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Abstract.  The win ratio is a statistical method most commonly used for analyzing composite 

outcomes in clinical trials.  Composite outcomes are composed of two or more distinct ‘component’ 

events (e.g. myocardial infarction, death) and are typically analyzed using time-to-first event 

methods ignoring the relative importance of the component events. When using the win ratio, 

component events are instead placed into a hierarchy from most to least important, more important 

components can then be prioritized over less important outcomes (e.g., death, followed by 

myocardial infarction). Furthermore, the win ratio enables outcomes of different types (e.g., time-

to-event, continuous, binary, ordinal, and repeat events) to be combined. We present 

winratiotest, a program to implement the win ratio approach for hierarchical outcomes in a 

flexible and user-friendly way. 

1 Introduction 

Randomised clinical trials often compare the time until an event occurs between two treatment 

groups. Since specific events may be infrequent, two or more distinct types of event are often 

grouped together to form what is known as a ‘composite outcome’. Such outcomes are typically 

analyzed using time-to-first event methods. For example, in heart failure trials it is common to use a 

composite primary outcome with two components: cardiovascular (CV) death and heart failure-

related hospitalisation (HFH). The time to the first event is then analyzed using  a Cox proportional 

hazards model.  Since one only considers the time until either a HFH or CV death occurs, such an 
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approach may not align well with patient priorities. Firstly, HFH and CV death are not likely to be of 

equal importance to patients (most would prefer to have a HFH instead of a fatal event) but  both 

events are weighted equally in the time-to-first analysis outcome i.e., both are simply counted as “an 

event”. Secondly, if a patient has a HFH and survives they may go on to have further HFHs or a CV 

death, but these do not contribute to the outcome when analyzed using a time-to-first event 

approach.   

The win ratio addresses this problem by considering outcomes in a hierarchical fashion. The process 

is best illustrated using a practical example, which follows later. The basic concept is that we 

consider the component events in turn in order of their importance e.g., CV death first and then HFH 

(Pocock et al. 2012). The win ratio approach also allows time-to-first event outcomes to be 

combined with other types of outcomes. For example, in a cardiovascular trial we may wish to 

consider effects on further outcomes (e.g., quality of life scores, biomarkers, or results from exercise 

tests) as indicative of treatment benefit. This may be particularly useful in areas where it is not easy 

to adequately power trials using conventional time-to-event outcomes.  

The win ratio has been implemented in several R packages  (Duarte and Ferreira 2020; Mao and 

Wang 2020; Luo 2017), but has yet to be formally implemented in Stata. We therefore introduce the 

winratiotest command. The command allows a user to input any number of outcomes and 

allows for a wide range of outcome types including time-to-failure, time-to-success, repeat events, 

and continuous outcomes. Binary and ordinal outcomes can also be included by utilizing the 

similarity between how the win ratio considers continuous, binary, and ordinal outcomes.  

2 Methods 

The win ratio builds upon the Finkelstein-Schoenfeld test (Finkelstein and Schoenfeld 1999), but 

goes further by providing an easily interpretable estimate of the effect (win ratio) together with a 

confidence interval.  The principle of the approach is as follows. Consider a randomised controlled 

trial in which patients are randomised to either an active treatment (treated) or a matching placebo 

(control). First, if the outcome is a composite, each component is ranked from most to least 

important. Next, all Nt treated patients are formed into pairs with all Nc control patients to form a 

total of NtNc pairs. Within each of these pairs, one evaluates the components in order of priority 

starting with the most important until one of the pair is determined to have a better outcome than 

the other. If the patient on the new treatment has the better outcome it is a ‘win’, if the control 

patient has a better outcome, it is a ‘loss’, or if the patients cannot be separated it is a ‘tie’.  

Consider a composite endpoint based on death (the most important outcome) and number of HFH. 

