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A point mutation in recC associated with
subclonal replacement of carbapenem-
resistant Klebsiella pneumoniae ST11
in China

Kai Zhou1,60 , Chun-Xu Xue 1,60, Tingting Xu 1,60, Ping Shen 2,60,
Sha Wei 1, Kelly L. Wyres 3, Margaret M. C. Lam3, Jinquan Liu 1,
Haoyun Lin 4, Yunbo Chen 2, Kathryn E. Holt3,5, the BRICS Working Group* &
Yonghong Xiao2

Adaptation to selective pressures is crucial for clinically important pathogens
to establish epidemics, but the underlying evolutionary drivers remain poorly
understood. The current epidemic of carbapenem-resistant Klebsiella pneu-
moniae (CRKP) poses a significant threat to public health. In this study we
analyzed the genome sequences of 794 CRKP bloodstream isolates collected
in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal
replacement in the predominant clone ST11, where the previously prevalent
subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise
manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a
point mutation exclusively detected in the recC of O2v1:KL64 significantly
promotes recombination proficiency. The epidemic success of O2v1:KL64 was
further associatedwith a hypervirulent sublineagewith enhanced resistance to
phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The pheno-
typic alterations were linked to the overrepresentation of hypervirulence
determinants and antibiotic genes conferred by the acquisition of an rmpA-
positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant
plasmid, respectively. The dissemination of the sublineage was further pro-
moted by more frequent inter-hospital transmission. The results collectively
demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of
genomic alterations convergent in a subpopulation with evolutionary
advantages.

Klebsiella pneumoniae is a significant nosocomial pathogenworldwide,
and its remarkable ability to acquire antibiotic resistance largely
facilitates its widespread dissemination. In the last decade, the rate of
multidrug-resistant (MDR) K. pneumoniae, particularly carbapenem-

resistant K. pneumoniae (CRKP), is trending upwards globally, and is
associated with an enormous global public health burden1–3. In parti-
cular, bloodstream infections (BSI) caused by CRKP highly challenges
clinical treatments, resulting in a high mortality rate of up to over 50%
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in nosocomial settings4,5. The World Health Organization has included
CRKP in a list of antimicrobial-resistant priority pathogens for which
new antibiotics are urgently needed.

The rapid expansion of CRKP has been attributed to the acqui-
sition of carbapenemases as well as the establishment of successful
clones (i.e., high-risk clones). The population structure of CRKP
varies geographically6. In Asia, especially China, KPC-2-producing
sequence type (ST) 11 is predominant, accounting for up to 60–70%
of CRKP3. ST258, a supposed descendent of ST11, has become the
most prevalent KPC-2/KPC-3 producing clone inNorth America, Latin
America, and Europe2,6,7. Although these clones have remained at
high prevalence in certain regions for decades, intra-clonal segre-
gations have been observed. More than two subclones have been
identified in the ST11 and ST258 population, and recombinations
involving the capsule polysaccharide synthesis (CPS) locus are sup-
posed to be primarily responsible for genetic diversification4,8,9. We
recently revealed a subclonal switch among CRKP-ST11 bloodstream
isolates collected in a single center in China between 2013 and 2017,
where ST11-KL47 had been displaced by ST11-KL64 as the pre-
dominant subclone4. Of greater concern, ST11-KL64 has evolved
enhanced pathogenicity, resulting in significantly higher 30-day
mortality compared to ST11-KL47. However, the spatiotemporal
dynamics and underlying driving forces of the population structure
remain poorly understood.

In this work, we investigate the genomic evolution of 794 CRKP
isolates collected in the framework of national surveillance for
bloodstream isolates between 2014 and 2019 across China to elu-
cidate the spatial and temporal dynamic population structure of
CRKP-ST11 and to dissect the genetic and phenotypic drivers of the

intra-clonal diversification. The genomic alterations correlating
with subclonal switch and phenotypical variations in the dominant
ST11 population are characterized and linked to evolutionary
drivers.

Results
Population structure of CRKP bloodstream (CRKP-BS) isolates
in China
Between 2014 and 2019, 4635 K. pneumoniae species complex blood-
stream isolates were collected from 45 sentinel hospitals distributed
across 19 provinces covering 75.7% population of China (ca. 1.06 bil-
lion) (Fig. 1a). A total of 794 non-repetitive CRKP isolates were identi-
fied in 40 hospitals of 16 provinces, including 772 K. pneumoniae sensu
stricto, 10 K. variicola, 11 K. quasipneumoniae, and 1 K. michiganensis
(not belonging to K. pneumoniae species complex but was included in
the analysis) (Supplementary Fig. 1 and Supplementary Dataset 1). The
proportion of CRKP had increased from 11.2% to 17.7% over the study
period (Fig. 1b). The population structure of CRKP-BS was highly
complex, and 72 STs were detected (Supplementary Dataset 1). ST11
was the predominant clone (81.4%; 646/794), followed by ST15 (55/
794; 6.93%).

One or more carbapenemase genes were detected in 771 of 794
isolates (97.1%), and 753belonged toK. pneumoniae sensu stricto,which
encoded blaKPC-like (n = 712; including 709 blaKPC-2 and 3 blaKPC-3),
blaNDM-like (n = 36), blaIMP-like (n = 4), and blaOXA-48-like (n = 5)
genes (Supplementary Dataset 1). The majority of blaKPC-like-positive
K. pneumoniae sensu stricto isolates (686/712; 96.3%) belong to
ST11 and ST15, suggesting clonal dissemination of blaKPC-like genes
in China.

Fig. 1 | K. pneumoniae species complex bloodstream isolates collected in this
studybetween 2014 and 2019. aGeographical distributionof 45 sentinel hospitals
participating in this study. The number of isolates collected in each province is
shown by color gradients at the right. b The graph shows the number (dark red

bars) and the ratio of CRKP (red line) detected each year during the surveillance.
c The graph shows the number of O2v1:KL64 and OL101:KL47 detected in CRKP
(blue bars) each year, and the ratio of O2v1:KL64 to CRKP-ST11 (purple line) and
OL101:KL47 toCRKP-ST11 (blue line). Source data are provided as a SourceData file.
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Occurrence of subclonal switch in CRKP-ST11 within a 6-year
period
We identified 55K-loci (KLs, capsule synthesis loci) and tenO-loci (OLs,
outer lipopolysaccharide synthesis loci) in the CRKP-BS population
(Supplementary Dataset 1). ST11 comprised 13 KLs and 8 OLs, of which
KL64 (422/646; 65.3%) and O2v1 (418/646; 64.8%) was the most pre-
valent, followed by KL47 (192/646; 29.7%) and OL101 (an O12 deriva-
tive) (193/646; 29.9%). ST15 included 5 KLs and 5 OLs, and KL19 (43/56;
76.8%) and O2v1 (42/56; 75%) were predominant. The proportion of
OL101:KL47 among CRKP-ST11 dropped from 78.1% (25/32) in 2014 to
9.7% (22/226) in 2019, whereas that of O2v1:KL64 (4 OL102:KL64 iso-
lates were included to simplify the analysis through the study)
increased from 15.6% (5/32) in 2014 to 81.4% (184/226) in 2019 (Fig. 1c).
The findings demonstrate that subclonal replacement has occurred
from OL101:KL47 to O2v1:KL64 within the ST11 population in China.
The subclone O2v1:KL19 was constantly prevalent in ST15 during the
study period (66.7%-87%).

