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Transmission modeling to infer tuberculosis
incidence prevalence and mortality in
settings with generalized HIV epidemics

Peter J. Dodd 1 , Debebe Shaweno 2, Chu-Chang Ku2, Philippe Glaziou3,
Carel Pretorius4, Richard J. Hayes5, Peter MacPherson6,7, Ted Cohen 8 &
Helen Ayles7,9

Tuberculosis (TB) killed more people globally than any other single pathogen
over the past decade. Where surveillance is weak, estimating TB burden esti-
mates uses modeling. In many African countries, increases in HIV prevalence
and antiretroviral therapy have driven dynamic TB epidemics, complicating
estimation of burden, trends, and potential intervention impact. We therefore
develop a novel age-structured TB transmissionmodel incorporating evolving
demographic, HIV and antiretroviral therapy effects, and calibrate to TB pre-
valence and notification data from 12 African countries. We use Bayesian
methods to include uncertainty for all TBmodel parameters, and estimate age-
specific annual risks of TB infection, finding up to 16.0%/year in adults, and the
proportion of TB incidence from recent (re)infection, finding a mean across
countries of 34%. Rapid reduction of the unacceptably high burden of TB in
highHIV prevalence settings will require interventions addressing progression
as well as transmission.

Over the past decade, tuberculosis (TB) has killed more people than
any other pathogen, averaging more than 1.65 million deaths per year
between 2010-2019, of which > 363,000 deaths per year were among
people living with HIV (PLHIV)1. HIV infection has a large impact on TB
in individuals: risks of developing TB increase steeply as CD4 cell
counts decline, as does the likelihood of death among those not
receiving treatment for TB2. Antiretroviral therapy (ART) for PLHIV
increases life-expectancy3, and reduces TB mortality4 and incidence5

(although not to the level of HIV-uninfected people)6. This has led to
dynamicTBepidemics in settingswith generalizedHIVepidemics,with
rapid increases in TB notifications driven by declines in mean CD4 cell
counts among people living with HIV (PLHIV), followed by declines in
TB notifications as ART coverage has increased7. Globally in 2020, 8%
of TB incidence and 14%of all TB deaths occurred among PLHIV1. In the

World Health Organization (WHO) African region, these figures are
24% and 31%, respectively; 22 out of the 30WHOhighTB/HIV countries
are in Africa1.

Our understanding of the global epidemiology of TB is based on
estimates of disease incidence and mortality, notably those generated
annually by WHO. In many countries with high TB incidence, the gap
between estimated TB incidence and cases detected and reported as
starting anti-TB treatment (notifications) is substantial, complicating
surveillance and accuratemeasurement of epidemic trajectories.WHO
has supported nationally-representative TB prevalence surveys in
priority countries, as these provide ameasure of TB burden that is less
subject to bias than notification data8–10. Since 1990, 43 national TB
prevalence surveys have been undertaken and reported results1,
including 16 in Africa9. The large sample sizes required mean TB
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prevalence surveys are expensive to execute, and they are typically
powered to generate a relative precision of only + /− 20%10.

Combining data from prevalence surveys with notifications data
(and potentially vital registration data) to produce estimates of inci-
dence and mortality in high HIV-prevalence settings requires a frame-
work that can incorporate the evolving relationship between incidence,
prevalence, and mortality, the effects of HIV, and which can formally
account for the uncertainty and relative informativeness inherent in
each source of data. Current approaches to TB/HIV burden estimation
use dichotomized states to represent HIV and ART which do not cap-
ture their evolving and context-specific relationship with TB risk.

