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Malaria parasites break down host haemoglobin into peptides and amino
acidsinthe digestive vacuole for export to the parasite cytoplasm for
growth: interrupting this process is central to the mode of action of
several antimalarial drugs. Mutations in the chloroquine (CQ) resistance

transporter, pfcrt, located in the digestive vacuole membrane, confer CQ
resistance in Plasmodium falciparum, and typically also affect parasite
fitness. However, the role of other parasite loci in the evolution of CQ
resistance is unclear. Here we use a combination of population genomics,
genetic crosses and gene editing to demonstrate that a second vacuolar

transporter plays akey role in both resistance and compensatory evolution.
Longitudinal genomic analyses of the Gambian parasites revealed temporal
signatures of selection on a putative amino acid transporter (pfaatl) variant

S258L, whichincreased from 0% to 97% in frequency between 1984 and

2014 in parallel with the pfcrel1 K761 variant. Parasite genetic crosses then
identified achromosome 6 quantitative trait locus containing pfaatI that
isselected by CQ treatment. Gene editing demonstrated that pfaati S258L
potentiates CQresistance but at a cost of reduced fitness, while pfaat1 F313S,
acommon southeast Asian polymorphism, reduces CQ resistance while
restoring fitness. Our analyses reveal hidden complexity in CQ resistance
evolution, suggesting that pfaatl may underlie regional differencesin the
dynamics of resistance evolution, and modulate parasite resistance or fitness
by manipulating the balance between both amino acid and drug transport.

Drug resistance in microbial pathogens complicates control efforts.
Therefore, understanding the genetic architecture and the complex-
ity of resistance evolution is critical for resistance monitoring and
the development of improved treatment strategies. In the case of
malaria parasites, deployment of five classes of antimalarial drugs
over the past half century have resulted in well-characterized hard
and soft selective sweeps associated with drug resistance, with both
worldwide dissemination and local origins of resistance driving
drug resistance alleles across the range of Plasmodium falciparum'>>.
Chloroquine (CQ) monotherapy had a central role in an ambitious

plantoeradicate malariain thelast century. Resistance to CQ was first
observed in 1957 in southeast Asia (SEA), and subsequently arrived
and spread across Africa from the late 1970s, contributing to the end
of this ambitious global eradication effort®.

Resistance to CQ has beenstudied intensively. The CQresistance
transporter gene (pfcrt, chromosome (chr.) 7) was originally identified
usingaP.falciparum genetic cross conducted between a CQ-resistant
SEA parasite and a CQ-sensitive South American parasite generatedin
achimpanzee host>¢. Twenty years of intensive research revealed the
mechanistic role of the chloroquine resistance transporter (pfCRT)
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Fig.1|Rapid allele frequency change and strong signals of selection around
pfaatlin Gambia. a, Temporal allele frequency change at SNPs coding for
pfaat1S258L and pfcrt K76T between 1984 and 2014. The map and expanded

West African region show the location of Gambia. b, Significance of haplotype
differentiation across temporal populations of P.falciparum parasites determined
using hapFLK. Pvalues were corrected for multiple testing using the BH method.
Significance thresholds at -log,y(false discovery rate (FDR)-corrected Pvalue)

of 5areindicated with red dotted horizontal lines. Regions within the top 1% tail

of FDR-corrected Pvalues are marked with gene symbols. The strongest signals
genome-wide seen are around pfcrt, pfaatl and pfdhfr (whichis involved in
pyrimethamine resistance). ¢, IBD, quantified with the isoRelate (iR) statistic, for
temporal populations sampled from Gambia. Pvalues were corrected for multiple
testing using the BH method. Significance thresholds at -log,,(FDR-corrected
Pvalue) of 5are indicated with red dotted horizontal lines. Regions within the top
1% tail of FDR-corrected Pvalues are marked with gene symbols. Consistently high
peaks of IBD around pfcrt and pfaat1 are seen for parasite populationsin all years
of sampling. The 1990 sample (n=13) isnot showninc.

in drug resistance’, its location in the digestive vacuole membrane
and its natural function transporting short peptides from the diges-
tive vacuole into the cytoplasm’. CQKills parasites by interfering with

haemoglobin digestion in the digestive vacuole, preventing conver-
sion of haem, a toxic by-product of haemoglobin digestion, into inert
haemozoin crystals. Parasites carrying CQ resistance mutations at
PpfCRT transport CQ out of the food vacuole, away from the site of
drugaction”. The pfcrtK767T single nucleotide polymorphism (SNP) is
widely used as amolecular marker for CQ resistance'®, while additional
variants within pfcrt modulate levels of resistance to CQ" and other
quinoline drugs'?,and determine associated fitness costs". While muta-
tionsin asecond transporter located in the food vacuole membrane,
the multidrug resistance transporter (pfmdrl), have been shown to
modulate CQ resistance in some genetic backgrounds', the role of
other genesin CQresistance evolution remains unclear. Inthis Article,
we sought tounderstand the contribution of additional parasite locito
CQresistance evolution using acombination of population genomics,
experimental genetic crosses and gene editing.

Results
Strong signatures of selection on pfaat1
Longitudinal population genomic data can provide compelling evi-
dence of the evolution of drug resistance loci”. We conducted alongi-
tudinal whole genome sequence analysis of 600 P, falciparum genomes
collected between 1984 and 2014 in Gambia to examine signatures of
selectionunder drug pressure (Supplementary Table 1). Following filtra-
tion using genotype missingness (<10%) and minor allele frequency
(>2%), we retained 16,385 biallelic SNP loci from 321 isolates (1984
(134),1990 (13),2001 (34),2008 (75) and 2014 (65)). The pfcrt K76 T
mutation associated with CQ resistance increased from 0% in 1984
to 88% in 2014. Notably, there was also rapid allele frequency change
onchr. 6: the strongest differentiation is seenat an S258L mutationin
a putative amino acid transporter, pfaatl (PF3D7_0629500, chr. 6),
whichincreased during the same time period from 0% to 97% (Fig. 1a).
Assuming a generation time (mosquito to mosquito) of 6 months for
malaria parasites, these changes were driven by selection coefficients of
0.18for pfaat1S258L, and 0.11 for pfcrt K76T (Extended DataFig.1). Both
pfaat1 S258L and pfcrt K76 T mutations were absent in 1984 samples,
but present in 1990, suggesting that they arose and spread in a short
time window. Both pfaati and pfcrt showed similar temporal haplotype
structuresin Gambia (Extended DataFig. 2). These were characterized
by almost complete replacement of well-differentiated haplotypes at
bothlocibetween1984 and 2014. During this period, we also observed
major temporal changes in another known drug resistance locus
(pfdhfr) (chr.4)' (Fig.1b). That these rapid changesinallele frequency
occuratpfcrt,pfaatiand pfdhfr,butnotelsewhereinthegenome (Fig.1b),
provides unambiguous evidence for strong directional selection.