O2v1:KL64 is derived from OL101:KL47
To determine the phylogenetic relationship of these ST11 subclones, a
maximum-likelihood tree was derived from 4460 recombination-free
SNPs. A clade comprising isolates of O2v1:KL103, O2v2:KL105,
O3b:KL111, and O4:KL15 was basal in the tree (Fig. 2), presenting the
ancestral clade of the ST11 isolates. All O2v1:KL64 isolates clustered
together to form the deepest branching clade and also clustered with
one sublineage of OL101:KL47, indicating that O2v1:KL64 was derived
fromOL101:KL47. This is consistent with our previous conclusion from
single-center data4. The other serotypes clustered either with
OL101:KL47 (O3/O3a:KL10 and O5:KL25) or with O2v1:KL64
(O2v1:KL21, O2v1:KL28, O2v1:KL31, O2v1:KL103, O2v1:KL107, and O3/
O3a:KL58), supporting the notion that they evolved from the two
major subclones.

Recombination contributes significantly to the intra-clonal
diversification of CRKP-ST11
We identified 42,824 core-genome SNPs prior to and 4460 SNPs after
the removal of recombination regions, suggesting that recombination
has contributed heavily to the population diversity. These include a
96.1-kb and 12.1-kb region encompassing the CPS and lipopoly-
saccharide (LPS) locus that introduced 1182 and 261 SNPs, respectively,
thereby accounting for the switch from OL101:KL47 to O2v1:KL64
(Supplementary Fig. 2). There were additional recombination events
spanning the CPS and/or LPS region that were detected in the
OL101:KL47/O2v1:KL64-derived subclones and these also conferred
switches in O/K-types.

To further estimate the role of recombination in the genetic var-
iations of O2v1:KL64 and OL101:KL47, we calculated nucleotide
divergence for all pairs of genomes within the two subclones before
and after the removal of recombinant sequence regions. Less nucleo-
tide divergence was detected in O2v1:KL64 than in OL101:KL47 before
(median pairwise divergence: 4.2 × 10−5 vs 1.5 × 10−4; p < 2.2 × 10−16 by
Wilcoxon rank-sum test) and after the removal of recombination
regions (1.3 × 10−5 vs 2.1 × 10−5; p < 2.2 × 10−16) (Supplementary Fig. 3).
This is probably due to the fact that O2v1:KL64 emerged later than
OL101:KL47 and has had less time to accumulate genetic diversity. The
r/m value of O2v1:KL64 was approximately 2.5-fold higher than that of
OL101:KL47 (17.68 vs 7.28), suggesting that the contribution of
recombination to the genetic variations was higher in O2v1:KL64 than
in OL101:KL47.

Point mutation in RecC confers a higher recombination
frequency to O2v1:KL64
Given the higher r/m value detected in O2v1:KL64 compared with
OL101:KL47, and more serotypes derived from O2v1:KL64 (n = 7) than
from OL101:KL47 (n = 2), we supposed that O2v1:KL64 might have

evolvedwith higher recombinationproficiency. To test the hypothesis,
we examined subclone-specific SNPs associated with recombination,
and a single missense mutation in the recC gene (2804A >G;
His935Arg) was exclusively found in O2v1:KL64 compared with the
sequenceofOL101:KL47. It is known that functional recC is required for
genetic recombination in Escherichia coli, and mutations in recC can
affect recombination proficiency10. We engineered an O2v1:KL64
mutant (KP37485ΔrecC), and confirmed that deletion of recC indeed
abolished recombination proficiency reflected by the resistance to the
DNA-damaging agent mitomycin C11, which could be restored by
complementation with recCO2v1:KL64 or recCOL101:KL47 (Fig. 3), demon-
strating that recC is involved in recombination inK. pneumoniae as that
in E. coli.

To validate whether the single missense mutation of recC could
affect recombination proficiency, we engineered an isogenic mutant
KP37485-recCOL101:KL47 by replacing the recCO2v1:KL64with recCOL101:KL47.
Apart from 2804A>G, no other SNPs were found in the genome of
KP37485-recCOL101:KL47 confirmed by sequencing. Compared with that
of KP37485, a threefold reduction of resistance to mitomycin C was
observed for KP37485-recCOL101:KL47 [survival ratio: (1.85 ± 0.38) × 10−6

vs (0.62 ± 0.05) × 10−6); p =0.0295 by t-test], indicating that the single
mutation in recC gene has an effect on recombination proficiency. We
further designed a transduction experiment to validate the impact of
the two recC alleles on recombination frequency (Supplementary
Fig. 4). KP37485 showed a 245-fold higher recombination frequency
than KP37485-recCOL101:KL47 [mean (1.38 ± 0.48) × 10−8 vs
(5.62 ± 0.44) × 10−11; p = 0.0388 by t-test], while homologous recombi-
nation was undetectable in KP37485ΔrecC. The results demonstrate
that the single missense mutation in the recC gene can significantly
enhance recombination proficiency.

We further analyzed 14,407 K. pneumoniae genomes retrieved
from theNCBI RefSeq database as of November 2022 to determine the
distribution of recCHis935Arg, and the allele was exclusively found in 763
of 823 ST11 O2v1:KL64 isolates (Supplementary Dataset 2). All but one
of the recCHis935Arg-positive isolates were collected in China, indicating
that recCHis935Arg was specific to Chinese ST11 O2v1:KL64 isolates.

O2v1:KL64 encodes a higher load of mobile genetic
elements (MGEs)
Recombination and horizontal gene transfer are known to be vital in
shaping bacteria genome structures by affecting the exchange of
geneticmaterials, e.g., MGEs12. We here analyzedMGEs in the 646 ST11
genomes, including integrons, insertion sequences (ISs), prophages,
and plasmids (approximated by replicons), to identify additional
mechanisms involved in the diversification of CRKP-ST11. A sig-
nificantly higher load of prophages, replicons, and ISs was found in
O2v1:KL64 compared to OL101:KL47 (median 9 vs 8; 6 vs 4; and 22 vs
18, respectively) (Wilcoxon rank-sum test: p = 2.2 × 10−16; 2.2 × 10−16;
1.87 × 10−8) (Supplementary Fig. 5a–d), while the number of integrons
was comparable in the two subclones with a significantly different
distribution (median 2 vs 2; p = 6.88 × 10−9) (Supplementary Fig. 5e). A
similar trend was found between ST11 and no-ST11 (Supplementary
Fig. 6). To better understand whether the differences in prophages,
plasmids, and ISs between the two subclones were due to vertical or
horizontal transfer, we reconstructed the ancestral states of these
MGEs. Our results indicate that the large-scale expansion of plasmids
and ISs within O2v1:KL64 was likely caused by a single acquisition
event (Fig. 4a, b), supporting the vertical model. In contrast, we found
that differences in prophages were likely due to multiple acquisition
and loss events within O2v1:KL64 (Fig. 4c), suggesting amore complex
pattern of horizontal transfer. These findings support the critical role
of MGEs, especially of prophages and plasmids, in shaping the popu-
lation structure of CRKP-ST11.