Models of TB transmission calibrated to empirical data provide a
potential alternative approach to estimating global, regional and
national TB burden, but have not been used to date due to technical
challenges including the complexity of TB models (especially TB/HIV
models), the large number of uncertain parameters, and limitations in
surveillance data11. Due to slow timescales in TB progression, models
need to be run over timescales representing decades, and evolving
age-structures are likely to be important determinants of TB trends12.
HIV is strongly patterned by age and sex, and evolving population CD4
cell count distributions among PLHIV and increasing ART coverage
result in a dynamic relationship between HIV and TB increasing the
model complexity. Many of the parameters describing the natural
historyof TB are imprecisely knowndue to long timescales, rarenessof
measurable outcomes, and suboptimal diagnostic accuracy.

Calibrating transmission models to data also provides a way to
estimate important, transmission-specific epidemiological metrics
that are difficult or impossible to measure directly. Patterns by age of
infection risk or contribution to the force-of-infection can identify age
groups for efficiently targeted interventions to reduce either exposure
risks or prevalent disease that is driving transmission. For example, if in
a particular country working-age, people contributed a dis-
proportionately large force-of-infection, then a public health strategy
of targeted community screening for this group might be an efficient
approach to rapidly reduce the incidence of infection—and hence
disease—for adults and children. The proportion of TB incidence due
to infection or re-infection within a given period is important for
projecting trends, and because it quantifies the extent to which
interventions can generate indirect benefits through reduced TB
incidence, it influences the best choice or design of intervention13.

Here we present a novel transmission model/calibration frame-
work that incorporates the dynamic complexity of HIV-fueled TB

epidemics and demographic change. We are able to calibrate this
model to surveillance data in a likelihood-based formal Bayesian
approach with all parameters considered as uncertain. In applying this
framework to the 12 WHO high TB/HIV countries in Africa with a
nationally representative TB prevalence survey, we provide a new
approach to estimating TB burden over time in these settings, and
estimate new age-specific metrics of transmission.

Results
Below, we present fits of our simplified TB transmission model (see
Fig. 1) to available demographic and epidemiological data, and our
inferred estimates of national-level TB incidence and mortality, the
proportion of TB incidence in PLHIV, the proportion of TB incidence
due to infection within the last two years, and also TB infection risks
and age-specific contributions to transmission.

Fits to evolving demography and HIV epidemics
Our framework accurately captured changes in national population
size and age-sex structure between 1980 and 2019, as well as the
number of PLHIV and the number receiving ART (Fig. 2, rows a and b).
As expected, we found accelerated increases in the numbers of PLHIV
across countries commencing between 1980 and 1990, and rapid
increases in ART coverage beginning in the early 2000s, rising to near
universal coverage in most countries by 2020.

To make inference tractable, we used a five-year age and sex-
structured TB transmissionmodel with HIV/ART (Fig. 1: all states either
HIV-negative, HIV-infected/off-ART, HIV-infected/on-ART, giving a
total of 612 states). To capture the dynamics of population immuno-
competence,model inputs included results from amodified version of
the AIM HIV model (which includes detailed CD4 states and progres-
sion, totalling 5184 states) on the time-dependent incidence rate-ratios
(IRRs) for incident TB relative to HIV-uninfected, and HIV-related
mortality, specific to each age and sex state14,15. Because the para-
meters governing the link between IRR and CD4 cell-count and
describing the protection from ART against TB were included in our
inference, we used a bilinear approximation to accurately emulate the
parameter dependence of these inputs (see Supplementary Informa-
tion for results on approximation).

Fits to TB data
TB incidence estimates (Fig. 2, rowd)were increasing in all countries in
the year 2000 due to a combination of population growth and HIV,

Fig. 1 | Process flow andmodel diagram. Blue lines for the TB transmissionmodel
in step 4 are processes to which HIV/ART-associated incidence rate ratios
IRR(t,s,a,ART) are applied. These time-dependent IRRs (step 2) capture the impli-
cations of the AIM model of HIV/ART progression (step 1) for TB risk for each
aggregated age, sex, and HIV/ART stratum in the simplified transmission model