Further evidence of strong selection on pfaati and pfcrt came
from the analysis of identity-by-descent (IBD) in Gambian parasite
genomes. We saw the strongest signals of IBD in the genome around
both pfaatl and pfcrt (Fig. 1c). These signals are dramatic, because
there is minimal IBD elsewhere in the genome, with the exception ofa
strong signal centring on pfdhfr after 2008. Interestingly, the strong
IBDis observedinall four temporal samples examined including 1984,
before the spread of either pfaat1 S258L or pfcrt K76T. However, only a
single synonymous variant at pfaatl (15521) and none of the CQ-resistant
associated mutant variants in pfcrt were present at that time. CQ was
the first-line treatment across Africa from the 1950s. These results
are consistent with the possibility of CQ-driven selective sweeps
conferring low-level CQ resistance before 1984, perhaps targeting
promotor regions of resistance-associated genes. pfaatl has also
been selected in other global locations: this is evident from prior
population genomic analyses from Africa”, SEA'® and South America
(SM)¥. Plots summarizing IBD in these regions are provided in Extended
DataFig. 3.

Patterns of linkage disequilibrium (LD) provide further evidence
for functional linkage between pfcrt and pfaatl. The strongest
genome-wide signal of inter-chromosomal LD was found between
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Fig. 2| Distinctive trajectory of pfaati evolution in SEA. a, Global distribution
of pfaati alleles. b, Comparable maps showing percentages of pfcrt haplotypes
foramino acids 72-76. The coloured segments show the major pfcrt haplotypes
varying at the K76 T mutation. We used dataset from MalariaGEN release 6 for
pfaatland pfcrt allele frequency analysis. Data used for the figure are contained
inSupplementary Table 2. Only samples with monoclonal infections (N = 4,051)
wereincluded (1,233 from west Africa (WAF), 415 from east Africa (EAF), 170
from central Africa (CAF), 994 from east southeast Asia (ESEA), 998 from west
southeast Asia (WSEA), 37 from south Asia (SA), 37 from south America (SM)
and 167 from the Pacific Ocean region (PO)). c,d, MSNs of haplotypes coloured

by pfaati allele (c) and geographical location (d), respectively. Networks
were constructed from 50 kb genome regions centred by pfaatI (25 kb up-
and downstream. This spans the genome regions showing LD around pfaat1
(Supplementary Fig. 2). A total of 581 genomes with the highest sequence
coverage were used to generate the network. The networks were generated
on the basis 0f 1,847 SNPs (at least one mutant in the full dataset—MalariaGEN
release 6). Circle size indicates number of samples represented (smallest, 1;
largest, 87). Haplotypes from the same region (Asia or Africa) were clustered
together, indicating independent origin of pfaat1 alleles.

these two locibothin our Gambian data (Supplementary Fig.1) and in
samples fromacross Africa?’. LD between pfaatl and pfcrt was strong-

estin2001, and then decayed in2008 and 2014 (Supplementary Figs.1

and 2), consistent with maintenance of LD during intensive CQ usage,
and subsequent LD decay after CQ monotherapy was replaced by
sulfadoxine-pyrimethamine + CQ combinationsin2004, and thenwith
artemisinin combinationsin 2008 (ref. 16).

Correlationsinallele frequencies are expected between pfcrt and
pfaatl if these loci are interacting or are co-selected. Frequencies of
the CVIET haplotype for amino acids 72-76 in pfCRT are significantly
correlated withallele frequencies of pfaat1 S258L in West Africa (WAF)
(R*=0.65, P=0.0017) and across all African populations (R*= 0.44,
P=0.0021) (Extended Data Fig. 4). This analysis further strengthens
the argument for co-evolution or epistasis between these two genes.
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Divergent selection on pfaatlin SEA

We examined the haplotype structure of pfaati from P. falciparum
genomes (MalariaGEN release 6 (ref. 21)) (Fig. 2 and Supplementary
Table 2). The pfaat1 S258L SNP is at high frequency in SEA (58%) but
is found on divergent flanking haplotypes suggesting an independ-
ent origin from the pfaat1 S258L in Gambia and elsewhere in Africa
(Fig. 2c,d and Extended Data Fig. 5). Hendon et al.”® reached the same
conclusion forthe chr. 6 region using an IBD analysis of parasites from
globallocations. Convergent evolution of pfaat1 S258L provides further
evidence for selection, and contrasts with pfcrt and pfdhfr, where resist-
ance alleles that spread in Africa had an Asian origin'2. The evolution
of pfaatlis more complexin SEA than elsewhereinthe world. There are
three additional common derived amino acid changes in SEA. pfaati
F313S has spread close to fixationin SEA (total 96%, Fs; = 0.91compared
with African samples) paired with pfaatl S258L (55%), Q454E (15%)
or K541IN (22%). The pairing of F313S with three different mutations,
suggests that F313S arose first. We speculate that these geographically
localized pfaat1 haplotypes have had an important role in CQ resist-
ance evolution in SEA and could also reflect geographic differences
in the historical use of other quinoline drugs (mefloquine, quinine,
piperaquine and lumefantrine) in this region*.

Parasite genetic crosses using humanized mice identify aQTL
containing pfaat1

P.falciparum genetic crosses can be achieved with human-liver chima-
eric mice, reviving and enhancing this powerful tool for malaria genet-
ics?>*, after use of great apes for research was banned. We used two
independentbiological replicates of a cross between the CQ-sensitive
Africanparasite, 3D7,and arecently isolated CQ-resistant parasite from
the Thailand-Myanmar border, NHP4026 (Supplementary Table 3).
We then compared genome-wide allele frequencies in CQ-treated
and control-treated progeny pools to identify quantitative trait loci
(QTL) (Supplementary Table4). This bulk segregant analysis (BSA)* of
progeny parasites robustly identified the chr. 7 locus containing pfcrt
as expected, validating our approach (Fig. 3a and Supplementary
Figs.3 and 4). We were also intrigued to see a significant QTL on chr. 6
in each of the replicate crosses (Fig. 3, Supplementary Figs. 3 and 4
and Extended Data Fig. 6). We prioritized genes within the 95% confi-
denceinterval of each QTL (Supplementary Table 5) by inspecting the
SNPs and indels that differentiated the two parents (Supplementary
Table 6). The chr. 6 QTL spanned from 1,013 kb to 1,283 kb (270 kb)
and contained 60 genes. Of these, 54 are expressed in blood stages,
and 27 have non-synonymous mutations that differentiate 3D7 from
NHP4026. pfaatl was located at the peak of the chr. 6 QTL (Fig. 3¢).
NHP4026 carried two derived non-synonymous mutations in pfaati
(S258L and F313S) compared with 3D7, which carries the ancestral
allele. We thus hypothesized that one or both of these pfaati SNPs
may be driving the chr. 6 QTL.

We isolated individual clones from the bulk 3D7 x NHP4026 F,
progeny to recover clones with all combinations of parental alleles
atthe chr. 6 and chr. 7 QTL loci. We cloned parasites both from a bulk
progeny culture that was CQ selected (96 h at 250 nM CQ) and from
a control culture. This generated 155 clonal progeny: 100 from the
CQ-selected culture, 62 of which were genetically unique, and 55 from
the untreated control culture, of which 47 were unique (Fig. 4a). We
compared allele frequencies between these two progeny populations
(Fig.4b), revealing significant differences at both chr.6 and chr.7 QTL

regions, paralleling the BSA results. We observed adramatic depletion
ofthe NHP4026 CQ-resistantallele at the chr.7 QTL in control-treated
cultures, consistent with strong selection against CQ resistant pfcrt
allelesinthe absence of CQselection. Conversely, all progeny isolated
after CQ treatment harboured the NHP4026 CQ-resistant pfcrt allele.
The inheritance of the pfcrtlocus (chr. 7) and the pfaati locus (chr. 6)
was tightly linked in the isolated clones (Fig. 4c). To further examine
whether the cross data were consistent with epistasis or co-selection,
we examined a larger sample of recombinant clones isolated from
five independent iterations of this genetic cross in the absence of CQ
selection. This revealed significant under-representation of clones
with genotype pfcrt 76T and pfaatl 2585/313F (WT) (Supplementary
Table 7, x*=12.295, P=0.0005). These results are consistent with
the strong LD between these loci observed in nature (Extended Data
Fig.4 and Supplementary Fig.1)** and suggest afunctional relationship
between the two loci. A role for pfaat1 S258L/F313S in compensating
for the reduced fitness of parasites bearing pfcrt K76T is one likely
explanation for the observed results.