It is known that phage-induced selective pressures play a critical
role in driving the serotype switch of K. pneomoniae13. We, therefore,
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Fig. 2 | Phylogenetic analysis of 646 CRKP-ST11 isolates collected in this study.
The phylogenetic tree was obtained by mapping all sequence reads to the hybrid
assembly of an ST11-OL101:KL47 isolate (KP16932) and removing the recombined
regions from the alignment. The tree was rooted using the ST258 outgroup isolates
(gray triangle). Thirteen O/K combinations were detected in our ST11 collection,
which are indicated in different colors, as shown in the legend. The hypervirulence
biomarkers detected (except for iro due to its rarity in our collection) are shown
here. The ARGs [blaLAP-2, dfrA-like,qnr-like, sul-like, tet(A), and oqxAB] detectedwith

significantly different abundance between OL101:K47 and O2v1:KL64 are shown.
The replicon types corresponding to the prevalent virulence [IncHI1B(pNDM-MAR)
and IncFIB(Kpn3)] andMDRplasmid [IncFII(pCRY)] carrying these ARGs (except for
oqxAB) are shown here. The RecC allele (RecCHis935Arg) was detected exclusively in
O2v1:KL64, as shown on the branch, and the reference (KP37485) used in the
recombination assay is indicated on the tree. Source data are provided as a Source
Data file.
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examined whether the presence and type of phages were possibly
involved in the intra-clonal diversification of CRKP-ST11. Most of the
prophages detected (95.03%) were classified into three families,
namelyMyoviridae, Podoviridae, and Siphoviridae. A loadofMyoviridae
and Podoviridae prophages was comparable between the two sub-
clones (median 92 kb; 19.8 kb), while that of Siphoviridae prophages
was significantly higher in O2v1:KL64 than in OL101:KL47 (median
95 kb vs 60.3 kb) (p = 2.2 × 10−16 by Wilcoxon rank-sum test) (Supple-
mentary Fig. 5f–h). Aswith plasmids and ISs, thewidespread expansion
of Siphoviridae prophages probably resulted from a single acquisition
event within O2v1:KL64 (Fig. 4d).

Emergence of a hypervirulent population by exclusively
obtaining rmpA-positive virulence plasmids drives the
expansion of O2v1:KL64
To evaluate the potential pathogenesis of O2v1:KL64 and OL101:KL47,
154 experimentally validated virulence factors (VFs) of K. pneumoniae
were analyzed (see methods). O2v1:KL64 carried significantly more
virulence determinants than OL101:KL47 (median 97 vs 85)
(p = 2.2 × 10−16 byWilcoxon rank-sum test) (Supplementary Fig. 7). A set
of key VFs (i.e., iucABCD, terABCDEZ, peg-344, rmpADC, and rmpA2)
associated with hypervirulence and typically mobilized by virulence
plasmids8,14 mainly contributed to the inter-subclonal differences
(Supplementary Dataset 3), and their proportions were significantly

higher in O2v1:KL64 (56.9–71.1%) than in OL101:KL47 (0–41.1%)
(p ≤ 2.82 × 10−9 by Chi-square test for each pairwise comparison).
Notably, rmpADC was exclusively carried by O2v1:KL64 with a rate of
56.9% (240/422). Frame-shifted rmpA and incomplete rmpADC were
detected in 21.3% (51/240) and 9.2% (22/240) rmpADC-positive
O2v1:KL64 isolates, respectively. While rmpA2 was found in
OL101:KL47 (74/192) and O2v1:KL64 (290/422), frame-shifted rmpA2
was detected in 67.6 and 98.6% of rmpA2-positive OL101:KL47 (50/74)
and O2v1:KL64 (286/290) isolates, respectively. This is similar to our
previous observation from single-center data4. Since rmpA/A2 is fre-
quently used as the indicator of virulence plasmids, we here simply
defined the rmpA/A2-positive isolates as hvKP. The O2v1:KL64-hvKP
isolates emerged in 2015 and were detected in nine provinces. The
proportion of O2v1:KL64-hvKP among O2v1:KL64 and CRKP-ST11
dramatically increased from 0% in 2014 to 85.9% (158/184) and 69.9%
(158/226) in 2019 (Supplementary Fig. 8), respectively, suggesting that
the expansion of O2v1:KL64was associated with an increase in the size
of the hvKP population.

To confirm the existence of virulence plasmids in ST11, reads of
the 646 ST11 genomes were mapped to two representative virulence
plasmids pVir-KP16932 (carried by an ST11-OL101:KL47 isolate) and
pVir-KP47434 (carried by an ST11 O2v1:KL64 isolate) reported in our
previous study4, and the presenceof a virulenceplasmidwas inferred if
the coverage was ≥40% of the reference. We identified 400 isolates

2 9Replicon

(a) O2v1:KL64

9 84IS

(b) O2v1:KL64

4 14Prophage

(c) O2v1:KL64

1 9Siphoviridae

(d) O2v1:KL64

Fig. 4 | Ancestral state reconstructions of MGEs with significant differences
between O2v1:KL64 and OL101:KL47. MGE was mapped as a continuous char-
acter onto the phylogenetic tree calculated by the 646 ST11 genomes. Evolution
reconstructedwith the R package phytools on the dataset, including the number of

plasmid replicons (a), IS copies (b), prophages (c), and Siphoviridae prophages (d)
identified per genome. Colors are assigned based on the number ofMGEs detected
per genome, as indicated by the bars. The O2v1:KL64 subclone is highlighted by a
gray box. Source data are provided as a Source Data file.

Fig. 3 | Mitomycin C resistance mediated by recC. Late logarithmic phase cells
grown in LB broth with 0.2% (w/v) L-arabinose and 25mg/L chloramphenicol were
harvested and resuspended in PBS to obtain 5 × 108 cfu/ml, followed by being

treated with PBS (a) or mitomycin C at 8mg/L (b) for 1 h. Cultures were serially
diluted tenfold, spotted at 10 ul in rows on LB plates, and incubated overnight at
37 °C. Source data are provided as a Source Data file.
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(61.9%) which might carry a virulence plasmid (Supplementary Data-
set 4). Of these, 33 isolates (13 OL101:KL47 and 20 O2v1:KL64) with
mapping coverage ranging between 40–100%were randomly selected
for long-read sequencing to examine the diversity of virulence plas-
mids (Supplementary Dataset 5). The rmpA/A2 genes were detected on
the chromosome of 3 OL101:KL47 isolates, and on a putative virulence
plasmid in each of 30 isolates, ranging in size from 101.5 to 305.5 kb
(Supplementary Dataset 6). The 30 putative virulence plasmids were
typed as IncFIB-HIB (n = 25), IncFIB (n = 2), IncFII-FIB-R (n = 2), and
untypeable (n = 1), and were grouped into four clusters by MOB-suite15

