 0.96 0.88
2 0.10 0.09 0.15 0.66 0.87 0.88 0.82
3 0.11 0.05 0.13 0.71 0.87 0.93 0.86

Avg. 0.10 0.06 0.14 0.70 0.87 0.92 0.85

Roads

1 0.09 0.07 0.63 0.21 0.70 0.74 0.70
2 0.06 0.06 0.71 0.17 0.73 0.75 0.71
3 0.16 0.15 0.51 0.17 0.52 0.53 0.43

Avg. 0.10 0.09 0.62 0.18 0.65 0.67 0.61

Non-vegetated
water body

1 0.02 0.54 0.06 0.38 0.95 0.41 0.50
2 0.21 0.26 0.26 0.27 0.57 0.51 0.48
3 0.22 0.03 0.18 0.57 0.72 0.96 0.75

Avg. 0.15 0.28 0.17 0.41 0.74 0.63 0.58

Crops

1 0.10 0.06 0.10 0.74 0.87 0.93 0.86
2 0.13 0.04 0.09 0.75 0.85 0.95 0.86
3 0.09 0.04 0.10 0.76 0.89 0.95 0.88

Avg. 0.11 0.05 0.10 0.75 0.87 0.94 0.86

Building

1 0.04 0.07 0.51 0.38 0.89 0.84 0.81
2 0.04 0.08 0.57 0.31 0.88 0.80 0.76
3 0.04 0.03 0.54 0.38 0.90 0.92 0.87

Avg. 0.04 0.06 0.54 0.35 0.89 0.85 0.81

The quantitative results to evaluate the performance of the attention U-Net using
patches of 256 × 256 pixels are reported in Table 5. Comparing these results with the
ones obtained with the 256 × 256 U-Net model, we observe that the vegetated and non-
vegetated water body classes had improved performance. Despite this, the first fold of the
non-vegetated water body class showed a low Dice value (below 5%), meaning that the
training was unstable across the three folds and may have impacted the inference process
due to the different data distributions present in the datasets. Therefore, cross-validation
provided insights into the robustness and stability of the trained models.
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We also trained the attention U-Net using patches of 512× 512 pixels. However, we used
a subset of patches per class ranging from 5% to 20% to test the model performance on the
vegetated and non-vegetated water body, crop and building classes. Although it showed an
improvement in the water body classes compared to the 256 × 256 pixel U-Net model using
the best fold as a reference, the standard deviation calculated after the cross-validation was
higher, meaning that the network was not entirely stable. For instance, in the non-vegetated
class, the Dice score ranged from 0.1 to 0.91 in the attention U-Net 512 × 512 pixel model. We
report all results for this last experiment in the Supplementary Information.

We selected the U-Net 256 × 256 pixel model to evaluate the predicted mask as it
was the most stable and robust network. Figure 8 shows the inference results for one
sample patch (taken from the test dataset) per class. The first column shows the original
test patch. The second column shows the gold standard in white and the background in
black, whereas the third column is the network prediction, where each pixel is depicted
in white if it belongs to the corresponding class with a probability higher than 0.65. The
patch’s Dice score is reported above each predicted mask. Figure 8a shows the buildings
accurately distinguished over the soil region. In contrast, qualitative results for the crop
class in Figure 8b show that the network predicts as crops more regions of soil between the
leaves rather than the actual crop. This may be explained by the imprecise annotations
(i.e., mask almost covering 100% of the patch area) seen in the gold standard. Figure 8c
presents a water body’s segmentation despite the shadows and blurriness of the patch.
Figure 8a,d show a road and a vegetated water body, respectively. In both cases, the
network outperformed the manual annotation qualitatively. Finally, the tillage model
output shown in Figure 8e predicted not only the corresponding class but also areas of soil
that were not prepared for cultivation.

Table 5. Results of the classification process using an attention U-Net architecture used for 256 × 256
pixels patch size, where the best fold is reported in bold font. The results are reported in terms of
cross-validation (CV), false positives (FP), false negatives (FN), true negatives (TN), true positives
(TP), precision, recall, F1-score and Dice.