Such an example is illustrated for 3 pairs of patients in Figure 1. In pair A, the control patient has a 



3 
 

cardiovascular death before the treated patient is censored. The treated patient therefore has a 

better outcome and this is declared a ‘win’. The fact that the treated patient has more HFHs is not 

considered, because HFH is lower in the hierarchy than death. In pair B, neither patient dies, and so 

the next level of hierarchy (HFH) is considered. Since the treated patient has more HFHs than the 

control patient, this is considered a ‘loss’. Pair C illustrates the point that for time-to-failure (or time-

to-success) outcomes, only outcomes occurring whilst both patients are observed are considered 

(i.e., before censoring or during ‘shared follow-up’). Here the treated patient dies, but we cannot be 

sure that they died before the control patient who was censored earlier. They are therefore 

considered a ‘tie’ on CV death since neither died during their shared follow-up. We next note that 

both patients had two HFHs during their shared follow-up, and so they are also a tie based on HFH. 

Pair C is therefore considered a ‘tie’.  

 

 

Figure 1: Illustrative schematic showing example experience of three pairs of patients in a heart 

failure trial with two outcomes (death and heart failure hospitalization (HFH)).  

 

Once all patient pairs have been evaluated the win ratio is calculated as the total number of wins 

divided by the total number of losses. The win ratio can therefore be readily interpreted as the odds 

for a randomly chosen pair of patients that the patient in the treated group has a preferable 

outcome. A corresponding 95% confidence interval and p-value can be calculated, our 

implementation of which is described in the Appendix. Figure 2 shows a schematic illustrating how 

the win ratio works considering all patients randomized in the Cardiovascular Outcomes Assessment 

of the mitraclip Percutaneous Therapy for heart failure patients with functional mitral regurgitation 

(COAPT) trial using time to death and time to first HFH as the outcome (Stone et al. 2018). Further 

discussion of the win ratio can be found in Redfors et al. 2020 .   
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Figure 2: Schematic showing how the win ratio worked in the Cardiovascular Outcomes 

Assessment of the mitraclip Percutaneous Therapy for heart failure patients with functional mitral 

regurgitation trial (COAPT) of the MitraClip device 

 

One limitation of the unmatched win ratio is that all patient pairs are compared to one another, 

even though in some trials, there is a large variation in how frail the patients are. In a conventional 

time-to-event analysis one can adjust for important prognostic covariates in order to overcome this 

limitation and increase statistical power. However, the win ratio is a non-parametric method that 

cannot accommodate covariate adjustment; instead, there are two alternative approaches. The first 

is to use the matched win-ratio, whereby each treated patient is matched to a control patient on the 

basis of a set of prognostic covariates (Pocock et al. 2012). Whilst this method tends to increase 

statistical power, it comes with difficulties. The resultant win ratio can be dependent upon which 

treated patients are matched to which control patients, which is often difficult to pre-specify in an 

open and transparent way. Also, if the size of the treated and control group is not identical, some 

patients end up being unmatched and are consequently excluded from the analysis.  

For these reasons, we have not implemented the matched win ratio. Another approach is to use the 

stratified win ratio whereby patients of similar frailty are divided into strata (Bebu and Lachin 2016). 

This approach has been used in The Transthyretin Amyloidosis Cardiomyopathy Clinical Trial (ATTR-
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ACT) in heart failure (Gora et al. 2009).  Patients are then only compared within strata, before the 

results are pooled across strata. Using strata may increase statistical power in some scenarios, but 

one needs to be careful that strata are sufficiently large to allow reliable estimation of the win ratio 

within each stratum. We have implemented the stratified win ratio within the winratiotest 

command.  

3 The winratiotest command  

3.1 Syntax 

The syntax for winratiotest is: 

winratiotest idvar trtvar [if] , outcomes(list) [ options ]  

where idvar is a unique patient/person identifier variable which may be string or numeric, and 

trtvar is a binary numeric variable, taking values 0 and 1 indicating the control and intervention 

groups respectively. 

outcomes(list) is a required option where list consists of 3 items each of which relates to an 

outcome in the hierarchy. Each set of 3 items provides information relating to (i) the outcome 

variable, (ii) the type of outcome and (iii) either the time variable, if the outcome is a time-to-event 

or a repeated event, or the direction of comparison (< or >), if the outcome is continuous, ordinal or 

binary. outcomes is a repeated option, where the first instance specifies the most important 

outcome (usually a fatal event) and subsequent instances specify endpoints in decreasing order of 

importance. See options and examples below for more details.  