(step 4). The influence of ART-protection and CD4 risk dependence parameters on
simplified transmission model dynamics (step 4) is achieved by emulating the
dependence of IRR trajectories on these model parameters (step 3), allowing them
to be included in inference (step 5). Red boxes in step 4 represent calibration
targets.
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Fig. 2 | Model outputs compared to empirical data for 12 African countries.
Rows a, f total population (black), people living with HIV (red), people on ART
(green) 1980–2019 - points=data, lines=model. Rowsb,g: demographic snapshot in
2015 red/left=women, blue/right=men, points=data. Rows c, h: per capita TB pre-
valence 1980–2019, (line =median, ribbon= 95% credible interval [CrI]), and TB
prevalence survey data (point=central estimate; error bar = 95% confidence inter-
val). Rows d, i: incident TB 1980–2019, lines =median/ribbon= 95%CrI for model,

points=data, blue = TB incidence, black = notified TB, red = notified TB/HIV,
green=notified TB/HIV on ART (data). Rows e, j: incident TB in 2015 by age,
lines =median/ribbon = 95%CrI for model, points = data, blue = TB incidence,
black = notifiedTB, red = incidentTB/HIV.Allmedians andCrIs arebased runs using
n = 300 random samples from the posterior parameter distribution for each
country.
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with some countries experiencing dramatic accelerations. Per capita
incidence has decreased from a peak between 2000 and 2010 in all
countries except South Africa and Nigeria (see Fig. 3), but remains
higher in absolute numbers in 2019 than in 2010 for 6 out of 12
countries.

We estimate the TB case detection ratio (the ratio of notifications
to incidence in a year) now ranges from31% (95%UI: 24–40%) inNigeria
to 89% (95%UI: 68–109%) in Mozambique, with a median over country
central estimates of 58%. Case detection was estimated to be lower in
younger children. The uncertainty in case detection reflects the
weakly informative prior used for the baseline detection probability
and the level of noise inferred from the notification data by the
hierarchical model.

TB incidence was highest among 25–34-year-olds for 9 of the 12
countries (Fig. 2, rowe), a notable exception beingMozambiquewhere
age-stratified notifications were absent.

Uncertainty in our estimates of TB-related metrics (Fig. 2, rows c,
d, and e) reflected the limited precision of the data and the 20
uncertain parameters around the natural history of TB and case
detection, and their interactions with HIV, whichwere estimated in our
Markov chain Monte Carlo (MCMC) inference.

Effective sample sizes (ESS) obtained using an ensemble slice
sampling MCMC approach ranged from 393 to 909, with a mean of
605. Priors, posteriors, and bivariate marginal density plots are pre-
sented for each country in the Supplementary Information. Judged by
means across countries, the strongest five posterior parameter cor-
relations were between: case detection baseline and trend (cor(K,c) =
−0.54); fast progression and transmission (cor(ε,β) = −0.53); fast pro-
gression and IRR CD4-dependence (cor(ε,α) = −0.50); progression and
relative detection in under 5-year-olds (cor(ε04,OR04) = −0.33); and
case detection trend and HIV-negative untreated TB duration
(cor(c,DX) = +0.30).

The relative precision (SD/mean) of national adult TB prevalence
estimates (children aged < 15 years are not included in TB prevalence
surveys) included in the data likelihood ranged from SD/mean= 9% to
SD/mean = 23% with a median of 13%; the relative precision of our
prevalence estimates in years corresponding to prevalence surveys
ranged from 16% to 62% with amedian of 27%, but wasmore uncertain
in 1980 (Fig. 2, rows c). Most countries had estimated trends in pre-
valence that are currently flat or declining, with the exception of
Nigeria.

Comparison with other estimates
There are no data on mortality for direct comparison: among our 12
countries of interest, only South Africa has a vital registration system
and substantial coding ofHIVdeaths as TBmeans comparisonwith raw
counts is inappropriate. However, our estimates for 2019 were com-
parable with WHO estimates (Fig. 4).

