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Abstract  
Anthropogenic pressures on the Earth’s natural systems are mounting, which is having 

devastating consequences for human health, including an increased threat of mosquito-borne 

diseases. Climate variation and land-use change influence mosquito-borne disease risk by 

determining vector occurrence and distribution, in addition to vector-human contact rates. 

Despite an understanding of the mechanisms underlying the relationship between climate 

variation and mosquito-borne disease transmission, few studies have considered the impact of 

mediating and interacting factors. There is a growing need to understand the joint impact of 

climate variation and land-use alterations on the spatiotemporal variation of mosquito-borne 

diseases, in conjunction with socioeconomic factors such as vector control activities. In this 

thesis, I investigate how climate variation, land-use change and socioeconomic factors affect 

spatiotemporal disease risk by using an integrated modelling framework. I firstly investigate 

the joint influence of both climate variation and vector control activities on malaria incidence 

in a high-risk border region of Ecuador, using a Bayesian hierarchical mixed effects modelling 

framework to account for multiple risk factors (Chapter 2). I find a difference in both the 

effectiveness of control measures and the impact of climate variation on the two predominant 

malaria parasites, with P. falciparum demonstrating greater climate sensitivity than P. vivax 

malaria. I then test for the interacting effects of climate and land use on disease risk by 

investigating the synergistic effects of environmental degradation and climate variation on 

malaria re-emergence in southern Venezuela in Chapter 3. I show that the effect of temperature 

on malaria incidence is amplified in areas degraded by mining activity. Further, I demonstrate 

that the choice of climate data product used to inform climate-disease models has implications 

for the resulting associations between climatic variables and disease risk (Chapter 4). Finally, 

in Chapter 5 I investigate differing taxonomic mosquito responses to land-use change using a 

systematic data search strategy and comparative space-for-time approach. I find strong declines 

in species richness of both Aedes and Anopheles mosquitoes in urban environments, in addition 

to diverging species-specific abundance responses. I additionally discuss how climate-disease 

research can be intuitively integrated into policy-relevant impact assessments. In this thesis, I 

demonstrate how multiple components of mosquito-borne disease risk can be attributed to 

environmental change, advancing knowledge on how climate variation, land-use change and 

socioeconomic factors synergistically interact to determine mosquito-borne disease risk.  
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Glossary of key terms 
Annual parasite incidence (API) Number of confirmed malaria cases per 1,000 people per year. 

 

Bayesian hierarchical model Statistical models where observations fall into multiple levels 

(or hierarchies) and model parameters are estimated using a 

Bayesian approach. 

 

Climate service A decision aide based on climate information, aimed at reducing 

vulnerability to climate hazards. 

 

Downscaling A procedure taking information known at a coarse scale to make 

predictions at a fine scale. 

 

Earth observations Atmospheric, oceanic, or terrestrial data collected about the 

planet, via remote sensing technologies and ground-based 

techniques such as meteorological stations. 

 

El Niño-Southern Oscillation 

(ENSO) 

Irregular periodic (2-7 years) fluctuation in sea surface 

temperatures and air pressure over the tropical eastern Pacific 

Ocean. El Niño refers to the anomalous warming of sea surface 

temperatures. La Niña refers to episodes of cooler sea surface 

temperatures. 

 

Extrinsic incubation period 

(EIP) 

The time taken for a pathogen e.g., malaria parasite, to develop 

inside a vector e.g., a mosquito. 

 

Falciparum malaria Malaria caused by Plasmodium falciparum parasites that can 

progress to severe illness, and even death. 

 

Indoor residual spraying (IRS) Application of long-lasting, residual insecticide to potential 

malaria vector resting surfaces such as internal walls, eaves and 

ceilings of houses. 

 

Land-use change Process by which human activities transform the natural 

landscape, including urbanisation, deforestation and 

afforestation, and cropland expansion. 
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Space spraying The dispersal of a liquid fog of insecticide into an outdoor area 

to kill adult insects. 

 

Space-for-time approach Ecological method where spatial patterns in ecological variables 

are used to model temporal processes.  

 

Ultra-low-volume (ULV) 

fumigation 

Application of minimum effective volume preparations of 

aerosol insecticide. 

 

Vivax malaria Malaria caused by Plasmodium vivax parasites, characterised by 

dormant liver stages (hypnozoites) that can persist in the liver 

and cause relapsing infections. Compared to P. falciparum, P. 

vivax is less fatal. 
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Chapter 1 – Introduction 
1.1. Planetary Health – underscoring the interconnectedness of human and 

environmental health 

Humans are having an unequivocal and profound impact on the planet. 75% of the Earth’s land 

surface is subject to widespread human pressures and major drivers of this global 

environmental change include climate change, pollution, agricultural intensification, and 

resource scarcity (Whitmee et al., 2015; Venter et al., 2016). Human-induced warming of the 

Earth’s climate system is estimated to have reached approximately 1°C above pre-industrial 

levels (IPCC, 2021) and one third of natural land has been converted to cropland or pasture 

(Foley et al., 2007). Since 2000, more than 2.3 million km2 of primary forest has been cut down 

(Hansen et al., 2013) and the global population is predicted to peak at 9.73 billion by 2064 

(Vollset et al., 2020). Considerable evidence is mounting that these human demands on natural 

systems are unsustainable, which has widespread consequences not only for global biodiversity 

(Newbold et al., 2015) but also for services to humanity that underpin our health and wellbeing 

(Costanza et al., 2014). These changes to the Earth form a distinct footprint that have defined 

a new geological epoch – the Anthropocene (Lewis and Maslin, 2015) and understanding the 

impacts of global environmental change during the Anthropocene is one of the most pressing 

issues of the 21st century.  

 

Planetary health is a rapidly evolving and emerging field with the core message that humans 

are interconnected with nature, and our health and wellbeing is predicated on the health of the 

planet’s natural systems (Myers, 2017). Planetary Health considers that the environmental 

impacts of our anthropogenic footprint should be recognised in progress of human health and 

wellbeing (Horton et al., 2014; Whitmee et al., 2015). The concept embraces ‘systems 

thinking’, where humanity is part of a coupled system with nature (Peters, 2014; Steffen et al., 

2015). Humans rely heavily on the planet for natural resources that ultimately sustain our health 

and wellbeing, as well as our social and economic systems (Costanza et al., 2014). For 

example, the planet provides us with indispensable ecosystem services such as clean air and 

water, a stable climate and weather system, pollination services, infectious disease regulation, 

and natural sources of energy, among other things (Costanza et al., 1997; Figure 1.1). In 2005, 

it was estimated that 60% of ecosystems services are being degraded as a direct result of human 

pressure on the environment (MEA, 2005). Loss of vital natural resources and changes to 
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ecosystem functioning and flow of ecosystem services, such as disease regulation will 

ultimately have staggering implications for human health. 

 

 

Figure 1.1. Planetary Health: A healthy environment provides the critical foundations for the 

health and wellbeing of humanity. The concept of Planetary Health is predicated on the idea that the 

health of the planet and the health of humanity are interlinked. A healthy ecosystem and planet provide 

a wealth of resources to support sustainable and healthy human living, including suitable climate 

conditions, green spaces, pollination services, food and clean air and water. This figure has been 

designed using resources from Flaticon.com. 

 

Placing the concept of Planetary Health in the scope of global environmental change can be a 

useful approach to advance and progress understanding of how environmental change affects 

human health. This concept can also be the basis of developing effective and sustainable 

solutions. Drawing on knowledge from outside the health sector, for example from 

environmental science, to address important questions about human health in the Anthropocene 

presents several opportunities. Firstly, adopting a Planetary Health approach to applications in 

public health provides new scope for transdisciplinary collaboration, and knowledge and skills 

exchange. Second, research and use of multisource data can be expanded across multiple 

disciplines including public health,  climate science and ecology. Finally, adopting a Planetary 

Health approach can increase the understanding of the dynamic two-way relationship between 

people and nature, which can enhance nature’s benefits for a sustainable quality of life (Mace, 
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2014; Díaz et al., 2018). The causal links between global environmental change and human 

health are however complex and are often indirect and dependent on modifying factors. What 

is clear is that despite the opportunities provided by the Planetary Health concept, the 

overarching complexity of how environmental change impacts human health remains a 

significant challenge.  

 

1.2. A spotlight on mosquito-borne diseases 

There is growing recognition that human alterations to the Earth’s natural systems will modify 

the global burden of disease over the coming century (Whitmee et al., 2015). Mosquito-borne 

diseases provide a good case study to test the applications of Planetary Health in understanding 

human health and global environmental change, which is vital to inform disease surveillance 

and control. Mosquito-borne diseases impose a significant global health burden, with roughly 

half of the global population at risk (WHO, 2014; Tam et al., 2016). Malaria, dengue, yellow 

fever, chikungunya, Zika and West Nile virus, among others account for the largest number of 

cases reported, mortality and disability-adjusted life years (DALYs), of all known vector-borne 

diseases (WHO, 2018a). Over the past 50 years, incidence of dengue has increased over 30-

fold (Bhatt et al., 2013). Although great efforts have been made in reducing malaria cases 

worldwide, progress is now stalling and outbreaks have increased in both size and frequency 

since 2014 (WHO, 2020). In addition, 14 million more malaria cases were reported in 2020, 

compared to 2019 (WHO, 2021c). Mosquito-borne diseases exert a substantial toll on 

populations, restricting economic development and progress towards achieving global health 

equity. In 2017, an estimated 2,922,630 DALYs were attributed to global cases of dengue 

(Zeng et al., 2021) and in 2017 the global cost of Plasmodium vivax malaria alone was 

estimated to be US$359 million (Devine et al., 2021). There is great concern that global 

environmental change is responsible for the emergence and re-emergence of mosquito-borne 

diseases (Rocklöv and Dubrow, 2020). A greater understanding of how mosquito-borne 

diseases are impacted by environmental change, including climate variation and land-use 

modifications is vital for curbing the devastating impacts these diseases have on populations 

worldwide.  

 

1.3. Impact of climate variation and change on mosquito-borne diseases 

There is already considerable evidence that climate change is influencing the occurrence and 

distribution of many mosquito-borne diseases. Several diseases once limited to tropical and 
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subtropical areas of the world, are increasingly being observed both in regions previously 

unaffected, such as temperate regions, and in areas where incidence had dramatically subsided 

(Kraemer et al., 2015; Leedale et al., 2016; Watts et al., 2021). For example, malaria 

distribution has expanded to higher elevations in Colombia and the East African highlands 

(Pascual et al., 2006; Siraj et al., 2014) and transmission is projected to expand further with 

future climate change (Endo and Eltahir, 2020). Indeed, the number of months suitable for 

malaria transmission has already increased by 39% in highland areas of the world, between 

1950-1959 and 2010-2019 (Romanello et al., 2021). In addition, global climate suitability for 

the dengue mosquito vector Aedes albopictus increased by 15% in 2018, contributing to recent 

outbreaks in southern Europe (Watts et al., 2021). However, an understanding of how changing 

climate suitability alongside other drivers of global environmental change such as land use, 

impact mosquito-borne diseases is limited.  

 

Mosquito-borne diseases are highly sensitive to environmental conditions because of the 

sensitivity of the life-history traits of disease-causing pathogens and mosquito vectors to 

climate conditions (Rogers and Randolph, 2006; Ciota et al., 2014). Climate has been shown 

to be an important predictor of mosquito-borne disease outbreaks (Caldwell et al., 2021). Much 

of the research up to now on mosquito-borne diseases and climate has focused on quantifying 

the impact of temperature on disease risk. This evidence has been provided by a combination 

of modelling and laboratory studies (Nissan et al., 2021). Warmer temperatures increase the 

development (Bayoh and Lindsay, 2003), oviposition (Rodríguez et al., 2015), vectorial 

capacity and competence (Tesla et al., 2018; Chu et al., 2019), survivorship (Christiansen-

Jucht et al., 2014) and abundance (Beck-Johnson et al., 2013; Marinho et al., 2016) of disease-

carrying mosquito vectors for malaria, dengue, chikungunya and Zika. The time taken for the 

malaria parasite, and dengue and chikungunya viruses to develop inside mosquitoes (the 

extrinsic incubation period) is also faster at warmer temperatures (Jácome et al., 2019; 

Winokur et al., 2020).  

 

Temperature by far has been shown to be one of the most important factors in driving 

transmission of mosquito-borne disease (Mordecai et al., 2017; Shocket et al., 2018; Caldwell 

et al., 2021). The evidence for the sensitivity of mosquito-borne diseases to temperature is vast 

and constantly expanding. A recent field study showed that oviposition of the principal vector 

of dengue, Aedes aegypti increased over four times when minimum temperatures were 1°C 
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higher (Gimenez et al., 2020). Similarly, a 1°C increase in minimum temperature was also 

associated with a 1.07 relative risk of P. falciparum malaria in China (Bi et al., 2013). In 

modelling studies assessing the impact of climate variation on malaria, models are often 

parameterised solely for the P. falciparum malaria parasite (Rodó et al., 2021). In addition, the 

effect of climate on both P. falciparum and P. vivax malaria cases is frequently analysed 

together (Hurtado et al., 2018), despite the two main malaria-causing parasites having different 

thermal optima. The P. falciparum malaria parasite has a minimum thermal limit of 18°C in 

comparison to 15°C for P. vivax malaria (Gilles, 1999; Watts et al., 2019). Based on these 

differing thermal limits it is plausible that the climate sensitivity of these two types of malaria 

may differ, yet there has been a limited assessment of this. 

 

In practice, the relationship between temperature and mosquito-borne diseases is complicated 

and is non-linear. In both Colombia and South Asia, temperatures that are too high negatively 

affect dengue transmission (Peña-García et al., 2017; Servadio et al., 2018). In general, dengue 

transmission declines past temperatures of 32°C, where temperature begins to have a negative 

impact on mosquito development and survival (Mordecai et al., 2017, 2019). For malaria, a 

similar non-linear relationship has also been demonstrated, where the strongest transmission is 

observed above 25°C (Laneri et al., 2019) and the optimum temperature is detected at 

approximately 29°C (Shapiro et al., 2017). In addition to non-linearities complicating the 

disease-climate relationship, average temperature variation may not be the best determinant of 

mosquito-borne diseases. Instead, fluctuations in daily, seasonal and diurnal temperatures play 

an important role in determining mosquito-borne disease risk and could be more reliable and 

robust predictors (Paaijmans et al., 2010; Mordecai et al., 2013; Beck-Johnson et al., 2017; 

Huber et al., 2018; Robert et al., 2019). These complicating factors make generalising the 

effects of temperature on mosquito-borne diseases extremely difficult. 

 

Rainfall is another important and well-studied climatic variable that influences mosquito-borne 

disease transmission. Rainfall has a crucial impact on mosquito development and is required 

to complete the water-dependent stages of the mosquito lifecycle (Rejmánková et al., 2013). 

In general, rainfall expands the availability of mosquito breeding sites leading to increased 

mosquito larval densities and adult abundance during periods of elevated rainfall (Reiter, 

2001). Increased mosquito abundance with rainfall has been demonstrated for Aedes and 

Anopheles mosquitoes in the Brazilian Amazon (de Araújo et al., 2020), in northern India 
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(Baruah and Dutta, 2013), Argentina (Fontanarrosa et al., 2000) and Mexico (Jiménez-Alejo 

et al., 2017). In Tanzania, drought conditions caused a reduction in the abundance of the 

malaria vectors An. arabiensis and An. funestus (Kreppel et al., 2019). Excessive levels of 

rainfall however can flush out mosquito larvae and subsequently decrease disease transmission 

(Benedum et al., 2018). Rainfall in Kenya was shown to decrease the nightly loss of the malaria 

vector Anopheles gambiae larvae by up to 18% (Paaijmans et al., 2007). Overfilling of water 

containers resulting from high rainfall also reduced Ae. aegypti eggs in Argentina (Benitez et 

al., 2021), with every 1 mm increase in rainfall decreasing the number of eggs found by 0.7. 

Inter-annual variation in climate, such as the El Niño-Southern Oscillation (ENSO) also 

influences the transmission of mosquito-borne diseases, mainly through altering local-level 

climate patterns (Kovats, 2000). For example in Venezuela, dengue outbreaks are more 

prevalent during El Niño years, which generate warmer and drier climate conditions (Vincenti-

Gonzalez et al., 2018). 

 

Seasonal rainfall patterns are an important determinant of malaria epidemics in sub-Saharan 

Africa (White et al., 2011; Gunda et al., 2017; Elsanousi et al., 2018) and in India both dengue 

and malaria outbreaks are associated with ENSO-linked monsoon rainfall (Dhiman and Sarkar, 

2017; Pramanik et al., 2020). As a result, this has enabled the development of malaria and 

dengue early-warning systems based on predictable rainfall patterns (Thomson et al., 2005, 

2006; Pramanik et al., 2020). The relationships between rainfall and mosquito abundance are 

species-specific (Galardo et al., 2009), representing the distinct niches these mosquito vectors 

are adapted to. As a result, mosquito species abundance and disease transmission can peak 

during periods of low rainfall or outside rainy seasons. For example, peak abundance of the 

riparian malaria vector, An. darlingi occurs during the dry season in the Amazon, and during 

the wet season An. darlingi exhibits reduced survival and human biting as a result of decreased 

breeding (Barros et al., 2011; Moreno et al., 2015; Vezenegho et al., 2015). Similarly, Aedes 

vectors, which transmit arboviruses such as dengue and yellow fever exhibit species-specific 

variation in their response to rainfall. The abundance of immature Ae. albopictus mosquitoes 

in Malaysia was positively correlated with rainfall, but this was not the case for Ae. aegypti, 

with heavy rainfall causing declines in abundance (Saifur et al., 2012). 

 

There is substantial variation in the response of mosquito-borne diseases to climate variation 

in different regions of the world. These relationships are often environmentally distinct and 

vary according to local-level environmental conditions, such as seasonal patterns of rainfall, 
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sanitation infrastructure and level of urbanisation (Santos et al., 2020; Yuan et al., 2020). In 

north-eastern Brazil, weak associations were observed between temperature and Ae. aegypti 

mosquito oviposition (Moura et al., 2020), whilst another study in southern Brazil, in urban 

Sao Paulo, demonstrated that dengue incidence was influenced most by temperature (Araujo 

et al., 2015), highlighting regional differences in climate-disease relationships. Similar local 

level heterogeneity has been detailed for malaria vectors and transmission. Temperature was 

not influential in driving transmission dynamics in Panama, owing to the lack of seasonal 

temperature fluctuations in the study area (Hurtado et al., 2018). In Venezuela, no significant 

association was found between Anopheles mosquito abundance and rainfall (Moreno et al., 

2007), although rainfall is a major driver of Aedes mosquito abundance across Asia (Wai et al., 

2012; Li et al., 2019; Islam et al., 2021). A consideration of the local level variation in the 

climate responses of mosquito-borne diseases is essential for developing effective and targeted 

disease control programs that are tailored for specific locations.  

 

Owing to the time taken for climate factors such as temperature and rainfall to impact mosquito 

risk and subsequent case reporting, climate variables exhibit a temporally lagged relationship 

with mosquito-borne diseases (Lowe et al., 2018). Seasonal forecasts, which can be produced 

up to months in advance (Kim et al., 2019), take advantage of this lagged relationship. Time 

lags between mosquito-borne diseases and climate can be detected from as little as 0-4 weeks 

(Kakarla et al., 2019) to up to five months for the delayed impact of rainfall on dengue 

incidence (Kakarla et al., 2019; Yuan et al., 2020). For malaria, the effects of El Niño on 

transmission have been detected at a time lag of a year and over (Bouma and Dye, 1997; 

Gagnon et al., 2002; Hurtado et al., 2018). The relationship between climate and mosquito-

borne diseases therefore may not be detected if the temporal time lag is not accounted for. 

Local and regional variation in climate-disease relationships alongside accounting for 

temporally lagged associations can complicate the understanding and detection of the impact 

of global environmental change on mosquito-borne diseases. 

 

Despite an understanding of the mechanisms of how climate variation impacts mosquito-borne 

diseases independently, many studies do not consider the impact of mediating and interacting 

factors. For example, mosquito inter-species competition can influence the climate response 

(Day et al., 2021) and accounting for reporting of other co-circulating mosquito-borne diseases 

can likewise influence climate-based model predictions (Lowe et al., 2017). Detection of a 

climate-disease relationship can also be complicated or even masked by the impact of 
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interventions and population fluctuations that may determine underlying risk, especially when 

detecting long-term associations (i.e. over ten years) (Tatem et al., 2013; Metcalf et al., 2017). 

Allowing for underlying data uncertainties and attribution of these uncertainties to unaccounted 

factors will be central to disentangle environment-disease relationships.  

 

The problem of accounting for underlying data uncertainties is exemplified by controversy in 

the attribution of climate warming to the re-emergence of epidemic malaria in the East African 

highlands (Loevinsohn, 1994; Lindsay and Martens, 1998; Hay, Cox, et al., 2002). Using 

coarse-level climate data Hay, Rogers, et al., (2002) reasoned that increases in malaria were 

attributed to vector control activities and widespread chloroquine drug resistance, and not 

climate change. Subsequent analyses with quality-controlled local-level climate data however 

established a robust link between long-term warming and increases in epidemic malaria 

(Pascual et al., 2006; Chaves and Koenraadt, 2010; Omumbo et al., 2011). Although, Chaves 

et al. (2012) found a large degree of heterogeneity in the observed highland malaria trends, 

which highlights the need for including high-quality and fine-scale data in assessments of local 

malaria trends and climate warming.  

 

Beyond the issues of accessing quality climate data to detect climate-disease associations the 

climate-malaria debate exemplifies the importance of not basing long-term associations on 

extrapolations from laboratory-based findings. In addition, there is the need to consider 

alternative explanations for rising disease trends such as changes in human behaviour and 

immunity, and lapses in control activities (Reiter, 2008). Even when increases in malaria cases 

in Kenya were attributed to warming temperatures from the 1970s to 1990s, other factors 

including population growth and chloroquine resistance were also shown to enhance the impact 

of climate change on malaria (Alonso et al., 2011). In addition, climatic changes such as the 

‘slowdown’ of climate warming (Kerr, 2009; Rodó et al., 2021) can act synergistically with 

control activities, facilitating a concurrent slowdown and decrease in seasonal malaria 

epidemic size (Rodó et al., 2021). Accounting for the impact of mosquito-borne disease 

interventions, such as vector control, in impact studies is vital for understanding how risk of 

disease is influenced by global environmental change and for effective planning of disease 

control programs. Understanding climate variation will become increasingly important as we 

accelerate progress towards elimination, for example the Global Technical Strategy for Malaria 

2016-2030 aims to reduce global incidence and mortality by 90% by 2030 (WHO, 2015a), 
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however any progress could easily be undermined by climatic changes that facilitate malaria 

transmission.  

 

In addition to the impact of interventions, socioeconomic influences are also important to 

consider in climate-disease relationships. Measures of poverty, including healthcare, childhood 

services, and inadequate sanitation, are significant factors explaining higher incidence of 

dengue, Zika and chikungunya in Colombia, dengue in Bangladesh (Paul et al., 2018; Morgan 

et al., 2021) and malaria in sub-Saharan Africa (WHO, 2019). Population density contributed 

nearly 70% to explaining dengue distribution in China (Liu et al., 2020) and in Europe travel 

patterns accounted for 70% of the variation in imported dengue cases (Salami et al., 2020). As 

mentioned previously, although dengue risk can peak during periods of high rainfall, disease 

risk can also vary as a result of climate-induced alterations to human water storage behaviours. 

In Brazil and Puerto Rico, increased use of water containers due to water shortages become 

important sources of dengue mosquito production (Barrera et al., 2011), leading to peaks in 

relative risk of dengue in the four months after onset of drought conditions (Lowe et al., 2021). 

Attribution of observed changes in mosquito-borne disease risk to non-climatic factors is 

important to disentangle the effect of multiple global environmental change drivers. 

 

1.4. Impact of land use and change on mosquito-borne diseases 

In addition to climate variation, anthropogenic land-use change is another principal driver of 

global patterns in mosquito-borne disease risk (Gottdenker et al., 2014). Land-use change 

comprises how humans alter the natural environment and includes urbanisation, agricultural 

development, deforestation and natural resource extraction. As a result of accelerating human 

demands on nature, the global land surface is being converted at an unprecedented rate (Popp 

et al., 2017). By 2030, urban land cover is projected to have increased by 1.2 million km2 (Seto 

et al., 2012). Disturbance caused by land-use change causes specific ecosystem changes that 

undermines the capacity of ecosystems to regulate infectious diseases, which can lead to the 

emergence and re-emergence of mosquito-borne diseases (Foley et al., 2005). Land-use change 

primarily affects mosquito-borne disease risk by altering the abundance and behaviour of 

vectors, the biodiversity of vectors and mosquito predator-prey relationships. 

 

The impact of deforestation on mosquito-borne diseases, particularly on malaria, has been 

studied extensively. Deforestation is a primary driver of malaria risk in endemic countries 
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(Brock et al., 2019). Microclimatic and hydrological changes associated with forest clearance, 

principally an increase in temperature, increased sunlight and pooling of rainwater have been 

shown to favour the proliferation of populations of An. darlingi, the main malaria vector in the 

Amazon region (Yasuoka and Levins, 2007; Vittor et al., 2009; Burkett-Cadena and Vittor, 

2018). This in turn, leads to higher human biting rates, increased vectorial capacity and 

intensification of malaria transmission at the interface between natural and disturbed 

environments (Vittor et al., 2006; Barros and Honório, 2015; Sallum et al., 2019). In the 

Amazon region, deforestation has allowed malaria vectors to invade new ecological niches and 

expand into undisturbed habitats. These ecological processes have been exacerbated by road 

construction associated with deforestation, allowing previously inaccessible areas to be 

colonised by malaria vectors (Póvoa et al., 2001). Increased risk of malaria is commonly 

observed in areas of extractive harvesting in Brazil and in forest fringe areas close to extractive 

activities, with high incidence among farmers and agricultural workers (Valle and Clark, 2013; 

Souza et al., 2019).  

 

Since the principal mechanism by which deforestation affects malaria transmission is through 

niche invasion, not all malaria vectors are favoured by deforestation. For example, vectors 

including An. aquasalis, a primary vector of P. vivax malaria and An. triannulatus a vector also 

implicated in malaria transmission, exhibit higher abundances in protected areas in comparison 

to forest fragments in southern Amazonian Brazil (Vieira et al., 2020). In Mexico, well-

preserved montane cloud forests have significantly higher mosquito abundance, compared to 

other sites altered by coffee plantations, cattle grazing and urban development, although 

species richness was lower (Abella-Medrano et al., 2015). In a synthesis of the evidence of 

deforestation and vector-borne diseases, which included key malaria (An. darlingi and An. 

gambiae) and arboviral vectors (Ae. aegypti), the net effect of deforestation was shown to 

favour mosquitoes that are vectors of human disease. Of the mosquito species that are favoured 

by deforestation, 57% are confirmed vectors of human pathogens (Burkett-Cadena and Vittor, 

2018). Contradictory evidence for the effects of deforestation on mosquito-borne diseases, such 

as malaria, could be due to the simplistic characterisation of the dynamic relationship between 

deforestation and malaria. Overlooking important confounding factors in analyses of malaria 

and deforestation, such as human presence, water bodies, time since deforestation and 

immunity, can mask the true relationship and lead to misinformed conclusions (Tucker Lima 

et al., 2017).  
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Complexities in land use-disease relationships have also emerged regarding the spatiotemporal 

scale of land-use change processes. Socioecological processes associated with land-use 

alterations can operate at different timescales, occasionally over long periods (e.g. tens of 

years) to influence disease risk (de Castro et al., 2006; Laporta et al., 2021). This 

spatiotemporal complexity is exemplified by the frontier malaria phenomenon in the Amazon 

region, which is associated with land clearance for the expansion of agricultural activities 

(Sawyer, 1993; Singer and de Castro, 2001; de Castro et al., 2006; Baeza et al., 2017). In the 

initial frontier phase, when the push towards economic expansion is strong, malaria risk is high 

(Baeza et al., 2017). During this early stage of land-use change, relatively fast ecosystem 

transformations such as deforestation, which favour malaria transmission predominate (Baeza 

et al., 2017; Souza et al., 2019). Subsequently, as forest clearance advances and economic 

development is substantially increased and as a result of improved infrastructure and healthcare 

services, malaria risk is reduced on slower, longer timescales. During this transitionary stage, 

malaria transmission rates may fluctuate, as a result of alterations in the balance between the 

ecological conditions that drive transmission and socioeconomic factors that provide 

protection, such as malaria treatment (de Castro et al., 2006; Baeza et al., 2017). In the final 

endemic stage, malaria transmission is low and stable with effective public health services to 

deal with outbreaks and provide diagnostics and treatments. 