3.2 Options 

outcomes(list) is a required option and can be used as a repeated option. The first instance 

specifies the most important outcome. If multiple outcome types are used then subsequent 

instances of outcomes specify further endpoints in decreasing order of importance. Each list 

consists of 3 items.  

The first item in each set relates to the name of the outcome variable. For binary, ordinal and 

continuous outcomes this will be the variable name. In the case of a time-to-event outcome this 

will be a binary (0/1) variable indicating whether or not the event occurred. In the case of a repeat 

event outcome this will be the stub of the names of a set of binary (0/1) variables indicating the 

repeat events e.g. hosp if hosp1, hosp2, hosp3 are three binary variables indicating repeat 

hospitalisations.  
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The second item in each set will indicate the type of outcome.  This will be c for continuous, ordinal 

or binary outcomes, tf for time-to-event failure outcomes, ts for time-to-event success 

outcomes, and r# for repeat events (where # is a number representing the maximum number of 

variables to consider in the analysis of the repeat events). 

The third item in each set depends on the type of outcome. For time-to-event outcomes this will be 

the name of the variable containing the follow-up time. For repeat events this will be the stub of 

the names of a set of variables containing the follow-up times. For continuous, ordinal or binary 

outcomes this will be > or < to indicate the direction of the comparison i.e., whether higher or 

lower values are better. For continuous outcomes a margin can be added. For example, if a ‘win’ 

requires that a patient has a score more than 0.1 units higher, then the command syntax would be 

<0.1.  

strata(varname) allows computation of the stratified win ratio. varname must be a numeric 

categorical variable. 

stweight(method) allows specification of the weighting method to be used for the stratified win 

ratio. method can be unweighted (the default if no weighting option is specified along with strata: 

test statistics and variance estimators are simply summed across strata), iv for inverse-variance 

weights, and mh for Mantel-Haenszel weights (each strata is weighted according to the number of 

patients in the strata). 

pformat(%fmt) controls the numeric display format for p-values; for example, for a p-value with a 

leading 0 and 4 decimal places %05.4f. 

wrformat(%fmt) controls the numeric display format for the estimated win ratio and confidence 

interval.  

saving(filename [,replace]) saves a dataset containing the number  of wins, losses, and ties 

at each level of the hierarchy and for each strata.  

 

3.3 Stored results 

winratiotest stores the following in r(): 

Scalars         

r(p)                  the p-value 

r(se_logwr) standard error of log win ratio. The standard error of the win ratio is 
calculated using the method described at the end of the Supplement of 
Pocock 2012 
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r(wr)                win ratio 

r(logwr)  the log win ratio 

 

If the strata() option is used then the following scalars are also stored: 

r(p#) the p-value in the strata # 

r(se#) standard error of log win ratio in strata # 

r(wr#)  the win ratio in strata # 

r(logwr#)  the log win ratio in strata # 

 

4 Example  

The data 

We illustrate the use of winratiotest with a simulated dataset, representative of a heart failure 

trial with a maximum of one year of follow-up. The dataset contains information on three outcomes: 

death (a time-to-event variable), heart failure hospitalization (a repeat event outcome with a 

maximum of three repeat events) and quality of life (for illustrative purposes it is provided in three 

formats, as each of a continuous, binary or an ordinal variable) measured at the end of the study 

where higher values are better.  A screenshot of the dataset illustrating some key features is shown 

in Figure 3.  