with AA406 as the predominant cluster (Supplementary Dataset 6). Of
these, 13 plasmids shared a relatively conserved backbone (75.5–100%
coverage), another 10 with a smaller size could be derived from them
or vice versa by gain or loss of genes (67.3–100% coverage), and the
other seven were resistance-virulence fusion plasmids carrying 1–10
antimicrobial resistance genes (ARGs) with a lower coverage to the
virulence plasmid references (≤60%) (Supplementary Dataset 6 and
Supplementary Fig. 9). Mapping the short sequence reads of 389
rmpA/A2-positive ST11 isolates to the 30 putative virulence plasmid
sequences identified 347 (89.2%) showing ≥90% coverage to a circu-
larized 107.1-kb IncFIB plasmid pVir-KP115906 which yielded the
highest number of matches. These data indicate that most rmpA/A2-
positive isolates harbored virulence plasmids. Comparing genome
phylogenetic positions and plasmid sequence similarities indicated
both horizontal and vertical modes of virulence plasmid transmission
among OL101:KL47 and O2v1:KL64 (Supplementary Fig. 9).

Virulence plasmids are associated with significantly enhanced
resistance to phagocytosis in O2v1:KL64
It is known that virulenceplasmids canpromote thepathogenicity ofK.
pneumoniae; we here measured phagocytosis to evaluate the patho-
genicity of isolates w/o virulence plasmids. Isolates of each subclone

were grouped by the presence of rmpA/A2 (the indicator of virulence
plasmids), and three isolateswere randomly selected for each group in
the test. Indeed, compared with those without virulence plasmids,
rmpA/A2-positive isolates of both subclones showed enhanced resis-
tance to phagocytosis, but it was only significant for O2v1:KL64 (mean
phagocytosis 0.017 ± 0.023% vs 0.2 ± 0.049%; p =0.0043 by two-sided
t-test) (Fig. 5a).

Tetracycline and sulfamethoxazole-trimethoprim may have
been involved in the selection of O2v1:KL64-hvKP
To explore whether antibiotics were involved in the subclonal selec-
tion, we analyzed acquired antibiotic resistance genes (ARGs) for both
subclones. The number of acquired ARGs was comparable between
O2v1:KL64 (median 11) and OL101:K47 (median 10) (p = 0.96 by Wil-
coxon rank-sum test) (Supplementary Fig. 10). However, of these with
≥50% proportion in either subclone, the abundance of oqxAB was
significantly higher in OL101:KL47 (p ≤ 5.69 × 10−12 by Chi-square test),
while that of blaLAP-2, dfrA-like, qnr-like, sul-like, and tet(A) was sig-
nificantly higher in O2v1:KL64 (p ≤ 1.23 × 10−3 by Chi-square test)
(Fig. 5b and Supplementary Dataset 7). A strong correlation was found
between the presence of these ARGs and rmpA/A2 in O2v1:KL64
(p < 2.2 × 10−16), but not in OL101:KL47 (p ≥0.05) (Fig. 5c). We further
measured MICs of ciprofloxacin, tetracycline, and sulfamethoxazole-
trimethoprim for 368 O2v1:KL64 and 140 OL101:K47 isolates. No sig-
nificant differences were found for ciprofloxacin resistance between
O2v1:KL64 and OL101:K47 (p ≥0.95 by Chi-square test) (Fig. 5b), since
all isolates harbored a gyrA mutant (Asp87Gly) and a parC mutant
(Ser80lle and Asn438Ser). However, the O2v1:KL64-hvKP population
displayed the highest resistance rate to tetracycline and
sulfamethoxazole-trimethoprim (Fig. 5b).

To understand how these ARGs were captured, we performed
long-read sequencing for 17 isolates (14 O2v1:KL64; 3 OL101:KL47)
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Fig. 5 | Phenotypes and genotypes with significant differences between
OL101:KL47 andO2v1:KL64. aComparison of phagocytosis resistance for isolates
w/o virulence plasmids (indicated by the presence of rmpA/A2). Three isolates were
randomly selected for each group in the test, i.e., O2v1:KL64-rmpA/A2+ (KP33367,
KP47434, and KP66639), O2v1:KL64-rmpA/A2- (KP33316, KP37485, and KP39199),
OL101:KL47-rmpA/A2+ (KP16932, KP41051, and 46882), and OL101:KL47-rmpA/A2-
(KP30412, KP43350, and KP73269). The assay was triplicated, and the error bars
represent standard deviations. Student’s t-tests were used for pairwise group
comparisons, and rmpA/A2-positive O2v1:KL64 isolates showed significantly
enhanced resistance to phagocytosis than rmpA/A2-negative O2v1:KL64 isolates
(p =0.0043). Boxplots are displayed using the Tukey method (center line, median;
box limits, upper and lower quartiles; whiskers, last point within a 1.5x interquartile

range). ns, not significant; *p <0.01; b Distribution of ARGs with significant differ-
ences between OL101:KL47 and O2v1:KL64 w/o virulence plasmids. The resistance
ratio of drugs (ciprofloxacin, tetracycline, and sulfamethoxazole-trimethoprim)
associated with these ARGs are compared. Since the breakpoint of tetracycline is
not available for K. pneumoniae, we here used MIC ≥ 256mg/L to represent high-
level resistance. *p <0.01 (Chi-squared test). c ARGs associated with virulence
plasmids (indicated by the presence of rmpA/A2) in OL101:KL47 (n = 192) and
O2v1:KL64 (n = 422). Circles indicate odds ratios estimated in a singlemultivariable
logistic regressionmodel with all genes; lines indicate 95% confidence intervals for
those odds ratios. Themedian was used as themeasure of center for the error bars
in panels a and c. All statistical tests carried out were two-sided. Source data are
provided as a Source Data file.
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carrying at least two of blaLAP-2, dfrA-like, qnr-like, sul-like, and tet(A)
genes. These ARGs were detected on the replicon-encoding contigs of
the 17 genomes, supporting that they were plasmid-borne (Supple-
mentaryDataset 8). Theseputative plasmidswere assigned to three Inc
types (IncFII, IncFII-FIB, and IncFII-R) and IncFII was predominant (13/
18). Each type of plasmid shared a conserved backbone irrespective of
hosts, suggestive of inter-subclonal horizontal transfers (Supplemen-
tary Fig. 11a). Mapping the reads of OL101:KL47 and O2v1:KL64 gen-
omes to these putative plasmids revealed that the IncFII-type plasmid
was prevalent in O2v1:KL64 (266 genomes showed >90% coverage to
pMDR-KP29007), especially in O2v1:KL64-hvKP (241/266), but rare in
OL101:KL47 (12 genomes showed >90% coverage to pMDR-KP29007)
(Supplementary Fig. 11b).