Class CV FP FN TN TP Precision Recall Dice

Vegetated water
body

1 0.27 0.08 0.15 0.49 0.64 0.85 0.67
2 0.28 0.11 0.17 0.44 0.61 0.81 0.64
3 0.08 0.14 0.24 0.53 0.81 0.72 0.70

Avg. 0.21 0.11 0.19 0.49 0.69 0.79 0.67

Tillage

1 0.06 0.25 0.18 0.51 0.85 0.66 0.67
2 0.11 0.23 0.13 0.53 0.80 0.68 0.69
3 0.03 0.55 0.27 0.15 0.77 0.20 0.27

Avg. 0.07 0.34 0.19 0.40 0.81 0.51 0.54

Roads

1 0.15 0.12 0.53 0.20 0.70 0.67 0.58
2 0.15 0.10 0.48 0.27 0.71 0.69 0.60
3 0.35 0.06 0.40 0.19 0.51 0.77 0.46

Avg. 0.22 0.09 0.47 0.22 0.64 0.71 0.55

Non-vegetated
water body

1 0.10 0.58 0.30 0.02 0.36 0.03 0.04
2 0.06 0.10 0.02 0.82 0.91 0.88 0.85
3 0.20 0.05 0.26 0.49 0.71 0.90 0.72

Avg. 0.12 0.24 0.19 0.44 0.66 0.60 0.54

Crops

1 0.07 0.17 0.14 0.62 0.85 0.76 0.75
2 0.04 0.27 0.13 0.55 0.89 0.66 0.72
3 0.16 0.04 0.05 0.75 0.81 0.94 0.84

Avg. 0.09 0.16 0.11 0.64 0.85 0.79 0.77
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Table 5. Cont.

Class CV FP FN TN TP Precision Recall Dice

Building

1 0.03 0.06 0.56 0.36 0.91 0.84 0.85
2 0.03 0.07 0.53 0.37 0.91 0.82 0.83
3 0.21 0.06 0.41 0.32 0.65 0.83 0.66

Avg. 0.09 0.06 0.50 0.35 0.82 0.83 0.78

Figure 7. Evolution of the training process using the attention U-Net architecture for patches of size
256 × 256 pixels. (a) Buildings. (b) Crops. (c) Non-vegetated water bodies. (d) Roads. (e) Tillage.
(f) Vegetated water bodies.
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Figure 8. Predictions using the U-Net architecture for patches of size 256 × 256 pixels. (a) Buildings.
(b) Crops. (c) Non-vegetated water bodies. (d) Roads. (e) Tillage. (f) Vegetated water bodies.
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4. Discussion

This study highlights the utility of deep learning approaches to identify potential
mosquito habitats using high-resolution RGB imagery. We developed a workflow and
methodology to assemble and process labeled training data to implement deep learning
algorithms to automatically detect malaria vectors’ potential habitats. Although the per-
formance, as measured by the Dice coefficient, was low for some classes, the classifier
did consistently detect the presence of specific classes within drone imagery. In fact, we
identified that the relevant information for the end-user needs, in this case, is to identify
the presence of a particular type of land cover rather than the boundary delimitation of
the class. Overall, this work establishes a framework to apply artificial intelligence tools to
support vector-borne disease control.

Our proposed methodology builds on a growing body of literature using deep learning
approaches and remote sensing data to identify priority areas in implementing disease con-
trol measures. Compared to other studies using deep learning algorithms with multispectral
satellite imagery to detect vector habitats, our study had lower predictive power [35], most
likely due to the limited information in RGB images. In addition, the annotation process
(i.e., manual labeling) is a factor that we need to consider. For example, Figure 8f shows
an example of the human labeling error in not encompassing the water bodies’ bound-
aries. However, despite these errors on the training labels, the network performs better in
segmenting the pixels that belong to this class. The qualitative differences in the manual
and predicted labels result in a lower Dice score. Rather than relying solely on manual
annotations, which can be imprecise, unsupervised learning approaches or region-growing
approaches may result in more accurate ground truths and higher-performing models [36].

As shown in Figure 8f, our proposal using the U-Net architecture achieved better
qualitative results when segmenting certain classes. In order to understand deeply where
the network was focusing its attention when dealing with this task, we used the attention
U-Net architecture. The results provided a clear view of which pixels were being used in
the segmentation process. This introduced a level of visual interpretability of the training
process and allowed us to propose a methodology to leverage the attention maps to refine
manual annotations.

This tool can be improved in the future by including human supervision, as proposed
in Figure 9. Initially, we need a set of manually annotated patches extracted from several
drone images used in the pre-training engine. The model obtained after this process could
be used to segment and detect structures in a new drone image. The network will output
its predictions as attention maps (heatmaps with pixel probabilities). A user will then
evaluate the predictions and determine if there are missing objects or if the boundaries
of the detected objects are correctly segmented. These new annotations will then be used
as inputs to an online training engine, improving the knowledge of the original deep
learning model. This procedure should reduce the imprecision of manual annotations
and allow the model to learn incrementally from new samples introduced by different
users. In addition, the feedback loop should also help when there are similar qualitative
characteristics (imaging features) in different class patches—a challenging process regarding
data cleaning procedures.