Epidemiological patterns
Our estimates show how the proportion of TB incidence that is HIV-
associated has evolved over time (Fig. 5a), reducing in 9/12 countries
since 2000, when the mean proportion across countries was 47% to a
mean of 41% in 2019. However, this proportion remained high in many
countries in 2019, ranging from 7% (95%UI: 2–17%) in Ethiopia to 63%
(95%UI: 45–76%) in Eswatini, despite very high ART coverage.

We estimate a high and age-dependent annual risk of TB infection
(ARTI), reflecting age-assortativemixing and age patterns of infectious
TB (Fig. 5b). The ARTI rose through adolescence typically peaking at
20–30 years of age, with this peak ranging from 1.2%/year (95%UI:
0.7%/year to 2.7%/year) in Malawi to 16.0%/year (95%UI: 7.7%/year to
36.1%/year) in South Africa among 25–29 year olds. Of all sources of TB
transmission, we estimate that the highest contribution was from
people in the 35–39 year age group, with those aged 25–44 years
together accounting for between 44% and 53% of transmission across

countries (Fig. 5c).We found that themean proportion of TB incidence
due to recent infection (within the last two years) across countries was
34% in 2019, and varied from 14% (95%UI: 9–27%) in Lesotho to 59%
(95%UI: 44–77%) in Mozambique (Fig. 5d). This varied strongly by age,
decreasing from a mean over countries of 89% of incidence in those
aged 0–4 years to < 5% of incidence in those aged over 70 years.
Sensitivity analyses on the proportion of TB that is extrapulmonary
and assuming children 10–14 years were 50% as infectious as adults
rather than uninfectious resulted in median relative changes in central
estimates across countries of < 4%. Assuming children 10–14 years
were infectious implied they generated a median across countries of
5% of TB transmission (range: 3–9%).

Discussion
By calibrating a transmission model of TB on an evolving background
of demography and HIV-related immunocompetence, we have been
able to reproduce patterns in empirical TB data and provide a new
method for estimating TB burden in settings with TB prevalence sur-
veys and generalized HIV epidemics. Previous approaches to model-
ling national-level TB epidemics have had to use existing burden
estimates as calibration targets and severely limit the number ofmodel
parameters treated as uncertain. Our key innovation is to fit an age-
structured TB transmission model to empirical data in a fully-Bayesian
framework, generating independent epidemiological and burden
estimates while reflecting parametric uncertainty. Important new
findings arising from this approach include elucidation of strongly age-
dependent proportions of TB incidence from infection within the last
two years, and that while TB incidence and mortality have declined in
the ART era, TB incidence remains enduringly high with nearly half of
TB incidence in these countries among people living with HIV, despite
rapid scale-up of ART. These findings suggest that, as ART pro-
grammes reach high coverage in many African countries, renewed
focus on tuberculosis detection, care and prevention in PLHIV (as well
as among HIV-negative people) will be required to accelerate progress
towards elimination. Potential approaches include expansion of reg-
ular, routine TB screening for people attending HIV care clinics (e.g.,
annual chest X-ray screening), implementation and expansion of
shorter, more tolerable TB preventive therapies, and action to tackle
the social determinants and consequences of TB.

Our approach advances the methods used by WHO and IHME for
TB burden estimation16,17. In settings with TB prevalence surveys but
lacking reliable vital registration data, WHO uses estimates of TB
duration and CDR estimates from expert opinion and surveillance
system review to estimate incidence and mortality16. IHME estimates
are based on a multi-cause regression approach to predicting
mortality18, combined with a model of case-fatality and duration
(DisMod)19 to utilize TB prevalence survey data. Our approach expli-
citly includes the processes giving rise to TB incidence, prevalence and
mortality, includes prior information from our understanding of nat-
ural history, and makes only weak prior assumptions about case
detection. The level of casedetection is determinedby the shapeof the
epidemic and observed prevalence. While our focus here has been on
settings where HIV is a key driver of TB, this framework could be easily
adapted to lower HIV prevalence settings with TB prevalence surveys.
The framework could incorporate vital registration data where avail-
able, aswell asdatanot currently used inTBburden estimation, suchas
TB infection surveys. Application to other settings could quantify the
value of the information provided by prevalence surveys in terms of
more accurate model-based estimates of burden.