Detection of successful genotypes in O2v1:KL64
Given that different genotypes were conferred by the genetic diversity
of the IncFIB-type virulence plasmids and IncFII-type MDR plasmids in
O2v1:KL64 described above, we intended to identify successful geno-
types in the context of the associated genes carried by these plasmids
(Fig. 6). A total of 48 genotypes was detected based on various com-
binations of these genes. The most prevalent genotypes (genotypes 1
and 2) encode all genes but dfrA-like and/or oqxAB accounting for
47.9% (202/422) of O2v1:KL64 (Fig. 6a), and the ratio of the two gen-
otypes in each year dramatically increased from 0% to 64.7% (119/184)
between 2014 and 2019 (Fig. 6b), suggesting that both could be suc-
cessful genotypes. In contrast, the third and fourth prevalent geno-
types (genotypes 3 and 4) do not carry any target genes or merely
encode oqxAB (Fig. 6a), and their proportion in the population
decreased from the peak (63%; 17/27) in 2015 to 4.9% (9/184) in
2019 (Fig. 6b).

Enhanced inter-hospital transmission promotes O2v1:KL64-
hvKP dissemination
To understand whether the subclonal replacement is associated with
an altered transmission pattern, i.e., intra- and inter-hospital trans-
mission, we tried to discriminate likely recent transmission events

using pairwise SNPdistances by year (2014–2019).We tested a rangeof
SNP thresholds to minimize the bias possibly introduced by a single
cutoff. TheminimumSNP thresholdwas set to be 14 SNPs based on the
mutation rate of our collection and the reference genome length (see
methods), and the maximum was defined to be 25 SNPs based on
recent regional epidemiologic studies7,16–18.

A significant transmission pattern shift was observed for
O2v1:KL64 from 2015 to 2019 (2014 was excluded in the analysis due
to the limited number of isolates obtained) using each threshold of
14–25 SNPs. The fraction of recent transmission within hospitals
dramatically decreased from (100–89.7%) to (71.5–40.9%) for
O2v1:KL64, while that between hospitals dramatically increased
from (0–10.3%) to (28.5–59.1%) (p < 0.05 by Mann–Kendall test)
(Fig. 7). Similar transmission dynamics were observed for the
O2v1:KL64-hvKP population (z = 2.02; p < 0.05 by Mann–Kendall
test), but not for the rmpA/A2-negative isolates (Fig. 7). This suggests
that the hypervirulent subpopulation promoted the dissemination
of O2v1:KL64 through enhanced inter-hospital transmissions. Rela-
tive stability was observed in the fraction of recent transmission
within ([100–98.6%]–[100–83.3%]) and between hospitals
([0–1.4%]–[0–16.7%]) for OL101:K47 from 2014 to 2019 (p > 0.05 by
Mann–Kendall test) (Fig. 7), suggesting that the transmission pattern
of OL101:K47 had no significant changes over time.

Geographical epidemiology of ST11 subclones
To dissect the geographical epidemiology and evolutionary relation-
ship of the ST11 at the subclonal level, phylogenetic analysis was per-
formed using the 646 ST11 genomes together with 329 publicly
available draft genomes of ST11 isolated in 43 countries across four
continents (i.e., America, Africa, Asia, and Europe) (Supplementary
Dataset 9). All but two Chinese isolates fall into a single clade, with
seven isolates obtained from France (supposedly imported from
China19), Canada, the United States, and Japan (Supplementary Fig. 12),
suggesting that the ST11 clone evolved independently and expanded
locally in China. Three O3b:KL13 isolates from the United States clus-
tered with the Chinese clade.
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Most of the global ST11 isolates (269/329) were assigned to six
major sublineages (Supplementary Fig. 12), including O2v1:KL24
(n = 66), O2v1:KL64 (n = 21), O2v2:KL27 (n = 36), O2v2:KL105 isolates
(n = 73), O3:KL125 (n = 17) and O4:KL15 (n = 56). These sublineages
displayed geographic specificity: (i) O4:KL15, O2v1:K24, andO3b:KL125
as international sublineages have spread in multiple countries across
≥3 continents (n = 18 across five continents; n = 19 across four con-
tinents; n = 4 across three continents); (ii) O2v2:KL105 mainly circu-
lated in Europe, especially Eastern Europe (59/73), and O2v2:KL27
isolates were mainly detected in North and South America, suggestive
of two continental; (iii) O2v1:KL64 was primarily found in Brazil (18/21)
as a local sublineage. Of note, the Brazil O2v1:KL64 isolates were
phylogenetically distinct from that of China, indicating an indepen-
dent evolution for this subclone.

BEAST analysis was performed using 147 of the 975 genomes to
reduce computation time (see Methods) (Supplementary Fig. 13). The
correlation between root-to-tip distances and sampling time indicated
a relatively clocklike pattern of molecular evolution (Supplementary
Fig. 14). O2v1:KL64 was derived from OL101:KL47 around AD 2006
(95% HPD AD 2004–2009) in China, and OL101:KL47 emerged around
AD 2005 (95% HPD AD 2002–2008). The most recent common
ancestor (MRCA) of the global and Chinese isolates dated to about AD
1983 (95% HPD AD 1977–1989).

Discussion
The rapid expansion of CRKPglobally is largely driven by a number of
“highly successful” clones, including ST11. However, the drivers

underpinning the successful epidemic spread remain poorly under-
stood. Tracing the genetic and phenotypic variations of isolates
spanning a wide range of time and geographies allows us to investi-
gate the evolutionary trajectory and explore the underlying driving
forces.

We previously detected a subclonal shift in CRKP-ST11 causing
bloodstream infections in a tertiary hospital4. In this study, we further
demonstrated the subclonal shift over a 6-year national prevalence
survey. CRKP-ST11 has diversified into two major subclones
(OL101:KL47 and O2v1:KL64), and OL101:KL47 was replaced in a step-
wise manner by O2v1:KL64 over time. The intra-clonal segregation
would occur around AD 2006 (Supplementary Fig. 13), and it was
primarily due to the recombination of capsule and LPS biosynthesis
loci, which have been defined as recombination hot spots subject to
strong diversifying selection in K. pneumoniae8,20. From an epidemio-
logical standpoint, it is highly interesting to pinpoint the selective
pressures for the prevalence of O2v1:KL64. Consistent with our data
that O2 was prevalent in ST11 and ST15, a previous study showed that
the O2 serotype was dominant in CRKP (50%) in the last two decades,
especially in another epidemic clone ST25821. The prevalence of O2
antigen supposedly correlates with a paucity of anti-O2 antibodies in
human B cell repertoires21. Additional studies reported that patients
with O2v1:KL64-CRKP BSI had a significantly higher 30-day mortality
rate and a higher sepsis/septic shock incidence rate4,22. These suggest
that the emergence of O2v1:KL64 is associated with host susceptibility
resulting in enhanced pathogenicity by evasion of innate host defense.
Hence, the identified subclonal shift within CRKP-ST11 is likely to cause
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challenges to the current infection control measurements and treat-
ment strategies.