We next measured in vitro CQ half-maximalinhibitory concentra-
tion (ICs,) values for 18 parasites (aset of 16 progeny and both parents),
carrying all combinations of the chr. 6 and chr. 7 QTL alleles (Supple-
mentary Fig. 5 and Supplementary Table 8). The NHP4026 parent
was the most CQ-resistant parasite tested. All progeny that inherited
NHP4026 pfcrt showed a CQ-resistant phenotype while all progeny that
inherited 3D7 pfcrewere CQ sensitive, consistent with previous reports.
The effect of pfcrt alleles on parasite CQ resistance was significant
on the basis of a two-way analysis of variance test (P=7.52x10™).
We did not see an effect of the pfaatl genotypes on IC,, values in
clones carrying pfcrt 76T (P=0.06) or pfcrt 76K (P = 0.19). This analysis
has limited power because only two progeny parasites were recovered
with pfaat1258S/313F (WT) in combination with pfcrt 76T (Fig. 4aand
Supplementary Fig. 5), but is consistent with the pfaatl QTL being
driven by parasite fitness in our genetic crosses. We therefore focused
on gene manipulation of isogenic parasites for functional analysis.

Functional validation of the role of pfaatlin CQresistance

We utilized CRISPR-Cas9 modification of the NHP4026 CQ-resistant
parenttoinvestigate the effects of mutations in pfaatl on CQIC,,drug
response and parasite fitness (Fig. 5). NHP4026 pfaatl carries the
two most common SEA non-synonymous changes (S258L and F313S)
(Fig.2), relative to the sensitive 3D7 parent. We edited these positions
back to the ancestral state both singly and in combination and con-
firmed the modificationsin three tofive clonesisolated fromindepend-
entedits for each allelic change (Fig. 5a). We then determined CQICs,
values and measured fitness using pairwise competition experiments
for parental NHP4026%5Y38, the single mutations NHP4 02625531,
NHP4026%55*532 and the ancestral allele NHP4026°%55°, This revealed
ahighly significantimpact of the S258L mutation, whichincreased CQ
IC;, values 1.5-fold, and a more moderate but significant impact of
F313S and the double mutation (S258L/F313S), relative to the ancestral
(258S/313F) allele (Fig. 5b). The observation that 258L shows reduced
IC, values incombination with the F313S mutation reveals an epistatic
interaction between these amino acid variants (Fig. 5b).

We also examined the effect of the S258L and F313S substitu-
tions on responses to other quinoline drugs. The results revealed
significant effects of pfaatl substitutions on quinine, amodiaquine
and lumefantrine IC;, responses, and no effect on the mefloquine

Fig. 3| Genetic crosses and BSA reveal two QTL after CQselection. a, Allele
frequency plots across the genome before and after CQ treatment. Lines with
the same colour indicate results from technical replicates. b, QTLs identified
using the G’ approach. Lines with the same colour indicate results from technical
replicates. aand binclude results from BSA with 48 h CQ treatment with samples
collected at day 4. For the complete BSA from different collection timepoints and
drug treatment duration under different CQ concentrations, see Supplementary

Figs. 3 and 4. ¢, Fine mapping of the chr. 6 QTL. The 95% confidence intervals
(Cls) were calculated from the 250 nM CQ treated samples, including data from
different collection time points (day 4 for 48 h CQ treatment and day 5 for 96 h
CQtreatment), pools (pool1and pool 2), and drug treatment duration (48 h

and 96 h). Light cyan shadow shows boundaries of the merged Cls of all the
QTLs. Eachlineindicates one QTL;black dashed line indicates threshold for QTL
detection (G’ =20). The vertical red dashed line indicates pfaat1 location.
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IC,, (Extended Data Fig. 7). Notably, these IC,, value shifts were well
below the threshold associated with clinical resistance. Consequently,
although mutationsin pfaati can subtly impact susceptibly toarange

of compounds, these results are consistent with CQ treatment being
the primary selective force that drove the pfaatl S258L and F313S
mutations along with those in pfcrt.
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Fig. 4| Analysis of cloned progeny reveals linkage and epistaticinteractions
between pfcrt and pfaatl. a, Allelic inheritance of 109 unique recombinant
progeny. Black and red blocks indicate alleles from 3D7 and NHP4026, separately.
Vertical grey lines show non-core regions where no SNPs were genotyped. Left:
clonesisolated from recombinant progeny pools with or without CQ treatment
arelabelled. Right: pfaatl and pfcrt alleles are labelled. WT indicates pfaat1 and
pfertalleles from 3D7 and MUT indicates alleles from NHP4026. The location of
pfaatland pfcrtis marked using black triangles on the top of the panel.

b, Genome-wide 3D7 allele frequency plot of unique progeny cloned from pools
after 96 h of CQ (250 nM) treatment (blue) or from control pools (gold).

¢, Linkage between loci on different chromosomes measured by Fisher’s exact
test. The dotted vertical line marks the Bonferroni-corrected significance
threshold (one-tailed), while points shown in red are comparisons between SNPs
flanking pfaatl and pfcrt. Supplementary Table 7 shows non-random associations
between genotypesin parasite clones recovered from untreated cultures.

Mutations conferring drug resistance often carry fitness costs
in the absence of drug treatment. We thus examined parasite fitness
by conducting pairwise competition experiments with the parental
NHP4026 parasite against the same mutant pfaatI parasites created
above. This revealed significant differences in fitness (Fig. 5c). The
258L/313F allele that showed a selective sweep in Gambia was the least
fit of all genotypes, the ancestral allele (258S/313F) carried by the
3D7 parent was the most fit, while the 2585/313S mutation showed a
similar fitness to the NHP4026 parent (258L/313S). These results also
revealed strong epistatic interactions in fitness. While the 258L/313F
allele that conferred high CQIC,, values (Fig. 5b) carried a heavy fitness
penalty (Fig.5c), fitness was partially restored by the 313S mutationin
the 258L/313S allele that predominates in SEA. Together these results
show that the pfaat1 S258L substitution underpins a1.5-fold increase
in CQ resistance that probably drove its selective spread in Gambia.
However, S258L carries a high fitness cost that in SEA parasites was
probably mitigated by the substitution, F313S. Overall, these results
demonstrate a large effect of pfaatl mutations on fitness of parasites
carrying pfcrt K767 resistance alleles.