TB transmission models at a country level are mainly used to
project the impact of interventions, plan health services, and under-
take economic evaluations. Probabilistic sensitivity analyses are
well-recognized in health economics as an important component of
analyses, not just to adequately convey uncertainty to decision-
makers, but because accurately quantifying uncertainty may influence
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mean results and therefore the outcome of applying a decision rule20.
Fully quantifying uncertainty is more difficult in the case of transmis-
sion models because calibration is required to generate parameter
samples for analyses. While our emphasis here has been on burden

estimation, for which fully capturing uncertainty is also recognized as
important21, our technical innovations allowing full characterization of
uncertainty basedonempirical datawould alloweconomic evaluations
of TB interventions to improve their quantification of uncertainty.

Fig. 3 | Per capita TB incidence estimated for 12 African countries, 1980–2019.
Line =median, ribbon= 95% credible interval [CrI]. All medians and CrIs are based

runs using n = 300 random samples from the posterior parameter distribution for
each country.
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Typical practice in calibrating country-level TB transmission
models reflects the technical challenges of inference with weak data
of different types, and the complex, slow, and uncertain natural
history of TB, implying many parameters with uncertain priors.
Overcoming these challenges has required particular innovations.
The first is developing an approach to represent notification and
prevalence data in the likelihood which appropriately weights each
data source without ad hoc assumptions. We allowed for a natural
noise level in the notification data, and by integrating out this para-
meter before inference, we were able to avoid introducing an addi-
tional parameter to be sampled. The second is the application of
state-of-the-art self-tuning MCMC approaches in order to achieve
adequate inference for the 20 parameters in our model. We experi-
mented with a number of tools, mainly developed for cosmological
model fitting, and here present results based on the Zeus imple-
mentation of ensemble slice sampling22. Thirdly, in order tomaintain
the computational efficiency needed for inference while capturing

the full complexity of population immuno-dynamics implied by the
AIM model, we used emulation (metamodelling) to capture the
changing impact of HIV on TB risk over time, and by age and sex, in
our simpler transmission model.

Our work nevertheless has limitations. One important limitation is
that while we have included sex strata in our model, we have not
modelled sex-specific differences in exposure, natural history, and
detection, and therefore not made use of sex-strata in data. In most
settings, men havemore TB than women, and evidence of poorer care
access23. The extent to which this is driven by different exposure, sex-
assortative mixing patterns, differences in risk factors or biology, and
differences in care seeking is not fully elucidated24. Including sex dif-
ferences would require several additional uncertain parameters and
sex-stratified data to inform them. We have also not included factors
other than HIV/ART that may differ between populations and affect
TB natural history, nor did we explicitly include the effects of TB
preventive therapy (which remains at low levels in these countries).

Fig. 4 | ComparisonwithWHO incidence andmortality estimates for all TB and
TB/HIV for 2019. Line=central estimate, error bar = 95% uncertainty interval [UI].
All model central estimates (defined as medians) and UIs (defined as 95% credible

intervals) are based runs using n = 300 random samples from the posterior para-
meter distribution for each country. Central estimates and UIs for WHO data (x-
axis) are as reported.
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Fig. 5 | Estimates of other epidemiological metrics. a The proportion of incident
TB that is TB/HIV for 1980–2019. b Annual risk of TB infection in 2019 by age.
cProportion of TB transmission fromeach agegroup in 2019.dProportion of all TB
incidence in 2019 due to (re)infection within 2 years (error bar = 95% credible

interval [CrI]). e Proportion of all TB incidence in 2019 due to (re)infection within 2
years for each age group. All points/lines=medians. All medians and CrIs are based
runs using n = 300 random samples from the posterior parameter distribution for
each country.
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Levels of adherence to ART or anti-TB treatment were not modelled,
but could represent the focus of future explorations.