Clonal replacement has been reported inmultiple notoriousMDR
pathogens, and one of the more well-known examples is methicillin-
resistant Staphylococcus aureus (MRSA)23,24. Evolved resistance and
virulence-associated with a set of genetic alterations have been linked
to the clonal replacement of MRSA25–27. In this study, we revealed that
the epidemic success of O2v1:KL64 is associated with the expansion of
a hypervirulent lineage with the capture of a virulence plasmid. The
emergent O2v1:KL64-hvKP isolates have been sporadically reported in
several surveillance surveys28,29; however, none of them has system-
atically investigated the epidemiological and evolutionary character-
izations of the lineage. Numerous studies have demonstrated that
virulence plasmids can promote the pathogenicity of K.
pneumoniae30–32. Indeed, we here found that the O2v1:KL64-hvKP
obtained enhanced phagocytosis resistance compared with those
isolates without virulence plasmids. Our previous study showed that
virulence plasmids promoted pathogen invasion and subsequent
clinical infection, and O2v1:KL64-hvKP displayed enhanced resistance
to neutrophil killing4. Together, their data confirm that O2v1:KL64-
hvKP has evolved to be more virulent through capturing virulence
plasmids. The emergence ofO2v1:KL64-hvKP is additionally associated
with the capture of MDR plasmids. A strong correlation was found
between five ARGs [i.e., blaLAP-2, dfrA-like, qnr-like, sul-like, and tet(A)]
and O2v1:KL64-hvKP but not OL101:KL47 (Fig. 5c), which is due to the
enrichment of an IncFII MDR plasmid. Compared with the other sub-
populations, the O2v1:KL64-hvKP displayed the highest resistance to
tetracycline and sulfamethoxazole-trimethoprim (Fig. 5b), suggesting
that these two drugs might have been involved in the prevalence of
O2v1:KL64-hvKP. O2v1:KL64 and OL101:KL47 showed comparable
resistance to ciprofloxacin due to mutations in gyrA or parC, while
additional loss and gain of oqxAB and qnr-like genes, respectively, was
found inO2v1:KL64. Of note, oqxABhavewidely been considered to be
core genes of K. pneumoniae6, but our results showed that they were
lost in most of the O2v1:KL64 isolates, possibly by IS-mediated and/or
recombination mechanisms (Supplementary Fig. 15). As a multidrug
efflux pump, OqxAB confers low to intermediate resistance to several
antibiotics (e.g., quinoxalines, quinolones, tigecycline, and nitrofur-
antoin), detergents and disinfectants. Loss of OqxAB may affect the
drug resistance of O2v1:KL64. Whether such a loss could confer evo-
lutionary advantages to the epidemic success needs to be studied
further.

In bacteria, recombination, horizontal gene transfer, and muta-
tions are recognized as major sources of the genetic variations
introduced into a population. As found in other prevalent MDR
clones (e.g., ST258 and ST15)8, the genomes of ST11 have been shaped
by frequent recombination events. In particular, our analysis sug-
gested that the contribution of recombination to the genetic varia-
tions was higher in O2v1:KL64 than in OL101:KL47, and we further
demonstrated that a point mutation occurring in recC of O2v1:KL64
conferred more recombination proficiency, which was unique to
O2v1:KL64 isolated in China. It is known that recC, together with recB
and recD, encodes an ATP-dependent nuclease, called RecBCD
enzyme, and the RecBCD-dependent pathway is the primary
mechanism of homologous recombination and repair of linear
double-strand DNA in E. coli. The structure and function of the
RecBCD enzyme is regulated by Chi sites (5′-GCTGGTGG-3′) to sti-
mulate recombination33. Current evidence suggests that the RecC
subunit recognizes Chi in the 3′ tunnel34, and a 35-kDa C-terminal
domain of RecC is required for interaction with the RecD protein, a
prerequisite for responsiveness to Chi35. Point mutations in the
C-terminal domain of RecC indirectly prevent RecD from associating
with RecBC35, resulting in the “double-dagger” phenotype: recombi-
nation proficiency that is independent of Chi and the absence of
nuclease activities36. Of note, the point mutation (His935Arg)

occurring in RecC of O2v1:KL64 is located in the C-terminal domain;
we, therefore, infer that it may affect the interaction with the RecD
and responsiveness toChi to stimulate recombination. Further, It was
shown that mutations that inactivate the recB or recC gene lead to
defects in multiple biological function, including conjugational,
transductional, and phage recombination; a loss of SOS induction;
sensitivity to DNA-damaging agents that cause DSBs; and low cell
viability37. We, therefore, propose that the O2v1:KL64 population
carrying the recC mutation had become more diverse through more
frequent recombination and by capturing more MGEs as detected in
this study, and O2v1:KL64-hvKP was selected for and become pre-
valent in a short time scale.

In addition, horizontal gene transfer was identified as another
driving force for the diversification in ST11, since a significantly higher
load of MGEs, including plasmids, ISs, and prophages, was detected in
O2v1:KL64 compared to OL101:KL47 (Supplementary Fig. 5a–d). It is
known that phage-induced selective pressures play a critical role in the
population diversity of bacteria13, andwe found that the prophage load
was significantly higher in O2v1:KL64 than in OL101:KL47 due to mul-
tiple gain and loss events (Fig. 4c). These findings suggest that the two
subclones might have been exposed heterogeneously to different
types of phages. In particular, our analysis pinpoints that Siphoviridae
prophages contributed significantly to the high prophage load in
O2v1:KL64, which probably resulted from a single acquisition event
through the vertical model (Fig. 4d). Similarly, the large-scale expan-
sion of plasmids and ISs within O2v1:KL64 was also linked to a single
acquisition event followed by vertical inheritance (Fig. 4b, c). The
vertical transmission of these MGEs suggests that they may have
conferred evolutionary advantages to O2v1:KL64, which could be
further supported by the identified “successful” genotypes carrying
these MGEs (Fig. 6). Given that ST11 genomes harbor more MGEs than
non-ST11 in our collection (Supplementary Fig. 6), we propose that
accumulation of prophages and plasmids could be one of the vital
factors for the epidemic success of successful clones. Despite the
benefits that cargogenes (e.g., AMRs) carriedbyMGEs canprovide, the
introduction of novel MGEs in a pre-existing, well-tuned genetic
background would incur a fitness cost, and the maintenance of MGEs
in host cells requires a balance of the costs and benefits to the host38,
e.g., minimized over time by selection39. It would be interesting to
explore the underlying mechanisms employed by O2v1:KL64 to fine-
tune the fitness costs introduced by these MGEs. Additionally, future
studies should involve examining the biological function of these
genetic elements to understand their role in the population-level
success of O2v1:KL64.