The editing experiments reveal that clones carrying the ancestral
pfaatl allele in combination with pfcrt K76T show the highest fitness.
By contrast, the close association of pfaat1 S258L/F313S with pfcrt K76 T
in progeny from the genetic crosses revealed the opposite relation-
ship. We speculate that these opposing results may reflect differing
selection pressures in blood stage parasites in the case of CRISPR
experiments, orinthe mosquito and liver stages of the life cyclein the
case of genetic crosses. The gene editing studies were conducted with
asingle SEA parasite genotype (NHP4026). While African pfcrt CQR
alleles originated in SEA and share a common ancestor and identity
at amino acids 72-76, most SEA parasites (including NHP4026) carry
one or two additional mutationsin pfcrt (N326S and 1356T) associated
with higher CQ IC, values and reduced fitness***. The predominant
pfcrt haplotype in Gambia differs from NHP4026 at one amino acid,
carrying the ancestral 326S, while NHP4026 carries the 326N muta-
tion®. It will be important to examine the effect of pfaatl mutations
on African genetic backgrounds in future work.

To further understand how pfaat1 S258L impacts parasite pheno-
type, we used a yeast heterologous expression system. WT pfaatl is
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Fig. 5| Allelic replacement impacts drug response and parasite fitness.

a, CRISPR-Cas9 gene editing. Starting with the NHP4026 parent, we generated
all combinations of the SNP-states at pfaatl. b, Drug response. Each dot indicates
one replicate IC;, measurement: we used two to four independent CRISPR edited
clones for each haplotype examined. The number of biological replicates is
shown above the x axis. We conducted pairwise ¢-tests (two-tailed) to compare
1C;, values between parasite lines, without adjustment for multiple comparisons.
Haplotypes are shown on the x axis with derived amino acids showninred. Bars
show means +s.e.m.), while significant differences between haplotypes are
marked. ¢, Fitness. The bars show mean relative fitness (+1s.e.m.) measured in
replicated competition experiments, and dots represent fitness from individual
measurements. We conducted three independent competition experiments for
each edited parasite group in the absence of CQ. F-statistic was used to compare
fitness between parasite lines. Results from assays for each edited group were
combined using meta-analyses with random effects. For allele frequency changes
for each competition experiment, see Extended Data Fig. 10. NS, not significant.

expressedin the yeast plasma membrane”, where itincreases quinine
and CQ uptake conferring sensitivity to quinoline drugs, resulting in
reduced growth. CQuptake was previously shown to be competitively
inhibited by the aromatic amino acid tryptophan, suggesting a role
for pfaatlindrugand aminoacid transport”. We therefore expressed
pfaatl S258L in yeast, which restored yeast growth in the presence of
high levels of CQ (Extended Data Fig. 8). Interestingly, expression of
another amino acid variant (T162E), responsible for CQ resistance in

rodent malaria parasites (Plasmodium chabaudi)®, also prevents accu-
mulation of quinoline drugs within yeast cells and restores cell growth
inthe presence of 1mM CQ?. Together, these new and published results
suggest that yeast expression of pfaatl mutations impact resistance
andfitness by altering the rates of amino acid and quinoline transport.

We evaluated three-dimensional structural models based on the
3D7 PfAAT1 amino acid sequence using AlphaFold* and I-TASSER*
(Extended Data Fig. 9). While pfCRT has 10 membrane-spanning
helices®, pfAAT1has11; this was corroborated using the sequence-based
membrane topology prediction tool TOPCONS?2. The common pfAAT1
mutations S258L, F313S and Q454E are situated in membrane-spanning
domains, while K541L is in a loop linking domains 9 and 10. The
location of these high-frequency non-synonymous changes in
membrane-spanning domains has strong parallels with pfCRT evolu-
tion® and is consistent with a functional role for these amino acids in
transporter function.

Discussion

Identification of pfcrt as the major determinant of CQresistancewasa
breakthrough that transformed the malaria drug resistance research
landscape, but the contribution of additional genetic factors in the
evolution and maintenance of CQ resistance remained unclear?>,
By combininglongitudinal population genomic analysis spanning the
emergence of CQ resistance in Gambia, analysis of bulk populations
and progeny from controlled genetic crosses, and functional valida-
tion using both P, falciparum and yeast, we find compelling evidence
thatasecondlocus, pfaatl, hashad animportantrolein CQresistance
evolution. This powerful combination of approaches allowed us to
examine critical pfaatl variants that contribute to the architecture of
CQresistance and interactions between pfcrt and pfaatl.

Our results provide compelling evidence that consolidates dispa-
rate observations from several systems suggesting arole for pfaat1in
drugresistance evolution. In the rodent malaria parasite P. chabaudi,
amutation (T162E) in the orthologous gene (pcaatI) was found to be
adeterminant of low-level CQresistance in laboratory-evolved resist-
ance’. In P. falciparum genome-wide association studies, the S258L
mutation of pfaatl was associated with CQ resistance in field isolates
collected along the China-Myanmar border®*, while pfcrt K76T and
pfaatl S258L show the strongest LD between physically unlinked chro-
mosomes genome-wide”. In addition, mutations in pfaatl have been
linked to the in vitro evolution of resistance in P. falciparum to three
different drug scaffolds®. Previous work identified strong signatures
of recent selection in parasites in Africa at regions surrounding pfcrt,
pfaatl and other drug resistance loci'®”*¢; similar signatures of selec-
tion are seenin Asiaand SM'*"°, while pfaatI was highlighted inalist of
P.falciparum genes showing extreme geographical differentiation?.

The different pfaat1 haplotypes in Africa and Asia may be partly
responsible for the contrasting evolution of CQresistance in these two
continents. CQ-resistant parasites carrying both pfcreK76T and pfaatl
S258L spread across Africa, but after removal of CQ as the first-line
drug, the prevalence of CQ-resistant parasites declined in many coun-
tries® . This is consistent with the low fitness of parasites carrying
pfcrtK76T and pfaat1S258L inthe absence of drug pressure, and intense
competition within malaria parasite infection in Africa*

In contrast, pfcrt K76T has remained at or near fixation in many
SEA countries®* (Fig.2). On the Thailand—-Myanmar border, CQresist-
ance has remained at fixation since 1995, when CQ was removed as
first-line treatment of P_falciparum malaria®. Our pfaatl mutagenesis
results demonstrate that parasites bearing pfaati 258L/313S show
reduced IC,, values but elevated fitness relative to pfaati 258L/313F.
We speculate that restoration of fitness by F313S may help to explain
retention of CQ-resistant pfcrt K76T alleles in SEA. The alternative
hypothesis—that high frequencies of F313S mutations are driven by
widespread use of other quinoline partner drugs in SEA*’—is not sup-
ported, because we see only minor impacts of this substitution on
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Fig. 6| Model for involvement of pfaatl haplotypes in CQresistance and
fitness. pfCRT (red) and pfAAT1 (blue) are both situated in the digestive vacuole
(DV) membrane. a, WT pfCRT and pfAAT1 transport peptides and aromatic amino
acids, respectively, as well as CQ. b, pfCRT K76T exports CQ from the DV away
fromits site of action, leading to elevated resistance but transports peptides
inefficiently leading to aloss of fitness. ¢, pfAAT1S258L reduces entry of CQinto
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the DV, leading to elevated resistance, but amino acid flux is affected, leading to
aloss of fitness. d, The pfAAT1S258L/F313S double mutation increases CQ influx
incomparison with the S258L alone but the amino acid transport function is
restored, leading to reduced IC,, values and increased fitness in the absence of
drug treatment.

response to lumefantrine, quinine, mefloquine and amodiaquine
(Extended DataFig. 7).