 

In frontier regions, the time since deforestation and amount of accumulated deforestation are 

additionally key determinants of malaria risk. At deforested sites with more recent colonisation, 

areas with intermediate levels (50%) of forest cover that have the greatest frequency of forest 

fringe habitat have the highest malaria risk. This is because of high vector abundances 

combined with low levels of socioeconomic mitigation measures (Laporta et al., 2021). 

Although a realisation of the temporal timescales that land-use alterations operate over has 

increased understanding of how malaria risk is governed by dynamic socioecological 

processes, accurately accounting for these processes in disease modelling frameworks remains 

a challenge. 

 

In gold-mining areas of Venezuela and French Guiana, malaria hotspots sustained by 

ecological changes associated with forest clearance, contrast with malaria risk in frontier 

regions. Instead, malaria risk is exacerbated and modulated by socioeconomic factors, 

primarily human movement and behaviour. Open mining pits that create large bodies of 

standing water for breeding mosquitoes cause malaria transmission rates to soar (Moreno et 
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al., 2007; Grillet et al., 2021). In addition to these fast-acting ecological processes, vector biting 

rates and malaria transmission are high due to vulnerable non-immune populations that work 

in the mining camps (Pommier de Santi et al., 2016; Douine et al., 2020). Migration to these 

artisanal gold mines is driven by socio-political instability and over time malaria transmission 

rates are not alleviated by improved socioeconomic development as observed in agricultural 

frontier areas. Instead, these mining areas can remain as important hotspots of transmission, 

driving regional patterns of disease (Grillet et al., 2021).  

 

By 2050, two-thirds of the global population is predicted to live in urban areas, with the 

majority of the increase in urban populations occurring in Africa and Asia (UN, 2015). Human 

population expansion has been linked to increased exposure to mosquito-borne diseases such 

as dengue and chikungunya, as a result of an expansion of mosquito geographic ranges, 

facilitated by heightened trade and travel (Weaver, 2013). In the Brazilian Amazon, dengue is 

expanding from urban centres to neighbouring rural areas and into urbanised forest, due to the 

establishment of Aedes mosquitoes (Lowe et al., 2020). Urban development favours the 

transmission of Aedes-transmitted diseases because these mosquitoes have evolved to become 

highly adapted to urban environments. Artificial water storage containers, storm drains, 

discarded tyres and construction materials typically found in urban and peri-urban 

environments act as significant producers of Aedes mosquitoes in Brazil, Colombia, Puerto 

Rico and in Bangladesh (Barrera et al., 2011; Paploski et al., 2016; Garcia-Sánchez et al., 2017; 

Paul et al., 2018). Uncontrolled and rapid urbanisation associated with population growth and 

poverty, which results in substandard housing and water and waste management and therefore 

breeding sites, creates ideal conditions for dengue epidemics. 

 

Land-use changes, such as urban development can interact with climate variation and change 

to influence trends in mosquito-borne disease risk. In conjunction with climate change, 

urbanisation is driving widespread ecological changes in sub-Saharan Africa, favouring a shift 

from malaria transmitted by Anopheles mosquitoes, towards Aedes-transmitted arboviruses 

(Mordecai et al., 2020). Warmer temperatures in urban areas that create heat islands, combined 

with increased availability of breeding sites act together to favour arbovirus transmission. In 

contrast to Aedes mosquitoes, several important malaria vectors such as An. gambiae and An. 

darlingi breed in natural water sources typical of rural areas. In general, urbanisation decreases 

malaria transmission for this reason (Pond, 2013), although the establishment of the invasive 
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mosquito vector, An. stephensi is raising concerns about urban and peri-urban malaria in Africa 

(Mathanga et al., 2016; Takken and Lindsay, 2019; Sinka et al., 2020).  

 

The diversity in the relationships between land-use change such as deforestation and 

urbanisation, with mosquito-borne diseases shows the need for a considerate species-specific 

approach to understanding environmental change and disease risk. Despite evidence of the 

expansion of new mosquito vectors into urban areas and how malaria-transmitting mosquitoes 

are favoured by deforestation, there is limited understanding and synthesis of how mosquito 

vectors respond to land-use change. This need to understand species-specific responses to land-

use change in the context of disease is important and a critical research gap that has received 

little attention. There is an increasing need to link evidence of the ecological processes by 

which land-use change affects disease risk, for example the preference of An. darlingi 

mosquitoes for deforested landscapes, to empirical evidence demonstrating the hypothesised 

response to land-use change. An understanding of how vectors respond to land-use change is 

vital to provide evidence to inform predictions on how mosquito-borne diseases are likely to 

change in the future.  

 

Multiple components of mosquito-borne disease risk, including climate variation and land-use 

change are mediated through a complex system of feedback loops and interacting relationships. 

This complexity makes causal relationships difficult to identify and is further complicated by 

imperfect observations of each risk component. A major research gap that remains is how best 

to explicitly account for factors like land-use alterations in environmental change assessments. 

In addition, there is a limited grasp of how disease risk is influenced by both climate conditions 

(the hazard) and vector control measures (exposure) and socioeconomic conditions 

(vulnerability), and whether vector control measures can mask the effect of climate variation 

on mosquito-borne disease. Further, it is not clear if and how these components of disease risk, 

namely climate variation and land-use change, interact with each other. Interactions between 

multiple components of global environmental change is vital to understand how human health 

may change in areas of the world vulnerable to the combined effects of climatic change and 

land-use alterations.  
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1.5. Tools for addressing shortfalls in the understanding of mosquito-borne diseases and 

environmental change 

Statistical spatiotemporal modelling is a method commonly employed to investigate drivers of 

mosquito-borne diseases (Rouamba et al., 2020; Lowe et al., 2021). Epidemiological data, such 

as the annual number of cases of malaria per district, are often characterised by a hierarchical 

structure, which needs to be considered during analysis. Specifying statistical models in a 

Bayesian framework, is an effective way to incorporate the spatiotemporal structure of the data 

into a model. In a Bayesian approach multiple uncertainties can be accounted for, such as 

uncertainty in the parameter estimates, and the capacity to deal with missing data is improved 

(Blangiardo et al., 2013). The hierarchical structure of disease data can be incorporated in a 

Bayesian framework using spatial and temporal random effects. For example, the high 

correlation of case counts from neighbouring regions (autocorrelation) can be accounted for by 

specifying an Intrinsic Conditional Auto-Regressive (ICAR) model on the spatial random 

effects (Besag et al., 1991). In addition, the seasonal pattern of mosquito-borne diseases can 

be included by specifying a first order autoregressive prior on the monthly random effect (Lowe 

et al., 2017). Furthermore, new methods in Bayesian statistics, such as Integrated Nested 

Laplace Approximation (INLA) has allowed for quicker and more computationally efficient 

generation of parameter estimates in spatiotemporal hierarchical models (Blangiardo et al., 

2013; Lowe et al., 2017). In contrast to more traditional methods of Bayesian parameter 

estimation, such as Markov chain Monte Carlo (MCMC), INLA uses a combination of 

analytical approximation and numerical integration (Blangiardo et al., 2013). As a result, INLA 

has shorter computation times and generates results that are comparable to MCMC (De Smedt 

et al., 2015).  

 

Models implemented in INLA are particularly useful for assessing the potential effect of 

multiple risk factors on disease, as well as explicitly quantifying the risk due to a particular 

covariate (Blangiardo et al., 2013). By assessing both the spatial and temporal variation in 

disease risk, there is potential to develop complex spatiotemporal models implemented in 

INLA, informed by large datasets and multiple data streams that facilitate a greater 

understanding of the drivers of mosquito-borne disease risk. Multiple health questions can be 

addressed simultaneously, including detecting strategies that are most effective at reducing 

disease incidence alongside identifying communities most at risk (Rouamba et al., 2020). 

Predictive spatiotemporal models can also be developed to assess how mosquito-borne disease 

risk may change with future climate change and population growth (Colón-González, Sewe, et 
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al., 2021). Spatiotemporal models are a valuable tool with great potential to investigate the 

joint influence of climate variation and socioeconomic factors on disease risk, as well as 

interactions between factors, including climate and land-use change.  

 

The advent of Earth observations, such as remotely sensed climate variables has brought major 

advances in understanding the natural world, mapping global water surfaces, forest extent and 

the climate system. Historically, Earth observations have been frequently employed for a wide 

range of uses in epidemiological research (Beck, Lobitz and Wood, 2000; Hay, 2000). In 

particular, remote sensing of the land’s surface has commonly been used to model the spatial 

distribution of malaria vectors and their habitats (Beck et al., 1994; Roberts et al., 1996; 

Thomson et al., 1996; Garrett et al., 2005). For example, remote sensing of Mexican tropical 

wetlands identified areas with high rates of anopheline production and was subsequently used 

to produce mosquito productivity rankings to guide mosquito control (Pope et al., 1994). Earth 

observations, such as remotely sensed climate variables and vegetation indices can also be 

integrated with disease surveillance data into models leveraged for outbreak detection and 

forecasting (Midekisa et al., 2012; Lowe et al., 2013; Nizamuddin et al., 2013).  

 

More recently, Earth observations have also been employed to detect and measure our 

anthropogenic footprint, such as global forest loss (Hansen et al., 2013) and pesticide 

application (Maggi et al., 2019). This has allowed for an improved understanding of the 

complex spatiotemporal dynamics of mosquito borne disease. For example a study in Lao, 

which used high resolution forest loss data (Hansen et al., 2013) found that deforestation was 

only associated with short-term (1-2 years) increases in malaria incidence (Rerolle et al., 2021). 

In addition to tailored Earth observation products, remote sensing also provides a suite of other 

variables that can be derived and used to make inferences relevant to human health. For 

example, the Sentinel 2 satellite provides multispectral satellite images that can be used for 

flood monitoring (Farhadi et al., 2022) and for detecting crop types at a 10 m resolution (Tran 

et al., 2022). Combining Earth observations, such as remotely sensed data into modelling 

frameworks is a powerful tool for investigating the environmental drivers of mosquito-borne 

disease risk. In addition, a consideration of the Planetary Health approach, specifically how 

environmental health is linked to spatiotemporal patterns of disease, can help identify 

environmental proxies for disease, therefore increasing the mechanistic understanding of how 

environmental change influences mosquito borne disease. These proxies, such as vegetation 

indices and climate variables can be leveraged from Earth observation data and incorporated 
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into modelling frameworks, reconciling shortfalls in ground truth data. An integration of 

multiple sources of Earth observation data, environmental and socioeconomic, can help address 

gaps in understanding the complexities of mosquito-borne diseases because it allows for 

multiple factors to be considered simultaneously.  

 

Earth observations have frequently been used in spatiotemporal models to quantify the 

associations between climate variables and mosquito-borne diseases. A vast number of studies 

have combined remotely sensed and local climate observations in modelling frameworks to 

characterise relationships between climate and malaria, and dengue (Basurko et al., 2011; 

Lowe et al., 2013; Midekisa et al., 2015; Lowe et al., 2016, 2018; Gunda et al., 2017; Ikeda et 

al., 2017; Peña-García et al., 2017). Whilst these studies have contributed greatly to 

understanding the local-level impacts of climate variation on mosquito-borne diseases, 

diversity in these studies regarding data products and statistical techniques employed has 

resulted in a lack of consistency in how climate-disease associations are quantified. For 

example, the impact of climate variation on disease can be quantified by attributing the 

variation explained by a particular climate variable (Yu et al., 2016). Alternatively, the 

percentage increase in disease incidence with a unit increase in the value of a climate variable 

can be quantified (Lee et al., 2017). When global comparisons of the effect of climate variation 

on mosquito-borne diseases are required, for example for use in the Intergovernmental Panel 

on Climate Change (IPCC) assessment reports, this lack of reporting consistency can make 

global evaluations challenging and difficult to interpret.  

 

Earth observations can also be particularly useful for disease mapping, risk analysis and 

detecting fine-scale variation in ecological predictors of mosquito-borne diseases. For 

example, drone-acquired imagery has been used to accurately detect An. darlingi larval habitats 

in the Peruvian Amazon (Carrasco-Escobar et al., 2019), and larval habitats in Malawi (Stanton 

et al., 2021). Furthermore, in southeast Asia drones were also used to characterise both 

environmental and social risk factors for zoonotic malaria (Fornace et al., 2014). The use of 

technology such as drones enables data to be obtained quickly, updated routinely and sites of 

interest to be mapped frequently (Fornace et al., 2014). These techniques may be particularly 

useful for monitoring relatively fast land-use alterations such as forest clearance, allowing for 

temporal variations in land-use to be monitored closely.  
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Earth observations, in particular remotely sensed data from satellites have also been used to 

map mosquito abundance or disease cases in a predictive manner. Combining observations of 

environmental variables such as vegetation and climate conditions, with Ae. aegypti trap counts 

in Brazil into a generalised linear model, enabled the development of a predictive temporal 

model of the mosquito population (Mudele et al., 2021). Similarly, environmental data has 

been used to forecast Ae. aegypti oviposition and infestation (Lorenz et al., 2020), and even 

detect a dengue outbreak that occurred earlier in the season than usual in Argentina (Estallo et 

al., 2016). Further, remote sensing can also be used to inform disease surveillance such as the 

optimal placement of sentinel sites for entomological monitoring (Longbottom et al., 2020). 

Impressive developments and innovations in computing power and modelling capabilities has 

enabled predictive models to be integrated directly with disease surveillance and optimise 

vector control programs. 

 

Despite what the health sector can learn from the application of Earth observations to mosquito-

borne diseases, a concern with the use of Earth observations is the limited accessibility to 

applications in epidemiology (Dlamini et al., 2019). A common challenge is finding 

environmental data on a spatial scale that matches the spatial scale of the health data, without 

compromising fine-scale information that represents ecological processes on the ground. A 

lack of accessibility can also stem from limited integration and communication between health 

and climate disciplines to co-develop and tailor a particular Earth observation product to a 

specific health application. An evaluation of data products applied to the health sector, 

alongside identification of methodological limitations, investigation of how data product 

choice impacts the health outcome will help enhance integration of environmental data 

products into the health sector. 

 

The dynamic socioecological processes triggered by environmental changes such as land-use 

modifications are only recently being understood. These processes remain a challenge for 

elimination efforts, as each distinct stage requires a targeted set of disease control measures 

(Baeza et al., 2017; Laporta et al., 2021). The case of frontier malaria and malaria in gold 

mining areas highlights the complexity of mosquito-borne disease risk. A seemingly 

straightforward relationship between environmental disturbance and disease emergence is 

made up of multiple modulating factors, including ecological and anthropogenic processes, all 

of which must be taken into consideration. Accounting for multiple factors in a Planetary 

Health approach, across multiple spatiotemporal scales can help address this critical challenge 
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and provide a framework for understanding these complexities. Understanding of the 

interacting processes that drive disease risk, in emergent and elimination settings, in rapidly 

changing environments will be required to facilitate public health decision-making.  

 

A critical challenge in addressing how global environmental change impacts mosquito-borne 

disease, is understanding the vast complexities that exist in a system of multiple interacting 

socioeconomic and ecological processes. Mosquito-borne disease risk can be conceptualised 

as a combination of exposure, hazard, and vulnerability (Gibb et al., 2020; Figure 1.2). The 

risk of mosquito-borne disease is determined by presence of the mosquito vector, e.g., an 

Anopheles mosquito and the pathogen, e.g., the malaria-causing Plasmodium parasite (the 

hazard). The distribution and occurrence of the hazard is driven by climatic conditions, such 

as optimal temperatures and adequate rainfall. Land use and land cover, including habitat 

availability for forest-dwelling mosquitoes also determines the local and regional distribution 

of mosquito vectors. Exposure to the pathogen-transmitting mosquito is influenced by 

anthropogenic modulators, such as vector control, which can eliminate or reduce occurrence 

of the hazard. Socioeconomic conditions, such as housing and sanitation infrastructure 

determine the population exposure to the mosquito hazard. Exposure is further modulated by 

human population movements such as influx of workers to agricultural frontier regions, which 

can increase vector-human contact rates. Land-use change itself can also modify human 

behaviour, driving populations into high-risk environmentally disturbed areas. Finally, disease 

risk is influenced by the vulnerability of the underlying population. Disease vulnerability is 

driven predominantly by socioeconomic conditions such as poverty, healthcare accessibility 

and population immunity, as well as underlying population health. Importantly, exposure and 

vulnerability are also driven by environmental factors, such as extreme weather events that can 

compromise access to healthcare and drive population movements.  
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Figure 1.2. Mosquito-borne disease risk framework used to understand the effects of global 

environmental change. Three elements, hazard, exposure, and vulnerability converge to shape overall 

mosquito-borne disease risk. The hazard (mosquito and pathogen) is influenced by environmental 

factors such as climate variation and land use, whilst exposure to the hazard is modulated by factors 

including vector control in addition to land-use changes, which are driven by socioeconomic influences. 

Vulnerability to mosquito-borne disease risk is regulated by factors such as healthcare accessibility, 

which in turn is affected by environmental changes such as extreme weather events.  

 

1.6. Thesis outline 

In this thesis, I use the risk framework (Figure 1.2) as a foundation to enhance our 

understanding of the impacts of environmental change on mosquito borne diseases, by 

integrating a Planetary Health approach. I consider multiple interacting factors and incorporate 

concepts from multiple disciplines, including climate, health and ecology exemplified in 

distinctive case studies of mosquito-borne disease in Latin America and the Caribbean. Latin 

America is a global hotspot for mosquito-borne disease transmission, where dengue is endemic 

and arboviruses such as Zika virus have recently emerged in the region. Countries in Latin 

America and the Caribbean are amongst those with the highest age-standardised incidence rate 

for dengue in the world (Zeng et al., 2021) and between 2018-2019 Brazil experienced a 600% 

increase in cases (PAHO, 2019). Malaria also presents a significant public health problem for 

the region, despite substantial progress (58% case reduction from 2000 to 2020) in countries 

such as Mexico and Peru (Hotez et al., 2020; WHO, 2021b). Approximately 120 million people 

in the Americas are at risk of malaria transmission (WHO, 2015b) and malaria deaths in the 

region occur disproportionately in Venezuela, which accounted for over 70% of deaths in 2019 
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(WHO, 2020). In addition, some countries in the region that were previously on track towards 

elimination (Ecuador, Suriname and Costa Rica) have recently showed signs of malaria re-

establishment, which is a major threat to ongoing elimination efforts (WHO, 2020).  

 

The Latin American and Caribbean region is battling a growing number of extreme weather 

events as a result of global climate change, including flooding and severe droughts in the 

Amazon region following the exceptionally strong 2015-16 El Niño event (Jiménez-Muñoz et 

al., 2016; Marengo and Espinoza, 2016). Numerous mosquito-borne disease threats, including 

the expansion of the arbovirus vector Ae. aegypti into peri-urban and rural areas (Guagliardo 

et al., 2014) and ascension of malaria into highland areas (Siraj et al., 2014), makes the region 

an interesting case study for investigating the impacts of environmental change. Considerable 

socioeconomic challenges, such as political instability, poverty and human displacement, 

including the ongoing economic and humanitarian crisis in Venezuela will further complicate 

efforts to tackle mosquito-borne diseases (UNHCR, 2015). In 2015, 6% of the estimated 

population in Latin America and the Caribbean lacked access to safe drinking water and 17% 

lacked proper sanitation facilities (PAHO, 2015). These are optimal conditions for the spread 

of mosquito-borne diseases, especially in conjunction with urban sprawl and extreme weather 

events. Strengthening of health systems in the region, by building resilience to the effects of 

environmental change in conjunction with socioeconomic challenges will be crucial. The Latin 

American region is experiencing a multitude of dynamic health threats from the combined 

impacts of environmental change and complex socioeconomic situations, with mosquito-borne 

diseases posing a particularly formidable challenge. 

 

The overarching goal of this thesis is to investigate the extent to which global environmental 

change impacts mosquito-borne disease risk through multiple interacting factors, including 

climate variation, land-use change and socioeconomic influences. The specific objectives are 

as follows: 

1. Develop and test a statistical modelling framework that can be used to explore climate, 

land use and socioeconomic effects on mosquito-borne diseases. 

2. Understand the joint influence of climate variation and elimination efforts on mosquito-

borne disease risk, identifying whether a climate signal can still be detected in 

elimination settings. 



 31 

3. Test for the interacting effects of land-use change and climate variation on mosquito-

borne disease risk. 

4. Identify whether choice of climate data product in climate-disease models influences 

the estimated associations between climate hazards and disease risk. 

5. Compile a database of mosquito vector data that can be used to explore the impacts of 

land-use change on mosquito biodiversity. 

6. Explore the response of mosquito vectors to anthropogenic land-use change. 

 

I begin this thesis by assessing how both hazard and exposure combine to influence malaria 

incidence in a high-risk border region of Ecuador (Chapter 2; Table 1.1). I do this by 

developing a statistical spatiotemporal modelling framework, which I use to integrate multiple 

sources of environmental and socioeconomic data, whilst also statistically accounting for 

unexplained sources of variation in disease incidence. Specifically, I explore the extent to 

which climate variation impacts the spatiotemporal incidence of malaria in conjunction with 

elimination efforts, identifying whether a climate-malaria signal can still be detected in an 

elimination setting. This is an important research gap that is vital to optimise control efforts 

against the backdrop of a warming climate.  

 

In Chapter 3, I address the interactions between components of the risk framework, specifically 

testing for the previously unexplored interactions between climate variation and land-use 

change (Table 1.1). Here, I use a timely case study of malaria re-emergence in southern 

Venezuela, to investigate the extent to which the impacts of climate variation and land use act 

synergistically to determine malaria risk. I explore how climate-malaria relationships are 

altered in areas degraded by mining activity, where both exposure and vulnerability to disease 

risk is high due to the complex socio-political environment. I then discuss the interacting 

processes that drive re-emerging disease risk in changing environments.  

 

Given the vast availability and diversity of climate data employed in Chapters 2 and 3, I next 

explore the data products used to represent the hazard component of the risk framework, using 

impact-based models for dengue and malaria in Ecuador. In Chapter 4, I summarise 

methodological differences and uncertainties in climate data products, delivering clarity on 

how best to integrate environmental data into health impact models. To progress forward with 

our understanding of environmental change and mosquito borne diseases and take lessons from 

Planetary Health into the health sector, it is important to identify how new methods and data 
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sources from diverse disciplines can be adopted. I assess the extent to which data product 

choice in climate-sensitive disease models influences the associations between climate hazards 

and disease risk. I also discuss how best to move forward with integrating climate and health 

data for the co-development of an operational climate service (Table 1.1).  

 

Much of epidemiology and health research on mosquito-borne diseases has side-lined 

ecological information and has instead relied on traditional health approaches, which often 

neglect the utility of ecological information such as mosquito ecology. For example, in 

Chapters 2-3, climate variation is used to account for the distribution and occurrence of the 

mosquito vector (the hazard), although land-use change is also an important determinant. In 

Chapter 5, I take an ecological hazard-based approach to address gaps in understanding how 

mosquito vectors respond to anthropogenic land-use change. To do this, I use a comparative 

mixed-effects modelling framework for mosquito vectors of malaria and dengue, in Latin 

America and the Caribbean (Table 1.1). Specifically, I test to what extent taxonomic responses 

in mosquito abundance to land-use change differ, and if species richness in human-dominated 

landscapes is reduced in comparison to areas not altered by human activity. To conclude, I 

integrate key findings and insights of this research in Chapter 6, showing how they can be 

disseminated into public health policy and placing them within the broader context of Planetary 

Health, highlighting future research directions and policy implications.
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Table 1.1. Thesis research questions and how components of the disease risk framework are used to address them. In Chapters 2 and 3, a spatiotemporal 

modelling framework is employed to investigate incidence of malaria in two contrasting case studies, accounting for the hazard, exposure and vulnerability 

components of the risk framework. In Chapter 4, I use a case study of impact-based models, and malaria and dengue incidence to show how climate data 

products (used as a proxy for the hazard) influence the resulting health decision. In Chapter 5 I address the lack of ecological information in mosquito-borne 

disease research by providing an assessment of how mosquito vectors respond to anthropogenic land-use change. 

Overarching research question: 
To what extent does global environmental change impact mosquito-borne disease risk through multiple interacting factors, including climate variation, land-
use change and socioeconomic influences?  
Research question Objective Chapter Case study Risk component 
To what extent does climate variation jointly influence 
mosquito-borne disease risk in conjunction with elimination 
efforts? 

1, 2 2 Malaria elimination in 
Ecuador 

 
To what extent do the impacts of climate variation and land use 
act synergistically to determine mosquito-borne disease risk? 

1, 3 3 Malaria re-emergence in 
a mining hotspot of 
Venezuela 

 
To what extent does data product choice in climate-sensitive 
disease models influence the associations between climate 
hazards and disease risk? 

4 4 Malaria and dengue in 
southern coastal Ecuador 

 

To what extent does anthropogenic land-use change facilitate 
differing taxonomic responses in mosquito abundance and 
species richness? 

5, 6 5 Aedes and Anopheles 
mosquito vectors in Latin 
America and the 
Caribbean  
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Chapter 2 - Understanding the combined impact of climate 

variation and elimination efforts on malaria incidence in a high-

risk border region of Ecuador 
I begin this thesis by considering multiple components of the disease risk framework to 

understand the combined impact of climate variation and elimination efforts on malaria. In this 

chapter, I investigate multiple drivers of the spatiotemporal variation of Plasmodium 

falciparum and P. vivax malaria in El Oro, a high-risk border region of southern Ecuador. I do 

this by developing a spatiotemporal modelling framework that accounts for multiple sources 

of variation, using a random effects model structure. I assess the relative impact of climate 

variation (hazard), vector control measures (exposure) and socioeconomic factors 

(vulnerability) on malaria elimination efforts, exploring the extent to which climate variation 

jointly influences malaria risk in conjunction with elimination efforts. Disentangling the role 

of multiple environmental and socioeconomic drivers of disease risk is important for accurately 

assessing the contribution of climate for use in policy-relevant impact assessments.  

 

Abstract 

Malaria is a mosquito-borne disease of significant public health concern and despite the 

widespread success of many elimination initiatives, efforts in some regions of the world have 

stalled. Malaria is highly sensitive to climate variation, which represents a substantial barrier 

to elimination because of shifting climate suitability and strong seasonal impacts. 

Socioeconomic influences, such as political instability and regional migration also threaten 

malaria elimination goals. These barriers are particularly relevant in areas where local 

elimination has been achieved and surveillance and control efforts are dwindling. 

Understanding how climate variation impacts malaria elimination, in conjunction with control 

efforts is important to consider when monitoring the threat of disease resurgence. However, 

there has been limited assessment of how the combination of climate variation, disease 

interventions and socioeconomic pressures influence long-term trends in malaria incidence. In 

this study, I used Bayesian hierarchical mixed effects models and malaria case data over a 29-

year period to disentangle the influence of climate variation and control efforts on malaria risk 

in the Ecuadorian province of El Oro. Although local malaria elimination was achieved in 

2011, El Oro remains highly vulnerable to resurgence. Here, I found that minimum temperature 

was a significant driver of malaria seasonality and Plasmodium falciparum malaria was more 
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sensitive to climatic conditions than P. vivax malaria. A 1°C increase in minimum temperatures 

was associated with a 146% rise in P. falciparum incidence and a smaller 77% increase in P. 

vivax incidence. I also detected shifting patterns of malaria incidence between rural and urban 

areas, with a relative increase of P. vivax malaria in urbanised areas of El Oro. In addition, 

there was considerable heterogeneity in the impact of three chemical vector control measures 

on malaria incidence. Whilst indoor residual spraying produced small (8%) reductions in P. 

falciparum incidence, space spraying was associated with a 19% decline in P. vivax incidence. 

These findings have important implications for understanding environmental obstacles to 

malaria elimination and highlights the importance of sustaining disease control efforts in areas 

that remain vulnerable to resurgence.  

 

2.1. Introduction 

Nearly half of the world’s population is at risk of malaria, with an estimated 241 million cases 

reported in 2020 (WHO, 2021c). Despite global elimination and eradication efforts progress 

towards elimination is stalling in some endemic countries. In particular, growth in malaria 

incidence has been observed in some Latin American countries since 2014, including 

Venezuela, Brazil, Colombia and Ecuador (WHO, 2020). Movement of infected individuals 

between neighbouring countries in the region has resulted in a resurgence of cases in local 

populations, threatening progress towards malaria elimination for other countries (Grillet et al., 

2019). Malaria is highly sensitive to environmental conditions, including climate variability 

and land-use alterations (Norris, 2004; Caminade et al., 2014), which along with 

socioeconomic influences can act as significant barriers to elimination. In addition, lapses in 

control and surveillance efforts combined with global environmental change also poses a threat 

to malaria elimination across the Latin American region (Alimi et al., 2015; Conn et al., 2018).  