The variables contained in the dataset are as follows:  

. use win_ratio_example.dta , clear 
 
. describe 
 
win_ratio_example.dta 
obs:           800                           
vars:            16                           
  
storage   display    value 
variable name   type    format     label      variable label 
  
patid           int     %9.0g                 Unique patient identifier 
trt             byte    %8.0g                 Treatment group (0=control, 1=active) 
blvar           byte    %9.0g      bllab      Variable containing strata 
fudth           float   %9.0f                 Follow-up time for death in years (max follow-up is 1-year) 
dth             byte    %9.0g                 Binary event indicator for death (0=no, 1=yes) 
fuhf1           float   %9.0f                 Follow-up time for first heart failure hospitalisation 
hf1             byte    %9.0g                 Binary event indicator for first heart failure 
hospitalisation 
fuhf2           float   %9.0f                 Follow-up time for second heart failure hospitalisation 
hf2             byte    %9.0g                 Binary event indicator for second heart failure 
hospitalisation 
fuhf3           float   %9.0f                 Follow-up time for third heart failure hospitalisation 
hf3             byte    %9.0g                 Binary event indicator for third heart failure 
hospitalisation 
fuhf4           float   %9.0f                 Follow-up time for fourth heart failure hospitalisation 
hf4             byte    %9.0g                 Binary event indicator for fourth heart failure 
hospitalisation 
qol             float   %9.0g                 Quality-of-life measured at 1-year (higher values better) 
qol_bin         byte    %9.0g                 Binary quality-of-life variable measured at 1-year (0=poor, 
1=good) 
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qol_cat         byte    %9.0g                 Ordinal quality-of-life variable measured at 1-year (1=very 
poor, 2=average, 3=v 

  
 

The data structure for repeat events, which can be seen in Figure 3, requires some explanation. In 

our simulated dataset, a maximum of three HFHs were experienced by any patient in the trial. Four   

event indicator variables and corresponding follow-up variables are required: three to cover each of 

the HFH events and an additional column so that the censoring time is known in patients who have 

three HFHs. The data are in ‘wide’ format, with each patient having one row with the same number 

of variables irrespective of the number of events that they have. The event indicators and 

corresponding follow-up variables must have the same stubs (e.g. hfh and fuhfh) with suffixes 1 to 

4 to indicate the event number, i.e. hfh1 and fuhfh1 are the event indicator and follow-up time for 

the first event.
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Figure 3: Screenshot of example data with illustration of some key features 
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First, consider a patient without any HFH and who was censored alive at 1 year (see patid=103). For 

this patient hf1 to hf4 will all take value 0, with each corresponding follow-up variable (fuhf1 to 

fuhf4) taking the value 365 (expressed as days).  Second, consider a patient who has a single HFH 

just after six months of follow-up and is then censored alive at one year with no further 

hospitalizations (see patid=107). For this patient hf1 will take the value 1 and fuhf1 takes the value 

195. The variables hf2 to hf4 will each take the value 0 and fuhfh2 to fuhfh4 will each take the value 

365. Third, consider a patient who experienced three HFHs, the variables hf1 to hf3 will all take 

value 1, with each corresponding follow-up variable (fuhf1 to fuhf3) taking the value equal to the 

three event times (see patid=677). This patient requires a censoring record for the analysis of HFH. 

Therefore the variable hf4 takes on the value 0 and fuhf4 takes the value 365. Fourth, consider a 

patient who dies during follow-up (see patid=106). The variable dth takes the value 1 and the 

variable fudth takes on the number of days from randomization to death, here 309 days. Since the 

patients experienced no HFHs the variables hf1-hf4 each take the value 0, and the variables 

fuhf1-fuhf4 each take the value 309. We note that for this patient an evaluation of quality of life 

at one year would not be possible. Hence the values qol, qol_bin, qol_cat are all set to 

missing. Patient pairs with missing data are evaluated on the basis of outcomes with complete data 

only; if there are no outcomes with complete data for both patients then they are considered a tie. 

Note that missing data is not permitted for time to event or repeat event outcomes and will cause 

the program to exit execution. This is because patients should instead be censored at their last date 

of contact.  

Example 1: Win ratio with a time-to-failure and a repeat event outcome 

Suppose we wish to perform an analysis using winratiotest where time-to-death is considered 

the most important outcome, and total number of HFHs is considered as the next most important 

outcome, with no further outcomes considered. The required syntax is 

winratiotest patid trt , outcomes(dth tf fudth) outcomes(hf r4 fuhf) 

Note here that each instance of the outcomes() option contains a set of 3 items. The first instance 

relates to the first outcome in the hierarchy – dth is the event indicator, tf identifies the outcome 

as a time to failure outcome and fudth is the follow-up time for death. The second instance relates 

to the second (and final) outcome in the hierarchy – hf is the stub of the indicator variables, r4 

identifies the outcome as a repeat event and indicates that variables with suffixes 1-4 are to be used 

in the analysis (i.e. hf1,hf2,hf3,hf4), and fuhf is the stub of the follow-up-time variables for each 

event, again with suffixes 1-4 used in the analysis.  