Mutations in pfcrt confer CQ resistance by enabling efflux of CQ
across the digestive vacuole membrane, away fromiits site of action®.
PfAATL s also located in the digestive vacuole membrane®, where it
probably acts as abidirectional transporter of aromatic amino acids”*.
Given the structural similarity of quinoline drugs and aromatic amino
acids, pfaatl mutations may modulate the ability of pfAAT1to transport
CQ and/or amino acids**. The pfaat1 S258L mutation could potenti-
ate resistance by either increasing efflux of CQ out of the digestive
vacuole or reducing the rate of entry into the vacuole. Given that this
pfaatl mutation blocks entry of quinoline drugs into yeast cells when
heterologously expressed in the yeast cell membrane”, we hypo-
thesize that the pfaat1 S258L mutation reduces CQ uptakeinto the food
vacuole (Fig. 6). Our mutagenesis analyses show that the S258L
allele has a high fitness cost, perhaps due to a decreased capacity for
amino acid transport from the vacuole. Interestingly, comparison of
the pfaat1 S258L/F313S haplotype segregating in our genetic cross
with the WT pfaatl allele generated using gene editing revealed only
marginal increases in IC, values and limited reductions in fitness.
Thisis consistent with the F313S mutation restoring the natural pfaat1
function of transporting amino acids, thereby reducing osmotic
stress and starvation, while also partially reducing levels of CQ resist-
ance (Fig. 6). That this haplotype has reached high frequency in SEA
may contribute to the maintenance of pfcrt K76T alleles long after
the removal of CQ as a first line drug. This model (Fig. 6) provides a
working hypotheses that can be tested in future work examining the
role of pfAAT1and pfCRT.

Our results reveal hidden complexity in CQ resistance evolution:
drugtreatment has driven global selective sweeps acting on mutations
inanadditional transporter (pfAAT1) located in the P, falciparum diges-
tive vacuole membrane, which fine tune the balance between nutrient
anddrugtransport, revealing evidence for epistasis and compensation,
and impacting both drug resistance and fitness.

Methods

Ethics approval and consent to participate

The study was performed in accordance with the Guide for the Care
and Use of Laboratory Animals of the US National Institutes of Health
(NIH). TheSeattle Children’s Research Institute (SCRI) has an Assurance
from the Public Health Service through the Office of Laboratory Animal
Welfare for work approved by its Institutional Animal Care and Use
Committee. All of the work carried out in this study was specifically

reviewed and approved by the SCRI Institutional Animal Care and
Use Committee.

Project design

The project designis summarized in SupplementaryFig. 6. Inbrief, we
use (1) population genomic analyses, (2) genetic crosses and quantita-
tive genetics analysis followed by (3) functional analyses to investigate
the role of additional lociin CQ resistance.

Gambia population analysis

P. falciparum genome sequences. P. falciparum-infected blood
samples collected from central (Farafenni) and coastal (Serrekunda)
Gambiain1984 and 2001, were processed for whole blood DNA and P.
falciparum genomes and deep sequenced at the Wellcome Trust Sanger
Institute. Data from isolates collected from coastal Gambia in 2008
and 2014 had been published previously**** (Supplementary Table
1). Before sequencing, P. falciparum genomes were amplified from
whole blood DNA of each sample from 1984 and 2001 using selective
whole genome amplification (WGA) and then sequenced (paired-end
reads) on the lllumina HiSeq platform*°. Reads were mapped to the
P.falciparum 3D7 reference genome using bwa mem (http://bio-bwa.
sourceforge.net/). Mappingfiles (Binary Alignment Map) were sorted
and deduplicated by Picard tools v2.0.1 (http://broadinstitute.github.
io/picard/),and SNP and indel were called with GATK HaplotypeCaller
(https://software.broadinstitute.org/gatk/) following best practices
(https://www.malariagen.net/data/pf3K-5). Variant call format (VCF)
files were generated by chromosome, merged using beftools (https://
samtools.github.io/bcftools/bcftools.html) and filtered using vcftools
(https://vcftools.sourceforge.net/). After filtration, only biallelic SNP
variants withaVQSLOD score of >2,a map quality >30 and supported >5
reads per allelic variant were retained. SNPs with minor allele frequency
<2% were removed from our analysis. We also removed samples with
>10% genotypes missing. In the final dataset, there were in total 16,385
biallelicSNP lociand 321 isolates (1984 (134),1990 (13),2001(34),2008
(75) and 2014 (65)). The complexity of infection (monogenomic or
polygenomic) was estimated as the inbreeding coefficient Fws from
the merged VCF file using R package Biomix. The short-read sequence
dataanalysed are listed in Supplementary Table 1.

Allele frequencies and pairwise differentiation. For each sample
with a complexity of infection greater than 1, the allele with most
reads was retained for mixed-allele genotypes to create a virtual hap-
loid genome variation dataset. Allele frequencies were calculated in
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plink, and pairwise differences between temporal populations and
genetic clusters were estimated by Fst using Weir and Cockerham’s
method applied in the hierfstat package in R. The likelihood ratio
test for allele frequency difference pFST was further calculated using
vcflib. For acombined pFST Pvalue, the fisher method was performed
in R metaseq package. The summary Pvalues were corrected for mul-
tiple testing using Benjamini-Hochberg (BH) method. To examine
haplotype sharing at pfaatl (Pf3D7_06_v3:1,213,102-1,217,313) and pfcrt
(Pf3D7_07_v3:403222-406317) between isolates from the different
years of sampling in Gambia, we extracted the IBD matrix using
isoRelate R package™ for all pairs of isolates for gene regions spanning
anadditional 25 kb on each flank. We generated relatedness networks
using the R package igraph following the scripts in the isoRelate
R package'®. Isolates are connected if they show >90% IBD.

Genome scans for selection. We considered samples collected inthe
same year as asingle populationirrespective of the location of collec-
tion. We used the hapFLK approach to detect signatures of positive
selection through haplotype differentiation following hierarchical
clustering of Gambian temporal population groups compared with
an outgroup from Tanzania, as previously described”. P values were
computed for each SNP-specific value using the Python script provided
with the hapFLK program, and values were corrected for multiple
testing using the BH method. Secondly, we used pairwise relatedness
based on identity by descent to derive an iR statistic for each SNP as
implemented by the IsoRelate™ package in R. Regions with overlapping
iRand hapFLK -log,, Pvalues >5 were considered as regions of interest.

Population analysis on pfaatl and pfcrt evolution

Datasets. We included two datasets in this study: (1) genotypes of
7,000 worldwide P falciparum samples from MalariaGEN Pf community
project (version 6.0) (ref. 21). This dataset includes samples from south
America (SM), west Africa (WAF), Central Africa (CAF), East Africa (EAF),
South Asia (SA), the western part of southeast Asia (WSEA), the eastern
part of southeast Asia (ESEA) and the Pacific Oceania (PO) region. (2)
We also included 194 Thailand samples with whole genome sequenc-
ing data available from Cerqueira et al., and merged them into the
WSEA population. Duplicate sequences were removed according to
the sample’s original ID (Hypercode). Only samples with single para-
site infections (within-host diversity Fs > 0.90) and >50% of SNP loci
genotyped were included for further analysis. A total of 4,051 samples
remained after filtration (Supplementary Table 2). Non-biallelic SNPs
and heterozygous variant calls were further removed from the dataset.
We then extracted genotype data at pfaatl and pfcrt gene regions and
calculated the allele frequencies (Fig. 2a).

pfaatl haplotypes and evolutionary relationships. To minimize the
effect of recombination, we extracted 1,847 SNPs distributed within
25 kb upstreamand 25 kb downstream of the pfaat1 gene. Only samples
with all 1,847 SNPs genotyped (581/4,051) were used for evolution-
ary analysis. To visualize the population structure, we calculated the
pairwise genetic distance between samples and generated a mini-
mum spanning network (MSN; Fig.2b and Extended DataFig.5), using
Rpackage poppr. We compared genome sequences (PlasmoDB, version
46) between P, falciparum and Plasmodium reichenowi and extracted
genotypes at 1,803/1,847 common loci. We then built an unweighted
pair group method with arithmetic mean (UPGMA) tree rooted by
P.reichenowiusing the 581 haplotypes and 1,803 SNPs (Extended Data
Fig. 5), using the R packages ape and phangorn under default para-
meters. MSN network and unweighted pair group method with arith-
metic mean tree were plotted with ggplot2.