 

Variation in climate conditions, particularly temperature and rainfall, is an important 

determinant of the spatiotemporal patterns of malaria (Githeko et al., 2000; Paaijmans et al., 

2009; Bennett et al., 2016). Climate variation predominantly influences malaria transmission 

through its effects on both the life-history traits of the Plasmodium parasite and the Anopheles 

vector. Warmer temperatures decrease the extrinsic incubation period (EIP), the time taken for 

the malaria parasite to complete its development inside the mosquito (Mordecai et al., 2013; 

Shapiro et al., 2017; Ohm et al., 2018). A shorter EIP increases the transmission intensity of 

malaria by allowing mosquitoes to become infectious more quickly. The EIP for the P. 
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falciparum malaria parasite, which is most prevalent in Africa, is longer (~10 days) than that 

for the P. vivax parasite (~8 days). Furthermore, the P. vivax malaria parasite develops at 

relatively cooler temperatures (minimum of 15°C), compared to P. falciparum (minimum of 

18°C) (Patz and Olson, 2006; Watts et al., 2021). Similarly, temperature influences malaria 

mosquito vectors, by affecting larval and adult survival and longevity (Beck-Johnson et al., 

2013), mosquito development (Bayoh and Lindsay, 2003) and vector population dynamics 

(Beck-Johnson et al., 2013; Wilke et al., 2017). However, the effect of temperature on malaria 

transmission is non-linear, with the optimal temperature for malaria transmission estimated to 

be around 25°C (Mordecai et al., 2013). Above 30°C, malaria transmission declines as a result 

of increased mosquito mortality and reduced vectorial capacity (Paaijmans et al., 2009; 

Mordecai et al., 2013; Shapiro et al., 2017). Rainfall influences malaria transmission by 

determining the availability of mosquito breeding habitat and has subsequent effects on 

mosquito abundance (Abbasi et al., 2020). However, heavy and persistent rainfall can flush out 

early-stage larvae, diminishing mosquito populations (Paaijmans et al., 2007; Wolfarth-Couto 

et al., 2019) 

 

Large-scale climate patterns such as the El Niño Southern Oscillation (ENSO), the unusual 

warming of surface waters in the Pacific, influence the interannual variation of malaria 

epidemics (Kovats et al., 2003). For example, ENSO-driven flooding events in Peru lead to the 

proliferation of mosquito vector populations and elevate malaria transmission, whilst in 

Colombia and Guyana drought conditions favour transmission (Gagnon et al., 2001). Urban 

development can also influence malaria risk, by eliminating the habitat of mosquitoes that 

prefer forested areas (Kar et al., 2014; Brown et al., 2020). In other instances, surges in peri-

urban malaria are observed as a result of economic migration from rural to urban areas and the 

creation of novel mosquito breeding habitats, such as drains and pipes (De Silva and Marshall, 

2012; Padilla et al., 2015; Takken and Lindsay, 2019). The rising environmental suitability for 

malaria transmission associated with climatic change and land-use modifications, could 

compromise global malaria elimination efforts (Recht et al., 2017; Watts et al., 2021). 

Therefore, a greater understanding of the environmental barriers to elimination efforts and 

detection of climate-disease relationships against the backdrop of ongoing control measures is 

warranted.  

 

When assessing the role of climate variation on malaria incidence it is important to 

simultaneously consider the relative impact of control interventions, especially in elimination 
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settings. Several studies that have evaluated the effectiveness of malaria control programs often 

consider the influence of environmental factors, most frequently rainfall and vegetation indices 

(Graves et al., 2008; Gunda et al., 2017; Kipruto et al., 2017). By adjusting for climate 

conditions in geostatistical models of malaria, the effectiveness of control measures such as 

indoor residual spraying in sub-Saharan Africa, can be assessed relative to the impact of climate 

variability (Graves et al., 2008; Giardina et al., 2014). A spatiotemporal study in Pakistan found 

a positive relationship between temperature and malaria, whilst reductions in incidence of up 

to 25% were observed with a unit increase in coverage of long-lasting insecticidal nets (Dhimal 

et al., 2014). However, these findings were based on two separate models of the effects of 

climate and interventions on malaria incidence, which limits the ability to disentangle the joint 

impact of climate variation and intervention efforts. Further, climate variables are frequently 

considered as confounding variables with several studies failing to explicitly apportion 

variation in malaria incidence to climate (Aregawi et al., 2011; Bennett et al., 2014). There has 

been a limited assessment of how the combination of environmental factors, elimination efforts 

and socioeconomic pressures influences long-term trends in malaria, and the route towards 

elimination. Understanding how malaria elimination efforts might be hindered by climate 

variation has implications for the targeting of vector control and disease surveillance and is 

important especially given the possibility of shifting vector distributions and increasing climate 

suitability across Latin America (Pinault and Hunter, 2012).  

 

According to the Pan-American Health Organization (PAHO), Ecuador is in the malaria pre-

elimination phase, but fell short of its target to achieve elimination by 2020 (WHO, 2018b). 

Since 2016, there has been a surge of malaria cases in the country, mainly in the Amazon 

region, with more cases detected than expected for a country on the verge of elimination 

(PAHO, 2017; Sáenz et al., 2017). Malaria cases in Ecuador have been rising since 2014, 

increasing by 700% between 2014-2020 (WHO, 2021c). Recent surges of malaria in countries 

in the region, primarily Venezuela, are threatening current elimination efforts in Ecuador due 

to regional migration (Daniels, 2018; Grillet et al., 2019). In this study I seek to identify local 

threats to malaria elimination, with a view to prevent lapses in disease control efforts and the 

re-establishment of malaria in an area currently considered malaria-free, but historically is 

endemic. I use a case study of the southern province of El Oro, situated in a high-risk border 

region. Despite local elimination of malaria in 2011, El Oro recently recorded a number of 

autochthonous cases and is vulnerable to the introduction of infections due to high human 

mobility associated with its location on a strategic migration route (Jaramillo-Ochoa et al., 



 

 39 

2019). Here, I advance the existing knowledge of El Oro’s malaria elimination success (Krisher 

et al., 2016) by quantifying the associations between malaria, climate and control interventions 

in a region highly vulnerable to resurgence.  

 

2.2. Methods 

2.2.1. Study area 

El Oro province (latitude: 3°5'45.20"S - 4°11'3.06"S, longitude: -79°43'10.92"W-80°50' 

37.96"W) is located in southern Ecuador on the Pacific Coast, sharing a border with the Tumbes 

region of northern Peru (Figure 2.1A). El Oro covers 5,870 km2 and is divided into 14 cantons 

(districts), which range in size from approximately 70 km2 up to 900 km2.  Population densities 

per canton range from seven people per km2 in rural areas and up to 760 people per km2 in the 

province capital, Machala. P. vivax and P. falciparum are the main malaria-causing parasites 

in the region, with 75% of infections caused by P. vivax (WHO, 2021c). The primary mosquito 

vectors transmitting malaria in El Oro are An. albimanus and An. punctimacula (Ryan et al., 

2017).  
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Figure 2.1. Geographical location and cases of malaria in El Oro, southern Ecuador 1990-2018. 

Location of El Oro province (red), southern Ecuador in relation to neighbouring countries in South 

America; Colombia, Peru and Venezuela. B) Total number of malaria cases (grey), cases of P. 

falciparum (pink) and P. vivax malaria (blue) recorded in El Oro 1990-2018. Arrow indicates a period 

of intensive vector control implemented in El Oro between 2001-2015.  

 

During the mid-1990s public health authorities in El Oro and neighbouring Tumbes unified to 

implement an effective binational collaboration to tackle the surge in malaria transmission in 

the region (Krisher et al., 2016). El Oro has been free of locally acquired malaria infections 

since 2011, although malaria cases have been increasing elsewhere in Ecuador (WHO, 2019). 

In 2018, seven malaria cases were recorded in El Oro (6/7 were imported cases) during a period 

of elevated migration of Venezuelan citizens associated with the social and economic crisis in 
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the country (Jaramillo-Ochoa et al., 2019). El Oro’s border location, along the Pan American 

highway, a route used by many migrants, makes it particularly vulnerable to malaria 

resurgence. In addition, El Oro is one of the most hazardous coastal zones in Latin America 

and the Caribbean (Calil et al., 2017). Vulnerable populations are susceptible to the effects of 

ENSO, which intensifies annual flooding events during the rainy season (Lowe et al., 2017; 

Tauzer et al., 2019). Lapses in surveillance and control efforts alongside reductions in malaria 

funding following local elimination also means malaria resurgence is highly likely (PAHO, 

2017; Sáenz et al., 2017).  

 

2.2.2. Data sources 

Monthly counts of blood smear confirmed cases of P. falciparum and P. vivax malaria for each 

canton in El Oro, January 1990 – December 2018 (Figure 2.1B), were provided by the 

Ecuadorian Ministry of Health, where malaria is a mandatory notifiable disease. Cases were 

recorded at local clinics across El Oro and collated by the Ministry of Health. Population data, 

available for each canton, were sourced from the national census in Ecuador, from the Instituto 

Nacional de Estadística y Censos (INEC 

http://www.ecuadorencifras.gob.ec/institucional/home/) for 1990, 2001 and 2010. Data for 

2011-2018 were provided by INEC as annual population projections. Population values 

between census years (1990, 2001 and 2010) were estimated by interpolating, assuming linear 

growth to obtain annual population estimates for each canton. To estimate the proportion of 

the population in poverty per canton in El Oro, Unmet Basic Needs (UBN) were sourced from 

the 2010 census, an indicator based on measures including housing quality, education and 

access to water and sanitation. Data from 2010 were used as a spatial socioeconomic covariate 

in all the models. A complete summary of all data sources and covariates used in the modelling 

framework is provided in Table S2.1. 

 

Between 2001 and 2015, an intensive period of vector control was carried out across El Oro 

following a resurgence of malaria cases (Figure 2.1B). Monthly canton-level data for three 

control measures implemented during this period were available from the Ministry of Health 

(Figure 2.2). Monthly estimates per canton, of the number of households treated by indoor 

residual spraying (IRS) with insecticides (deltamethrin 5% concentrated suspension, 

deltamethrin 2.5%, malathion 50%, alphacypermethrin 10% concentrated suspension and 

betacipermethrin 2.5%) were collated for January 2001 – September 2013. The number of 
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neighbourhoods in El Oro that were treated with insecticide via ultra-low-volume (ULV) 

fumigation, which is performed by spraying entire neighbourhoods with 96% malathion from 

trucks, were collated for January 2004 – May 2015. Finally, the number of households space-

sprayed with 2.5% deltamethrin concentrated emulsion, using a backpack fogger that creates a 

fog insecticide to treat both inside and outside the home, were collated for January 2004 – May 

2015. For each control measure, lagged relationships with malaria incidence were tested for, 

up to three months, in order to account for delays between implementation and impact on 

malaria cases (Table S2.2). Other malaria control interventions including fumigation with DDT 

(until banned in 1996), elimination of larval habitats and bed net provisioning occurred during 

the study period, but no detailed data for control measures were available prior to 2001.  

 

 

Figure 2.2. Temporal distribution of vector control measures implemented in El Oro 2001-2015. 

Total number of A) urban blocks fogged by ULV fumigation, B) houses sprayed by indoor residual 

spraying and C) houses space sprayed, per year.  
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Monthly climate data, for temperature and precipitation, between January 1990 - December 

2018 were sourced from TerraClimate, a high-spatial resolution (~ 4km) gridded dataset that 

uses climatically aided interpolation (CAI) to produce continuous monthly estimates 

(Abatzoglou et al., 2018). CAI uses long-term average climate conditions to interpolate 

variables of interest from weather stations (Willmott and Robeson, 1995). The TerraClimate 

dataset provides a wide range of climate variables, including maximum and minimum 

temperature, vapour pressure, precipitation and windspeed. Other hydrological variables such 

as evapotranspiration and soil moisture are also provided. To obtain climate estimates for each 

canton in El Oro, TerraClimate variables (temperature and precipitation) were aggregated by 

taking mean grid cell values across each canton. Annual land cover maps at a 300 m spatial 

resolution generated by the European Space Agency (ESA) Climate Change Initiative (CCI) 

were compiled for 1990-2018 (https://www.esa-landcover-cci.org/). Land cover observations 

from ESA-CCI are interpolated between periods to provide annual estimates. For each annual 

map, the number of grid cells in each canton that were classified as urban were extracted, and 

from this the proportion of urban grid cells per canton were calculated to give a continuous 

spatiotemporal variable of urbanisation (Figure S2.2). All continuous variables were scaled by 

subtracting the variable mean from each value and dividing this by the standard deviation. This 

transformation allowed for the direct comparison between variables and enabled their relative 

importance to be determined in the model.  

 

To assess how climate suitability for malaria transmission has changed in El Oro over the time 

period (1990-2018), the number of months that had suitable temperature conditions for 

transmission of each malaria parasite were calculated. As an indicator of suitability, the lower 

temperature limits for the EIP of each parasite that are considered most suitable for 

transmission were used. For P. falciparum a lower temperature limit of 18°C was used and for 

P. vivax 15°C (Gilles, 1999; Watts et al., 2019). 

 

2.2.3. Statistical analysis 

Bayesian hierarchical models are powerful statistical models that can be used to estimate the 

marginal posterior distributions of covariates, whilst simultaneously accounting for multiple 

sources of uncertainty that can arise from disease count data. Here, spatiotemporal models were 

constructed, for each malaria parasite, P. falciparum and P. vivax, to explore the contributions 
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of climate and vector control measures to variations in monthly malaria incidence in El Oro 

between January 1990 and December 2018 (348 months).  

 

Zero-inflated negative binomial models were fitted, which account for excess zeros that cannot 

be explained by a standard negative binomial distribution (Text S2.1). Where μst is the mean 

number of malaria cases in each canton (s = 1,…,14) for each timestep (t = 1,…,348), the 

hierarchical spatiotemporal model is defined as: 

																																																									log(𝜇st) = log(𝑃st) +  log(𝜌st)   

 

Annual population estimates per 1,000 inhabitants for each canton in El Oro, log(Pst), were 

included as an offset in the model to account for canton-level differences in the annual parasite 

incidence (API). The estimated API, log(ρst) is then made up of a combination of climate 

covariates, including mean monthly minimum temperature (x3st) and precipitation (x3st) for each 

canton. Other explanatory variables included socioeconomic factors (poverty rates, x1s), level 

of urbanisation (x2st) and vector control interventions (indoor residual spraying, ULV 

fumigation and space spraying).  

 

To account for the seasonality in malaria incidence, a monthly random effect was introduced 

using a first order autoregressive prior (mt), which allows malaria in one month to depend on 

incidence in the previous month (Text S2.2). Independent random effects for each year (yt), 

1990-2018, were included to allow for additional sources of variation due to unobserved 

confounding factors such as variation in healthcare access, case reporting and malaria 

diagnostics. These independent yearly random effects were also used to capture variation due 

to other disease control measures, such as bed net usage, which were expected to be 

implemented during the study period.  

 

Spatially structured random effects, υs, were introduced into the model to allow for correlated 

heterogeneity in malaria incidence across cantons in El Oro. This spatial dependency structure 

was accounted for by assuming a Gaussian intrinsic conditional autoregressive (CAR) model 

prior distribution for the spatial effects, which takes into account the neighbourhood structure 

of the area (Besag et al., 1991). These spatially structured effects allow malaria incidence in 

one canton to depend on incidence in neighbouring cantons. Spatially unstructured random 

effects were also included in the model to allow for additional uncorrelated spatial variation 
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across cantons, ns. The spatially unstructured effects were assigned independent diffuse 

Gaussian exchangeable prior distributions (Lowe et al., 2016). Separate models were 

constructed for both P. falciparum and P. vivax malaria due to their intrinsic differences, which 

include diagnostic potential, development time inside the mosquito vector (extrinsic incubation 

period, EIP), the differential impact of vector control on transmission, infection reservoirs of 

P. vivax hypnozoites and the presence of asymptomatic cases. Owing to these differences, it 

was hypothesised that the influence of climate, along with vector control measures and other 

covariates in the model would impact P. falciparum and P. vivax malaria differently. 

 

Detailed data on vector control measures in El Oro were only available for the period January 

2001 – December 2015. Therefore, separate sub-models were formulated for each malaria 

parasite to investigate the relative impact of the control measures implemented between 2001-

2015 (see Text S2.3), herein referred to as the ‘intervention model’. The intervention model, 

fitted to data for the period 2001-2015, included the same explanatory variables and random 

effects as the ‘full’ models (fitted to data for the period 1990 – 2018) with the addition of the 

three vector control measures. Differences between the random effect structures for the full 

models and the intervention models were examined, to see how much variation in malaria due 

to the vector control measures could be accounted for by random effects in the absence of 

intervention data for the whole time period. Comparison of the random effects in this way 

allowed for testing of the influence of the inclusion of detailed intervention data on other 

parameter estimates and the model posterior distributions.   

 

Posterior distributions of model parameters were estimated using Integrated Nested Laplace 

approximations (INLA) (Rue et al., 2009). INLA provides a computationally more efficient 

alternative to Markov Chain Monte Carlo (MCMC) methods, by using numerical 

approximations of model parameters (see Text S2.2). Covariate time lags and the most 

parsimonious models were selected using the deviance information criterion (DIC) 

(Spiegelhalter et al., 2002) and the Watanabe-Akaike information criterion (WAIC) 

(Watanabe, 2010). DIC and WAIC are Bayesian methods of model comparison that trade off 

model adequacy against model complexity with lower DIC and WAIC values indicating a more 

parsimonious model. The logarithmic score was also used to assess model fit, which is based 

on the conditional predictive ordinate (CPO) leave-one-out cross-validation score, where a 

smaller value indicates a greater predictive power of the model (Gneiting and Raftery, 2007).  
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Covariates were added iteratively to the models starting with a baseline model, which included 

spatial and temporal structured and unstructured random effects. Covariates were retained if 

model fit was improved, assessed through a decrease in DIC and WAIC. The most appropriate 

temperature variable, maximum or minimum temperature was also selected using DIC and 

WAIC (Table S2.3). Various monthly time lags (from zero to three months) were tested to 

account for the lagged effect of climate factors on malaria transmission (Ikeda et al., 2017), 

including development time of mosquitoes and parasites as well as the time between malaria 

diagnosis and case recording (Table S2.3). Non-linear relationships between climate variables 

and malaria were also tested for, to account for high temperatures and elevated rainfall that 

may cause a decrease in incidence (Table S2.4). Climate variables were included as nonlinear 

terms in the models by using a random walk of order 1, using a smooth term to represent 

nonlinearity. The root mean square error (RMSE) was used to assess the extent to which models 

of malaria incidence for 2001-2015 were improved by the inclusion of each control measure. 

RMSE is a measure of the standard deviation of the model residuals, with smaller values 

indicating better model fit to the observed data.  

 

2.3. Results 

2.3.1. Variation in malaria incidence in El Oro 1990-2018 

Between 1990-2018, a total of 62,120 cases of malaria were recorded in El Oro. 54% of cases 

resulted from P. falciparum malaria infections and 46% from P. vivax. Malaria transmission in 

El Oro was historically high, reaching up to 2,000 total cases in 1999. An API of 61 cases of 

P. falciparum and 35 P. vivax cases per 1,000 people was recorded in Huaquillas canton along 

the Peruvian border in 1999. Between 1998-2002, large outbreaks of P. falciparum malaria 

occurred across El Oro province before declining to low incidence after a period of more 

intensive vector control (Figure 2.1B). A small outbreak of P. vivax malaria occurred between 

2007-2009 before malaria incidence dramatically reduced and remained at a low and stable 

level between 2010-2018. The highest malaria incidence was concentrated in the western part 

of the province, along the Peru-Ecuador border (Figure S2.3).  

 

Between 1990-2018 in El Oro, outbreaks of both P. falciparum and P. vivax malaria occurred 

concurrently (Figure 2.1B). Prior to the elimination phase (2001-2018), there was a larger 

difference in P. falciparum and P. vivax incidence in rural compared to urban areas (Figure 

2.3). In rural areas of El Oro between 1990-2000, mean incidence of P. vivax was 94% higher 
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than incidence of P. falciparum. During the elimination phase, this difference was reduced and 

in rural areas there was only a marginal difference in the incidence of P. falciparum and P. 

vivax malaria. During the elimination phase, malaria incidence in rural areas was reduced more 

(by 87% for P. falciparum and by 94% for P. vivax) than in urban areas (by 87% for P. 

falciparum and by 70% for P. vivax; Figure 2.3). Overall, between 1990-2000 and the 

elimination phase (2001-2018), P. falciparum was reduced more across El Oro (87% 

reduction), than P. vivax malaria (77% reduction). 

 

 

Figure 2.3. Rural and urban malaria in El Oro 1990-2018. Annual parasite incidence (API), per 

1,000, of P. falciparum (pink) and P. vivax incidence (blue) in A) rural and B) urbanised areas. Grey 

shading represents the period of intensive vector control in El Oro, 2001-2015. Urban areas were 

defined as cantons that had urban cover above or equal to 5% of total land cover.  

 

In spatiotemporal models of malaria incidence in El Oro between 1990-2018, urban areas were 

associated with greater incidences of P. falciparum (0.23, 95% CI 0.06 - 0.40; Figure 2.4A; 

Table S2.5), but not P. vivax malaria (0.02, 95% CI -0.10 - 0.14; Figure 2.4A; Table S2.5). To 

examine how the epidemiology of malaria in El Oro had changed during the intervention period 

2001-2015, I tested whether there was a difference in the relationship between malaria and 
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level of urbanisation in El Oro, before and after the interventions were implemented. There 

was a statistically significant interaction between level of urbanisation in El Oro and the 

intervention period (2001-2015) for P. vivax (0.37, 95% CI 0.28 – 0.45) but not P. falciparum 

malaria (-0.01, 95% CI -0.12 – 0.10). Prior to 2001, urban areas of El Oro were associated with 

lower levels of P. vivax malaria, compared to rural areas. After 2001 this relationship reversed, 

with urbanised areas associated with more P. vivax malaria. During the elimination phase 

(2001-2018) there was also a reduction in the seasonal pattern of both P. falciparum and P. 

vivax malaria in El Oro. The reduction was especially evident for P. vivax malaria incidence, 

which ceased to peak between June-July (Figure S2.5). For P. falciparum a seasonal peak in 

incidence during this period was evident between June-July, but less distinct than before 2001.  
 

 

 

Figure 2.4. Effect of environmental and socioeconomic factors on the spatiotemporal incidence of 

P. falciparum and P. vivax malaria in El Oro, Ecuador 1990-2018. A) Posterior mean and 95% 

credible intervals for minimum temperature and precipitation, included as linear terms, urbanised areas 

and poverty covariates for P. falciparum (pink) and P. vivax (blue) malaria. B) Relationships between 

P. falciparum and P. vivax relative risk, on the log scale defined as the annual parasite incidence (API) 

log(rst), and minimum temperature, lagged by three months, included in the model as a function to 

allow for non-linearities. 
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2.3.2. Climate variability and malaria incidence in El Oro 1990-2018 

Minimum temperature was the best fitting temperature variable in the full models of malaria 

incidence between 1990-2018 (Table S2.3). In the three months prior to case reporting, 

minimum temperature was an important predictor of the spatiotemporal variation in P. 

falciparum and P. vivax malaria in El Oro (Figure 2.4A). Warmer temperatures in El Oro 

between 1990-2018 were associated with increases in malaria incidence and greater increases 

in P. falciparum (0.90, 95% CI 0.60 - 1.20; Table S2.5) than P. vivax (0.57, 95% CI 0.35 - 

0.79; Table S2.5) malaria (Figure 2.4A). This result corresponds to a 146% increase in P. 

falciparum and 77% increase in P. vivax incidence with a 1°C rise in minimum temperature.  

 

Precipitation, lagged by three months for P. falciparum and one month for P. vivax were 

selected as the best time lags. Although, when included in the full model precipitation was not 

a significant driver of malaria incidence in El Oro (Figure 2.4A; Table S2.5). Introducing a 

non-linear relationship between malaria and climatic variables improved model fit by 

decreasing model DIC and RMSE for P. vivax, but not for P. falciparum malaria incidence 

(Table 2.1, Figure S2.6). No evidence was found of a non-linear relationship between malaria 

risk and minimum temperature. Higher temperatures were associated with increases in malaria 

incidence, which was stronger for P. falciparum malaria (Figure 2.4B). 
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Table 2.1. Model adequacy results for spatiotemporal models of malaria incidence in El Oro, 

Ecuador 1990-2018. Adequacy results, deviance information criterion (DIC), Watanabe-Akaike 

Information Criterion (WAIC) and cross-validated log score for full models of P. falciparum and P. 

vivax malaria (API, log(! st)), in El Oro, Ecuador 1990-2018. Covariates were added iteratively, 

including unstructured yearly effects (yt) and starting with a baseline model that included structured ("

s) and unstructured (#s) spatial random effects, and a seasonal term (mt). The proportion of urbanised 

areas was interacted with a categorical variable (x2stzi) indicating a decline in malaria incidence post 

2001. The most parsimonious models included climate variables (temperature x3st and precipitation x4st) 

as linear terms for P. falciparum and as non-linear functions for P. vivax malaria. 

Model Parasite DIC WAIC Log 

score 

Baseline spatial seasonal 

	log"ρst# = υs + νs + mt  

P. falciparum 12640.97 12646.73 1.38 

P. vivax 18745.44 18743.44 2.05 

Unstructured yearly random effects 

log"ρst#= υs + νs + mt  + yt   

P. falciparum 11947.63 11970.4 1.31 

P. vivax 17887.75 17894.17 1.96 

Socioeconomic effects 

log"ρst#= υs + νs + mt + yt + x1s  

P. falciparum 11946.75 11970.10 1.31 

P. vivax 17887.61 17893.23 1.96 

Urban effects 

log"ρst#= υs + νs + mt + yt + x1s + x2stzi  

P. falciparum 11935.89 11958.12 1.31 

P. vivax 17823.38 17831.99 1.95 

Temperature effects      

log"ρst#= υs + νs + mt + yt + x1s + x2stzi   + 𝑥3st  (linear) P. falciparum 11926.14 11941.98 1.31 

log"ρst#= υs + νs + mt + yt + x1s + x2stzi   + f(x3st)  (non-

linear) 

P. vivax 

17797.49 17806.2 1.95 

Precipitation effects      

log"ρst#= υs + νs + mt + yt + x1s + x2stzi   + 𝑥3st+ 𝑥4st (linear) P. falciparum 11924.91 11941.77 1.31 

log"ρst#= υs + νs + mt + yt + x1s + x2stzi   + f(x3st)	+ 

f(𝑥4st)	(non-linear) 

P. vivax 

17771.48 17800.51 1.95 

 

The influence of minimum temperature on the unexplained variation in P. falciparum and P. 

vivax incidence in El Oro between 1990-2018 was also investigated. To do this, the monthly 

and interannual random effects of models with and without temperature were compared to 

determine the extent to which temperature accounted for the seasonal and interannual patterns 

of malaria incidence. The monthly random effects of the model for P. falciparum incidence 

that included minimum temperature were near zero, showing that temperature accounted for 

all the seasonal variation in P. falciparum malaria in El Oro 1990-2018 (Figure 2.5A). In 
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contrast, there was a smaller reduction in the random effects for the P. vivax model with 

minimum temperature, indicating the seasonal pattern was primarily driven by other 

unmeasured factors, such as control measures (Figure 2.5B).  

 

 
Figure 2.5. Effect of minimum temperature (Tmin) on the annual cycle of malaria in El Oro, 

Ecuador 1990-2018. Difference in the monthly random effect marginal posterior distributions for 

models of A) P. falciparum and B) P. vivax malaria that include minimum temperature (orange), lagged 

by three months and models that exclude minimum temperature (grey). Relative risk, on the log scale, 

is defined as the annual parasite incidence (API), log(rst). A reduction in estimates including Tmin 

(orange) towards zero indicates that minimum temperature accounts for the seasonal variation in 

malaria incidence.  