The output using the simulated dataset is 
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. winratiotest patid trt , outcomes(dth tf fudth) outcomes(hf r4 fuhf) 
   
Total number of patients:         800 
Number in control group:          400 
Number in active group:           400 
Number of comparisons:            160000 
   

Wins      Losses    Ties 
   
Outcome 1          23182     19870 
Outcome 2          29132     17538 
   
Total              52314     37408     70278 
   
Win Ratio: 1.40, 95% CI(1.09, 1.79) P=0.0077 
 

The output shows that there are 800 patients in the dataset; 400 in each of the active and control 

groups. The unmatched win ratio compares all 400 patients in the control group to all 400 patients in 

the treatment group, yielding a total of 400*400=160,000 comparisons. The number of wins and 

losses are displayed at each level in the hierarchy starting with the most important (Outcome 1) and 

overall, along with the remaining ties. The win ratio, 95% confidence interval and p-value are 

displayed. The log-win ratio, it’s standard error and p-value are also available using return list. 

Several methods exist for calculating the standard error of the log-win ratio (Pocock et al. 2012; 

Dong et al. 2016). For avoidance of doubt, the implementation adopted here is shown in the 

Appendix.  

Example 2: Win ratio with a time-to-failure, a repeat event, and a continuous outcome 

Suppose we now wish to add the quality-of-life variable (qol) as a third level to the hierarchy 

described in Example 1. To do so we need to add another set of 3 items. The first item is the variable 

name qol. The second item is the variable type, and since qol is continuous the second item will be 

c. Finally, since higher values of qol represent a better quality of life, i.e. if a treated patient has a 

higher value of qol then it is a ‘win’, the third item will be the direction >.  Note that had a lower qol 

represented a better quality of life then the third item would have been <.  

The required syntax and output is displayed below: 
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. winratiotest patid trt , outcomes(dth tf fudth) outcomes(hf r4 fuhf)
 outcomes(qol c >)   
   
Total number of patients:         800 
Number in control group:          400 
Number in active group:           400 
Number of comparisons:            160000 
   

Wins      Losses    Ties 
   
Outcome 1          23182     19870 
Outcome 2          29132     17538 
Outcome 3          47132     23146 
   
Total              99446     60554     0 
   
Win Ratio: 1.64, 95% CI(1.39, 1.93) P=0.0000 
   

The third outcome of qol has now been added to the hierarchy, and the win ratio is now highly 
statistically significant.  

We note here that binary and ordinal outcomes are evaluated in the same way as a continuous 

outcome, so that winratiotest needs to know the name of the variable and which direction 

represents a preferable outcome. For example, the following syntax could be used to evaluate a 

hierarchy of death, HFH and a ‘good’ quality of life assessment (qol>0.5 as indicated by qol_bin). 

. winratiotest patid trt , outcomes(dth tf fudth) outcomes(hf r4 fuhf) 
outcomes(qol_bin c >) 

 

A further possibility is to introduce a margin into the evaluation of a continuous or ordinal 

categorical outcome. Suppose we want to have the requirement that the (continuous) quality of life 

score must be more than 0.1 points higher in order for a patient to be declared a ‘winner’. The 

command syntax would then be:  

winratiotest patid trt , outcomes(dth tf fudth) outcomes(hf r4 fuhf) 
outcomes(qol c >0.1) 

Notice that there is no gap between > and 0.1. Also note that if the difference within a pair is exactly 

0.1 they will be considered a tie since the inequality is strict.  