Genetic cross and BSA
Genetic cross preparation. We generated genetic crosses between
parasite 3D7 and NHP4026 (ref. 48), using FRG NOD huHep mice

with human chimaeric livers and Anopheles stephensi mosquitoes
as described previously”>****°, 3D7 is a parasite of African origin®
that has been maintained in the lab for decades and is CQ sensitive,
while NHP4026 was cloned from a patient visiting the Shoklo Malaria
Research Unit clinic on the Thailand-Myanmar border (2007) and is
CQresistant (Supplementary Table 3). We generated three recombi-
nant pools using independent cages of infected mosquitoes: these
are independent pools of recombinants*®. The estimated number of
recombinant genotypes in each pool was ~2,800 (ref. 48). We used
two pools (pool 1and pool 2) maintained in AlbuMAX-based culture
medium for this study.

Drug treatment and sample collection. For each recombinant pool,
the parasite culture was expanded under standard culture conditions®.
Briefly, cultures were maintained in complete medium at 5% haemato-
critin O* red blood cells (RBCs) (Biochemed Services) at 37 °C, pH of
7.0-7.5,5% CO,, 5% O, and 90% N,. Medium changes were performed
every 48 h and cultures were expanded to keep the parasitaemia at
~1%.0nce expanded, each recombinant poolwas dividedinto16 0.5 ml
aliquots while diluting to 1% parasitaemia. The aliquots were main-
tained in 48-well plates and treated with CQ (Supplementary Fig. 7).In
total, we had 32 cultures: 2 pools x 4 CQ concentrations (O (control),
50,100 or 250 nM) x 2 drug duration time (48 h or 96 h) x 2 technical
replicates. We define the day when drug was applied as day O. After
2 days (48 h) of drug treatment, the infected RBCs were washed with
phosphate-buffered saline solution twice to remove residual drug. For
the plate assigned for 48 h CQ treatment (48-well plate1), cultures were
maintained in complete medium; and samples were collected at days
0,4 and 7. For the plate assigned for 96 h CQ treatment (48-well plate
2), fresh CQ was added back to the culture medium and treated for
another 48 h; and after atotal of 96 h CQ treatment, drug was removed
and samples were collected at days 0,5 and 10. CQwas dissolved in H,0
and diluted inincomplete medium (Gibco, Life Technologies). Culture
medium was changed every 48 h. Parasitaemia was monitored using
20% Giemsa-stainedslides, and cultures were diluted to 1% parasitaemia
if the parasitaemia was higher than 1%. Approximately 15 pl packed
RBCs was collected per sample.

Library preparation and sequencing. We prepared llluminalibraries
andsequenced both parents and the 96 segregant pools collected. We
extracted genomic DNA using the Qiagen DNA mini kit and quanti-
fied DNA with Quant-iT PicoGreen Assay (Invitrogen). For samples
with <50 ng DNA obtained, we performed WGA*. WGA products
were cleaned with KAPA Pure Beads (Roche Molecular Systems) at a
1:1ratio. We prepared sequencing libraries using 50-100 ng DNA or
WGA product using KAPA HyperPlusKit following the instructions with
three cycles of PCR. All libraries were sequenced at 150 bp pair-end
using lllumina Novaseq S4 or Hiseq X sequencers, to obtain >100x
genome coverage per sample.

Mapping and genotyping. We mapped the sequencing reads
against the 3D7 reference genome (PlasmoDB version 46) using
BWA mem (http://bio-bwa.sourceforge.net/), and deduplicated and
trans-formatted the alignment files using picard tools v2.0.1 (http://
broadinstitute.github.io/picard/). We recalibrated the base quality
score based onaset of verified known variants® using BaseRecalibrator,
and called variants through HaplotypeCaller. Both functions were from
Genome Analysis Toolkit GATK v3.7 (https://software.broadinstitute.
org/gatk/). Only variants located in the core genome regions (defined
inref. 53) were called and used for further analysis.

Genotype of parents. We merged calls from the two parents using
GenotypeGVCFs in GATK, and applied standard filtration to the
raw variant dataset as described in ref. 54. We recalibrated the
variant quality scores and removed loci with variant quality score <1.
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The final variants in VCF format were annotated using snpEff v4.3
(https://pcingola.github.io/SnpEff/) with 3D7 (PlasmoDB, release 46)
as the reference. After filtration and annotation, we selected SNP loci
thatare distinctin the two parents and used those SNPs for further BSA.

BSA. We used statistical methods described in refs. 25,48,50 for BSA.
The variant calls from segregant progeny pools were merged together.
Additionally, SNP loci with coverage <30x were removed. We counted
reads withgenotypes of each parent and calculated allele frequencies.
Allele frequencies of 3D7 were plotted across the genome, and outli-
ers were removed following Hampel’s rule® with a window size of 100
loci. We performed the BSA using the R package QTLseqr*°. Extreme
QTLs were defined as regions with G’ > 20 (ref. 57). Once a QTL was
detected, we calculated an approximate 95% confidence interval using
Li’s method*® to localize causative genes.

Progeny cloning and phenotyping

Progeny cloning. Individual progeny were cloned via limiting dilu-
tion at 0.3 cells per well from bulk cultures on day 10 after 96 h of
control/250 nM CQ treatment. Individual wells with parasites were
determined by qPCR (as previously described*’) and expanded to larger
cultures under standard culture conditions to obtain enough material
for both cryopreservation and genome sequencing.

Sequencing and genotyping. Cloned progeny were sequenced and
genotyped as described in the ‘Genetic cross and BSA’ section, with
these modifications: (1) the cloned progeny were sequenced at 25x
genome coverage; (2) SNP calls were removed if the coverage was more
than three reads per sample.

Cloned progeny analysis. Unique recombinant progeny were identi-
fied from all cloned progeny using a previously described pipeline®.
Non-clonal progeny were identified on the basis of the number and
distribution of heterozygous SNP calls. Selfed progeny were identified
ashavinggreater than 90% sequence similarity to either parent. Unique
recombinant progeny that were sampled multiple times were identified
asclusters ofindividual clonal progeny with greater than 90% sequence
similarity. We plotted frequencies of 3D7 alleles across the genome in
progeny populations with and without CQ treatment. Heatmaps were
generated to visualizeinheritance patternsinindividual unique recombi-
nant progeny (Fig. 4a). We selected 16 unique recombinant progeny with
different allele combination at chromosome 6 and chromosome 7 QTL
regions for further CQICs, vvalues measurement (Supplementary Fig. 5).