 

In comparison to the seasonal effects, the difference in the interannual random effects of 

models with and without minimum temperature was marginal (Figure 2.6). This suggests that 

other interannual signatures as well as temperature, contribute to the interannual variability of 

malaria in El Oro. For example, for some years the proportion of variation accounted for by 

the interannual random effects decreased when minimum temperature was included in the 

models. A reduction in the value of the random effects was observed in 1998 (Figure 2.6), 

when a strong El Niño event occurred. Reductions were also particularly apparent for P. 

falciparum malaria between 2001-2004 and 2009-2011, suggesting that some additional 

variation was explained by minimum temperature. For some years there was no reduction, for 

example in 2008, when an outbreak of P. vivax malaria occurred, suggesting the outbreak was 

not driven by a climate event. 
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Figure 2.6. Effect of minimum temperature (Tmin) on the interannual variation of malaria in El 

Oro 1990-2018. Difference in the interannual random effect marginal posterior distributions for models 

of A) P. falciparum and B) P. vivax malaria that include minimum temperature (orange), lagged by 

three months, and exclude minimum temperature (grey). Relative risk, on the log scale, is defined as 

the annual parasite incidence (API), log(rst). 

 

Between 1990-2018, there was a rise in the number of months with suitable temperatures for 

P. falciparum transmission (Figure 2.7). Noticeable peaks of eight months of suitable 

temperature conditions occurred between 1997-1998 and 2014-2016. Increasingly suitable 

temperatures for P. falciparum transmission also coincided with consistently warmer seasonal 

and interannual temperatures in El Oro between 1990-2018 (Figure S2.7). In contrast, 

temperature conditions for P. vivax malaria transmission showed no increasing trend in El Oro 

between 1990-2018 (Figure 2.7), although similar peaks in suitability were observed in 1997-

1998 and in 2015-2016.  
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Figure 2.7. Suitable temperature conditions for malaria transmission in El Oro, Ecuador 1990-

2018. Mean (solid curve) number of months per year where minimum temperatures exceeded 18°C (i.e. 

considered suitable for P. falciparum malaria transmission; pink) and 15°C (i.e. considered suitable for 

P. vivax malaria transmission; blue), in El Oro 1990-2018. Dashed curve shows logistic regression line 

and grey shading represents 95% confidence intervals. Suitable temperature thresholds were chosen 

according to Watts et al. (2019). 

 

The most parsimonious models of malaria incidence in El Oro 1990-2018 included minimum 

temperature and precipitation as linear terms for P. falciparum, and as non-linear functions for 

P. vivax malaria. Models also included poverty rates, the proportion of urbanised areas 

(including an interaction with the period when the vector control measures were implemented), 

and spatial and temporal random effects (Table 2.1). Although in these models the credible 

intervals for the precipitation and poverty estimates contained zero, the addition of these 

covariates to the models slightly decreased DIC values and increased model fit for P. 

falciparum and P. vivax malaria incidence. Including climate variables (as linear terms for P. 

falciparum and as non-linear functions for P. vivax malaria) decreased the uncertainty of the 

model posterior distributions, in comparison to distributions from models that excluded climate 

variables (Figure 2.8). Model uncertainty was reduced more for P. falciparum malaria, 

especially during the large outbreaks that occurred in 1992-1994 and 1998-2002. Interestingly, 

during the later years of the study period, the model posterior distributions displayed a surge 

in malaria incidence, particularly for P. vivax between 2015-2018. 
 



 

 54 

 

Figure 2.8. Model posterior distributions with and without climate information for P. falciparum 

and P. vivax malaria in El Oro, Ecuador 1990-2018. Observed (grey solid line), posterior mean (blue 

dashed line) and 95% credible intervals (blue shading) for annual parasite incidence (API) for A) models 

that include minimum temperature, lagged by three months and precipitation, lagged by three months 

for P. falciparum models and one month for P. vivax models and B) without climate information. For 

models of P. falciparum malaria, minimum temperature and precipitation were included as linear terms. 

For P. vivax malaria models, model fit was improved when non-linear functions of minimum 

temperature and precipitation were included.  

 

2.3.3. Vector control measures and malaria incidence in El Oro 2001-2015 

To evaluate the impact of the three vector control measures (indoor residual spraying, space 

spraying and ULV fumigation) that were implemented between 2001-2015, separate sub-

models were fitted for P. falciparum and P. vivax malaria in El Oro (Text S2.3). By comparing 

the differences in the covariate parameter estimates from the full models for the entire 

timeseries (1990-2018) and the intervention models for the period 2001-2015, I found that 

posterior mean estimates were approximately similar across the different models (Figure 2.9, 

Tables 2.2 & S2.5). However, there was more uncertainty in the estimates for the 
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environmental covariates in the intervention models compared to the 1990-2018 models, 

particularly for minimum temperature (Figure 2.9; Table S2.5).  

 

 

Figure 2.9. Parameter estimates for explanatory variables in spatiotemporal models of P. 

falciparum and P. vivax malaria in El Oro, Ecuador 1990-2018 and for models 2001-2015. Posterior 

mean and 95% credible intervals for environmental, socioeconomic and malaria vector control 

covariates in models of A) P. falciparum and B) P. vivax malaria from full models 1990-2018 (dark 

blue) and intervention models 2001-2015 (green). All vector control covariates were lagged by three 

months, apart from space spraying in the P. falciparum model, which was lagged by two months. 

 

In addition, between 2001-2015 areas in El Oro with higher poverty levels were associated 

with higher incidences of P. vivax malaria (0.82, 95% CI 0.12 - 1.46; Figure 2.9; Table S2.5). 

In the intervention models, indoor residual spraying implemented in El Oro between 2001-

2015, three months prior to case detection was associated with a small decline in P. falciparum 

malaria (-0.08, 95% CI -0.14 to -0.02; Figure 2.9; Table 2.2). This corresponded to an 8% 

decrease in incidence with every additional household sprayed. In contrast, IRS was not 

associated with decreases in P. vivax malaria (Figure 2.9; Table 2.2). Space spraying was 

associated with larger decreases in P. vivax malaria incidence in the following three months (-

0.17, 95% CI -0.27 to -0.06; Figure 2.9; Table 2.2), but not P. falciparum. Space spraying every 

additional household corresponded to a 19% decrease in P. vivax incidence. ULV fumigation, 

also lagged by three months was not statistically significant (i.e., the credible intervals 

contained zero; Figure 2.9; Table 2.2).  
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Table 2.2. Parameter estimates for vector control measures in intervention models of malaria 

incidence in El Oro 2001-2015. Posterior mean estimates, lower (2.5%) and upper (97.5%) credible 

intervals (CI) for vector control measures from intervention models of P. falciparum and P. vivax 

malaria in El Oro between 2001-2015. 

Control measure Parasite Estimate LCI UCI 

Indoor residual spraying 
P. falciparum  -0.08 -0.14 -0.02 

P. vivax -0.04 -0.10 0.02 

ULV fumigation 
P. falciparum  -0.25 -0.78 0.22 

P. vivax -0.18 -0.36 0.00 

Space spraying 
P. falciparum  -0.15 -0.35 0.07 

P. vivax -0.17 -0.27 -0.06 

 

I assessed which vector control measure implemented in El Oro between 2001-2015, provided 

the most valuable information to the intervention models in explaining malaria incidence across 

El Oro. There was considerable heterogeneity in the model improvement for each control 

measure, as measured by RMSE difference (Figure 2.10). Indoor residual spraying improved 

the model (reduced RMSE) for P. falciparum malaria in the coastal northwest of El Oro, and 

in cantons along the Ecuador-Peru border, improved the model by up to 14% in Arenillas 

canton (Figure 2.10). In contrast, there was little improvement from indoor residual spraying 

in the model fit for P. vivax malaria (maximum model improvement of 2% in Atahualpa 

canton). Model improvement with space spraying for P. vivax (8%) was double the 

improvement for P. falciparum in the province capital Machala (Figure 2.10). ULV fumigation 

provided minimal or no model improvement for either malaria parasite (Figure 2.10).  
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Figure 2.10. Model improvement for vector control measures implemented in El Oro, Ecuador 

2001-2015. Model improvement (A), calculated as percentage change in root mean square error 

(RMSE), between models of P. falciparum and P. vivax malaria excluding each control measure, indoor 

residual spraying, ULV fumigation and space spraying, and models including each measure. Positive 

values (green) show where the addition of the control measure reduces RMSE, and negative values 

(purple) show where including the control measure does not improve the model. Dark grey areas show 

missing data. Map (B) shows the location of El Oro’s 14 cantons.  

 

Finally, I explored if the variation in malaria incidence in El Oro attributed to the vector control 

measures in the intervention model could be captured in the random effects structure of the full 

models. The interannual random effects of the full models (fitted to data from 1990-2018), 

which did not include intervention data, were compared to the interannual random effects of 

the intervention models (fitted to data from 2001- 2015). For some years (2001-2003 and 2008) 

there was a reduction in the magnitude of the random effects in the intervention models (Figure 

2.11). This suggests that the control measures accounted for some of the unexplained variation 

in malaria incidence in the 1990-2018 model during 2001-2015. However, a considerable 

portion of the random variation was likely due to other unmeasured factors. Between 2012-

2015 the random effects of the P. falciparum models are close to zero, indicating that variation 

in malaria incidence for those years was captured well by factors included in the model (Figure 

2.11). A similar pattern for P. vivax malaria was found, with a reduction in the value of the 

random effects for the intervention model, compared to the full model during the early years 
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of the interventions 2001-2009. This reduction indicates that the control measures influenced 

the interannual variation of malaria risk between 2001-2015.  
 

 

Figure 2.11. Interannual random effects for malaria risk in El Oro, Ecuador 1990-2018. 

Difference in the interannual random effect marginal posterior distributions for A) P. falciparum 

malaria models and B) P. vivax malaria models. Distributions from the intervention model are shown 

in green, which include intervention data. Distributions from the full model are shown in grey, which 

does not include intervention data. Relative risk, on the log scale, is defined as the annual parasite 

incidence (API), log(rst).  

 

2.4. Discussion 

For regions approaching malaria elimination and where funding and disease surveillance is 

limited, it is important to understand the drivers of malaria incidence to prevent disease re-

establishment and ensure elimination efforts are sustained. In this study, a statistical modelling 

framework was developed to disentangle the relative role of multiple factors in driving 

variation in malaria incidence, whilst accounting for unobserved heterogeneity. Minimum 

temperature was found to be a principal driver of malaria incidence in El Oro, particularly the 

seasonal variation. Vector control measures implemented also had a differential impact on the 

incidence of the two malaria parasites. After the intensive period of vector control in El Oro 

between 2001-2015, malaria incidence in rural areas declined more than malaria in urbanised 

areas, and P. vivax malaria became more dominant. Incidence of P. falciparum malaria was 

also reduced more than P. vivax malaria and relatively more P. vivax cases were reported in 

urbanised areas during this time period (2001-2015). The greater reduction observed in P. 
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falciparum malaria is expected given that malaria control measures deployed during this time 

are primarily designed for use in rural settings and target mosquito vectors that are exophagic 

such as An. albimanus, a dominant malaria vector in El Oro (Ryan et al., 2017).  

 

Indoor residual spraying (IRS) is largely effective in reducing malaria transmission in settings 

with high prevalence and when applied on a large scale, especially in African countries (Pluess 

et al., 2010; Sherrard-Smith et al., 2018). In this study, IRS was effective at reducing the 

incidence of P. falciparum malaria in El Oro between 2001-2015, but not P. vivax malaria. 

Conventional control methods are less effective in reducing transmission of P. vivax compared 

to P. falciparum malaria because of the ability of P. vivax to cause multiple relapsing malaria 

episodes after the initial infection, caused by the activation of dormant liver stages 

(hypnozoites) (Price et al., 2007). In addition, the P. vivax parasite develops more rapidly in 

the mosquito vector than P. falciparum and control methods such as IRS deployed in El Oro, 

which aim to shorten the mosquito lifespan, are less effective (Bassat et al., 2016; Mendis et 

al., 2001). Mosquito vectors can also become infected with P. vivax during a pre-symptomatic 

period, which allows for onward malaria transmission before drug treatment is initiated (White, 

2008; McCarthy et al., 2013). The rapid development of the P. vivax parasite and the presence 

of the hypnozoite stage also means that drug treatments, which are often of a longer duration 

are less effective at reducing transmission. Together these factors complicate the treatment and 

control of P. vivax, which remains a significant challenge to malaria elimination in Latin 

America (Bassat et al., 2016; Recht et al., 2017). 

 

In this study, only IRS reduced the incidence of P. falciparum malaria, and in western cantons 

of El Oro. IRS, deployed inside homes, is most effective against endophilic mosquitoes, which 

rest indoors following a blood meal (Sherrard-Smith et al., 2018). The two main malaria 

vectors in El Oro, An. albimanus and An. punctimacula, are most commonly observed biting 

and resting outdoors (Ryan et al., 2017). As a result, IRS and other conventional control 

methods may not be suitable for reducing malaria transmitted by these mosquitoes. In contrast, 

space spraying was found to be effective in reducing incidence of P. vivax malaria in El Oro 

by 19%, especially in the province capital, Machala. In contrast, no declines in P. vivax 

incidence were detected with IRS application in El Oro. Evidence for the success of space 

spraying as a malaria control measure is limited and it is currently only recommended during 

outbreaks (Pryce and Malone, 2018). In the context of this study, space spraying is possibly 
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targeting outdoor resting mosquitoes, such as An. albimanus, especially in peri-urban areas 

where housing conditions are poor and outdoor exposure is higher.  

 

The P. vivax malaria parasite is able to develop at lower temperatures than P. falciparum 

(Nikolaev, 1935; Moshkovsky, 1946; Olliaro et al., 2016; Ohm et al., 2018), enabling its 

persistence in less favourable environmental conditions, such as colder temperatures (Mendis 

et al., 2001). In this study, a stronger association between minimum temperature and P. 

falciparum malaria compared to P. vivax was detected. In addition, all the seasonal variation 

in P. falciparum malaria was explained by temperature. A greater association between 

minimum temperature and P. falciparum malaria compared to P. vivax has been previously 

identified in China (Bi et al., 2013), but to my knowledge this difference has not been 

previously quantified in Latin America. The differing climate sensitivity of malaria parasites 

is an important consideration for future elimination efforts in a world with a rapidly changing 

climate (IPCC, 2021). The greater sensitivity of P. falciparum to temperature is due to the 

greater dependence of P. falciparum transmission on the mosquito vector, which is highly 

susceptible to climate conditions. In contrast, P. vivax malaria transmission is less influenced 

by the mosquito vector and is sustained by unpredictable relapsing infections, which can be 

explained by other factors such as systemic illness in human populations (White, 2011). 

Between 2001-2015 areas in El Oro with higher levels of poverty were associated with 

increased incidence of P. vivax malaria, which suggests that socioeconomic conditions, such 

as limited access to healthcare may have influenced relapsing P. vivax infections during this 

time. However, these results should be interpreted with caution since the socioeconomic effects 

did little to improve model adequacy and in comparison to other covariates in the model, such 

as temperature, are not considered main predictors of malaria incidence in El Oro.   

 

Warmer minimum temperatures in El Oro were associated with increases in P. falciparum and 

P. vivax malaria incidence three months later. This finding is in agreement with other studies 

in Latin America that have found a similar relationship between higher temperatures and 

malaria incidence (Basurko et al., 2011; Laneri et al., 2019; Poveda et al., 2000). This 

relationship can be attributed to the physiological effects of temperature on both the mosquito 

vector and parasite that increase transmission. For example, warmer temperatures shorten the 

development time of the parasite inside the mosquito and increase mosquito larval reproduction 

(Bayoh and Lindsay, 2003; Blanford et al., 2013; Mordecai et al., 2013). There was also a trend 

of rising minimum temperatures in El Oro between 1990-2018, with an increase in the number 
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of months that have suitable minimum temperature conditions for P. falciparum malaria 

transmission. This increasing trend suggests a lengthening of the malaria transmission season. 

Large peaks in the transmission suitability of both P. falciparum and P. vivax malaria are 

evident between 1997-1998 and 2014-2016, when major El Niño events occurred. El Niño 

events bring warmer and wetter conditions to southern Ecuador, which are favourable for 

malaria transmission and have previously been suggested be the cause of an observed peak in 

cases (Krisher et al., 2016).  

 

During the later years of the study period, the model posterior distributions for both P. 

falciparum and P. vivax malaria incidence increase, despite few or zero cases being reported. 

This mismatch between observed and modelled incidence between 2015-2017 could possibly 

be due to warmer temperatures and the large El Niño event that occurred during this time. 

Increasingly suitable temperature conditions and large-scale climate events such as El Niño 

pose a real threat for the re-establishment of malaria in El Oro if cases are allowed to return, 

surveillance is not maintained, and interventions are not deployed appropriately. Moreover, 

this mismatch between observed and modelled malaria incidence could be problematic for 

decision makers and make it challenging for interpreting a rise in modelled incidence. In these 

circumstances, it is crucial to work with stakeholders and decision makers, to identify and 

discuss potential sources of this variation and how they might influence model results. For 

example, this can be achieved by performing a sensitivity analysis to identify how variables 

affect the modelled incidence. This is crucial for building trust with decision makers in the use 

of spatiotemporal models for assessing the impact of multiple factors on malaria risk. 

 

Rainfall is essential for providing suitable habitats for mosquito breeding (Parham & Michael, 

2010; Thomson et al., 2005) and is considered to be a dominant factor in driving malaria 

transmission. Studies in the Amazon and Argentina have found that rainfall was important in 

determining variation in malaria incidence (Dantur Juri et al., 2009; Olson et al., 2009). For 

example in wetland areas of the Amazon, rainfall is associated with up to 80% lower malaria 

risk as wetland habitats become too deep for mosquito breeding or aquatic habitats are washed 

out completely (Olson et al., 2009). In this study, rainfall was not a statistically significant 

explanatory variable for malaria incidence in El Oro and when added to the model only 

produced a small reduction in DIC and WAIC. This is possibly because ample larval habitat is 

already available. Two to three months prior to the peak malaria season (March-June), monthly 
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rainfall accumulation reaches 80 mm across El Oro, which is considered more suitable for 

malaria transmission (Watts et al., 2019), and up to 530 mm rainfall in the southeast of the 

province. Much of El Oro is rural with extensive mangroves and wetlands in the coastal 

northwest, which provide habitat suited to An. albimanus mosquitoes (Pinault and Hunter, 

2012). The results therefore suggest that rainfall is not a significant predictor of malaria 

incidence in El Oro.  

 

Using the random effects model structure, I was able to probe sources of unexplained variation 

in malaria incidence in El Oro 1990-2018. For example, I showed that the interannual random 

effects in the full models accounted for some of the variation due to the control measures that 

were implemented between 2001-2015. This demonstrates how the random effects model 

structure can be used to account for additional sources of variation where data may be limited. 

In addition, increases in the unexplained yearly variation in malaria were observed in 1998, 

when a large El Niño event occurred that could have elevated malaria risk in El Oro. However, 

it is expected that the climate variables included in the model will pick up some variation due 

to climatic anomalies from El Niño events. The Cenepa War, a period of political instability 

across the Ecuador-Peru border (Krisher et al., 2016) likely hindered malaria control efforts 

and case reporting during 1995, and there is evidence of reduced malaria risk during this time 

in the interannual random effects. The reduction in malaria risk is likely explained by 

diminished case reporting. In addition, the outbreak of P. vivax in 2008 was probably not driven 

by a climatic event and may instead be driven by political instability or lapses in control efforts. 

Using the random effects structure to identify additional unexplained sources of variation 

proves valuable when engaging with stakeholders, such as the Ministry of Health and allow for 

two-way dialogue between stakeholders.  

 

Despite the considerable length of the dataset, there are some study limitations to consider. In 

Ecuador a high number of malaria cases are asymptomatic. Low levels of parasitaemia, which 

act as a reservoir of transmission are difficult to diagnose (Sáenz et al., 2017). It is probable 

that many cases of P. vivax malaria were missed and not reported during the study period. In 

addition, many P. vivax cases reported between 1990-2018 are likely to be relapses from the 

same initial infection, which could mask the true climate-malaria relationship. Urban malaria 

was approximately 70% higher than incidence of malaria in rural areas of El Oro. However, 

this may be a product of migration from neighbouring countries and case importation from 
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surrounding rural areas (Gómez et al., 2017). Unfortunately, here it was not possible to quantify 

the amount of malaria variation explained by migration and border effects owing to the lack of 

detailed migration data for the study period. Due to El Oro’s location on a key migratory route, 

including for Venezuelan refugees, it is likely that human movements are influential in driving 

case reporting and subsequent malaria incidence. Likewise, outbreaks along the northern 

Peruvian border with El Oro also increase the risk of malaria transmission due to human 

movement (Krisher et al., 2016).  

 

In addition to migratory effects, the passive surveillance data used in this study also likely 

resulted in an underreporting of malaria cases. In comparison to active malaria surveillance, 

which may be able to capture more cases especially during local outbreaks, the passive 

surveillance of cases reported at local health centres, means that many cases would be missed. 

This is especially true given passive surveillance relies on self-reporting and would not detect 

those with asymptomatic infections. It is also likely that some reporting of cases occurred at 

health centres distant to the source of malaria infections.  

 

Although variation in P. falciparum and P. vivax malaria in El Oro due to socioeconomic 

influences (poverty) were included in the model, this variable only accounted for spatial effects. 

Due to the considerable length of the study period (29 years), it is expected that a great deal of 

socioeconomic development took place in El Oro over this time. Whilst in some areas of El 

Oro, such as the centre of the capital, Machala, conditions such as housing quality and water 

infrastructure improved, other more remote areas may have experienced declines in 

socioeconomic status. Despite this limitation, it is expected that the unstructured yearly effects, 

as well as urbanisation included in the models were able to account for a proportion of the 

random variation due to changing socioeconomic conditions over time. Other factors that likely 

contributed to the spatiotemporal variation in malaria incidence in El Oro that were accounted 

for using the model random effects structure include variations in case reporting and 

surveillance, as well as health seeking behaviour.  

 

The incompleteness of the intervention data used is also a limiting factor in this study. I was 

only able to evaluate the role of the three vector control measures implemented between 2001-

2015, although there were other important elimination efforts that were carried out in El Oro 

between 1990-2018. For example, the use of DDT was widely used up until 1996 and a 
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campaign to distribute insecticide-treated bed nets (ITNs) was initiated in 2004, although no 

detailed data exist for this in El Oro, or for other forms of personal protection that would have 

contributed to local elimination. However, by examining the interannual random effects of the 

models I observed a reduction in P. falciparum malaria risk between 2004-2006, which could 

be attributed to the use of ITNs. In 2005, the Ministry of Health suspended the use of 

chloroquine for treatment of P. falciparum malaria. Instead, the recommended change to 

artemisinin-based combination therapy (ACT) was adopted amid reports of drug resistance, 

which local partners suggested led to a major decline in transmission (Krisher et al., 2016). 

The introduction of ACT in Colombia and Peru around 2005 also contributed to significant 

reductions in malaria case numbers (Rodríguez et al., 2011; Quispe et al., 2016). ACT 

introduction is also likely to have contributed to local malaria elimination in El Oro as declining 

malaria risk was observed during this period, by using the model interannual random effects. 

At the same time in El Oro (2005), a new shorter treatment regime for P. vivax malaria was 

adopted to ensure patients completed their treatment course, which was also reported to have 

contributed to declining transmission (Krisher et al., 2016).  

 

In summary, a statistical modelling framework was developed to simultaneously explore 

multiple environmental and socioeconomic barriers to malaria elimination in a low-

transmission setting. I show that accounting for unobserved interannual variation using a 

random effects model structure is highly valuable for investigating malaria variation where 

detailed data is lacking. Here, I used available intervention data to explore the relative impact 

of three vector control measures on P. falciparum and P. vivax malaria in El Oro. I also provide 

an assessment of where control measures improved models of P. falciparum and P. vivax 

incidence, which will prove useful for targeting future malaria local control efforts in the 

region. I demonstrated a greater sensitivity of P. falciparum malaria to climate conditions, 

particularly warmer temperatures, which is important to consider in light of global 

environmental change and increasing climate suitability for malaria transmission (Laporta et 

al., 2015; Romanello et al., 2021). In addition, with climate warming of 1.5°C above pre-

industrial levels it is predicted that southern Ecuador will experience temperatures 2-3°C 

warmer, and precipitation could increase by up to 20% (Allen et al., 2018), providing 

conditions that are highly suitable for malaria transmission. P. vivax malaria was found to be 

less sensitive to temperature variation and exhibits more complex transmission patterns 

dependent on socioeconomic conditions, making it particularly challenging to eliminate 
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(Feachem et al., 2010). An assessment of the environmental obstacles to elimination efforts in 

Ecuador is timely and important. Lapses in control efforts should be avoided, especially as it 

becomes harder to prevent and detect cases due to limited funding for surveillance and control. 

Recently, indigenous cases of malaria have been detected in El Oro and re-introduction of 

malaria parasites along with warming temperatures threaten current elimination progress.  
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Chapter 3 – Synergies between environmental degradation and 

climate variation on malaria re-emergence in southern Venezuela 

In the previous chapter, I showed how multiple components of the risk framework can be 

accounted for in a spatiotemporal modelling framework to understand the joint influence of 

climate variation on malaria alongside the combined impact of elimination efforts (Chapter 2). 

However, the impact of climate variation on disease risk must also be understood in the context 

of how human activities are altering the environment. The way in which land-use change 

modulates the impact of climate factors on mosquito-borne diseases has received little 

attention. However, it is important to understand the synergistic links to improve targeting of 

interventions and strengthen resilience to climate change in a world increasingly dominated by 

human activities. To address this gap, I build upon the model framework developed in Chapter 

2 and explore the interactions between climate variation and environmental degradation on 

malaria. In this chapter, I investigate the extent to which the impacts of climate variation and 

environmental degradation act synergistically to determine mosquito-borne risk. To do this, I 

integrate multiple sources of environmental data including climate observations and land cover 

data in a Bayesian hierarchical mixed effects modelling framework, using a case study of rapid 

malaria re-emergence and mining activity in southern Venezuela. Understanding how both 

climate variation and environment degradation influence mosquito-borne disease risk will be 

important to guide policymakers in areas of the world vulnerable to both climate and land-use 

change.  

 

Abstract 

Environmental degradation facilitates emergence of mosquito-borne diseases such as malaria, 

through changes in the ecological landscape that increase human-vector contacts and 

proliferate vector habitats. However, the modifying effects of environmental degradation on 

climate-disease relationships have not been well explored. Here, I investigate the rapid re-

emergence of malaria in a transmission hotspot in southern Venezuela and explore the 

synergistic effects of environmental degradation, specifically mining activity, and climate 

variation on malaria risk. Monthly cases of P. falciparum and P. vivax malaria between 1996-

2016 were modelled using a Bayesian hierarchical mixed effects model framework for Bolívar 

state, southern Venezuela, where approximately 60% of national cases occur annually. Using 

remotely sensed land cover and climate observations, I quantify the variation explained by 

mining activity before exploring the modifying effects of environmental degradation on 
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climate-malaria relationships. The presence of mining activities explained almost half of the 

spatial variation in P. falciparum malaria in Bolívar. In addition, the effect of temperature on 

malaria was exacerbated in areas with mining sites, where the effect size for P. falciparum 

malaria at temperatures of 26.5°C was twice as high as the effect in low mining areas. I show 

that mining activity in southern Venezuela is associated with hotspots of malaria transmission, 

which threatens progress towards elimination in the Latin American region. Warmer 

temperatures exacerbated malaria transmission in mining areas, highlighting the need to 

consider how environmental degradation modulates climate impacts on disease risk. This is 

especially important globally, in areas subjected to rapidly rising temperatures and land-use 

change. These findings are also important for effectively targeting timely treatment programs 

and vector control activities in high-risk mining areas.  

 

3.1. Introduction 

Global increases in land-use alterations alongside climate variability and change are strongly 

implicated in driving the emergence and re-emergence of infectious diseases (Patz et al., 2003; 

Myers et al., 2013). Environmental degradation, including deforestation for agriculture or 

mining activities, can compromise human health by modifying the natural habitat of disease 

pathogens and their vectors, facilitating increases in human exposure to zoonoses. Malaria is a 

mosquito-borne disease sensitive to environmental conditions (Parham and Michael, 2010; 

Gottdenker et al., 2014; Caminade et al., 2019) that imposes widespread global disease burden, 

with an estimated 241 million cases recorded in 2020 (WHO, 2021c). The links between 

climate and malaria in endemic regions of the world are well-established, for example seasonal 

increases in rainfall and temperature are tightly linked to the malaria transmission season across 

sub-Saharan Africa (Thomson et al., 2006; Macleod et al., 2015). Warmer temperatures and 

adequate rainfall provide favourable conditions for the development of the Anopheles mosquito 

vector and Plasmodium malaria parasite (Bayoh and Lindsay, 2003; Mordecai et al., 2013; 

Beck-Johnson et al., 2017), thereby enhancing disease transmission.  