Of greater concern, using an SNP-based transmission tracking
method, we revealed that the prevalence of O2v1:KL64-hvKP was dri-
ven by an altered transmission pattern. The accuracy of SNP-based
transmission tracking methods has been recently evidenced by
numerous studies using large datasets for various pathogens, like
MRSA andCRKP7,16,40. In particular, wehere used a range of SNP cutoffs
to avoid any bias that could be caused by a single cutoff. Indeed, all
SNP cutoffs used in our analysis generated a consistent transmission
trend, demonstrating the reliability and validity of our results. The
spread of O2v1:KL64-hvKP was mainly driven by an intra-hospital
transmission before 2018, which could be attributed to evolutionary
advantages conferred by a set of genetic alterations as identified here.
With the increasing size of O2v1:KL64-hvKP over time, inter-hospital
patient transfers may have further facilitated the spread of the sub-
population across the country, leading to a subsequent switch to inter-
hospital transmission. More metadata is needed to uncover the rea-
sons for changes in transmission mode in the future. Our findings
highlight the necessity of tailoring the current infection control mea-
sures (e.g., active screening of inter-hospital transferredpatientswith a
history of CRKP) to prevent the dissemination of O2v1:KL64-hvKP
in China.
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In summary, we have shown here that subclonal replacement
within CRKP-ST11 has been driven by the expansion of O2v1:KL64
within a 6-year period in China. The epidemic success of O2v1:KL64 is
associated with the emergence and dissemination of a subpopulation
associated with a repertoire of genetic alterations, and of greater
concern, with the enhanced inter-hospital transmission. Collectively,
our study highlights that public health efforts should focus on geno-
mic surveillance to identify high-risk clones and subclonal expansions
early in the course of an epidemic to potentiate targeted control
strategies.

Methods
Dataset
A total of 4635 non-duplicate isolates were collected in the framework
of national surveillance for blood isolates (Blood Bacterial Resistant
Investigation Collaborative System, BRICS) between January 2014 and
December 2019 in China (Fig. 1a). Only the first blood isolate of each
species per patient was eligible over the full study period. All partici-
pating hospitals sent their isolates to the central laboratory quarterly.
Species identification was performed by matrix-assisted laser deso-
rption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)
(Bruker Daltonik GmbH, Bremen, Germany). The increase in the
number of isolates over time was partly due to improvements in
quality control by participating hospitals during the surveillance per-
iod. The sample collection protocol was approved by the institutional
review board of the First Affiliated Hospital of Zhejiang University
in China.

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was initially performed using a
VITEK-2 system (bioMérieux, Lyon, France) in the sentinel hospitals
and was further confirmed by the agar dilution and/or broth micro-
dilutionmethod in our laboratory. Results were interpreted according
to the Clinical and Laboratory Standards Institute41 and European
Committee onAntimicrobial Susceptibility Testing v.10.0 (http://www.
eucast.org/clinical_breakpoints/). Carbapenem resistance was defined
as aminimum inhibitory concentration (MIC) of ≥4mg/L for imipenem
or meropenem.

Whole-genome sequencing and quality control analysis
Genomic DNA from 794 CRKP isolates was extracted using Gentra
Puregene Yeast/Bact. Kit (Qiagen, San Francisco/Bay Area, CA, USA).
The genomeswere sequenced using an IlluminaNovaseq 6000 system
(Illumina, San Diego, United States) with 2 × 150-bp paired-end librar-
ies. Raw reads were trimmed using Trimmomatic v0.3342 and then
assembled using SPAdes v3.12.043. We performed long-read sequen-
cing on representative isolates using a Nanopore PromethION plat-
form (Nanopore, Oxford, UK) following a 10-Kbp library protocol. A
hybrid assembly was generated by using Unicycler 0.4.044 with short
and long reads. QUAST v4.6.045 was used to generate assembly sta-
tistics. Species were determined using FastANI v1.33 (https://github.
com/ParBLiSS/FastANI), with a cut-off of 95%. The assemblies were
annotated using Prokka v1.14.646.

Identification of STs and K/O-type
The STs were assigned using Kleborate v2.0.147, and the K/O-type was
determined using Kaptive v1.048 from the de novo assembly.

Identification of ARGs, VFs, Inc-type, and MGEs
ARGs were detected using Abricate v1.0.1 (https://github.com/
tseemann/abricate) with the ARG database ResFinder v4.049. The
VFs of K. pneumoniae were downloaded from the K. pneumoniae
BIGSdb50 and Virulence Factor Database 2019 (VFDB)51, and the
presence of VFs were detected using BLASTp v2.6.0 (identity ≥70%)
with the custom VF database containing 154 VF genes

(Supplementary Dataset 3). Replicon typing was performed using
Abricate v1.0.1 with the PlasmidFinder database52. The presence of
integrons was detected using IntegronFinder v1.5.153. IS copy num-
bers were estimated with the TPM calling function of TPMCalculator
v0.0.354 and corrected by the TPM of gapA (a housekeeping gene).
The prophages were detected and classified using phigaro v2.2.655.
The ancestral state of each MGEs was reconstructed with maximum
likelihood using the fastAnc function in the R package phytools
v.0.4-9856.

Recombination detection
Recombination analysis was performed using Gubbins v2.257. The
Gubbins output files were used to calculate r/m and mean recombi-
nation counts per base, calculated over non-overlapping 1000bp
windows. Pairwise nucleotide divergence between subclone-specific
core-genome regions was calculated for each pair of genomes within a
subclone before and after the removal of putative recombinant
regions.

Knockout, replacement, and complementation of recC
A representative O2v1:KL64 isolate KP37485 was used for the
genetic manipulation. All primers used in this study were listed in
Supplementary Dataset 10. For the knockout construction, the
recC-spacer DNA fragment was cloned into a pSGKP-apr vector58,
and the synthetic oligonucleotide with 45 nt for each homology
extension of the target gene was used as a donor template. Both
the pSGKP-recC-spacer plasmid and the donor template DNA were
transformed into pCasKP-harboring KP37485 by electroporation,
and the integration was selected on LB plates containing 5%
sucrose at 37 °C. For the gene replacement, a linear fragment
containing a cat gene with its native promoter from plasmid
pKD359 between the 45 nt each homology extension of recC was
amplified and used as a donor template, and the resulting
KP37485-recC::cat-pCasKP was selected on LB plates containing
5% sucrose plus 25 mg/L chloramphenicol and 30mg/L apramycin
at 30 °C. The synthetic oligonucleotide with recCOL101:KL47 as well
as its 45 nt each homology extension was used as the donor
template and were transformed into KP37485-recC::cat-pCasKP
with pSGKP-cat-spacer plasmid. The integration was selected as
described in knockout construction, in addition, to being selec-
ted by chloramphenicol sensitivity. For the complementation,
genes were amplified by PCR and cloned into vector pBAD3360.
The resulting plasmids were introduced into kp37485ΔrecC via
electroporation. PCR and DNA sequencing were used to confirm
the final constructions.