Genome-wide linkage analysis on pfaat1in cloned progeny. Fisher’s
exact test was used to test for linkage between all inter-chromosomal
pairs of loci across the set of 109 unique recombinant progeny. The
distribution of the -log of the resulting Pvalues were plotted in Fig. 4c,
and the significance cut-off was calculated on the basis of a Bonferroni
correction for the number of loci.

IC;, measurement for cloned progeny. Cryopreserved stocks of 3D7,
NHP4026,3D7xNHP4026 progeny were thawed and grownin complete
medium under standard culture conditions as described above. Cul-
tures were kept below 3% parasitaemia with medium changes every
48 h.Parents and progeny IC,, values were assessed viaastandard 72 h
SYBR Green 1 fluorescence assay”. Cultures were assessed daily for
parasitaemiaand stage. Cultures that were atleast 70% ring were loaded
into CQ dose-response assays of a series of two-fold drug dilutions
across ten wells at 0.15% parasitaemia. Drug stocks (1mg ml™) for CQ
were prepared in H,O as single-use aliquots and stored at —20 °C until
use. Drug dilutions were prepared in incomplete medium. Biological
replicates were conducted with at least two cycles of culturing between
load dates. ICy, values were calculated in GraphPad Prism 8 using a
four-parameter curve fromtwo technical replicates loaded per plate.

CRISPR-Cas9 editing at pfaatl and parasite phenotyping
CRISPR-Cas9 editing. We designed plasmids for CRISPR-Cas9 editing
aspreviously described®. The guide RNA (GAAATTAAATACATAAAAGA)
was designed to target pfaatlin NHP4026. Edits (258L/313F, 2585/313S
and 258S/313F, Fig. 5a) were introduced to NHP4026 through homol-
ogy armsequence with target and shield mutations. Binding-site con-
trol mutants were not generated, as P. falciparum lacks error-prone
non-homologous end joining®. The parasites were transfected at ring
stages with 100 pg plasmid DNA, and successful transfectants were
selected by treatment with 24 nM WR99210 (gift from Jacobus Phar-
maceuticals) for 6 days. The parasites were recovered after -3 weeks.
To determine whether recovered parasites contained the expected
mutations, we amplified the target region (forward primer, AGTAC
GGTACTTTTTATATGTACAGCT; reverse primer, TGCATTTGGTTGTT
GAGAGAAGG) and confirmed the mutation with Sanger sequencing.
We cloned parasites from successful transfection experiments: inde-
pendent edited parasites (from different transfection experiments)
wererecovered for each pfaatl genotype. Edited parasites were genome
sequenced to identify off-target edits elsewhere in the genome. We
were not able to find any SNP or indel changes between the original
NHP4026 and any CRISPR-edited parasites other than the target and
shield mutations.

IC;, measurement for CRISPR-Cas9-edited parasites. Parasite ICs,
values for CQ, amodiaquine, lumefantrine, mefloquine and quinine
were measured for two to four clones per CRISPR-Cas9-modified
line and for NHP4026 across multiple load dates as described
above for cloned progeny, except that each plate included two
NHP4026 technical replicates as controls. This replication of geno-
type within each load date allowed for detection of batch effects due
toload date.

Batch correction for IC,, data. Analysis of variance was used to
account for batch effects and to test for differences in ICs, values
between all genotype groups and for each contrast between each
CRISPR-Cas9-modified line and NHP4026 for each drug tested®. A
linear model with load date (batch) and genotype as explanatory vari-
ableswas utilized to generate batch-corrected IC, values for visualiza-
tion of theimpact of CRISPRCas9 modifications (Fig. 5b and Extended
DataFig.7).

Measurement of parasite fitness using competitive growth assays.
Parasites were synchronized to late-stage schizonts using a density
gradient®. The top layer of late-stage schizonts was removed and
washed twice with Roswell Park Memorial Institute (RPMI) medium.
Synchronized cultures were suspended in 5 ml of complete medium
at 5% haematocrit and allowed to re-invade overnight with gentle
shaking. Parasitaemia and parasite stage were quantified using flow
cytometry. Briefly, 80 pl of culture and an RBC control were stained
withSYBR Greenland SYTO 61and measured ona GuavaeasyCyte HT
(Luminex). Atotal of 50,000 events wererecorded to determinerelative
parasitaemia and stage. When 80% of parasites were in the ring stage,
the head-to-head competition experiments were set up®*. Competi-
tion assays were set up between CRISPR-Cas9-edited parasites and
NHP4026inal:1ratio ataparasitaemia of 1% in a 96-well plate (200 pl
per well) and maintained for 30 days. Each of the assays contained three
biological replicates (three independent clones from different CRISPR-
Cas9 editing experiments) and two technical replicates (two wells of
culture). Every 2 days, the parasitaemia was assessed by microscopy
using Giemsa-stained slides, samples were taken and stored at -80 °C
and the cultures were diluted to 1% parasitaemia with fresh RBCs and
medium. The proportion of parasites in each competition (Extended
DataFig.10) was measured usingarhAmp SNP Assay (Integrated DNA
Technologies) with primers targeting the CRISPR-Cas9-edited region
inpfaatl.
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Selection coefficient. We measured selection coefficient (s) by fitting
a linear model between the natural log of the allele ratio (freq
(allele-edited parasite)/freq (NHP4026)) and time (measured in 48 h
parasite asexual cycles). The slope of the linear model provides a meas-
ure of the driving s of each mutation®. To compare relative fitness of
parasites carrying different pfaat1 alleles, we normalized the fitness
of NHP4026 to1and used slope +1to quantify the fitness of CRISPR-
Cas9-edited parasites (Fig. 5c).

Overexpression of pfAAT1in yeast

Togenerate pfAAT1 expressing yeast, plasmid carrying the pfaatI cod-
ing sequence was transformed into yeast Saccharomyces cerevisiae
(BY4743) as previously described”. The doubling time (h) was measured
for strains carry empty vector, WT pfAAT1 or S258L mutant pfAAT1.
We measured doubling time under two culture conditions: control
or with1mM CQ. Three independent experiments were performed
for each assay.

PfAATI1 protein structure analysis

Three-dimensionalhomology models for pfAAT1were predicted using
AlphaFold**® and I-TASSER**¢”%® and analysed with PyMol software
(v2.3.0; Schrodinger, LLC). At the primary sequence level, we used
TOPCONS?*?to predict transmembrane helix topology for comparison.
We plotted a cartoon version of the protein transmembrane topol-
ogy based on the computationally predicted structures and mem-
brane topology (Extended Data Fig. 9). Models were truncated to
exclude amino-terminal residues 1-166, probably positioned outside
of the membrane, because AlphaFold assigns low confidence to this
N-terminal stretch. Furthermore, mutations of interest map only to
transmembrane helices according to both 3D models and TOPCONS.
I-TASSER generated models with topology similar to AlphaFold with
the highest variations in AlphaFold low-confidence regions 1-166
and 475-516. The top five I-TASSER models superimpose on the Alpha-
Fold model with a root mean square deviation range of 2.4-2.8 A over
303-327 of 440 aligned residues using the PDBeFold Server (http://
www.ebi.ac.uk/msd-srv/ssm). The four common SNPs (S258L, F313S,
Q454E and K541L) overlay closely between the homology models. We
evaluated the effect of different mutations on protein stability using
the mutagenesis function in PyMol.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw sequencing data have been submitted to the National Center
for Biotechnology Information Sequence Read Archive (SRA, https://
www.ncbi.nlm.nih.gov/sra) or European Nucleotide Archive (ENA) with
accession numbers available in Supplementary Tables1and 2. All other
dataareavailable in the main text or supplementary materials. Source
dataare provided with this paper.