 

In addition to climate variation, land-use changes occurring over multiple spatial and temporal 

scales, can also affect malaria transmission predominantly through the alteration of Anopheles 

vector ecology (Yasuoka and Levins, 2007; Vittor et al., 2009). In the Peruvian Amazon, 

ecological fragmentation resulting from deforestation favours the primary malaria vector 

Anopheles darlingi. In deforested areas, the availability of An. darlingi breeding habitats, 
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characterized by permanent sunlit water bodies and forest edges is increased (Vittor et al., 

2009). The relationship between deforestation and malaria however is highly context-

dependent and subject to strong socioeconomic feedbacks, such as economic development, 

which can dampen the effect of increased mosquito breeding habitats on malaria risk (Baeza et 

al., 2017; MacDonald and Mordecai, 2019; Fornace et al., 2021). Understanding the impact of 

land-use change on disease risk, alongside other important factors including climate variation 

will be required to tackle compounding threats in landscapes increasingly dominated by human 

activities (IPCC, 2021; Winkler et al., 2021).  

 

Despite an understanding of how land-use change and climate variation affect malaria 

transmission independently, there has been little exploration of how land use modulates the 

impact of climate variation. Microclimatic changes associated with environmental disturbances 

including forest clearance result in warmer temperatures compared to intact forest, 

subsequently enhancing mosquito survivorship and vectorial capacity (Afrane et al., 2005, 

2006). As a result, it is expected that land-use change may alter the impact of climate variation 

on disease transmission (Lindblade et al., 2000). These modifying effects are important to 

consider in light of increasing trends in global land-use change, ongoing climate variation, in 

addition to recent plateaus in the global malaria response (WHO, 2020). An assessment of the 

interacting effects of land use and climate on malaria is of notable concern in politically 

unstable regions experiencing uncontrolled surges in disease transmission. In particular, 

Venezuela is a country which is currently experiencing an explosive epidemic growth in 

malaria cases (WHO, 2020) and is vulnerable to the effects of land-use change and climate 

variation (Grillet et al., 2021). The dramatic rise of malaria cases in Venezuela is a regional 

problem, which threatens to reverse malaria elimination progress across the Latin American 

region (Grillet et al., 2018, 2019).  

 

Malaria transmission in Venezuela is thought to be sustained by disease hotspots in southern 

areas degraded by mining activity, primarily for gold, which has expanded in the last ten years 

driven by political instability and economic collapse (Hotez et al., 2017; Grillet et al., 2021). 

Clustering of malaria cases in mining areas creates source-sink dynamics across Venezuela, 

bolstering hotspots of transmission in the south of the country (Grillet et al., 2021). High 

entomological inoculation rates (number of infective bites) and An. darlingi abundance have 

been identified in gold mining areas in Venezuela (Moreno et al., 2007; Jorge E. Moreno et al., 
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2009). The ecological changes associated with mining activity, primarily the clearance of 

vegetation and formation of standing bodies of water that create suitable habitat for malaria 

vectors, provide ideal conditions for malaria transmission and allow for high exposure of 

vulnerable migrant populations to vectors (Moreno et al., 2009; Abou Orm et al., 2017). 

Despite local studies providing evidence of how hotspots of malaria transmission are 

maintained in mining areas, malaria transmission rates in Venezuela continue to rise (WHO, 

2020), highlighting the need for a more comprehensive understanding of the spatiotemporal 

drivers of transmission.  

 

Further work has indirectly linked increasing malaria trends to gold mining activity, not only 

in Venezuela. For example, increased densities of anopheline vectors documented in illegal 

gold mining sites in French Guiana have subsequently been linked to malaria outbreaks 

(Pommier de Santi et al., 2016). Additionally, studies in Peru, Brazil and recently Guyana have 

linked gold prices (Sanchez et al., 2017; De Salazar et al., 2021) and rates of gold production 

to malaria (Duarte and Fontes, 2002; Castellanos et al., 2016), and in Colombia 32% of national 

malaria cases were found to be from gold mining areas (Castellanos et al., 2016). In Suriname, 

the mobility of mining workers was associated with an increase in the number of imported 

malaria cases (Douine et al., 2019). Despite these findings, previous research has not yet been 

able to draw a direct link between mining activity and malaria, and it is unclear to what extent 

mining activity can explain patterns of malaria incidence. Moreover, previous research has 

overlooked the impact of climate variation on malaria, considering only the impact of gold 

mining on malaria independently of other important environmental factors. How 

environmental degradation caused by mining activity interacts with and modulates the impact 

of climate on malaria risk, has received limited attention. 

 

In this study, I explore the spatiotemporal drivers of malaria re-emergence in southern 

Venezuela, investigating the influence of environmental degradation, specifically mining 

activity, and its modifying effect on climate-malaria relationships. To do this, I use 

spatiotemporal Bayesian hierarchical mixed effects models to explore monthly patterns of P. 

falciparum and P. vivax malaria incidence between 1996-2016 in Bolívar state, an important 

focal malaria hotspot in southern Venezuela (Figure 3.4A). I integrate multiple sources of 

environmental data, including remotely sensed land cover and climate observations, to address 

the lack of ground truth data. Building on previous knowledge of mining and malaria, I provide 

evidence for the link between mining activity and malaria incidence, and explicitly quantify 
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the variation explained by mining activity. Finally, I use the model to test for the interaction 

between environmental degradation, caused by mining activity and the nonlinear impacts of 

temperature and rainfall on malaria risk in Bolívar.  

 

3.2. Methods 

3.2.1. Study area 

Bolívar state (latitude: 3°36’9.82”N – 8°26’48.39”N, longitude: 67°26’22.47”W – 

60°15’45.0”W) is located in south-eastern Venezuela and shares borders with Guyana and 

Brazil. Bolívar (total area 240,500 km2) is subdivided into 11 municipalities, which are further 

divided into 46 parishes (third-level administrative units; Figure 3.1). Parishes in Bolívar vary 

considerably in geographical size from ~18 km2 (La Sabanita parish) to ~46,870 km2 

(Barceloneta parish). Most of the population resides in urban centres in the north and east, 

whilst rural and southern regions of Bolívar are sparsely populated, with limited accessibility 

and transport networks. The landscape of Bolívar is characterised by lowland forest ecosystem 

and has a tropical humid climate. Annual temperatures average 24-26°C and there are two main 

peaks in rainfall per year, the larger occurring from May to July, followed by a smaller rainfall 

peak from October to November (Grillet et al., 2014).  

 

Figure 3.1. Parishes in Bolívar state. Location of the 46 parishes in Bolívar state, Venezuela. *Dalla 

Costa parish, Sifontes municipality. †Dalla Costa parish, Caroní municipality.  
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Although malaria was eliminated in approximately 75% of Venezuelan territory in the 1960s, 

transmission of P. falciparum and P. vivax has persisted in remote southern regions of the 

country including Bolívar state, which accounted for 47% of national cases in 2017 (Grillet et 

al., 2021). More recently local malaria transmission has emerged in new areas of the country, 

including in the southwest. Recent emergence of malaria transmission has been exacerbated by 

the political, humanitarian and health crises in the country, which has had a damaging effect 

on vector control, disease surveillance, as well as access to treatment. Malaria transmission in 

Bolívar state is highly focal, with local clustering of malaria cases in Sifontes municipality in 

the northeast, which has sustained high transmission rates (Figure 3.4) (Grillet et al., 2021). 

The majority of malaria infections in Bolívar result from P. vivax (70-80%) and P. falciparum 

(20-30%) parasites and the most important malaria vectors in Bolívar are Anopheles darlingi 

and Anopheles albitarsis (Grillet et al., 2021). 

 

3.2.2. Data sources 

The number of monthly cases of P. falciparum and P. vivax malaria reported at local health 

centres and confirmed by blood smears were provided for each of the 46 parishes in Bolívar 

state from 1996-2016 by the Ministry of Health. There was no detection of mixed infections or 

whether cases were due to relapses from previous infections. Annual population estimates per 

1,000, per parish between 1996-2016 were also sourced from the Ministry of Health. Monthly 

estimates of precipitation and mean temperatures for each parish in Bolívar 1996-2016 were 

obtained from the ERA5-Land dataset, a reanalysis of the European Centre for Medium-Range 

Weather Forecasts (ECMWF) ERA5 climate model, which combines model data with 

meteorological observations to provide temporally consistent global data at a resolution of 9 

km2 (‘Copernicus Climate Change Service (C3S) (2019): C3S ERA5-Land reanalysis’, 2019). 

Monthly climate variables for each parish in Bolívar were obtained by calculating mean values 

over each polygon. Monthly climate variables (temperature and precipitation) were included 

into the models by taking the average climate conditions of the previous three months for each 

parish. This enabled the capturing of the lagged effect of climate on malaria transmission, 

which results from the time required for completion of mosquito and parasite life cycles, and 

the time between malaria diagnosis and reporting (Ikeda et al., 2017; Laneri et al., 2019; 

Chapter 2).  
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Monthly anomalies in sea-surface temperatures (SST) for the Niño 3.4 region were obtained 

from the National Oceanic and Atmospheric Administration (NOAA). Niño 3.4 is an index of 

the El Niño Southern Oscillation (ENSO), a major climatic phenomenon affecting the north 

and west coast of South America. The Niño 3.4 index has previously been linked to the 

interannual variability of malaria across Venezuela, with increased malaria epidemics 

following ENSO-related droughts (Gagnon et al., 2002; Grillet et al., 2014). The Niño 3.4 

anomalies were lagged by eight months (Figure S3.1), which is in broad agreement with 

previous studies that have associated seasonal malaria with SST anomalies in the Niño 3.4 

region with a delay of 9-12 months (Grillet et al., 2014).  

 

The location of suspected mining sites in Bolívar state (n = 2,460) were sourced from the Rede 

Amazónica de Información Socioambiental Georeferenciada (Amazon Geo-Referenced Socio-

Environmental Information Network) (Figure 3.2). This dataset is primarily comprised of sites 

for gold extraction, which is the main economic activity in the area. The dataset also contains 

sites where other resources such as bauxite, aluminium, calcite and iron are extracted. 

Locations of sites from satellite images were captured in 2009, 2017 and 2018 and some smaller 

sites identified by satellite imagery were verified by local communities. The total number of 

mining sites per parish in Bolívar were counted, which included all sites that were labelled as 

inactive under the assumption that the habitat created by land clearance for mines including 

pools of stagnant water can remain once mining pits are abandoned. The total number of mines 

per parish was used to best capture the spatial variation in mining activity across Bolívar; many 

parts of Bolívar are extremely remote with no mines and low population densities whilst others 

are hotspots of mining activity (Figure 3.2).  
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Figure 3.2. Mining activity in Venezuela. Location of mines (red) in Venezuela (n = 2,561) of which 

the majority are in Bolívar state (n = 2, 460) (inset map). Parishes in Bolívar are classified as having 

high (brown, n = 22) and low (green, n = 24) levels of mining activity. 

 

To account for healthcare accessibility in Bolívar, the travel time to health centres for each 

parish was calculated using the global friction surface generated by the Malaria Atlas Project 

(Hay and Snow, 2006) and georeferenced locations of health sites in Bolívar sourced from the 

Humanitarian Data Exchange. The friction surface captures land-based travel speed in 2015, 

based on transportation networks such as roads and railways, as well as rivers and topographic 

conditions (Weiss et al., 2018). A major advantage of this approach is that it not only captures 

distance but also cost of and willingness to travel, making it a more useful socioeconomic 

indicator than simply distance to a health facility. For each parish in Bolívar, the mean travel 

time (in hours) to the nearest health site was calculated based on the land speeds from the 

friction surface (Figure 3.3). A summary of all data used is provided in Table S3.1. 
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Figure 3.3. Healthcare accessibility in Bolívar state. A) Friction surface of land-based travel speed 

(minutes required to travel one metre) sourced from the Malaria Atlas Project, used to calculate average 

travel time to a health facility in Bolívar. Data are for a nominal year 2015. B) Locations of health sites 

in Bolívar (grey dots) and calculated average travel time (in hours) to the nearest health site for each 

parish in Bolívar. 

 

3.2.3. Detecting land-use changes in Bolívar using remotely sensed land cover data 

In order to investigate land-use changes, specifically forest loss and urbanisation, in Bolívar 

between 1996-2016 annual land cover maps of 300 m spatial resolution were obtained from 

the European Space Agency (ESA) Climate Change Initiative (CCI) (https://www.esa-

landcover-cci.org/). Annual land cover changes that occurred between 1996-2016 were 
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identified for each parish in Bolívar by first reclassifying the land cover maps. The CCI land 

cover classes were aggregated into broader categories of interest that included urban areas and 

forested areas (Table S3.2). To calculate a measure of forest loss, the number of grid cells per 

parish, that were classed as forest cover for one year and for following years were no longer 

classed as forest (i.e. a decrease in forest cover), were calculated. These values were summed 

across each parish in Bolívar to give an annual measure of cumulative forest loss between 

1996-2016 (Figure S3.2A). As this measure accounts for annual cumulative changes in forest 

cover per grid cell, it may also capture areas where forest cover had increased, for example 

where a grid cell had changed from being classified as non-forest in one year to forest in the 

following year. The same process was repeated for urban areas to obtain a yearly measure of 

urbanisation for each parish 1996-2016 (Figure S3.2B). The relationship between deforestation 

and urbanisation, with mining activity is shown in Figure S3.3, showing some parishes in 

Bolívar that experience both high levels of mining and deforestation, whilst others are hotspots 

of mining activity with little deforestation.  
 

3.2.4. Spatiotemporal modelling of P. falciparum and P. vivax malaria incidence 

To explicitly examine how mining activity influences malaria risk, as well as account for the 

interacting effects of land-use change and climate variation on malaria, spatiotemporal 

Bayesian hierarchical mixed effects models were developed. Monthly incidence of P. 

falciparum and P. vivax malaria was modelled between 1996-2016 in Bolívar. Separate models 

were constructed for each malaria parasite in order to account for differences between parasites, 

which include their extrinsic incubation period (EIP), the ability to cause relapsing infections, 

the effectiveness of vector control and sensitivity to local climate conditions (White, 2011; 

Chapter 2). A zero-inflated negative binomial model was used to allow for excess zeros present 

in parishes of Bolívar with low malaria incidence, which are not explained by a standard 

negative binomial distribution. The mean, μst number of monthly (t = 1,…,252) malaria cases 

for 21 years (1996-2016) in each parish (s = 1,…, 46) in Bolívar were modelled as: 

 

log(𝜇st)= log(𝑃st) +  log(𝜌st) 

 

The monthly annual parasite incidence, API log(!st), which is the number of malaria cases per 

1,000 individuals, was estimated for P. falciparum and P. vivax malaria for each parish in 

Bolívar 1996-2016 using a combination of land use (mining sites, deforestation, urbanisation), 
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climate (mean temperature and total precipitation) and socioeconomic covariates (healthcare 

accessibility), and spatial and temporal random effects. All covariates in the models were 

scaled by subtracting the covariate mean from each value and dividing by the covariate 

standard deviation. Population estimates 1996-2016 for each parish were included as a model 

offset, log(Pst), and to allow for modelling the API log(!st), values were transformed by first 

dividing by 12, then by 1,000. 

 

Spatiotemporal random effects were included in the model framework to account for 

unobserved confounding factors and capture unknown variability in the models. Extra 

variability could result from data limitations in the model framework, such as vector control 

and population movements. For each month in the model mt, a first-order random walk latent 

model was introduced, which allowed for malaria incidence in one month to depend on 

incidence in the previous month to capture any seasonality in malaria incidence in Bolívar. 

Exchangeable random effects were specified for each year yt, 1996-2016 in order to allow for 

additional sources of variability that could not be captured by the model covariates (Lowe et 

al., 2016).  

 

To allow for spatial correlation in malaria incidence across parishes in Bolívar, conditional 

intrinsic Gaussian autoregressive (CAR) model priors were assigned to the spatial random 

effects. Independent diffuse Gaussian exchange priors were also specified for each parish in 

order to account for any additional uncorrelated variation in malaria incidence across parishes 

in Bolívar that could not be measured (Besag et al., 1991; Lowe et al., 2016). Models were 

implemented using Integrated Nested Laplace Approximation (INLA), which in contrast to 

Markov Chain Monte Carlo methods uses numerical approximations of model parameters and 

is computationally more efficient and a faster alternative for spatiotemporal disease modelling 

(Rue et al., 2009).  

 

3.2.5. Model implementation 

Spatiotemporal models of P. falciparum and P. vivax malaria were formulated that included 

the model covariates (El Niño, mining included as a continuous variable (number of mines per 

parish), deforestation, urbanisation and healthcare accessibility and nonlinear temperature and 

rainfall). I investigated how land-use changes modify the effect of local climate conditions on 

malaria incidence in Bolívar by including an interaction term between level of mining activity, 
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included as a categorical variable (low vs. high mining) and each climate variable (temperature 

and precipitation, specified as a non-linear term (Table 3.1). Non-linear climate terms were 

specified as high temperatures above 30°C can limit mosquito and parasite survival and 

development, and large amounts of rainfall can flush out mosquito larval habitats, leading to a 

decrease in malaria transmission (Mordecai et al., 2013; Shapiro et al., 2017; Wolfarth-Couto 

et al., 2019). High levels of mining activity were classified as areas in Bolívar with >2 mines 

(the median for the dataset) and low levels as ≤2 mines (Figure 3.2).  

 

To assess the relative influence of mining activity on the re-emergence of malaria transmission 

in Bolívar, a comparison of the model spatial random effects between a model that accounted 

for mining activity across Bolívar, and a model that did not explicitly account for mining 

activity was performed. If all the spatial variation in malaria incidence in Bolívar was explained 

by the model covariates, such as deforestation and mining, then I would see no spatial random 

variation in malaria incidence, corresponding to a marginal effect of zero. Model fit was 

assessed using Bayesian methods of model comparison, the deviance information criterion 

(DIC) (Spiegelhalter et al., 2002) and Watanabe-Akaike information criterion (WAIC) 

(Watanabe, 2010). These methods trade off model adequacy against model complexity, with 

lower DIC and WAIC values indicating the more parsimonious models.  

 

3.3. Results 

3.3.1. Malaria re-emergence in southern Venezuela 

Malaria transmission in Bolívar state, southern Venezuela is highly focal (Figure 3.2A). The 

majority of malaria incidence is concentrated in the north-east of the region, in Sifontes 

municipality (Figure 3.4B). Between 1996-2016 a total of 455,461 P. vivax and 148,169 P. 

falciparum malaria cases were recorded in Bolívar state, with corresponding increases in cases 

between 1990-2016 of 2,986% and 1,609%. The unprecedented malaria increase in Bolívar 

was driven mainly by transmission patterns in Sifontes municipality (San Isidro, Dalla Costa 

and Tumeremo parishes), a known transmission hotspot (Figure 3.4C). Incidence in Sifontes 

has been rising since 2005, where 56% and 63% of total P. vivax and P. falciparum cases were 

recorded between 1996-2016. The highest annual parasite incidence (API) for P. vivax malaria 

of 3,198 cases per 1,000 was recorded in San Isidro parish in 2016 (Figure 3.4B). 1,074 cases 

per 1,000 of P. falciparum malaria was also recorded in the same year. Malaria re-emergence 

in Bolívar is heterogeneous – for some municipalities in Bolívar, such as in Sucre and Cedeño, 
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incidence has remained high since the early 2000s, whilst others have experienced a sharp 

increase in malaria incidence more recently in 2013, such as Raúl Leoni (Figure 3.4C).  

 

 
Figure 3.4. Geographic context and spatiotemporal trends of malaria incidence in Bolívar 1996-

2016. A) Location of Bolívar state (brown) in southern Venezuela. B) Annual parasite incidence per 

1,000 (API), log transformed, of P. falciparum (left) and P. vivax (right) malaria across Bolívar state, 

in 2016. Black lines show municipality boundaries. C) Annual parasite incidence, per 1,000 of P. 

falciparum (dark purple) and P. vivax (light purple) malaria in the 11 municipalities of Bolívar state 

between 1996-2016 (black lines). Inset maps show locations of each municipality in Bolívar (grey 

shading). 
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3.3.2. Environmental drivers of malaria re-emergence 

Using estimates of forest cover loss between 1996-2016 identified from remotely sensed land 

cover maps, I found that areas in Bolívar with higher malaria incidence experienced greater 

forest loss than areas with much lower incidence (Figure S3.2). For instance, 46% more forest 

loss was detected in San Isidro parish (153 km2 forest loss and API of 3,198 P. vivax cases per 

1,000 in 2016) compared to Pijiguaos parish, which reported no malaria cases in 2016 and 

lower forest loss of 83 km2. I also found extensive forest loss across Bolívar, with most 

deforestation taking place between 1997-2004 (Figure S3.2), during which peaks in malaria 

incidence were observed in Caroní, Cedeño and Heres municipalities (Figure 3.4C).  

 

Deforestation, measured as cumulative forest loss between 1996-2016, was associated with 

increases in P. vivax malaria (effect size of 1.3 cases per 1,000, 95% CI 1.2 – 1.4) but not P. 

falciparum malaria (Figure 3.5A). Positive anomalies of the Niño 3.4 index in Bolívar, which 

bring warmer temperatures to the area and drought conditions to central and eastern Bolívar 

(Figure S3.4) were associated with slight increases in both P. falciparum (1.1 cases per 1,000, 

95% CI 1.0– 1.2) and P. vivax (1.1 cases per 1,000, 95% CI 1.0 – 1.2) malaria (Figure 3.5A). 

Although there was a general trend towards decreases in malaria incidence with urban 

development, the credible intervals for both estimates of P. falciparum and P. vivax contained 

zero. I found that areas in Bolívar with limited access to healthcare, measured as the travel time 

to a nearest health facility (Figure 3.3) were associated with increased incidence of P. vivax 

(1.9 cases per 1,000, 95% CI 1.1– 3.4) but not P. falciparum malaria (Figure 3.5A).  
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Figure 3.5. Environmental and socioeconomic drivers of malaria in Bolívar. A) Effect size and 95% 

credible intervals for environmental and socioeconomic covariates in spatiotemporal models of P. 

falciparum (purple bars) and P. vivax (pink bars) malaria incidence. The model included an interaction 

term between high and low levels of mining and nonlinear functions of temperature and rainfall. The 

model also included random effects, to account for seasonality, interannual variability and spatial 

dependency structures. B) Locations of mining sites (grey dots) in Bolívar identified through remote 

sensing and total number of mining sites per parish. Dark purple-grey colours show parishes with a high 

number of mining sites whilst light purple-grey colours represent areas with few or no mining sites. 

Labels are shown for the ten parishes with the highest mining activity. C) Variation in malaria incidence 

explained by mining activity. Marginal effect (mean and 95% credible intervals of the spatial random 

effect) of log annual parasite incidence (API), of spatiotemporal models for P. falciparum (left panel) 

and P. vivax (right panel) malaria that exclude (green) and include (brown) mining activity across 

Bolívar as a covariate. A reduction in mean estimates towards zero indicates where mining activity 

explains the spatial variation in malaria incidence. Estimates are shown for the ten parishes in Bolívar 

with the highest number of mines. The model also included linear effects of mining, deforestation, 

urbanisation, El Niño, healthcare accessibility, an interaction term between high and low levels of 

mining and nonlinear functions of temperature and rainfall, as well as random effects, to account for 

seasonality, interannual variability and spatial dependency structures. 

 
DIC and WAIC values are shown in Table 3.1, for models where each covariate is added 

iteratively, starting with a baseline spatial seasonal model. Model adequacy was increased, 

observed through a reduction in DIC and WAIC values, in particular when mining was 
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accounted for (Table 3.1). Other covariates, including temperature and healthcare accessibility 

increased DIC and WAIC, suggesting that although these covariates were predictors of malaria 

in Bolívar (Figure 3.5), did not contribute to a parsimonious model.  

 

Table 3.1. Model adequacy results for spatiotemporal models of malaria incidence in Bolívar. 

Adequacy results, deviance information criterion (DIC) and Watanabe-Akaike Information Criterion 

(WAIC) for models of P. falciparum and P. vivax malaria. Covariates were added iteratively, including 

unstructured yearly effects (yt) and starting with a baseline model that included structured ("s) and 

unstructured (#s) spatial random effects, and a seasonal term (mt). Temperature f(x1st) and precipitation 

f(x2st) included as non-linear terms, El Niño x3t, deforestation x4st, mining, urbanisation x6st and 

healthcare x7s were then added. Mining was included as both a continuous variable x5s, and as a 

categorical variable in an interaction term with temperature f(x1stx5is) and precipitation f(x2stx5is). 

Model Parasite DIC WAIC 

Baseline spatial seasonal 

	log"ρst# = υs + νs + mt  

P. falciparum 41355.13 41386.08 

P. vivax  64963.70  64957.98 

Unstructured yearly random effects 

log"ρst#= υs + νs + mt  + yt   

P. falciparum  40875.26  40909.94 

P. vivax  61827.40  61878.38 

Temperature effects (non-linear) 

log"ρst#= υs + νs + mt + yt + f(x1st)  

P. falciparum  41037.14  41082.26 

P. vivax  61653.11  61687.68 

Precipitation effects (non-linear) 

log"ρst#= υs + νs + mt + yt + f(x1st) + f(x2st) 

P. falciparum  40996.61  41036.45 

P. vivax  61640.37  61677.61 

El Niño effects 

log"ρst#= υs + νs + mt + yt + f(x1st)+ f(x2st) + x3t  

P. falciparum  41346.92  41407.98 

P. vivax  61731.12  61749.56 

Deforestation effects 

log"ρst#= υs + νs + mt + yt + f(x1st) + f(x2st)+ x3t+ x4st 

P. falciparum  40964.94  41003.05 

P. vivax  64630.22  64632.58 

Mining effects P. falciparum  40681.46  40728.46 

log"ρst#= υs + νs + mt + yt + f(x1stx5is) + 

f(x2stx5is) + x3t+ x4st + x5s 

P. vivax  81853.44  82742.90 

Urbanisation effects P. falciparum  40686.93  40729.93 

log"ρst#= υs + νs + mt + yt + 

f(x1stx5is) +f(x2stx5is) + x3t+ x4st + x5s + x6st 

P. vivax  61561.05  61621.21 

Healthcare effects P. falciparum  40704.95  40741.82 

log"ρst#= υs + νs + mt + yt + 

f(x1stx5is) +f(x2stx5is) + x3t+ x4st + x5s + x6st	+ x7s 

P. vivax  61601.23  61653.46 
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3.3.3. Importance of mining activity in explaining malaria variation 

2,460 mines were identified in Bolívar, representing 96% of mines identified in the whole of 

Venezuela (Figure 3.2). Parishes in Bolívar with mining activity recorded an average 4,984 

cases of P. falciparum and 15,081 cases of P. vivax malaria between 1996-2016. Parishes with 

no mines recorded fewer malaria cases, an average of 716 P. falciparum cases and 2,541 P. 

vivax cases. In the model, I identified a strong positive association between mining activity and 

both P. falciparum and P. vivax malaria (Figure 3.5A). The effect size for mining was 2.4 cases 

per 1,000 (95% CI 1.2 – 4.5) for P. falciparum and 2.1 (95% CI 1.2 – 3.7) for P. vivax malaria.  

 

I determined the relative importance of mining activity in sustaining hotspots of malaria 

transmission in Bolívar by comparing the random effects of a model where I explicitly 

accounted for mining activity, to a model where I did not (Figure 3.5C; Figure S3.5). For 

visualization purposes, I looked at the difference in the marginal effect of these models in the 

ten parishes in Bolívar with the highest mining activity. These parishes saw a reduction in the 

value of the marginal effect (log API) towards zero when mining activity was explicitly 

accounted for, indicating that mining accounted for a large proportion of unexplained variation 

(Figure 3.5C). In San Isidro parish, northeast Bolívar, which accounted for 40% of all malaria 

cases recorded between 1996-2016, mining activity explained 51% of the additional spatial 

variation in P. falciparum malaria (Figure 3.5C). Less variation (40%) in P. vivax malaria was 

explained by mining activity in San Isidro. Overall, including mining activity in the models 

reduced the unexplained variation of P. falciparum malaria in almost half (48%) of the 46 

parishes in Bolívar and in 43% for P. vivax malaria (Figure S3.5). In a few parishes the marginal 

effect did not change considerably, such as in Roscio and El Callao. In other parishes, the 

magnitude of the marginal effect increased with the addition of mining activity, indicating that 

unobserved factors contribute to additional variation in malaria incidence. Model adequacy 

was also compared for models with and without mining (Table 3.2), where both DIC and WAIC 

values were lower for models including mining activity.  
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Table 3.2. Model adequacy results for models with and without mining. Deviance information 

criterion (DIC) and Watanabe-Akaike information criterion (WAIC) for models of P. falciparum and 

P. vivax malaria that include and exclude mining activity across Bolívar. The models included linear 

effects of mining, deforestation, urbanization, El Niño, healthcare accessibility, an interaction term 

between high and low levels of mining and nonlinear functions of temperature and rainfall, as well as 

random effects, to account for seasonality, interannual variability and spatial dependency structures. 