Mitomycin C resistance assay
Recombinational repair of DNA damage mediated by the Rec-
dependent pathway is known to be a primary strategy to protect
bacteria from DNA-damaging agents (e.g., mitomycin C, ethidium
bromide, and UV); therefore, these agents have been used extensively
as indicators of recombination proficiency11,35,61. Mitomycin C resis-
tance was assessed as previously described with slight modifications61.
K. pneumoniae isolates were grown overnight in LB broth and inocu-
lated into the fresh broth with indicated agents. Strains harboring
pBAD33 and its derivative plasmids were grown in LB broth with 0.2%
(w/v) L-arabinose and 25mg/L chloramphenicol. The bacteria were
harvested at the late logarithmic phase and suspended in phosphate-
buffered saline (PBS), to 5 × 108 colony-forming units (cfu) per milli-
liter. Cell suspensions were treated with mitomycin C at indicated
concentrations for 1 and 3 h, serially diluted in PBS, spread on LB
plates, and incubatedovernight at 37 °C. Bacterial treatedwith PBSwas
used as the negative control. The survival ratio was calculated as fol-
lows: (CFU of mitomycin C treatment culture/CFU of PBS-treated
culture) × 100%.
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Recombination assays
The suicide vector pRE118, carrying the upstream and downstream
fragment of blaKPC-2 of the KP37485 and an apramycin resistance gene
apmR, was generated and electroporated into tested hosts. Recombi-
nants were selected on 50mg/L apramycin-containing plates and fur-
ther confirmed by PCR. Recombination frequency was calculated as
the number of recombinants/the number of recipients.

Phagocytosis assay
Phagocytosis assaywas performed aspreviously described in ref. 62. In
brief, THP-1 cells were differentiated at 1 × 106 cells/well in a 12-well
plate. Bacteria in the mid-log phase were harvested by centrifugation
(5min, 6000 rpm, 24 ˚C), resuspended in 1×PBS, and adjusted to
5 × 108 CFU/mL. Infections were performed using a multiplicity of
infection (MOI) of 50 bacteria per cell. To synchronize the infection,
plates were centrifuged at 200×g for 5min and incubated at 37 °C in a
humidified 5% CO2 atmosphere. After 1 h of contact, cells were washed
twice with PBS and cultured with RPMI 1640 containing 10% FBS and
gentamicin (100mg/L). To determine the bacterial load in the cell, the
cells were washed twice with PBS and lysed with 0.5% saponin in PBS
for 10min at room temperature. Serial dilutions were plated on LB to
quantify the number of intracellular bacteria. All experiments were
carried out with triplicate samples on at least three independent
occasions.

Plasmid analysis
Short-read assemblies were blasted against reference plasmids using
BLASTn v2.9.063 to determine the length of the reference plasmid
sequence present across isolates. Replicon typing and clustering were
performed using MOB-suite15. Representative plasmids were circular-
ized using PCR and Sanger sequencing. The Artemis Comparison Tool
v13.0.064 and/or BRIG65 was used to compare and visualize structural
variation between two or more sequences. The heatmap showing the
percentage of aligned regions between pairs of virulence plasmids was
generated using the “pheatmap” package (v1.0.12) in R v4.1.1 (https://
www.r-project.org/).

Phylogenetic analysis of Chinese ST11 isolates collected in
this study
Trimmed sequencing reads of 646 ST11 isolates collected in this study
were mapped to a K. pneumoniae ST11 reference genome KP16932
(accession no. QVAN00000000)4 using BWA mem 62 v0.7.10-r789
(default parameters). Mapped reads were then cleaned and sorted
using the SAMtools suite v1.766. Reads were realigned against the
reference using GATK v3.767 by creating targets for realignment (Rea-
lignerTargetCreator) and performing realignment (IndelRealigner).
Removal of optical duplicates was completed using Picard v2.10.1-
SNAPSHOT (https://broadinstitute.github.io/picard/). Sequence var-
iants were called using Bcftools v1.9-80 (http://samtools.github.io/
bcftools) to generate a reference-based pseudogenome for each
genome with greater than 10× depth. High-quality pseudogenomes
were concatenated (plasmid sequences excluded) before Gubbins
v2.257 was used to remove recombinant regions and invariable sites.
Forty ST258 genomes (indicated by the triangle) retrieved from
GenBank were included to establish the root of the ST11 tree. The
resultant multiple sequence alignment of reference-based pseudo-
genomes (4460 variant sites)wasused to infer amaximum-likelihood
phylogeny using RAxML-ng v0.6.068 with 100 bootstrap replicates to
assess support.

Phylogenetic and BEAST analysis of a global collection of ST11
isolates
All available genomes of ST11 (n = 329) in GenBank retrieved as of
March 1, 2021, were included in this analysis (Supplementary Data-
set 9). Snippy v4.6.0 (https://github.com/tseemann/snippy) was used

to align the 975 genomes to the reference genome KP16932 to gen-
erate the alignment of core-genome SNPs. SNPs located in recombi-
nation regions were detected by Gubbins v2.257. The resultant
recombination-free core-genome SNPs (3027 variant sites) were used
to infer a maximum-likelihood phylogeny using RAxML-ng v0.6.068

with aGTRmodel and gammacorrection, and 100bootstrap replicates
were performed to assess support. A chronogramwas produced using
Bayesian phylogenetic inference. To reduce computation time, 147
genomes, including all KLs, were chosen for the analysis. Analysis of
temporal molecular evolutionary signals for the dataset was con-
ducted using TempEst v1.569. A recombination-free core-genome
alignment (1995 SNPs) was created using Snippy v4.6.0. BEAST
v1.10.470 was used to create and execute three independent chains of
length 250,000,000 with 10% burn-in, logging every 25,000 and
accounting for invariant sites. We included the prior assumptions of a
coalescent Bayesian skyline model for population growth, and a
relaxed log normal clock rate to account for rate heterogeneity
amongst branches. Convergence of the Markov chain Monte Carlo
(MCMC) chain was inspected in Tracer v1.7.271, with all parameter
effective sampling sizes being >200. The maximum clade credibility
(MCC) tree under each model was generated in TreeAnnotator and
plotted in FigTree v1.4.4 (https://github.com/rambaut/figtree).

Intra- and inter-facility transmission analysis
Recombination-filtered core-genome SNPs of each dataset were gen-
erated as described above to calculate the pairwise SNP distance
matrices. For each pair of unique patient–facility combinations, only
the most closely related isolate pair was included as the pairwise
genetic distance. A range of thresholds was used here to identify
recent intra- and inter-facility transmission pairs using pairwise dis-
tances. The minimum threshold was determined as 14 SNPs
(2 × 5,716,474 × 1.2256× 10−6) using reference genome length
(5,716,474 base pairs) and mutation rate (1.2256 × 10−6 mutations per
basepair per year estimated in this study), and themaximumthreshold
was defined as 25 SNPs according to recent studies of CRKP
transmission7,16–18. This analysis was performed using the regentrans
package72 in R v4.1.1.

Statistical analysis
TheWilcoxon rank-sum tests and Chi-square tests were performed for
pairwise group comparisons of MGEs, VFs, ARGs, and Pearson’s
Coefficient. The student’s t-tests were used for pairwise group com-
parisons in phenotypical assays. The Mann–Kendall test was used to
test for transmission trends. P values <0.05 were considered sig-
nificant. All statistical analyses were implemented in R v4.1.1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All assembled Illumina sequence data have been deposited inGenBank
under the BioProject accession number PRJNA778807. Individual
accession numbers are also available in Supplementary Data-
set 1. Source data are provided with this paper.

Code availability
The custom code used in this study is freely available at https://github.
com/xuechunxu/CRKP_ST11_KL64 (https://doi.org/10.5281/zenodo.
7804081).
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