We could also observe a difference in performance using different patch sizes. Ideally,
larger patches should allow the network to extract information from the object’s surround-
ings and identify the borders of the objects detected, such as the buildings. However,
this additional information may need to be clarified in some cases. A deeper analysis,
including multi-resolution deep learning models, could provide a better understanding of
the features needed for better segmentation of the classes proposed in this study.
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Figure 9. Future proposal: human-supervised tool for improved drone labeling. The idea is adapted
from [43,47].

Deep learning approaches based on open-access satellite data can provide a more
efficient and cost-effective means for vector control programs to identify priority areas
for field surveys and targeted interventions. Larval source management is an important
component in the toolkit for controlling mosquito-borne diseases, particularly in endemic
contexts with persistent insecticide resistance [36]; however, identifying aquatic breeding
sites is both time- and resource-intensive and can be biased by reliance on prior knowledge,
convenience or assumptions. Based on the Dice score obtained, we found that the presence
of specific habitat classes could be consistently detected within drone imagery, including
vegetated and non-vegetated water bodies, tillage, crops and roads. By delineating certain
areas within a large, gridded landscape with a high probability of containing potential vec-
tor breeding habitats, deep learning algorithms could facilitate the more targeted planning
and implementation of larvicidal activities. For example, vector control programs can use
this to focus finite resources on narrower areas for entomological field-based surveys or
anticipate the scale of larvicide requirements for a given area. More broadly, knowledge
of roads and building locations can be used to plan interventions. For example, clustered
buildings in close proximity to breeding sites are important targets for indoor residual
spraying against adult malaria vectors. Importantly, this approach is generalizable and
could be used in a range of vector-borne disease-endemic contexts to identify the presence
of habitats of interest that are relevant to the local land cover and local vector ecology.

One of the key advantages of drone data is that they allow user-defined time points to
characterize features over time. This study was predominantly cross-sectional, aiming to
classify land types from labeled drone images from specific points in time. As one of the key
aims was to categorize potential breeding sites for the malaria vector An. funestus, which
breeds in large, semipermanent to permanent water bodies, breeding sites are less likely to
vary throughout the seasons. However, these methods could be repeated to reclassify po-
tential habitats for specific seasons or time points. This could be particularly informative in
mapping seasonal changes in breeding site availability or monitoring agricultural activities
that expand different habitat types.
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Additionally, this study highlights the importance of identifying how the classified
information will be used. While we assessed model performance using the Dice coefficient,
these metrics describe pixel-level classification accuracy. In some cases, this may be appro-
priate, such as when an epidemiological study needs to identify the precise outline of a
water body. However, in many cases, these scores do not reflect the utility of the classifier.
For example, a control program may only need to know where a potential breeding site is
located and the relative size in order to plan larvicidal activities.

This study has several important limitations. While we used data from multiple sites
in West Africa, these do not indicate the full range of habitats within this region or seasonal
changes. Future studies could integrate data from other sources to develop more repre-
sentative datasets. Additionally, limited amounts of ground-truthed data were available
from these study sites, and there were insufficient data on larvae presence or absence to
predict whether specific land classes contained Anopheles larvae. If data were available, this
framework could be extended to predict the presence or absence of specific species.

Despite these limitations, this study developed a methodology to automatically detect
potential mosquito breeding sites. Although data labeling is highly labor-intensive, this
classifier can rapidly analyze RGB drone images collected using small, low-cost drones.
Similarly, as deep learning methods are self-learning, additional datasets will likely improve
the performance and applicability of these methods. Future work could develop more
user-friendly interfaces to support the uptake of these methods. Altogether, this study sets
out a useful framework to apply deep learning approaches to RGB drone imagery.

5. Conclusions

This study proposed a methodology to automatically spotlight high-resolution RGB
drone images of the West Africa land cover to detect malaria vectors’ potential habitats.
After manual image annotation, images were cut into patches of size 256 × 256 and
512 × 512 pixels. Later, U-Net-based and attention U-Net-based algorithms were applied
to automatically identify buildings, roads, water bodies, crops and tillage. Finally, the
best model was selected from the different experiments performed based on the Dice
score. Although we obtained promising results in identifying buildings, roads and water
bodies, crops and tillage still represent a challenge, which will be explored in future work.
Nevertheless, we have demonstrated that our proposal is pertinent in helping experts to
create tools to avoid the proliferation of mosquito breeding sites.
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The following abbreviations are used in this manuscript:
EO Earth observation
UAV unmanned aerial vehicle
CNN convolutional neural network
DP deep learning
TAD technology-assisted digitizing
GLCM gray-level co-occurrence matrix
RGB red, green and blue
RMSE root mean square error
MCSMA multiple-criteria spectral mixture analysis
RNN recurrent neural network
ReLU rectified linear
CPU central processing unit
RAM random access memory
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