Parasite Model DIC WAIC 

P. falciparum 
With mining 40704.95 40741.82 

Without mining 40783.14 40810.69 

P. vivax 
With mining 61601.23 61653.46 

Without mining 61646.50 61680.51 

 

3.3.4. Interactions between climate variation and mining activity 

I explored the potential interaction between environmental degradation and climate variation 

by examining the impact of climate on malaria transmission in parishes of Bolívar with low 

and high levels of mining activity. I classified high levels of mining activity as parishes with 

>2 mines (the median for the dataset) and low levels as ≤2 mines, which resulted in 24 parishes 

classed as having ‘low’ and 22 having ‘high’ mining activity (Figure 3.2). I used non-linear 

climate and malaria associations in this model, which produced a better model fit (Table S3.3) 

than linear climate associations (Figure S3.6). Parishes in Bolívar that were classed as having 

high mining activity (>2 mines) recorded an average API in 2016 of 105 P. falciparum and 352 

P. vivax cases, compared to four P. falciparum and 37 P. vivax cases per 1,000 in areas with 

lower levels of mining activity (≤2 mines; Figure 3.6A).  

 

I assessed the impact of climate on P. falciparum and P. vivax malaria incidence in areas with 

high mining activity compared to areas with low mining by specifying an interaction term 

between level of mining and each non-linear climate variable (temperature and precipitation). 

I found that the impact of temperature on malaria transmission was exacerbated in mining 

hotspots (Figure 3.6B). In high mining areas, temperatures up to 26.5°C increased incidence of 

P. falciparum, with temperatures above 26.5°C having a negative effect on incidence. At peak 

temperatures of 26.5°C in high mining areas, the effect size for P. falciparum malaria (2.40 

cases per 1,000, 95% CI 1.79 – 3.13) was twice as high as that in low mining areas at the same 

temperature (1.07 cases per 1,000, 95% CI 0.70 – 1.58). For P. vivax malaria, the peak in 

incidence was detected at warmer temperatures of 28.1°C, with temperatures above this point 
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having only a slight negative effect on incidence (Figure 3.6B). At 28.1°C, the effect size for 

P. vivax malaria in high mining areas was 2.1 cases per 1,000 (95% CI 1.61 – 2.81), in contrast 

to a minimal effect in low mining areas. 

 

Drier conditions with reduced amounts of rainfall in Bolívar were associated with increased 

malaria incidence only in areas with low levels of mining, whereas in high mining areas the 

impact of rainfall on malaria transmission was minimal (Figure 3.6D). In low mining areas, 

dry conditions (2.55 mm rainfall per day) resulted in a peak effect size of 2.5 P. falciparum 

cases per 1,000 (95% CI 1.93 – 3.07). For P.  vivax malaria, drier conditions (1.84 mm rainfall 

per day) resulted in a lower peak in effect size of 1.6 cases per 1,000 (95% CI 1.34 – 1.87). 
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Figure 3.6. Combined impact of level of mining and climate variation on malaria risk in Bolívar. 

A) Distribution (median, upper and lower quartiles) of annual parasite incidence (API), log transformed 

in 2016 of P. falciparum and P. vivax malaria in areas of Bolívar with low (green) and high (brown) 

levels of mining. Effect size (API; solid line) and 95% credible intervals (shading) for the relationship 

between mean temperature (B) and precipitation (C) and P. falciparum and P. vivax incidence at low 

(green) and high (brown) levels of mining. The model included an interaction term between high and 

low levels of mining and nonlinear functions of temperature and rainfall. The model also included linear 

effects of mining, deforestation, urbanisation, El Niño, healthcare accessibility, as well as random 

effects, to account for seasonality, interannual variability and spatial dependency structures.  

 

3.4. Discussion  

Environmental degradation, such as that caused by gold mining activity can facilitate the spread 

of malaria, by altering the ecological landscape and increasing vector-human contacts (Moreno 

et al., 2007). Similarly, malaria transmission is also highly influenced by local climatic 
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conditions which determine mosquito and parasite development (Rogers and Randolph, 2006). 

However, how climate variation influences malaria transmission in areas also undergoing 

dramatic land-use alterations is not well understood. In this study, I explored the synergistic 

effects of climate variation and environmental degradation on malaria risk in a vulnerable 

region of southern Venezuela, demonstrating how the impact of temperature on malaria 

transmission is amplified in mining areas. I also provided an assessment of how mining activity 

influences spatial patterns of malaria, explicitly quantifying the variation explained by mining. 

Understanding how both climate variation and land-use change converge to affect 

spatiotemporal malaria risk is important to combat continued malaria surges in Venezuela 

(Grillet et al., 2021). 

 

Here, I found evidence that unregulated mining activity in southern Venezuela was an 

important determinant of the spatial variation in malaria. In malaria hotspots in Bolívar such 

as San Isidro parish in the northeast, mining activity accounted for 40% of the unexplained 

spatial variation in P. vivax malaria and 51% of the variation in P. falciparum malaria. The 

ecological changes associated with mining activity, primarily the creation of permanent man-

made shallow water bodies promotes increased survival and abundance of Anopheles vectors, 

such as An. darlingi and An. albitarsis, the most abundant vectors in Sifontes municipality, 

Bolívar (Moreno et al., 2015; Abou Orm et al., 2017). Migrant worker populations in gold 

mining areas living in camps and villages with incomplete or no walls, and the highly 

exophagic (outdoor) biting and resting behavior of vectors generates high rates of vector-

human contact (Ache et al., 2002; Moreno et al., 2007). The combination of ecological changes 

in gold mines that results in increased permanent mosquito breeding habitats and high vector-

human contact rates maintains high levels of malaria transmission observed in hotspots in 

Bolívar. Mining activity explained more variation in P. falciparum (48%) in comparison to P. 

vivax malaria (43%) and the mining effect size was greater for P. falciparum malaria. In 

contrast to P. vivax, which is characterized by multiple relapses of infection (Beeson et al., 

2015) P. falciparum malaria is more sensitive to environmental conditions (Chapter 2) and has 

been shown to be the predominant circulating parasite in mining areas (Douine et al., 2020). 

However, it is probable that high human mobility of immunologically naïve populations in 

mining areas contributes to the long-term persistence of P. vivax in mining hotspots in Bolívar.  

 

The habitat preference of An. darlingi for fragmented landscapes located at the interface 

between forested and human-dominated environments has been implicated in explaining 
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patterns of malaria transmission in frontier settlements in the Brazilian Amazon (de Castro et 

al., 2006; Barros and Honório, 2015). Greater frequency of forest fringe habitat resulting from 

deforestation, which An. darlingi has rapidly adapted to, is associated with increased levels of 

malaria transmission due to the intensified human-vector contact rates that these environments 

allow (Barros and Honório, 2015; Bourke et al., 2018; Burkett-Cadena and Vittor, 2018; 

Sallum et al., 2019). Higher abundances of both An. darlingi and An. albitarsis have been found 

in open or deforested areas in comparison to more intact forest environments (Laporta et al., 

2011, 2021), which can lead to increased vector biting rates in human-dominated landscapes 

(de Castro et al., 2006). In addition to increased rates of human exposure, deforested areas are 

associated with increased secondary growth, abundant sunlight and water pools that provide 

favourable habitat for malaria vectors such as An. darlingi and An. albitarsis (Vittor et al., 

2006; Vittor et al., 2009). Here, I found higher P. vivax but not P. falciparum malaria incidence, 

in deforested areas of Bolívar. This result contrasts with previous findings in Chapter 2, where 

I demonstrated that P. falciparum is more sensitive to environmental conditions compared to 

P. vivax malaria. A likely explanation for the positive association between deforestation and P. 

vivax in this study is the predominance of P. vivax in the region. The presence of multiple 

relapsing infections characteristic of P. vivax malaria makes a stronger association with 

deforestation more likely to be detected amongst other unobserved factors. Nonetheless, these 

results provide important evidence of the differential effect of deforestation on the two 

circulating malaria parasites in the region. Future work could explore whether other metrics of 

forest loss, including forest patch size, which has been shown to be a good predictor of malaria 

incidence in the Brazilian Amazon (Chaves et al., 2018), could account for the effect of forest 

loss on malaria in Bolívar. Although not explored here, it is also important to consider the 

interaction between deforestation and mining in Bolívar. It is expected that a proportion of the 

forest loss accounted for in this study is due to mining activity, although this is likely to be on 

a local scale. Other drivers of deforestation, such as urban development are also likely to be 

important in this context.  

 

Multiple environmental factors, including climate variation and environmental degradation, 

interact in complex socioecological landscapes to determine overall disease risk. Here, I 

explored how environmental degradation modifies the impact of climate variation on malaria 

transmission. I found evidence of a synergistic impact of climate on malaria in areas with high 

mining activity compared to areas with low levels of mining. The positive impact of 

temperature on malaria transmission was greater in mining areas of Bolívar, compared to areas 
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with minimal mining. In high mining areas, the effect size for both P. falciparum and P. vivax 

malaria was twice as high as the effect size in low mining areas. In areas with reduced forest 

cover, such as open mining pits, temperatures are typically warmer than nearby forests due to 

increased sunlight reaching the ground (Karlsson, 2000; Wolff et al., 2021). Warmer 

temperatures and an increased number of stagnant pools of water together establish favourable 

microclimatic conditions that support A. darlingi proliferation and accelerate the development 

of the Plasmodium parasite, and subsequent malaria transmission (Lindblade et al., 2000; 

Afrane et al., 2005, 2006). In contrast to the stronger relationship that was found between P. 

vivax and deforestation in Bolívar, the synergistic effect of temperature in high mining areas 

was stronger for P. falciparum malaria. Previously in Chapter 2, I showed that P. falciparum 

malaria is more sensitive to climatic conditions including temperature than P. vivax, due to the 

characteristic relapsing infections attributed to P. vivax malaria, which supports findings here.  

 

Low rainfall, as well as positive El Niño anomalies (warm and dry conditions) was associated 

with higher malaria transmission in areas of Bolívar with low levels of mining activity. An. 

darlingi is a riverine species (Rozendaal, 1992) and during transitionary periods after the rainy 

season, river levels are more stable and consequently mosquito populations are more 

established (Moreno et al., 2015). Heightened malaria during dry conditions in Bolívar 

corresponds with other studies in gold mines and in the Amazon region, which demonstrate 

low An. darlingi survival and biting during the rainy season (Vittor et al., 2006; Moreno et al., 

2007; de Barros et al., 2011). In addition, higher parous (reproductive) rates have also been 

reported during the rainfall transition period (Moreno et al., 2007). Here, I found a greater 

impact of rainfall in minimally degraded landscapes compared to areas with high levels of 

mining activity. The high abundance of mosquitoes found in mining areas and deforested 

landscapes (Moreno et al., 2007; Vittor et al., 2009), compared to forested areas (Minakawa et 

al., 2002) may buffer mosquito populations and subsequent malaria transmission from the 

effects of rainfall.  

 

Owing to the complex sociopolitical and environmental context of the study, there are several 

limitations. Firstly, whilst I could account for the presence of mining sites in Bolívar I could 

not account for the increased susceptibility among populations of mining communities that 

leads to increased risk of malaria (Recht et al., 2017). In addition, I could not account for 

population movements amongst mining communities. Mining workers are expected to be 

highly mobile (Ache et al., 2002; Douine et al., 2020) and not all malaria cases may be recorded 
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by national surveillance systems. I expect further underreporting of cases in the data due to the 

limited healthcare accessibility in mining camps, thus infections may not be reported where 

they originated (Douine et al., 2020). There was a lack of temporal variation in the mining data, 

meaning that I was unable to explore the expansion of mining activities in Bolívar. As a result 

of the worsening economic situation in Venezuela since 2014, I expect an increased influx of 

workers to mining areas, as well as an expansion of the number of areas being deforested for 

mining activities (Grillet et al., 2021). The nature of these small-scale artisanal gold mines, 

which are often established illegally means that capturing the sheer scale of their impact on 

malaria risk remains a challenge. Mining activity, particularly for gold remains a critical barrier 

to malaria elimination in the Latin American region.  

 

In the face of a rapidly changing climate, it is important to understand how environmental 

degradation, such as mining activity can modify the effect of climatic factors on infectious 

diseases. Here, I have demonstrated that rapid malaria re-emergence in a vulnerable 

socioeconomic region was driven by patterns of environmental degradation for mining, that in 

turn modulate the impact of climate on malaria transmission. Mining activity in southern 

Venezuela was strongly related to hotspots of malaria transmission and environmental 

degradation from mining activity amplified the impact of warmer temperatures on malaria 

transmission. I have shown that under conditions of socioecological change, it is important to 

consider how environmental factors interact to determine overall disease risk, utilizing Earth 

observations to make up shortfalls in ground truth data. These findings show that areas 

undergoing environmental degradation, such as mining areas are at higher risk of malaria 

transmission and require targeted malaria control activities, such as increased bed net 

provisioning and surveillance in mining communities. Furthermore, health authorities also 

need to consider that the impact of climate variation on malaria may differ amongst areas with 

different levels of environmental disturbance. Areas at risk of both environmental degradation 

and warming temperatures will require more targeted interventions and improved surveillance.  
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Chapter 4 – Climate services for health: from global observations 

to local interventions 

In Chapters 2-3, I was able to show using climate observations derived from global products 

that malaria incidence is sensitive to climate variation alongside elimination efforts and acts 

synergistically with land-use change to determine malaria risk in environmentally degraded 

areas. However, during the development of spatiotemporal models in Chapters 2-3, it became 

apparent that the choice of climate data product used to represent the hazard component could 

influence the strength of climate-disease relationships estimated from the models. In Chapters 

2-3, climate data products were selected based on their availability and accessibility, their fine-

scale spatial resolutions and temporal coverage. However, whilst global climate data products 

are readily available for investigating the impact of climate variation on mosquito-borne 

diseases (Chapters 2-3), the extent to which product choice might influence climate-disease 

associations is not well understood. To address this issue, I briefly review the use of different 

climate data products in impact models using an example of malaria and dengue in southern 

Ecuador to highlight the importance of data product consideration in a climate-informed impact 

model. I examine the extent to which choice of data product influences associations between 

climate and dengue and malaria risk. I compare five different global climate data products, 

including the two products used in Chapters 2-3, and local meteorological station data. I also 

discuss the considerations that need to be made when incorporating global climate products 

into local-level models. These include matching the spatial scales of health and climate data 

and understanding how large-scale data products are processed, such as through downscaling 

and bias correction using ground truth data. Additionally, there are challenges related to 

matching ground truth data i.e., from meteorological stations, to global climate observations. 

A greater understanding of how climate data are best incorporated into health impact models 

will improve the robustness of climate services that are developed for the health sector.  

 

Abstract 

Climate services, co-developed across health and climate sectors, enable risks posed by climate 

hazards, including mosquito-borne diseases, to be effectively managed. The rising availability 

of climate information has led to the integration of data into climate services for the health 

sector, allowing greater capacity to adapt to changing climate conditions. Despite a wealth of 

data there is no clear guidance on how to choose the most appropriate data product for health 
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impact modelling. In particular, there is a great need to provide tailored climate services that 

address local health needs, which will maximise service value in decision making processes. 

Moreover, there has been a limited exploration of how data product choice influences the 

downstream climate-based health decision. Here, I review the use of climate data products in 

applications of disease modelling and discuss the challenges related to product choice, which 

include a disconnect and lack of communication between sectors. In addition, there is often a 

mismatch between ground truth data and global climate products. Using climate-informed 

impact models for malaria and dengue in southern Ecuador, I demonstrate that different global 

climate data products have differential impacts on the modelled climate-disease associations 

and resulting disease risk. Specifically, the modelled impact of temperature on dengue relative 

risk informed by different global climate products ranged from a 40% to a 68% increase in 

cases with every 1°C rise in temperature. Additionally, models informed by different climate 

products showed diverging relationships between rainfall and malaria. Finally, I highlight the 

importance of considering data biases and co-developing climate services across sectors. These 

findings provide guidance on how global climate products should be effectively incorporated 

into health impact models.  

 

4.1. Introduction and review 
4.1.1. Climate services  

There has been a growing acknowledgement of the impacts of climate on human health and 

the urgent need to manage the risk from climate variability and change (Costello et al., 2009; 

Romanello et al., 2021). As a result, the development of and demand for climate services, 

aimed at reducing human vulnerability to climate hazards has followed (Lowe et al., 2017; 

Hewitt et al., 2021; Manyuchi et al., 2021). The World Meteorological Organization defines a 

climate service as a decision aide derived from climate information that assists individuals and 

organisations in society to make improved ex-ante decision-making (WMO, 2021). For the 

health sector, climate services can improve communication of climate-related risks to health 

professionals, identify populations that are most vulnerable, predict when and where climate-

associated health risks may be greatest, and effectively design and target interventions 

(WHO/WMO, 2016). Climate services are crucial for strengthening the resilience of the health 

sector in a world with increasing frequencies of climate extremes.  
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For a climate service to be successful, it must be based on credible scientific information, 

respond to user-requirements and result in timely and relevant information that can be easily 

incorporated into decision-making (WHO/WMO, 2016). A climate service aimed at managing 

disease risk can be informed by global climate products that supplement ground truth data 

(Figure 4.1). Earth observations, such as remotely sensed climate data, provided as global 

gridded products, often have to be combined with administrative-level epidemiological data 

such as disease cases per district, for data analysis. Alternatively, epidemiological data can also 

be provided as a series of geolocated points. Effective collaboration and communication 

between users and service providers, including climate scientists and public health 

practitioners, is also a key component of the success of a climate service. Co-production of a 

climate service, where climate and health sectors continually work together during 

development can ensure successful delivery of a service that is truly useful for health decision 

making (Stewart-Ibarra et al., 2019; Figure 4.1). Development of a climate service is a 

continually iterative process, requiring cross-collaboration at multiple points to achieve the 

final operational tool.  

 

Climate services can be applied to public health decisions at many levels, from the local to the 

global scale. For example, a nationwide predictive modelling framework developed ahead of 

the 2014 FIFA World Cup in Brazil, used seasonal climate forecasts to produce probabilistic 

dengue predictions (Lowe et al., 2014). Development of the framework drew on an 

interdisciplinary collaboration between climate scientists, epidemiologists, impact modellers, 

and the Ministry of Health. In contrast, at the regional level the Epidemic Prognosis 

Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) 

tool was developed in highland areas of Ethiopia with periodic malaria epidemics (Wimberly 

et al., 2014). EPIDEMIA was designed to enhance integration between climate information 

and epidemiological surveillance, supporting early warning system development and 

improving outbreak detection at the regional level. Operational climate services can be 

developed over multiple spatial scales to better anticipate and mitigate disease risk.  
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Figure 4.1. Cross-disciplinary processes involved in co-production of an operational climate 

service. Earth observations, such as remotely sensed climate data provided as gridded products can be 

combined with epidemiological data to investigate climate-disease relationships that form the basis of 

a climate service. The development of an operational climate service, such as a climate-sensitive 

disease-forecasting tool, results from effective cross-collaboration between the climate and health 

sectors. Source: Fletcher et al. (2021). 

 

4.1.2. Earth observations 

Earth observations are a critical component of climate services for health (WHO/WMO, 2016). 

They allow for the timely production and delivery of climate information that can be 

incorporated alongside epidemiological information to support public health decision-making. 

Earth observations are atmospheric, oceanic, or terrestrial data and information collected about 

our planet via in situ observations (Group on Earth Observations, 2021). These observations 
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include those obtained from meteorological stations, atmospheric soundings and remote 

sensing technologies such as satellite imagery. Earth observations provide a valuable and 

accessible resource for investigating the relationships between the environment and human 

health, including the impact of climate variation on mosquito-borne disease risk (Beck et al., 

2000; Goetz et al., 2000). Earth observations can provide global estimates of land surface 

temperatures, rainfall and land cover classifications such as forest cover, relevant to the 

transmission of diseases, including dengue and malaria. Earth observations are desirable for 

addressing limitations in accessing and using local ground data, particularly for regions with 

incomplete historical coverage of meteorological stations. For instance, meteorological station 

data can be complemented with satellite-derived climate products to obtain spatially 

continuous historical climate observations and fill in data gaps (Schmidt, 2005). This has 

allowed for the development of disease modelling frameworks used to inform dengue early 

warning systems (Lowe et al., 2017), the seasonal variation in malaria due to local climate to 

be determined (Chapter 2), alongside the capacity to track the health impacts of climate change 

(Watts et al., 2021). 

 

Incorporating globally derived climate information into a functioning and locally relevant 

climate service can in practice, be challenging (WHO/WMO, 2016). Challenges include the 

provision of climate information in a suitable format that can be used by the health sector. 

Climate information is often required at a variety of spatial and temporal scales to suit multiple 

needs, depending on the climate service (Hewitt et al., 2021). Tailoring global scale products, 

such as remotely sensed meteorological data, to be interoperable with data for local-level 

decision-making can be demanding for stakeholders (Figure 4.1). Health and epidemiological 

data are most often reported by health centres and hospitals to health authorities, and 

aggregated to administrative levels (i.e., districts and provinces). In order to be integrated into 

an operational climate service, the climate information needs to be collated at the appropriate 

spatial and temporal scale to match the epidemiological and health data (Schmidt, 2005; 

WHO/WMO, 2016). Coarse-resolution gridded climate observations frequently need to be 

aggregated, downscaled, and bias corrected to be used in a health impact model (van den Hurk 

et al., 2018). Processing of data over multiple spatial scales to be integrated into a climate 

service is not a straightforward task, especially in areas with diverse topography.  

 

Global climate products are easily accessible and provide users with a wide range of climatic 

variables, ranging from land surface temperatures to relative humidity and wind speed. These 
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products have good spatial and temporal coverage, enabling global comparisons across 

multiple timescales. The resolution of climate products varies from coarse (50 km) to fine-

scale resolutions up to 1 km (Table 4.1). For example, the ERA5-Land reanalysis dataset 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) covers the 

period January 1950 to near real-time. The ERA5-Land dataset provides estimates of 

meteorological variables that include mean temperature, precipitation, and humidity at a high 

spatial resolution of 9 km (0.08°) (Table 4.1). In addition, these data are available on an hourly 

timescale, enabling their use for defining climate indicators for timely disease forecasts. Fine-

scale (<0.1°/11 km) spatial climate information can be especially useful to detect microclimatic 

variations that may be masked in coarser resolution products. For example, topographical 

variation and the presence of water bodies, can be captured. In contrast to the ERA5-Land 

dataset, the Climatic Research Unit Time Series (CRU TS) provided by the University of East 

Anglia has a coarser spatial resolution of 0.5° (55 km). However, CRU TS has the advantage 

of providing monthly climate information that covers an extensive time period from January 

1901 to December 2019, which may be useful for detecting historical and long-term climate 

impacts on disease risk.  

 

Given the diversity of global climate products available and their differing spatiotemporal 

resolutions, the purpose of the climate service being developed needs to be considered carefully 

before selecting the most appropriate source of climate information. For example, a climate 

product with the ability to detect fine-scale variations in local climate may be useful for 

predicting differences in disease risk across a highly variable urban landscape. In contrast, 

long-term climate products with coarser resolution may be more suitable for detecting 

spatiotemporal associations between disease risk and climate variables over wide geographical 

areas with large administrative units (e.g., regions or provinces). For instance, when examining 

the effect of climate change on the global distribution of malaria (Caminade et al., 2014). 

Whilst the diverse range of climate data products available enables climate services to be 

tailored to multiple applications, product selection needs to be considered alongside an 

awareness of data limitations to best match the product to its intended use. 
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Table 4.1. Selected global climate datasets. Global climate datasets that can be incorporated into a climate service, providing historical timeseries of climate 

variables, including temperature, precipitation and humidity. Datasets range in the historical timeseries they provide, their spatial and temporal resolution, as 

well as the format data are provided in. These datasets also vary in the methods used to produce climate information, for example by interpolating from global 

weather observations (CRU TS) or combining multiple climate model outputs to produce spatially and temporally continuous estimates (TerraClimate). These 

differing methods have important implications for their use in a climate service.  

Source Description Temporal 
resolution 

Spatial 
resolution 

Historical 
coverage 

File format Access 

CHELSA Based on mechanistical statistical downscaling of global 
reanalysis data (ERA-Interim) or global circulation model 
output to a high resolution 

Monthly 1 km/0.008° 1980-2019 GeoTiff Karger et al., 
2017 

       

CRU TS Estimates are produced using angular-distance weighting 
interpolation of climate anomalies from extensive global 
weather station observations 

Monthly 55 km/0.5° 1901-2020 ASCII, 
NetCDF 

Harris et al., 
2020 

       

ERA5-Land A reanalysis dataset based on climate models of land surfaces Up to hourly 9 km/0.08° 1950-present GRIB, 
NetCDF 

Muñoz 
Sabater, 2019 

       
TerraClimate Uses climatically aided interpolation and combines 

climatological normals from WorldClim with time-varying 
anomalies from CRU TS v.4.0 and Japanese 55-year 
Reanalysis (JRA55)  

Monthly 4 km/0.04° 1958-2019 NetCDF Abatzoglou et 
al., 2018 

       
WorldClim  Historical estimates of climate variables downscaled from 

CRU TS v.4.03 and using WorldClim 2.1 for bias correction 
Monthly 21 km/0.2° 

 
1960-2018 GeoTiff Fick and 

Hijmans, 
2017 
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4.1.4. Methodological differences 

In addition to spatiotemporal resolution, global climate products differ in the techniques used 

to scale products, and the methods used to produce continuous estimates (Fick and Hijmans, 

2017; Abatzoglou et al., 2018; Table 4.1). As previously mentioned, epidemiological data are 

often provided at a scale (i.e. administrative units) that does not allow for easy integration with 

climate products, which are provided in global gridded formats (WHO/WMO, 2016; Harris et 

al., 2020; Figure 4.1). Accordingly, the climate information must be reconciled, or downscaled 

to approximate local climate conditions on the ground. Downscaling and bias correction of 

climate model output produces data that is more representative of on the ground conditions. In 

addition, downscaling resolves global data to common spatial units, allowing for use in health 

impact models at the local, rather than the regional or global level (Ehret et al., 2012; Navarro-

Racines et al., 2020). Common downscaling techniques include dynamical and statistical 

downscaling, which are frequently applied to climate models, such as global circulation models 

(GCM). Whilst dynamical downscaling can capture fine-scale topographical features, it is 

computationally expensive and requires a highly detailed physical understanding of the climate 

system and consequently is impractical for regional studies (Glotter et al., 2014). In contrast, 

statistical downscaling is computationally less expensive and more workable. It relies on 

statistical relationships between local climate variables and global-scale predictors, applying 

these relationships to future GCM outputs (Gutmann et al., 2012; Gebrechorkos et al., 2019). 

For example, the very high resolution (~1 km) CHELSA global climate data observations are 

obtained by statistically downscaling the output of global reanalysis data or GCM output. This 

is performed by using a downscaling algorithm that is applied directly to GCM data, providing 

a more accurate representation of temperature and precipitation in complex terrain. In addition, 

to account for small-scale variations in precipitation, the CHELSA dataset also uses wind effect 

correction to capture orographic events (Karger et al., 2020). Correcting for orographic events 

that cause fine-scale variations in climate can enable global climate data products to be more 

representative of ground-truth conditions, meaning these products are more suitable for use in 

health impact studies that are conducted at a local scale i.e. district-level and for use in areas 

with large variations in topography.  

 

Systematic deviances from local climate observations, or biases, are common in global climate 

products. Such biases are caused by a lack of horizontal resolution in the climate model 

resulting from computational constraints, simplification of physical processes, and 

inaccuracies in static data such as land cover (Met Office, 2018). Biases in climate information 
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can be addressed using bias correction techniques to ensure that the climate model output 

produces data that best reflects local climate observations (Hempel et al., 2013). Bias 

correction methods also include implicit downscaling. Downscaling not only corrects for biases 

but also downscales global climate model output from coarse to fine spatial scales. Bias 

correction methods, typically apply a ‘change factor’ derived from a global climate model to 

historical observations, which effectively captures local climate observations (Navarro-

Racines et al., 2020). Downscaling and bias correction methods differ in their robustness, 

accuracy and output resolution. Several bias correction methods can even influence the result 

of climate model simulations, such as the timing of temperature thresholds (Gohar et al., 2017). 