Example 3: Stratified win ratio 

Many trials include patients whose disease at randomization is highly variable in terms of severity. It 

may sometimes be preferable to only compare patients who are more similar to one another. As 

previously discussed, one way to do this is by using the stratified win ratio  (Dong et al. 2018). Using 

this approach, patients are first split into strata. In this example blvar represents a stratification 
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variable with 3 levels. In general, we recommend restricting the total number of strata so each 

stratum contains a reasonable number of patients (i.e. avoid sparse strata). The stratified win ratio 

then works in two steps. First, within each stratum all control patients are compared to all treated 

patients and a test statistic and variance are calculated within each stratum. Second, the test 

statistic and win ratio are combined across strata. The second step can be done in several ways, 

using either an unweighted approach (test statistics and variance estimators are simply summed 

across strata: the default), inverse-variance weighting or Mantel-Haenszel type weighting (each 

stratum weighted according to the number of patients in each strata).  Formulae demonstrating 

technical details of the implementation are given in the Appendix.  

In winratiotest the stratification variable is declared using the strata option, and the weights 

used to combine estimates across strata are declared using the stweight option. For example, to 

calculate a patient-weighted (Mantel-Haenszel type) stratified win ratio using blvar to define the 

strata the required syntax and output would be:  
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. winratiotest patid trt , outcomes(dth tf fudth) outcomes(hf r4 fuhf) 
strata(blvar) stweight(mh) 
 
Strata: Level 1 
Total number of patients:         269 
Number in control group:          139 
Number in active group:           130 
Number of comparisons:            18070 
                   Wins      Losses    Ties 
Outcome 1          3146      2940 
Outcome 2          3468      1538 
Total              6614      4478      6978 
Win Ratio: 1.48, 95% CI(0.99, 2.21) P=0.0579 
Strata: Level 2 
Total number of patients:         255 
Number in control group:          123 
Number in active group:           132 
Number of comparisons:            16236 
                   Wins      Losses    Ties 
Outcome 1          1583      2333 
Outcome 2          3080      1973 
Total              4663      4306      7267 
Win Ratio: 1.08, 95% CI(0.70, 1.68) P=0.7222 
Strata: Level 3 
Total number of patients:         276 
Number in control group:          138 
Number in active group:           138 
Number of comparisons:            19044 
                   Wins      Losses    Ties 
Outcome 1          2963      1349 
Outcome 2          3100      2374 
Total              6063      3723      9258 
Win Ratio: 1.63, 95% CI(1.04, 2.55) P=0.0333 
Stratified Win Ratio: 1.38 95% CI (1.08, 1.77) P=0.0114 
------------------------------------------------------------  
 

The expanded output now gives information on the number of wins, losses and ties at each level of 

the hierarchy for each stratum separately along with the stratum level win ratio, 95% confidence 

interval and p-value. At the bottom, the overall win ratio, 95% confidence interval and p-value are 

given.  
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5 Conclusion 

We have illustrated how our winratiotest command function can be used to analyse a clinical 

trial using the win ratio.  

Our win ratio command is similar in spirit to those available in R (Duarte and Ferreira 2020; Mao and 

Wang 2020; Luo 2017). It can handle any number of outcome variables, and many different outcome 

types including time-to-failure, time-to-success, repeated failure, continuous, binary and ordinal 

outcomes. We are aware of only one R package with similar flexibility in terms of data inputs (Duarte 

and Ferreira 2020). In addition, our package goes beyond previous software implementations by 

allowing the user to calculate a stratified estimate of the win ratio, and by allowing the use of a 

margin for continuous or ordinal variables.  

Our implementation of the win ratio has limitations. winratiotest has a longer computational 

time than several R packages  (Duarte and Ferreira 2020; Mao and Wang 2020; Luo 2017). But it is 

fast enough for use except in trials with very large numbers of patients or very complex types of 

events. We have not provided for calculating the paired win ratio which we considered outside the 

scope of our program. Our implementation of the win ratio estimates the asymptotic standard error 

at the null value (i.e. assuming the true win ratio=1). This may not work well in small samples and 

tends to result in conservative confidence intervals when the true win ratio is far from the null value. 

An alternative is to use asymptotic estimators at the observed win ratio (Dong et al. 2016; 2018). For 

patients with missing data in continuous covariates we consider them to be tied on that covariate 

against all other patients. The consequences of this approach are not currently well understood.  