Model TB notifications do not fit through the entire history of
notification data for all countries. This partly reflects the limited ability
of a two-parameter model of case detection to capture any changes
over a 40-year period, and in somecountries (eg South Africa), implied
upticks in TB incidence due to our version of the AIM model slowing
down ART initiations so as not to exceed ART coverage data. A more
flexible model of TB detection able to incorporate shocks and periods
ofworsening service - aswell as improvements - wouldbe valuable (see
for example the notification trend in Ethiopia), but would need sub-
stantially more parameters to be inferred, and systematic collation of
comparable (between country) health service data over time. In order
to maintain consistency with official UNAIDS HIV/ART estimates that
benefit from country data and experience we fitted to HIV/ART mod-
elled estimates, and because HIV/ART estimates are more precise, we
neglected their uncertainty in our TB estimation process. This means
we have likely underestimated uncertainty, especially in relation to TB/
HIV, and are unsure whether there is evidence for ART initiation slow-
downs in countries like South Africa, Lesotho, and Zambia. However,
this effect highlights the potential for disruptions to HIV/ART services
to result in spikes in TB incidence.

Wemodelled thegapbetween incidence andnotifications asbeing
due to underdiagnosis, and so did not consider overdiagnosis of TB, or
undernotification of diagnosed TB. These effects are hard to quantify,
butmay be importantwhen applying this approach toother settings. In
modelling whole countries, we have averaged over potentially impor-
tant subnational differences. Our approach could be applied to sub-
national populations where the requisite data are available.

We also did not include effects due to COVID-19 and associated
changes in mixing and access to care, and for this reason stopped
model runs in 2019. COVID-19 typically caused decreases in TB notifi-
cations, but the true impact of the COVID-19 pandemic on TB epide-
miology is as yet incompletely understood, with potential effects
including reductions in community transmission, increases in house-
hold transmission, reduced access to care, increased mortality from
COVID-19 affecting those at risk of incident TB or with prevalent
TB25–27. As understanding of these features improves, these features
could in future be included in our framework.

In the countries we considered, the high proportion of TB/HIV on
ART emphasizes the importance of more intensive approaches to
screening and prevention in these groups. PLHIV taking ART have
accessed and remain in regular contact with health services; however,
systematic screening for TB and TB preventive therapy should be
strengthened. The high estimated ARTI and its pattern by age has
implications for the measurement of TB transmission: measures have
traditionally been constructed based on surveys in children, but may
underestimate (re)infection risks in older age groups, as has previously
been suggested28,29, and observed30.

Despite this high ARTI however, we find the proportion of TB
incidence from infection within the last two years is below half overall
in most settings, although higher in younger age groups. Better
understanding this metric is important as it quantifies the proportion
of incidence that could be averted by interventions to reduce trans-
mission, such as active casefinding and improved infection prevention
and control13. Clustering metrics from high-resolution molecular epi-
demiology provide one approach tomeasurement, although there are
few recently published studies from these countries. For Karonga,
Malawi, 38% of strains have been reported as genetically linked to
other samples within 5 years31. While TB incidence in children and
adolescents could therefore respond rapidly to interventions that
successfully reduce transmission, such interventions need to be sup-
plemented by strategies that reduce progression from infection to
disease (including vaccination), or mitigate the consequences of dis-
ease. Our finding that around half of transmission occurs from those

aged 25-44 years highlights the importance of effectively engaging
working-age adults with health services, including throughwork-based
programmes. Age-specific contributions to transmission were highly
consistent across the countries we considered due to similar patterns
of mixing and relative TB prevalence. However, our sensitivity analysis
considering children aged 10-14 years to be half as infectious as adults
highlighted the potential formeaningful transmission from this group,
which warrants more empirical investigation.