Bias correction methods have a number of assumptions to be aware of. For instance, biases in 

climate models are often assumed to remain constant over time and downscaling may mask 

detailed landscape properties, mis-representing features such as topography in the resulting 

climate information (Ehret et al., 2012). In addition, statistical downscaling assumes that 

relationships between local variables and global-scale predictors remains constant over time 

(Wilby and Wigley, 1997). An understanding of these methodological assumptions during the 

co-development of a climate service is vital to ensure the robustness of the resulting health 

decisions.  

 

From a public health perspective, it can be challenging to appreciate the complexities of 

downscaling and bias correction methods. In the climate science sphere there have been 

attempts to formulate frameworks, such as the VALUE framework, to validate downscaling 

methods and their robustness in climate change studies, although this is challenging (Maraun 

et al., 2015). Representing complex climate processes, understanding simplifications made and 

the resulting model limitations, is now becoming an interdisciplinary challenge for both climate 

and health scientists (Lowe et al., 2017; Stewart-Ibarra et al., 2019). Recognising and dealing 

with uncertainty in global climate information by developing frameworks that allow for 

robustness assessment, is a step forward in ensuring that climate information can more easily 

and skilfully be incorporated into an operational climate service. 
 

4.2. Exploring the impact of data product choice on dengue, malaria and climate 

relationships in southern Ecuador 

The impact of climate variation and change on mosquito-borne diseases, including malaria and 

dengue, is of growing concern (Rogers and Randolph, 2006). Mosquito-borne diseases are 
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especially sensitive to climate conditions, which influence the life history of both the pathogen 

and the vector to determine the geographical distribution, seasonality, and interannual variation 

of disease transmission (Githeko et al., 2000; Patz et al., 2003). The availability of fine-scale 

climate information has led to an improved understanding of local climate impacts on 

mosquito-borne disease risk, for example how dengue is influenced by drought conditions 

(Lowe et al., 2021). However, using climate information in a health impact model without due 

consideration and awareness of inherent data biases and downscaling methods may undermine 

the appropriateness and reliability of the resulting public health decisions. A significant 

challenge in the development of climate services is effectively identifying and conveying these 

methodological differences, their limitations, and the impact they may ultimately have on 

public health decision making. Despite the wealth of global climate products available, there 

is no consensus or guidance on the most appropriate data source to use in climate-sensitive 

disease applications. Even less is understood about the reliability of climate data sources used 

to inform public health decisions. Furthermore, there has been no direct comparison of climate 

data sources, how to select the most appropriate product that aligns with the climate service 

objective, and finally how the use of different products can impact climate-sensitive disease 

analyses. Here, I address this lack of knowledge and assess how climate product choice affects 

the outcome of climate-disease models by using temporal models of dengue and malaria as a 

case study. I also test whether the choice of grid cell influences the model estimates, to assess 

the extent to which representative climate conditions are captured in global-scale products. I 

use temporal models, adapted from previous studies (Chapter 2; Lowe et al., 2017), of dengue 

and malaria for Machala, southern Ecuador, to directly compare climate model estimates 

informed by different products. 

 

Machala is a midsized port city (population density of 760 people per km2), located in El Oro 

province, southern Ecuador. The centre of the city is highly urbanised and has undergone rapid 

unstructured development, which has created many informal slum settlements on the urban 

margins. Many of these settlements do not have adequate infrastructure and services, such as 

piped water. The city is settled on low-lying mangroves and is prone to annual flooding during 

the rainy season. The city also experiences a substantial amount of human movement, due to 

the city’s proximity to the Ecuador-Peru border, economic activities (mainly agriculture and 

aquaculture) and its location along the Pan-American highway.  
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Dengue is hyper-endemic in Machala, which is a key dengue surveillance site. Transmission 

occurs throughout the year and incidence rates are especially high compared to other locations 

in Ecuador (Stewart-Ibarra et al., 2018). Historically, Machala had high rates of malaria 

transmission before local elimination was achieved in 2011 (Krisher et al., 2016; Stewart-

Ibarra et al., 2018). In addition, Machala is threatened by the resurgence of malaria from 

neighbouring countries, the impacts of climate change and has been highlighted as one of the 

most high-risk coastal cities in Latin America and the Caribbean (Calil et al., 2017; Tauzer et 

al., 2019). Monthly clinical suspected cases of dengue between 2002-2014 and monthly cases 

of Plasmodium vivax malaria between 1990-2015 (Figure 4.2), were modelled using Bayesian 

hierarchical mixed effects models developed previously (Chapter 2; Lowe et al., 2017). Here, 

only cases of P. vivax malaria, the most common circulating parasite in both Latin America 

and Machala were modelled (Chapter 2; Battle et al., 2019).  

 

 

Figure 4.2. Cases of dengue and malaria in Machala, Ecuador. A) Monthly cases of dengue 2002-

2014 and B) P. vivax malaria cases 1990-2015, in Machala, Ecuador.  

 

Briefly, a negative binomial model for dengue (d) and a zero-inflated negative binomial model 

for malaria (m) were fitted to monthly cases reported for both diseases in the city of Machala. 
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In the model, the log of the mean number of cases of dengue (µdt) or malaria (µmt) is equal to 

the log population per 100,000 (Pit), included as an offset in the model, and the log incidence 

rate (rit) for each time point t (12 years for the dengue model and 26 years for the malaria 

model) (i). The estimated incidence rate for dengue and malaria then includes explanatory 

climate variables, xit (ii). Here, mean temperature x1t and precipitation x2t were used as climate 

variables in the model. Temperature and precipitation are most commonly studied in climate-

disease modelling, and have been found to have strong associations with malaria and dengue, 

influencing both the seasonal and interannual variability of both diseases (Laneri et al., 2019; 

Morgan et al., 2021; Chapter 2).  
 

log!μit" = log(Pit) +  log(ρit) (i) 

log!ρit"= α + βt+# γtxit + δt (ii) 

 

A monthly random effect (bt) was introduced using a first-order autoregressive model to 

account for seasonal variation in dengue and malaria, and exchangeable non-structured random 

effects for each year (dt). These random effects allow the model to account for interannual 

changes in disease risk due to unobserved factors, such as interventions and population 

mobility (Lowe et al., 2017). Posterior distributions of model parameters were estimated using 

Integrated Nested Laplace approximations (INLA), which provides a computationally quicker 

alternative for implementing models in a Bayesian statistical framework, in comparison to 

traditional Markov Chain Monte Carlo (MCMC) methods (Rue et al., 2009). Another 

advantage is that INLA allows for a quicker model comparison and selection process, which 

proves highly useful in climate-disease models where the outcome of multiple models is 

examined.  

 

Five sources of climate data were selected based on available timeseries that matched the 

malaria and dengue case data (Table 4.3). Data from these five sources were used to formulate 

malaria and dengue models, facilitating the direct comparison of model parameters informed 

by each climate dataset. Each dataset was selected to capture a range of spatial and temporal 

scales as well as bias correction and downscaling methods used to produce fine-scale climate 

data. Locally observed station data (mean temperature and precipitation) were obtained from 

the Granja Santa Ines weather station located in Machala (3°17’26” S, 79°54’5” W) to use in a 

baseline model for comparison with the five global climate datasets. These models, six dengue 
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and six malaria models, were used to assess the impact of mean temperature and precipitation 

on malaria and dengue cases in Machala and compare estimates informed by each climate 

dataset.  

 

For each of the five global climate datasets, the value for mean temperature and precipitation 

of the single grid cell where the Granja Santa Ines weather station is located was extracted. To 

capture the lagged effect of climate on dengue and malaria risk (Lowe et al., 2018; Kim et al., 

2019) the seasonal average temperature and precipitation was calculated by taking a three-

month average (0-2 months). Long-term (interannual) and seasonal trends in climate variability 

were visually compared across the five datasets and meteorological observations and parameter 

estimates for temperature and precipitation in the resulting models were also directly compared. 

To investigate the influence of grid cell choice of the global climate datasets the output of 

dengue and malaria models using different grid cells from the CRU TS data was also compared. 

Specifically, a model that used the corresponding grid cell for the Granja Santa Ines 

meteorological station, was compared with a model that used the grid cell adjacent to the 

meteorological station.  

 

4.2.1. Effect of climate data product choice on modelled estimates of dengue and malaria 

risk 

Mean temperature and precipitation observations from the five selected global sources (Table 

4.1) differed when compared with observations from the local meteorological station (Figure 

4.3A-B). In particular, mean temperatures from the CRU and ERA5-Land datasets were much 

cooler (up to 5°C lower) than those from the meteorological station. Furthermore, seasonal dips 

in temperature observed in the CHELSA dataset were much warmer than station observations 

(Figure 4.3A: Figure S4.1). The five global climate products were however able to capture 

peaks in rainfall picked up by the local meteorological observations, although up to 40 mm 

more rainfall per day was recorded by the ERA5-Land dataset (Figure 4.3B; Figure S4.1).  
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Figure 4.3. Climate observations from different global climate data datasets, and their impact on 

parameter estimates in climate-sensitive disease models. Monthly mean (A) temperature (°C) and 

(B) precipitation (mm/day) from the Granja Santa Ines meteorological station in Machala, Ecuador, and 

corresponding estimates from five global climate datasets: CHELSA timeseries, CRU TS, ERA5-Land, 

TerraClimate, and WorldClim historical timeseries. Posterior mean and 95% credible intervals of mean 

temperature (tmean) and precipitation (prcp) variables, in temporal models of monthly (C) dengue cases 

2002–2014 and (D) malaria cases 1990–2015 in Machala. Estimates in grey are for models using 

climate data from the Granja Santa Ines meteorological station and estimates in shades of pink are for 
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models using climate data from five global climate datasets: CHELSA timeseries, CRU TS, ERA5-

Land, TerraClimate, and WorldClim historical timeseries.  

 

Comparison of model parameter estimates revealed fundamental differences in the modelled 

impact of climate on disease risk (Figure 4.4C-D). All six climate models demonstrated a 

greater risk of dengue with warmer temperatures, however the estimates from the models 

differed substantially. The largest temperature estimate (0.52, 95% CI 0.32-0.73; Table S4.1) 

was from the model using the local meteorological station observations, corresponding to a 

68% increase in dengue cases with every 1°C rise in temperature. This contrasted with the 

lowest estimate, which was from the CRU model (0.33, 95% CI 0.09-0.57; Table S4.1), 

demonstrating a 40% increase in cases with every 1°C temperature increase. The temperature 

estimates from the WorldClim, TerraClimate and CHELSA models were all similar in 

magnitude to the local meteorological station model, whilst the ERA-5 Land model estimate 

was more in line with the lower estimate from the CRU model. In comparison to the dengue 

model informed by the local station data, the TerraClimate model had only a slightly larger 

DIC and WAIC, and even though the CRU temperature estimate was lower than that for the 

station model, DIC and WAIC values were only slightly larger (Table 4.2). The largest 

difference in DIC (7.4) from the local meteorological station model was for the WorldClim 

model. Based on these results, it would be recommended that either CRU or TerraClimate be 

the best climate products to explore dengue and climate relationships.  
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Table 4.2. Model adequacy results for models of dengue and malaria using climate observations 

from different global climate datasets. Deviance information criterion (DIC) and Watanabe-Akaike 

Information Criterion (WAIC) for models of dengue cases 2002-2014 and malaria cases 1990-2015 in 

Machala. 

Model Source DIC WAIC 

Dengue 

Station 1460.53 1462.01 
CHELSA 1465.30 1467.18 
CRU 1461.76 1464.07 
ERA5 1465.41 1466.83 
TerraClimate 1461.10 1463.77 
WorldClim 1467.93 1469.45 

Malaria 

Station 2072.11 2077.02 
CHELSA 2074.94 2079.83 
CRU 2088.96 2092.17 
ERA5 2051.72 2055.55 
TerraClimate 2088.53 2092.03 
WorldClim 2086.16 2089.38 

 

In contrast to the dengue models, there was a divergence in the impact of climate on malaria 

between the six models (Figure 4.2D; Table S4.2). The ERA5-Land model exhibited the 

greatest association (0.41, 95% CI 0.30 - 0.51) between malaria and temperature, with every 

1°C rise leading to a 50% increase in cases. This result was similar for the model with the local 

meteorological observations, although the other four models showed dissimilar results. The 

credible intervals for the estimates of the CHELSA, CRU and TerraClimate models contained 

zero. If these climate data products were to be used in a health impact model, this could lead 

to the conclusion that variation in temperature does not have a significant impact on malaria 

risk, even though temperature has been previously demonstrated to be an important factor 

explaining malaria seasonality and interannual variability in southern Ecuador (Chapter 2). 

Additionally, contrary to the dengue models the most parsimonious malaria model was not the 

local meteorological station model (Table 4.2). Instead, the ERA5 model had the lowest DIC 

and WAIC values and the CRU model having the highest. In this context, climate observations 

from ERA5 may be best to use to explore the effects of climate on malaria.  

 

In all the dengue models, and in the WorldClim and TerraClimate malaria models, the credible 

intervals for the precipitation estimates contained zero (Figure 4.4; Tables S4.1-2). In contrast, 

the local meteorological station, CHELSA and ERA5-Land models showed negative 

associations between rainfall and malaria risk. The ERA5-Land model showed the strongest 

negative association (-0.31, 95% CI -0.41 to -0.21; Table S4.2), corresponding to a 37% 
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reduction in malaria cases with every 1 mm of rainfall. Conversely, the CRU model showed a 

slight positive association. These contrasting findings could be due to inherent biases in the 

underlying climate data and methods used to produce monthly precipitation estimates. Stagnant 

water bodies are required for completion of the aquatic stages of mosquito development, so 

increased rainfall is expected to increase rates of malaria transmission (Krefis et al., 2011; 

Nissan et al., 2021). However, large quantities of rainfall can flush out and destroy mosquito 

habitats and in riverine areas rainfall can decrease the stability of mosquito populations 

(Tompkins and Ermert, 2013; Moreno et al., 2015). In turn, this can decrease malaria 

transmission. Whilst studies across Brazil have demonstrated increased malaria risk with 

rainfall (de Barros and Honorio, 2007), others have shown elevated risk during dry conditions 

(de Barros et al., 2011; Chapter 3). Here, the non-linear relationship between rainfall and 

malaria could explain the diverging impact of rainfall on malaria observed in the different 

climate models. 

4.2.2. Effect of grid cell choice on modelled estimates of dengue and malaria risk  

In addition to the issue of selecting the most appropriate climate product to best capture local 

climate variation on the ground, selection of the most representative grid cell is likewise of 

great importance. In this analysis, for each model I selected the data value (temperature and 

precipitation) of the grid cell corresponding to the location of the Granja Santa Ines 

meteorological station in Machala. However, in climate-disease models it is often not known 

how well the corresponding grid cell captures local on the ground climate observations. In a 

previously developed predictive dengue model for Machala, the climate conditions of the grid 

cell adjacent to the reference Granja Santa Ines meteorological station were found to be more 

representative of the local climate than the grid cell within which the station was located, 

despite this grid cell mostly encompassing ocean (Lowe et al., 2017). In this particular case, 

temperatures for the grid cell corresponding to the location of the meteorological station were 

consistently colder than the actual station observations. Consequently, ensemble climate 

forecasts for the grid cell adjacent to the meteorological station were used as a simple bias 

correction in a model to predict the evolution of the 2016 dengue season in Machala (Lowe et 

al., 2017).   

 

Here, I compared the monthly mean temperature values between 1990-2015 of the CRU grid 

cell corresponding to the location of the Granja Santa Ines meteorological station (Figure 4.4A-

B, cell 1), with the temperature values corresponding to the adjacent grid cell (Figure 4.4A-B, 
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cell 2). Temperatures recorded in the grid cell adjacent to the Granja Santa Ines station (cell 2) 

were consistently warmer than that of the corresponding grid cell (cell 1). Temperatures from 

the adjacent grid cell (cell 2) were more aligned with the local observations than the 

temperature values from the corresponding grid cell, which were not able to capture the local 

climate variation (cell 1: Figure 4.4A). Despite the difference in recorded climate values from 

each grid cell, estimates from climate models informed by each of these grid cells show 

minimal differences (Figure 4.4C). For dengue, climate models using different grid cell values 

resulted in increased dengue with temperature and no effect of rainfall. Using the grid cell 

corresponding to the location of the meteorological station (cell 1), which covers a 

topographically diverse area that includes the Andean foothills, every 1°C increase in mean 

temperature would result in a 40% rise in dengue cases. In contrast, using the adjacent grid cell 

(cell 2), which is 4°C warmer, would result in an increase of 46%. Despite such a small 

difference in model estimates, this translates into a noticeable effect on disease risk.  

 

 

Figure 4.4. Influence of grid cell choice on climate variables and model results. A) Mean 

temperatures between 1990-2015 extracted from the CRU TS dataset corresponding to the grid cell 

matching the location of the Granja Santa Ines meteorological station, Machala (solid black line, cell 

1), values for the adjacent grid cell (solid grey line, cell 2) and the observations from the meteorological 
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station (dotted red line). B) Location of the Granja Santa Ines meteorological station (black circle, cell 

1) and adjacent grid cell (black cross, cell 2). C) Mean posterior estimates and 95% credible intervals 

of climate variables (mean temperature and precipitation) in models of dengue and malaria cases in 

Machala using CRU TS climate data for the corresponding grid cell (cell 1) and the adjacent grid cell 

(cell 2).  

 

In summary, I found that modelled estimates of climate-disease associations differed 

depending on the source of data used to inform the model. The modelled impact of temperature 

on dengue relative risk informed by different global climate products ranged from a 40% to a 

68% increase in cases with every 1°C rise in temperature. A differential relationship between 

rainfall and malaria was also detected with models informed by different climate data products. 

In addition, I also highlight the issue of selecting grid cells from global climate products that 

are most representative of local climate conditions, which also had a measurable influence on 

modelled disease risk. This case exemplifies a single specific problem for one location that will 

not be universal across other applications. In some instances, models using global climate 

datasets may not align with ground truth conditions in areas with incomplete meteorological 

station coverage. Machala is located on the coast of Ecuador, with the Andes mountains 

situated to the east. Orographic events mean that the climate variables from the corresponding 

grid cell may not reflect the actual conditions in the coastal city, where the Granja Santa Ines 

meteorological station is located and the majority of mosquito-borne disease transmission 

occurs. These findings have important implications for the health sector, as public health 

practitioners face decisions about how and when to respond to climate-associated health risks. 

For example, a misinformed conclusion about climate-malaria relationships forming the basis 

of an early warning system reliant on climate predictors, may give incorrect information about 

when and where to distribute bed nets. Consequently, a misaligned health outcome could lead 

to a misallocation of precious resources. I have highlighted that simple off-the-shelf usage of 

climate products, without thorough understanding and interrogation of methodological and 

scale issues can lead to misinformed and potentially damaging conclusions.  

 

4.3. Guidance for selecting climate data products for health impact modelling 

Here, I have demonstrated that climate data product choice can influence the outcome of health 

impact models. For example, in models of dengue in Machala, Ecuador, the modelled impact 

of temperature ranged from a 40-68% increase in cases with a 1°C rise in temperature. Given 
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these findings, it is important therefore to consider more carefully the source of climate 

observations used and the implications of using one product over another.  

 

Below I list a set of recommendations that researchers can use to guide their choice of global 

climate data product in health impact modelling and the development of a climate service. I 

outline the necessary steps to take during analysis to ensure that any conclusions made are well-

informed. 

 

1. Identify multiple climate sources for analysis 

Prior to starting formal analysis for health impact modelling, at least three climate data sources 

that can be compared should be selected. To enable a representative comparison, a diverse set 

of sources that use a variety of methods to obtain spatiotemporally continuous estimates should 

be selected, i.e. global reanalysis datasets (e.g. ERA5-Land) and downscaled datasets (e.g. 

CHELSA). Where possible, local station data for the area of interest should be obtained.  

2. Consult with a climate scientist on potential sources of bias in data sources 

To understand why sources of climate observations may differ, consultation with climate 

scientists should occur. This can help identify sources of bias for example, methods used to 

produce continuous estimates, such as downscaling may contribute to bias. At this stage, 

consultation may help identify data products that are not suitable for the proposed analysis. For 

example, global products with a coarse spatial scale (~55 km) will not be suitable for fine-scale 

analysis of malaria and climate at the village level.  

3. Compare climate observations across selected sources 

Compare climate observations from different sources, which can be performed visually or by 

using summary metrics. This can help identify climate variation that data sources are able or 

not able to capture. For example, estimates from CRU may be consistently warmer than other 

sources and therefore may not be suitable for capturing temperature variation in regions where 

there is only a small difference in minimum and maximum temperatures.  

4. Consider grid cell choice 

When performing analyses for a single-point location i.e. a city, it is important to explore 

whether the climate conditions for the corresponding grid cell are adequately capturing ground-

truth climate conditions. Here, it may be useful to explore whether the corresponding grid cell 

is the most representative or if any bias-corrections needs to be made.  
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5. Compare health impact models informed by different data sources 

Formulate health impact models informed by multiple different data sources and compare the 

modelled relationship between climate and the health outcome. How does it differ and by how 

much? A model informed by local station data, if available, can be used as a baseline to make 

comparisons. The most appropriate global climate data source can then be selected based on a 

combination of model adequacy metrics (e.g. DIC), how close the modelled estimate is to that 

of a model informed by local station data and the comparison of climate observations. Final 

product selection should be made in collaboration with relevant stakeholders, including climate 

scientists.  

6. Transparent results dissemination  

When reporting results to decision makers the climate service development process should be 

as transparent as possible. For example, consider how sources of bias can be visualised or 

communicated to policymakers and if relevant, whether climate-sensitive health outcomes 

differ substantially based on the data sources used to inform the models. This will enable trust-

building between sectors and ultimately result in a climate service that is most useful for 

decision makers.  

 

4.4. Conclusions 

Earth observations and forecasts are helping to reduce society’s vulnerability to climate 

hazards, through the development of tailored climate products and services for the health 

sector. The availability of and access to global sources of climate data have allowed for gaps 

in local meteorological station data to be supplemented with global observations. Global 

climate sources can provide estimates of environmental conditions in areas lacking locally 

observed data, which is especially useful for developing early warning systems at the local 

level, or in remote areas. However, as illustrated using examples for two climate-sensitive 

diseases, dengue and malaria, the choice of climate data product can have considerable 

downstream implications for interpreting the importance of climate predictors of disease risk. 

It is therefore important to compare remotely derived data with ground truth data, if available. 

Geographical sources of local climate variation in the absence of ground truth data, must also 

be considered when choosing the most suitable climate data product. These considerations can 

be achieved through close collaboration between experts from the health and climate sectors, 

enabling local biases in climate information to be detected and corrected for before 

incorporation into health decision-making tools. Co-production of climate services is vital to 
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ensure that a climate service is truly useful for decision-making by health practitioners. A 

strong partnership and interdisciplinary collaboration between the health and climate sectors 

that facilitates appropriate climate data selection, fosters continued sharing of information and 

skills, will also contribute to a highly effective climate service. In addition, the importance of 

interdisciplinary knowledge exchange, such as that with climate scientists, is vital to ensure 

that trustworthy relationships between researchers and decision makers are maintained. An 

open and collaborative approach to designing and building climate services with increased 

transparency will secure their use in decision making processes. Improved communication of 

methods used to produce global products with guidance for users on their appropriate use and 

limitations, is needed to enhance the uptake of these products and avoid misuse. 
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Chapter 5 – Differing taxonomic responses of mosquito vectors to 

anthropogenic land-use change in Latin America and the 

Caribbean 
Up to now, this thesis has used climate variation to inform the underlying hazard component 

(the mosquito vector) of the disease risk framework. Previously, I showed how climate 

variation jointly influences malaria risk relative to the impact of elimination efforts (Chapter 

2), how the impact of climate on disease is amplified in environmentally degraded areas 

(Chapter 3) and when accounting for the hazard component using climate data, product choice 

needs to be considered in impact models (Chapter 4). However, mosquito vectors are also 

highly influenced by land-use change although much less is understood about the mechanisms 

underlying the relationship between land-use change and vector ecology. An understanding of 

how mosquito vectors of disease are affected by anthropogenic change is vital for informing 

future assessments of disease risk and to prepare effective risk-reduction strategies, such as 

targeted vector control. In this final chapter, I expand focus to the Latin American and 

Caribbean region (LAC). I assess the response of Aedes mosquitoes, which transmit dengue 

and other arboviruses including yellow fever, chikungunya and Zika, and Anopheles 

mosquitoes, which transmit malaria, to anthropogenic land-use change. By compiling a dataset 

of published mosquito abundance records in LAC, across multiple land-use types and using a 

comparative space-for-time approach, I test for differing taxonomic responses in mosquito 

abundance to land-use change whilst also testing for reductions in species richness in human-

dominated landscapes. This final chapter draws on ecological knowledge to inform how the 

hazard component of the risk framework (the mosquito vector) is affected by land-use change, 

building on knowledge of how mosquito-borne diseases studied in Chapters 2-4 are affected 

by multiple components of environmental change.  

 

Abstract 

Anthropogenic land-use change such as agricultural expansion and urban development, 

dramatically transforms natural environments. These modifications can affect the emergence 

and re-emergence of mosquito-borne diseases, including dengue and malaria, by creating more 

favourable habitat conditions for vectors. However, there has been a limited assessment of how 

mosquito vectors respond to land-use changes, specifically if responses differ among species 

and are consistent across geographic regions. An improved understanding of vector responses 
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to anthropogenic land use is crucial for developing optimal control strategies. Here, I compile 

an extensive dataset of 10,004 Aedes and Anopheles mosquito abundance records across 

multiple land-use types at 632 sites in Latin America and the Caribbean. Using a Bayesian 

mixed effects modelling framework to account for between-study differences such as sampling 

methodologies and mosquito developmental stages sampled, I examine how mosquito 

biodiversity, specifically abundance and species richness, varies across different land-use types 

including minimally disturbed primary vegetation, and managed and urban sites. I found strong 

declines in species richness of Aedes (-26%) and Anopheles (-37%) mosquitoes in urban 

environments, in addition to diverging species-specific abundance responses. Additionally, 

abundance of the arbovirus vector Ae. aegypti was higher in managed landscapes, as was Ae. 

albopictus abundance in primary and secondary vegetation sites with higher use intensity. 

Combined with increasing climate suitability for these vectors, these results demonstrate a 

major threat of mosquito-borne disease risk in anthropogenic environments. An important 

secondary malaria vector, An. albitarsis, increased in abundance in managed landscapes, 

suggesting agricultural land-use practices favouring secondary vectors pose a substantial risk 

of disease emergence in Latin America and the Caribbean. When the mosquito biodiversity 

dataset was combined with fine-scale remotely sensed deforestation data, I found a 31% 

increase in abundance of the dominant Amazonian malaria vector, An. darlingi with every 1% 

increase in forest loss. These results suggest that overall biodiversity loss from anthropogenic 

disturbance can result in the emergence of synanthropic mosquito vector species. The 

identification of diverging mosquito responses to land-use change has implications for 

designing species-specific control programs, as well as informing predictions on how 

mosquito-borne diseases are likely to be shaped in human-dominated landscapes.  

 

5.1. Introduction 

The global land system is facing mounting pressure from anthropogenic activities, including 

the conversion of natural environments for agricultural practices and urban development (Popp 

et al., 2017). Globally, 75% of land surface area has been transformed by anthropogenic 

activities, with global net loss of forest cover and expansion of global agriculture 

predominating (Arneth et al., 2019; Winkler et al., 2021). Disruption of ecosystems has 

devastating consequences for global biodiversity (Newbold et al., 2015) and similarly 

influences the incidence and emergence of infectious diseases (Daszak et al., 2001; Keesing et 

al., 2010; Gottdenker et al., 2014; Gibb et al., 2020).  
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Mosquito-borne diseases are particularly sensitive to ecological alterations resulting from land-

use transformations, including changes in vector habitat availability and vector-human contact 

rates (Burkett-Cadena and Vittor, 2018; Chapter 3). However, knowledge of how 

anthropogenic land-use change alters vector biodiversity and consequently influences 

mosquito-borne disease is lacking. Whilst there is an understanding of how trends in global 

terrestrial biodiversity (Newbold et al., 2015) and zoonotic hosts respond to land-use change 

(Gibb et al., 2020), as well as other functional taxa such as pollinators (Millard et al., 2021), 

there has been limited assessment of how mosquitoes are responding and will respond to 

anthropogenic modifications. Climate change is increasing the climate suitability for some 

notable mosquitoes such as the arboviral vectors Aedes aegypti and Ae. albopictus (Romanello 

et al., 2021) and malaria epidemics are shifting to regions that previously saw little to no 

transmission (Siraj et al., 2014). An improved understanding of how important mosquito 

vectors of disease are impacted by land-use alterations is essential given current trends in global 

land-use change and intensifying climatic changes (IPCC, 2021), and the interactions between 

these two factors (Chapter 3). 