Code availability

The code used in analysis and data analysed are available at GitHub
through the following links: https://github.com/emilyli0325/CQ.AAT1.
git (X.L.), https://github.com/MPB-mrcg?tab=repositories (A.A.-N.)
and https://github.com/kbuttons/CQ.AAT1.progeny.git (K.A.B.-S.).
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Extended Data Fig. 1| Estimation of selection coefficient (s) for pfaat1 (5258L) frequency fromyear 1990 and 2001, as CQ monotherapy was stopped in Gambia
and pfcrt (K761) alleles. p is the frequency of mutant alleles (pfaat1 S258L in2004. sindicates the changes in relative growth per parasite generation (that
or pfertK76T) asindicated in Fig. 1a, and q (=1-p) is the inferred frequency of isthe duration of the complete lifecycle in both mosquito and human host). The
wild-type (3D7) alleles. The x-axis indicates parasite generations (labeled with calculation was based on estimates of 2, 4, or 6 generations per year.

sample collection year). We estimated selection coefficients (s) based on allele
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Extended Data Fig. 2| Haplotype structure at the pfcrt (left panel) and
pfaatl (right panel) regions. Haplotype relationships were based on Identity-
by-Descent of genome segments encompassing 25 kb on either side of each
gene (see methods). Haplotypes joined by lines indicate >90% IBD. Each point

PfAAT1

depicts anisolate with point colors representing the years from which they were
sampled. Square points represent complex infections and circles represent
monoclonals. MOI, multiplicity of infection.
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Extended Data Fig. 3| The proportion of pairs identical by descent (IBD)
within populations from global locations. Panels A-H show the proportion of
pairs IBD plotted across the genome for parasites from different geographical
regions (marked in the top left of each panel). For samples where >90% of the
genomes are IBD, only one representative sample with the highest genotype
rate was selected and used for IBD analysis. Sample numbers are shownin each
panel. Chromosome boundaries are indicated with grey dashed vertical lines.

Thelocation of pfaatI and pfcrt are indicated with red arrows on top of each
panel. The chr 10 peak (West Africa, A) contains pfmspdbl2 associated with
decreased sensitivity to halofantrine, mefloquine and lumefantrine®. The chr 8
peak (East Africa and Asia (C-H)) contains dihydropteroate synthase (sulfadoxine
resistance)’’ and the chr12 peak (D-F) contains GTP cyclohydrolasel, a
compensatory locus for antifolate drugs™. See also analyses by Amambua-Ngwa
etal.”, Hendon et al.’, and Carrasquilla et al.”.
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Extended DataFig. 4 | pfcrt and pfaat1 allele frequency distributions

and correlations in African countries. A. pfcrt allele distribution in African
countries. B. pfaatl allele distribution in African countries. C. Correlations in
allele frequencies between pfcrt (CVIET) and pfaat1 (S258L). Frequencies of the
CVIET haplotype for amino acids 72-76 in pfcrt are significantly correlated with

allele frequencies of pfaat1 S258L in West Africa (R?= 0.65, p = 0.0017, red dashed
line) or across all African populations (R?= 0.44, p = 0.0021). Point size indicates
sample numbers, while color indicates sampling locations. We used t-test to
establishif the Pearson’s r statistic differs significantly from zero.
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Extended Data Fig. 5| UPGMA tree showing the relationship of 581 haplotypes based on SNPs inside the 50 kb region surrounding pfaati. The tree was rooted
with Plasmodium reichenowi (not shown in the tree). WAF: west Africa, EAF: east Africa, CAF: central Africa, SM: south America, ESEA: east Southeast (SE) Asia, SA:

south Asia, WSEA: west SE Asia, PO: Pacific Ocean region.
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Extended DataFig. 6 | 3D7 allele frequency for QTLs at chr.6, chr.7 and collectedatday 0, 5,and 10. Solid or dashed lines are results from different
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were collected at day 0, 4, and 7; while for 96 hour CQ treatment, samples were unrelated to drug treatment.
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Extended Data Fig. 7 | Impact of CRISPR/Cas9 substitutions on IC, of (A)
quinine, (B) lumefantrine, (C) mefloquine and (D) amodiaquine. CRISPR/Cas9
gene editing resulted in small differences in ICs, for quinine (QN), lumefantrine
(LUM) and Amodiaquine (AMD), but no significant changes for mefloquine
(MQ). However, allIC4,s were below levels of clinical significance for these drugs

258L/313S 258L/313F  258S/313S  258S/313F
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(clinical thresholds: QN = 600 nM”*; MQ =30 nM”?, AMD = 60 nM"?), or at the
lower end of the in vitro range (0-150 nM) in the case of LUM”>. The number of
biological replicates is shown above the x-axis. Pvalues indicate significance
levels and are based on two-way ANOVA analysis. Data are presented as mean
values +/-SEM.
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Extended Data Fig. 8 | Introduction of S258L results in chloroquine cells expressing wild type pfaatl (WT) is severely impacted by CQ treatment
resistance in yeast. Yeast doubling time was calculated from the linear (1mMCQthrough the experiments) but is recovered in yeast expressing pfaatl
portion of exponential growth. Data was shown as means from 3 independent S258L. Published results demonstrate that AAT1is expressed in the yeast cell
experiments = SEM, and significance and was calculated according to multiple membrane”, while pfAAT1 localizes to the digestive vacuolar membrane®, and
comparisons (with Turkey corrections) of two-way ANOVA. Growth of yeast may also be present in the plasma membrane®.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Topology structure of pfAAT1 protein. (A) AlphaFold
model of PfAAT1 (left), representative -TASSER model of PfAAT1 (center),
structural superposition of the AlphaFold model (teal) and I-TASSER model (gray,
right). TOPCONS transmembrane (TM) helix topology predictions are mapped
onto the models in dark blue (left, center). AlphaFold and I-TASSER models align
withaRMSD of 2.5 A over 327 of 440 residues. Amino-terminal residues 1-166
were excluded from all models due to low confidence in structure prediction. (B)
Detailed view of the mutations on the predicted PFAAT13-D structure using the
AlphaFold model. The right view is related to the left by a 45° rotation about the
axis looking down at the figure followed by a 90° rotation about the horizontal
axis. The four SNPs shown as space-filling models are all arranged within a plane
atone side of the model, perpendicular to the membrane. S258L (helix 3) and

F313S (helix 5) are located opposite each other with helix 8 in between. Given
the epistatic interactions between the PFAAT1S258L and F313S SNPs evident
from our functional analyses, the F313S substitution of the bulky, hydrophobic
phenylalanine with the smaller, polar serine may compensate for a disruption in
the transmembrane region thatincludes helices 3, 5, and 8 potentially allowing
for partial restoration of predicted amino acid transport activity. Q454E is
located on helix 8 near the TM surface and K541N is located in aloop connecting
helix 9 and 10. (C) Topology of PfAAT1 inferred using 3D structure. There are
eleven transmembrane (TM) helices. Three of the mutations are located at the
TM helices, while K541N is located at aloop connecting helix 9 and 10. The color
scheme matches the schematic in Panel B. The blue triangle indicates amino-
terminal residues 1-166 that were excluded from structure prediction.
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