We have demonstrated the potential for calibrated transmission
models to be used as a tool for TB burden estimation, and shown it is
feasible to calibrate country-level TBmodels including age and HIV to
empirical datawhilemore fully accounting for uncertainty. In doing so,
we have developed a number of technical innovations that should be
of wider use, especially among those working on TB epidemics in high
HIV prevalence settings. We provided a rigorous calculation of the
proportion of TB incidence due to recent infection, finding substantial
contributions from older infections are compatible with high annual
TB infection risks in adults. Interventions that reduce TB transmission
have the potential to produce rapid and substantial reductions in
incidence in younger age groups, but will need to be combined with
improved interventions addressing progression to have a major
impact on the burden of TB in these settings.

Methods
Dynamics of population immunocompetence
Wedeveloped a simplified version of the deterministic compartmental
AIMmodel of age- and sex-specificHIV incidence that is used in official
UNAIDS estimates14,15. This model includes both sexes (s), 81 single-
year age groups (g), 8 HIV andCD4 cell count categories (HIV-negative,
and > = 500, 350–499, 250–349, 200–249, 100–199, 50–99, and < 50
cells per mm3, which we denote h),and 4 ART categories among PLHIV
(no ART, 0-6 months, 7-12 months, 12+ months, which we denote
r =0,..,3) for a total of 5184 compartments. We assumed that a TB
incidence rate ratio (IRR) at time t in each country applied to HIV-
related states given by a two-parameter model (ρ controlling the
interaction between CD4 decrement and TB risk; α controlling the
protection from TB due to ART), irr(t,s,g,h,r | α,ρ) = <αr/3exp[ρΔh]>,
where <…> denotes an average over CD4 cell decrement below 1000
cells/mm3 (Δh) in state h; α captures the protection from ART in states
r =0,..,3. We used a heuristic pursuit algorithm to achieve fit of this
model to the HIV prevalence and ART coverage data used as inputs in
the UNAIDS estimates. To facilitate inference, we used the AIM model
to calculate mean IRRs and mortality for a model with simpler age (5-
year age categories, a) and HIV/ART structure (X =U for HIV-negative,
H for HIV-infected/ART-naive, A for on ART), for example defining
IRRX(t,s,a |α,ρ) = <irr(t,s,g,h,r |α,ρ)>, where <…> denotes an average
over the fine-grained age and HIV/ART states {g,h,r} corresponding to
the state {a, X}. Because parameters α and ρ are uncertain and need to
vary for inference, we emulated the dependence of these AIM-derived
IRRs on α and ρ by running the model for a grid of α and ρ values and
constructing a fast and accurate log-bilinear interpolation approx-
imation to IRRX(t,s,a | α,ρ) for each country (see Supplementary
Information).

TB transmission model
We used the mean IRRs and HIV-associated mortality computed from
this model, together with inputs derived from World Population Pro-
spects demographic estimates32 to develop a TB transmission model
with the simplified HIV/ART/demographic structure, that reproduced
HIV and demographic trends. We used an established TB model
structurewith 6 states to represent: uninfected, fast-progressing latent
infection, slow-progressing latent infection, TB disease, anti-TB treat-
ment, and recovered fromprevious anti-TB treatment, which together
with 17 age categories, both sexes and 3 HIV/ART stages gave 612
ordinary differential equations (see Supplementary Information). Our
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age-, sex-, and time-dependent TB IRRs were applied to all three
pathways for incident TB (recent progression, non-recent reactivation,
relapse after successful treatment). We used country-specific esti-
mates of age-dependentmixing rates from Prem et al.33 in determining
the force-of-infection, and assumed that children under 15 years were
not infectious. We developed priors for the parameters of this model
and its initial condition in 1970, based on established literature,
including different progression rates and durations for children under
5, and odds ratios for detection in the 0–4 year and 5–14 year age
categories (see Supplementary Information). As notification data are
no longer reported to WHO stratified by sputum smear status, we did
not represent it in themodel and used case fatality ratios representing
an average over smear status. The base detection model used a logit-
normal prior with mean 0 and standard deviation 0.3 scaled onto the
interval [0,0.9) to represent an initial case detection ratio (CDR) for
each country, and a linear time trend in logit-space. We assumed no
overdiagnosis, or undernotification of diagnosed TB.