Further work on the winratiotest is planned. A major difficulty in designing a clinical trial using 

the win ratio is the complexity of sample size calculations, which until recently have required 

simulation studies that are difficult to set up. We are currently developing software to calculate 

sample size, building on the work of Yu and Ganju (2022) and intend to include this software with 

future releases of winratiotest.  We are interested in improving the speed of the winratiotest 

function (perhaps via performing calculations in Mata), since our package is slower than some of 

those available in R.  We are also interested in adding additional flexibility to the types of outcomes 

included.   

6 Programs and supplemental material 

To install the software files as they exist at the time of the publication of this article, type 

. ssc install winratiotest 
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Appendix: Technical details regarding the implementation of the winratiotest command 

1. Calculation of standard errors and 95% confidence intervals 

The calculation of p-values and standard errors follows the approach of Pocock (2012).  
 
Suppose there are Nt, Nc patients on treatment and control respectively, so total sample size N= Nt + Nc. 
 
First we compare all treated patients to all control patients, making a total of NtNc comparisons and calculate the number of 
wins and losses. The win ratio is then the total number of wins divided by the total number of losses.  
 
Next, irrespective of treatment group we compare all possible pairs of patients i, j to determine whether patient i was the 
winner, the loser or they tied, making a total of N2 comparisons. We assign Uij= +1, -1 or 0 according to whether patient i was 
the winner, the loser or they tied. Then for patient i we define 




ji

iji uU  .  Note Ui will be a positive integer if patient i 

wins more often than he loses compared to all other patients.  Then we calculate   



N

i
iiDUT

1

 where Di = 1 if patient i is 

on the new treatment and Di = 0 if patient i is on standard treatment. Under the null hypothesis of no true difference 
between new and standard treatment, T has variance V where 𝑉 =

( )
∑ 𝑈  

. 

Then 
V

T
z 

 
is a standardised normal deviate from which P can be readily obtained.  Specifically, z>1.96, z>2.38 and z> 

3.29 correspond to P<.05, P<.01 and P<.001 respectively.  
 
 
Finally we then calculate the standard error of the log win ratio, S,  as S=log(win ratio)/z. 95% confidence intervals reported 
by winratiotest are calculated as:  
 

exp 𝑙𝑜𝑔
𝑊𝑖𝑛𝑠

𝐿𝑜𝑠𝑠𝑒𝑠
− 1.96𝑆, 𝑙𝑜𝑔

𝑊𝑖𝑛𝑠

𝐿𝑜𝑠𝑠𝑒𝑠
+ 1.96𝑆  

 
 

2. Weighting schemes for stratified win ratio within the winratiotest command 

For the stratified win ratio, irrespective of the weighting scheme the analysis first starts by comparing all patient 

pairs within each stratum. Within each of K strata the following statistics are calculated within each stratum 

separately: 1) Wins and losses within each stratum Wk and Lk respectively, and the corresponding win ratio WRk: 2) 

The test statistic described above, Tk; ; 3) The variance of the within-strata test statistic Vk 4) The standard error of 

the log win ratio SEk.    

Each stratum is then assigned a weight, weightk. The stratified win ratio is then calculated using  

SWR= ∑
∑

 

For the unweighted stratified win ratio  the calculation of Z-statistics and standard errors proceeds as follows:  

Z=  ∑

√∑
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Standard error of log win ratio: SE=log(SWR)/Z 

For the inverse-variance or Mantel-Haenszel type weighted win ratio the calculation of Z-statistics and standard 

errors proceeds as follows. The standard error of the log of the stratified win ratio is calculated as   

𝑆𝐸 = 𝑆𝐸 𝑤𝑒𝑖𝑔ℎ𝑡  

 

For  inverse-variance the strata weights are defined as: 

𝑤𝑒𝑖𝑔ℎ𝑡 =

1
𝑉

∑
1
𝑉

 

 

For Mantel-Haenszel type weighting the strata weights are defined as:  

𝑤𝑒𝑖𝑔ℎ𝑡 =

1
𝑁

∑
1

𝑁

 

 