Data and likelihood
To capture the relative influence of TB notification and TB prevalence
data, we used a hierarchical model that allowed the noise level for
notifications (σ) to be learned from data. To use a single prior for σ
across countries, we scaled by the maximum over yearly notifications.
We used Gaussian approximations for the prevalence and notification
likelihoods. The standard deviation for the prevalence likelihood (σP)
was based on the empirical precision of the estimate of
bacteriologically-positive TBprevalence in thoseaged 15+ years (Pe), so
that, dropping constants, the data log-likelihood (LL) was given by:

LL= � Pm � Pe

� �2

2σP
2 � SSE

2σ2 � n log σð Þ ð1Þ

where Pm is the corresponding transmission model estimate of TB
prevalence, n is the number of years with notification data, and SSE is
the sum-of-squares difference between TB notifications and corre-
sponding model estimates, divided by the square of the maximum
yearly notifications in each country. We chose an uncertain inverse-
gammaprior forσ, which enabledus to integrate overσ in closed form,
resulting in one fewer parameters to sample from and a marginal
likelihood (ML):

ML= � Pm � Pe

� �2

2σP
2 � α +

n + 1
2

� �
log SSE +bð Þ ð2Þ

where a and b are the inverse-gamma hyperparameters (see Supple-
mentary Information). In yearswhere someof the notifications are age-
stratified, we split estimates into stratified and unstratified compo-
nents with a noise term consistent with the total, which results in a
modified SSE term. While age-specific prevalence estimates are very
uncertain, we incorporate this information in the data likelihood using
relative rates of prevalence (15–24 years as the reference category) and
a Gaussian approximation. Similarly, we calculated a fraction of
routine notifications thatwere amongPLHIV and its standarddeviation
using a random-effects meta-analysis, and used this as a target for the
relevant years’ model average corresponding fraction.

We considered the 12 WHO high TB/HIV countries in Africa with a
nationally representative TB prevalence survey. Of these, only South
Africa had vital registration data. Death coding issues related to stigma
mean that deaths recorded as due to TB in South Africa are a sub-
stantial overestimate of true TB deaths. We therefore did not include a
mortality likelihood component.

Bayesian inference
After integrating out σ, we were left with 20 parameters whose log
prior densities were added to the likelihood. Each country was fitted

separately using an ensemble slice samplingMCMC implementation22,
using 50 chains and 2000 iterations. As sensitivity analyses, we reca-
librated themodel assuming: 10% of incident TB extrapulmonary; 30%
of incident TB extrapulmonary; children aged 10–14 years 50% as
infectious as adults.

Proportion of TB incidence from recent transmission
The proportion of incidence due to recent transmission cannot be
reliably calculated as the fraction of incidence from ‘fast’ progressing
model compartments, especially when TB/HIV IRRs mean non-
negligible fractions of ‘slow’ progressors will develop disease within
2 years. We carefully captured the proportion of incidence due to
recent transmission within 2 years in 2019 by calculating incidence in
an auxiliary copy of the differential equations with zero initial condi-
tions, populated only by the (re)infection flows in the main model
during 2017-2019 (see Supplementary Information).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The collated data to reproduce these analyses are available at https://
github.com/petedodd/estevez34.

Code availability
The code to reproduce these analyses is available at https://github.
com/petedodd/estevez34.
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