 

Variation in climate conditions and shifts in mosquito habitat availability with local 

environmental alterations have revealed important mechanisms by which disease risk is 

influenced by land use. For example, environmental degradation caused by mining activity can 

facilitate increases in malaria risk by amplifying the effect of temperature on transmission 

(Chapter 3). Furthermore, ecological changes caused by deforestation facilitate increased 

abundance and biting of the principal malaria vector in the Amazon, Anopheles darlingi (Vittor 

et al., 2006, 2009). At intermediate levels of deforestation in agricultural frontier regions, 

greater amounts of forest edge habitat provide suitable conditions for the proliferation of An. 

darlingi mosquitoes. Subsequently this elevates malaria risk in the early stages of land-use 

alterations (Barros et al., 2011; Laporta et al., 2021; Oliveira et al., 2021). In addition to 

facilitating increases in habitat suitability for mosquito vectors, land-use change such as 

agricultural development also increases human exposure to pathogen-carrying mosquitoes (de 

Castro et al., 2006). These local-scale studies have demonstrated how land-use change can alter 

disease risk through modification of vector habitats. However, there is limited understanding 

of whether consistent mosquito responses can be detected at regional scales. An assessment of 

how important vectors respond to land-use change and ecological alterations such as 

deforestation, will be useful for designing control strategies that can be implemented at scale.  
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Given the distinct life-history characteristics and diversity of mosquito species (over 3,600 

recognised Culicidae species (Harbach, 2020)), it is likely that species will respond differently 

to land-use change. Urbanisation negatively impacts terrestrial biodiversity (Newbold et al., 

2015) and allows for synanthropic mosquitoes, which live in or near human dwellings, to 

persist in novel environments (Wilke et al., 2021). This is due to the diverse range of aquatic 

habitats for mosquito breeding in urban environments, such as water-storage containers and 

drains (Paploski et al., 2016). Increased provisioning of vector habitats in addition to the 

availability of human hosts have enabled synanthropic mosquitoes, such as the dengue vector 

Ae. aegypti and malaria vector An. stephensi to flourish in urban environments (de Carvalho et 

al., 2017; Wilke et al., 2019, 2020; Sinka et al., 2020). In contrast, mosquito biodiversity is 

higher in rural, forested landscapes (Loaiza et al., 2017; Câmara et al., 2020), with some 

mosquitoes exhibiting a preference for preserved forested habitats (Abella-Medrano et al., 

2015; Reiskind et al., 2017). Despite this understanding of species’ habitat preferences, there 

is a limited understanding of whether mosquito species respond differentially to anthropogenic 

land-use change. In addition, several local-level studies have provided an increased 

mechanistic understanding of how habitat alterations such as deforestation favour important 

disease vectors (Vittor et al., 2009). However, there has been limited assessment of whether 

consistent responses to deforestation can be detected regionally, and how the nature of these 

responses compares among mosquito species. Such assessments will be useful for developing 

effective mosquito control strategies that can be tailored to species behaviour, such as feeding 

and resting patterns. This is important for assessing disease risk posed by a wide range of 

competent vectors and developing interventions that can be targeted at certain mosquito 

species.  

 

Mosquito-borne diseases are a dynamic public health threat for the Latin American and 

Caribbean region (LAC), influenced by both climate variation and patterns of environmental 

degradation (Chapters 2-3). Diversity of mosquito genera is high in Latin America (Foley et 

al., 2007), with Aedes and Anopheles mosquitoes imposing a high burden of disease. 

Approximately five million dengue cases were reported in LAC in 2020 (Du et al., 2021), 145 

million people in the Americas are at risk of malaria and cases of yellow fever occur in 13 

countries across the region, including Peru, Bolivia and Brazil (PAHO, 2021). Malaria burden 

is disproportionately high in Amazonian countries, driven by agricultural development that 

creates disease hotspots at the interface between human-dominated and natural landscapes 

(Souza et al., 2019). Globally, the Amazon rainforest is the largest reservoir of arboviruses 
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(Vasconcelos et al., 2001) and is subject to intensifying human pressures, including the 

development of land for pasture and deforestation for soybean production (Macedo et al., 2012; 

Winkler et al., 2021). Alterations to natural landscapes have resulted in the rapid expansion of 

mosquito-borne diseases, including dengue and yellow fever (Wilcox and Ellis, 2006; Lowe et 

al., 2020), and the rapid re-emergence of malaria in Venezuela (Chapter 3). Disease expansion 

has been linked to a combination of interacting factors, including global trade and travel, 

climate variation, as well as increases in habitat suitability resulting from human encroachment 

into relatively pristine environments (Mayer et al., 2017; Chapter 3). The increasing intensity 

of extreme weather events and warming temperatures as a result of climate change (IPCC, 

2021), which may already be facilitating adaptive behaviour of key mosquito vectors in human-

dominated landscapes, poses further disease risk (Chadee and Martinez, 2016).  

 

Understanding how anthropogenic land-use change mediates mosquito-borne disease risk 

underscores the need to develop highly effective vector control programs. However, there is a 

limited understanding of mosquito species responses to land-use change. A unified assessment 

of how mosquito vectors respond to land-use change, identifying variation in species responses 

is vital. Here, I provide a regional framework for assessing the response of Aedes and 

Anopheles mosquitoes to land-use change across Latin America and the Caribbean. 

Specifically, I test to what extent taxonomic responses in mosquito abundance to anthropogenic 

land-use change differ and if species richness in human-dominated landscapes is reduced, in 

comparison to areas not altered by human activity. Additionally, I investigate differences in 

mosquito species responses to deforestation, harmonising findings from local-level studies. I 

do this by employing a systematic data search strategy to compile an extensive dataset of 

mosquito abundance records before using a comparative space-for-time approach, in which 

sites with varying levels of disturbance are in land-use changes are used as a proxy for 

ecological timeseries, to identify taxonomic responses to anthropogenic land-use change.  

 

5.2. Methods 

5.2.1. Systematic data search strategy 

A systematic review approach was employed to find and extract relevant data on mosquito 

biodiversity across multiple land-use types in LAC. I focused on mosquitoes of the genus 

Anopheles and Aedes due to the high burden of disease these vectors have in the region and the 

large diversity of mosquito genera, enabling the capture of broad-scale mosquito community 
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trends. A systematic literature search was performed on 5th July 2021 across three databases 

(Medline, Scopus, and Web of Science; Figure S5.1). Country- and region-specific search 

terms were used to capture studies within geographical boundaries of LAC, alongside a 

combination of mosquito-specific e.g., Aedes and Anopheles, and land use specific search terms 

e.g., deforestation and agriculture (complete search term details are provided in Table S5.1). 

Results from each database search were combined and duplicates removed. Studies were firstly 

screened by title and abstract to remove irrelevant studies such as epidemiological interventions 

and laboratory-based analyses. The full texts of potentially relevant studies were then reviewed 

for inclusion. To qualify for inclusion, studies had to contain available abundance data (either 

in the main text or supplementary) for one or more Anopheles or Aedes mosquito species and 

include samples across multiple land-use types. If a study included data on at least one 

mosquito vector, (judged if there was evidence from the published literature linking the 

mosquito to at least one human disease), then all Aedes and Anopheles data from that study 

were collected. Studies were excluded if there was an insufficient description of the land use 

of the sampled site, or if the description was too crude. For example, studies describing sites 

as ‘wild’ or ‘peridomestic’ were excluded. Studies were also excluded if only one land-use type 

was sampled and if the sampling methodology was not adequately described, for example if 

the study did not include sampling effort.  

 

5.2.2. Mosquito biodiversity dataset construction and assignment of land-use categories 

Here, I use a space-for-time approach to compare mosquito biodiversity across different land-

use types. In this approach, spatially-separated sites with varying land use were compared, 

under the assumption that these land use gradients represent the ecological time-series of land 

development (Pickett, 1989; Wogan and Wang, 2017). A dataset of Aedes and Anopheles 

mosquito species in LAC across multiple land-use types was built by extracting information 

from each study identified in the systematic data search (Table S5.2), following the 

methodology in Hudson et al. (2014) for the PREDICTS database (a global compilation of site-

level ecological data across different land uses and land-use intensities). Species- and site-

specific abundance data were extracted for each included study and information collated on the 

sampling methodology, the study area and site descriptions (Table S5.2). As with the 

PREDICTS database each study site was nested, such that variation due to sampling 

methodology could be accounted for. Specifically, each record was assigned a study number 

(a unique paper), site number (a geographic location at which mosquito abundance was 
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sampled), study block (a collection of sites within a distinct spatial cluster, to account for spatial 

autocorrelation within a study) and study sample (a sample with consistent sampling 

methodology, such as capture method and sample month) (Table S5.2). 

 

Each sample site was assigned a land-use type (primary vegetation, secondary vegetation, 

managed or urban) and use intensity (minimal or substantial), adapted following criteria in 

Hudson et al. (2014) and Gibb et al. (2020) (Table 5.1). Sites were labelled according to the 

predominant land-use type as detailed in the site description within each study and use intensity 

was assigned based on how heavily sites were used. For example, sites sampled near or in 

buildings, or small rural villages, located in a biological reserve, research station or forested 

area, were labelled as primary vegetation with minimal or substantial use. Managed sites 

included those with plantations, pasture or cropland (Gibb et al., 2020). For sites to be classified 

as urban, sites must have paved roads and significant impervious surface area. For analysis, 

land-use type and intensity were combined into a categorical variable. Minimal and substantial 

use intensities were retained for primary vegetation sites and due to a lack of data 

representation, use intensities for secondary vegetation, managed and urban sites were 

combined into a single category. This resulted in a categorical variable with five levels; primary 

vegetation-minimal, primary vegetation-substantial, secondary vegetation-combined, 

managed-combined and urban-combined (Table S5.3).  

 

Table 5.1. Land-use categories used in the dataset. Description of land-use types used to classify 

sample sites in the dataset. Categories were adapted following Hudson et al. (2014) and Gibb et al. 

(2020). 

Land-use category Description 

Primary vegetation Natural vegetation with no evidence of previous destruction 

Secondary vegetation Vegetation that is recovering after removal of the natural 

vegetation 

Managed Agricultural land used for plantations (cultivation of woody 

crops, such as oil-palm, rubber, fruit, coffee, or timber), 

cropland (cultivation of herbaceous crops, including fodder for 

livestock), and pasture (livestock grazing) 

Urban  Areas of human habitation and buildings, from small green 

spaces, through to villages and cities 
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5.2.3. Modelling the effects of land-use change on mosquito abundance and species 

richness  

Bayesian mixed-effects models were constructed to assess mosquito biodiversity (abundance 

and species richness) across different land-use types (Table S5.4-5). Where a study reported 

sampling effort, which varied across sample sites within a study, raw species-level abundance 

measurements were effort-corrected. Raw abundance measurements were subsequently 

divided by sampling effort to give an effort-corrected abundance measurement (Newbold et 

al., 2015; De Palma et al., 2016; Millard et al., 2021). Due to the high number of zero 

observations site-level species abundance measurements were overdispersed, so were log-

transformed and subsequently modelled with a Gaussian likelihood. Site-level species richness 

(the number of uniquely named species sampled at each site) was modelled using a Poisson 

likelihood (Newbold et al., 2015; Gibb et al., 2020). Models were constructed for Aedes species 

abundance, Anopheles species and both species (all Aedes and Anopheles combined). Species-

specific responses in abundance to land use were also examined, by building separate models 

for four mosquito species per genus. The most represented (highest number of records) Aedes 

and Anopheles mosquito species in the dataset were selected (Table S5.6), whilst ensuring the 

selected species are implicated in transmission of at least one human disease (Sinka et al., 2010; 

Kraemer et al., 2015). To ensure mosquito responses were not confounded by mosquito habitat 

preferences and ranges, the models for each species only included studies where the species 

was detected. A summary of the main fitted models is provided in Table S5.4. 

 

All models included a random intercept term for each study to account for variation between 

studies, including reporting methods and sampling methodologies e.g., outdoor vs. indoor 

sampling and trapping method (Table S5.4). A random effect for each study site was included 

to account for overdispersion due to site-level differences (Hudson et al., 2014). Abundance 

models also included a random intercept for each unique species. This allowed for species-

specific variation in abundance that could result from differences in feeding and resting 

behaviour, meaning some species were easier to sample than others. Other random effects 

considered in the model structure included study block, used to account for spatial 

autocorrelation between sites within a study and study sample. Ecoregion, reflecting habitat 

types taken from WWF (2021) was also included as a random effect to account for the 

confounding effect of climate and habitat (Hudson et al., 2014). The best-fitting random effects 

structure was selected by formulating iterative models of each response (abundance and 

richness) with the addition of each random effect (Table S5.7-8).  
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Model adequacy was then assessed using the Bayesian metrics, the deviance information 

criterion (DIC) (Spiegelhalter et al., 2002) and the Watanabe-Akaike information criterion 

(WAIC) (Watanabe, 2010). Random effects were retained in the final model structure if the 

model was improved (assessed by a reduction in DIC and WAIC) with the addition of each 

random effect, although ecoregion was retained in all models to avoid the potential 

confounding influence of climate and habitat. Model fit was also assessed through visual 

inspection of fitted versus observed values (Figure S5.2). All models were implemented in a 

Bayesian framework, using R-INLA (Blangiardo et al., 2013).  

 

Species richness and abundance models were cross-validated by testing the sensitivity of the 

fixed effects estimates to geographical and random subsampling. For geographical 

subsampling, models were fitted holding out data from Brazil, where data coverage was 

highest. Models were also fitted that excluded data from each ecoregion (n=6) at a time. 

Finally, for the random subsampling eight models were fitted excluding 12.5% of the data at a 

time.  

 

5.2.4. Modelling the impact of deforestation on mosquito biodiversity 

To test for and compare species-specific mosquito responses to deforestation, abundance 

records were combined with remotely-sensed deforestation data (Hansen et al., 2013). 

Specifically, mosquito records from primary and secondary vegetation sites in the dataset were 

used to explore differences in both the Aedes and Anopheles species richness and abundance 

responses to deforestation. The Hansen dataset consists of spatially continuous annual 

estimates of forest loss derived from Landsat images, between 2000-2019 (Hansen et al., 2013). 

For each unique primary and secondary vegetation site in the dataset, the percentage of forest 

loss within a 320 m buffer around each site was extracted. A 320 m buffer was used as an 

approximation of mosquito flight distance, which can range between 50 m and 50 km. Average 

Aedes and Anopheles flight distances range between 89 – 542 m (Verdonschot and Besse-

Lototskaya, 2014) so the mean of these values was used. Since the time since deforestation 

greatly influences mosquito dynamics and subsequent disease risk (Laporta et al., 2021), the 

deforestation data was temporally matched with site-level mosquito abundance and richness 

records. An estimate of recent forest loss was obtained by using estimates from the last five 

years since the sampling start date at each site. Bayesian mixed-effects models for Aedes and 

Anopheles mosquito species richness and abundance were formulated including site-level 
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proportional deforestation as a linear covariate. As with the land-use models, random effects 

for study number, site number, study sample and terrestrial ecoregion were also included (Table 

S5.9). Eight species-specific abundance models selected based on data representation were also 

formulated to test for individual responses to deforestation.  

 

5.3. Results 

5.3.1. Dataset of mosquito biodiversity and land use 

The final mosquito abundance dataset comprised 10,004 records across 632 sites, from 93 

studies identified in the systematic data search (Figure 5.1A). Most sampled sites were primary 

vegetation (46%, n=292; Figure 5.1A), which represented 37% of total records in the dataset 

(n=3,739). The dataset spanned 13 countries across the LAC region (Figure 5.1A; Figure S5.3) 

and coverage was highest in Brazil (69% of records, n=6,870), and in biodiversity hotspots 

such as the Amazon basin (68% of total sites, n=431; Figure 5.1B) and Atlantic Forest (18% 

of total sites, n=111; Figure 5.1A). The dataset spanned six terrestrial ecoregions (Figure S5.6), 

the majority of which were in the Amazon and were forested ecoregions (89% of total sites, 

n=564; Figure 5.1B). The dataset was comprised of 91 species (Table S5.10), 64% (n=58) of 

which were Anopheles species and 36% (n=33) were Aedes species (Figure 5.1C).  

 

 



 

 125 

 

Figure 5.1. Dataset of Aedes and Anopheles mosquito biodiversity in Latin America and the 

Caribbean. Geographical location (points) of surveyed sites (n=632) and their predominant land-use 

type across 93 collated studies (A). Colours represent the four land-use types: primary vegetation 

(green), secondary vegetation (blue), managed (orange) and urban (purple). Green shading on the map 

shows the Amazon basin and Atlantic Forest. The number of surveyed sites across broadly defined 

terrestrial ecoregions (forests, grassland and shrubland, and mangroves) are shown for Amazonian and 

extra-Amazonian regions (the remaining LAC region) (B). Proportion (%) of unique species (species 

richness) across total species richness in the dataset (C). 

 

5.3.2. Effect of land-use change on mosquito species richness and abundance 

A strong and significant response of mosquito species richness to human disturbance was 

detected (Figure 5.2A; Figure S5.4A; Table S5.11). Aedes mosquito species richness was 

reduced by 26% in urban areas, compared to the primary vegetation minimal use baseline (95% 

CI: -42.7% to -5.2%; Figure 5.2A). Anopheles mosquito species richness demonstrated a larger 

37% decline in richness (95% CI: -50.8% to -20.6%) and there was a trend towards increased 

Anopheles richness in managed areas, although this was not significant (Figure 5.2A). Relative 

to primary vegetation, Anopheles mosquitoes in urban sites experienced a significant 13% 

(95% CI: -22.4% to -2.1%) reduction in abundance and there was also a trend towards 

decreased Aedes abundance in urban sites (Figure 5.2B; Table S5.12). In contrast, abundance 

of Anopheles mosquitoes increased by 11% in managed sites (95% CI: 0.3% - 24.0%). There 

was a minimal effect of other land-use types on Aedes and Anopheles abundance. Total Aedes 



 

 126 

and Anopheles mosquito species richness was 37% lower in urban landscapes (95% CI: -50.8% 

to -20.6%), and there was no significant effect of land-use type on total mosquito abundance 

(Figure S5.4B). 

 

Both species richness and abundance models were broadly robust to geographical subsampling, 

although there were higher levels of uncertainty in abundance and richness estimates when data 

from Brazil were excluded from the models (Figure S5.5). Urban estimates were particularly 

sensitive to holding out data from Brazil. I also found that both the abundance and species 

richness models were highly influenced by sites from tropical rainforests, highlighting the need 

for more representative sampling outside this ecoregion (Figure S5.6). Finally, abundance and 

species richness responses were robust to random subsampling, where 12.5% of the data was 

held out at a time from the models (Figure S5.7). 

 

 

Figure 5.2. Responses of mosquito species richness and abundance to land-use type and intensity. 

Aedes (purple) and Anopheles (blue) mosquito species richness (A) and abundance (B) responses to 

land-use types with minimal (circles), substantial (triangles) and combined (squares) use intensities. 

Effect sizes were adjusted to a percentage by expressing each mean fixed effect and 95% credible 

intervals as a percentage of the baseline (primary vegetation minimal use, shown as zero). Intensity 

levels for secondary vegetation, managed and urban land uses were aggregated due to a lack of data 

representation. 
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5.3.3. Species-specific mosquito abundance responses to land-use change 

I investigated species-specific variation in responses to land use, by analysing the mean land 

use effects on species-level abundance for four Aedes and four Anopheles mosquito species 

that were most represented in the dataset (Table S5.6). I found that there was a high degree of 

divergence in the response of mosquito species to land use (Figure 5.3; Table S5.13). Ae. 

aegypti and Ae. albopictus diverged in their responses to substantial use intensity at primary 

vegetation sites, and at secondary vegetation sites (Figure 5.3). Whilst Ae. aegypti 

demonstrated a negative abundance response (-55%, 95% CI: -73.8% to -24.3%) at secondary 

vegetation sites, Ae. albopictus showed elevated abundance at both substantial use primary 

vegetation (94%, 95% CI: 26.1% – 198.9%) and secondary vegetation sites (68%, 95% CI: 

4.7% - 167.3%). Ae. aegypti demonstrated the largest abundance response among the eight 

species, with a 207% increase in abundance at managed sites (95% CI: 75.7% - 435.4%), 

although there was a high degree of uncertainty associated with this estimate. Both Ae. aegypti 

and Ae. albopictus demonstrated an increased abundance trend at urban sites, although this was 

not significant. In contrast to Ae. albopictus, Ae. scapularis demonstrated reduced abundance 

in primary vegetation sites with substantial use intensity (-44%, 95% CI: -57.5% to -27.1%). 

Similarly, Ae. serratus abundance was reduced by 61% at primary vegetation sites with 

substantial use (95% CI: -75.5% to -36.6%) and by 66% in managed sites (95% CI: -79.3% to 

-44.5%).  

 

The response of Anopheles mosquito abundance to land-use change in contrast to Aedes was 

less marked (Figure 5.3). Only the abundance of An. albitarsis mosquitoes was altered in 

comparison to the primary vegetation baseline. At managed sites, An. albitarsis abundance was 

163% higher (95% CI: 34.8% - 422.2%). I detected a minimal impact of land-use change on 

An. albimanus and An. nuneztovari abundance and although the credible intervals crossed zero 

there was evidence of a trend towards higher An. darlingi abundance at secondary vegetation 

sites. Holding out influential mosquito species records from genus-level abundance models 

overall did not markedly change the response to land use (Figure S5.8). However, models 

holding out Ae. albopictus records were sensitive to exclusion of data, as were estimates for 

managed land-use types.  
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Figure 5.3. Species-specific mosquito abundance responses to land-use type and intensity. Aedes 

and Anopheles mosquito species abundance responses to land-use types with minimal (circles), 

substantial (triangles) and combined (squares) use intensities. For each genus, the four most represented 

species in the dataset were selected. Effect sizes were adjusted to a percentage by expressing each mean 

fixed effect and 95% credible intervals as a percentage of the baseline (primary vegetation minimal use, 

shown as zero). Intensity levels for secondary vegetation, managed and urban land uses were aggregated 

due to a lack of data representation. For An. albimanus, urban sites were excluded due to high 

uncertainty in the credible interval ranges and sparse sampling (only three sites).  
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5.3.4. Influence of deforestation on mosquito biodiversity 

I found that recent deforestation (in the last five years) was associated with higher Anopheles 

species richness (mean estimate 0.13, 95% CI: 0.03 - 0.23; Figure 5.4A). This result 

corresponded to a 14% increase in richness with every 1% increase in forest loss. Although not 

significant, there was also a trend towards increased abundance of Anopheles mosquitoes 

(Figure 5.4A). In contrast, I detected a minimal impact of deforestation on Aedes mosquito 

abundance and species richness. Furthermore, I found evidence of species-specific responses 

to deforestation. Whilst two Anopheles species responded positively to deforestation, there was 

a minimal impact of deforestation on the abundance of Aedes species (Figure 5.4B). An. 

darlingi demonstrated the largest increase in abundance with deforestation (mean estimate 

0.28, 95% CI: 0.07 - 0.48; Figure 5.4B), followed by An. albitarsis (mean estimate 0.10, 95% 

CI: 0.05 - 0.16; Figure 5.4B). This corresponded to a 32% increase in An. darlingi abundance 

and 11% increase for An. albitarsis with every 1% unit increase in forest loss.  
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Figure 5.4. Impact of deforestation on mosquito species richness and abundance.  Influence of 

recent deforestation on Aedes (purple) and Anopheles (blue) mosquito abundance (circles) and species 

richness (triangles; A). Abundance responses of eight mosquito species to recent deforestation (in the 

last five years; B). Points and bars for A and B show posterior mean and 95% credible intervals for 

linear fixed effects estimates of recent deforestation, calculated as proportional forest loss within the 

last five years of the sample start date for each site-level record.  

 

 



 

 131 

5.4. Discussion 

Here, using a space-for-time approach I provide an improved understanding of the nature of 

the response of Aedes and Anopheles mosquitoes to land-use change. Despite local-level 

studies providing evidence of how specific land-use changes, such as deforestation alter 

mosquito vector abundance, there has been limited assessment of the broader-scale responses 

and whether responses differ between mosquito species. I detected geographically consistent 

trends in mosquito species abundance and richness across differing land-use types in Latin 

America and the Caribbean. Both Aedes and Anopheles mosquito species richness was reduced 

in urban environments and abundance of several synanthropic arboviral (Ae. aegypti and Ae. 

albopictus) and malaria (An. albitarsis) vectors was greater in human-dominated landscapes. 

By integrating local landscape-level mosquito abundance records across 632 sites, I was able 

to detect substantial taxonomic differences in biodiversity responses to land use, demonstrating 

important proof of concept for this methodology. Further, with the addition of more data these 

methods could be applied on a broader global and regional scale to investigate how mosquito 

vectors respond in environments subject to anthropogenic pressures. 

 

Land-use change is expected to lead to an overall decline in biodiversity, primarily due to 

habitat loss. However, disturbance can favour opportunistic species that are able to adapt to 

anthropogenic environments (McKinney, 2002; Multini et al., 2019; Wilke et al., 2021). The 

strong decrease in Aedes (26%) and Anopheles (37%) mosquito species richness in urban areas 

in this study is in agreement with previous studies that demonstrate decreased mosquito 

biodiversity in urban and fragmented landscapes (Ferraguti et al., 2016; Hernández-Valencia 

et al., 2020). In some instances, biodiversity can provide a protective effect for disease 

emergence by regulating the abundance of vectors through intra- and interspecies competition, 

as well as through predation (Laporta et al., 2013). Disruption of this protective effect can 

however facilitate increased abundance of certain species able to adapt to novel environments. 

For example, decreased mosquito biodiversity in agricultural frontiers in the Amazon favours 

higher abundances of An. darlingi and drives subsequent malaria risk (Chaves et al., 2021). 

Similarly in a malaria endemic region of Colombia, communities of Anopheles mosquitoes 

were less diverse in highly fragmented landscapes in comparison to more intact landscapes 

(Hernández-Valencia et al., 2020). In this study, the lower mosquito species richness found in 

urban environments, combined with the elevated abundance of select mosquito vectors (Ae. 

aegypti, Ae. albopictus and An. albitarsis) in human-dominated landscapes suggests reduced 

biodiversity may also facilitate increased disease risk.  
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In general, urbanisation decreases the available habitat for mosquitoes as forested areas provide 

a diverse range of habitats and environmental niches for mosquito species, especially for 

resting adult mosquitoes (Shannon, 1931; Shochat et al., 2006; Rejmánková et al., 2013; Wilke 

et al., 2021). Here, Anopheles mosquito abundance was lower in urban landscapes compared 

to primary vegetation sites and was elevated at managed sites. Agricultural landscapes provide 

diverse breeding habitats for Anopheles species, including footpath depressions found in 

plantations and rice fields (Thongsripong et al., 2013; Prescott et al., 2015; Hawkes et al., 

2019). The reduced abundance of Anopheles mosquitoes in urban areas, compared to primary 

vegetation sites is likely due to the preference of resting adults for forested habitat (Hiwat and 

Bretas, 2011). Greater abundances of anopheline mosquitoes have been found in forest habitat 

compared to human settlements in Malaysia (Hawkes et al., 2019). Likewise, in Ecuador 

human habitations were found to provide unsuitable habitat for anopheline larvae due to low 

amounts of available standing water and vegetation coverage (Pinault and Hunter, 2011). In 

the Brazilian Amazon, anopheline mosquitoes were captured almost exclusively in preserved 

forest environments (Guimaraes et al., 2003), which provide suitable habitats such as streams, 

dense forest cover and flooded forest environments (Jiménez et al., 2014). However, increased 

mosquito vector abundance in forested areas may not necessarily lead to lower disease 

transmission. Vector-human contact rates in forested areas can remain high due to 

anthropogenic development and activity. Although the main vector of human and simian 

malaria in the Atlantic Forest, An. cruzii (Duarte et al., 2013) prefers habitats with high forest 

coverage, growth of forest edges due to human activity triggers greater ground-level of activity 

of this mosquito, and subsequently increases human exposure (Medeiros-Sousa et al., 2019). 

 

In addition to genus-specific responses to land-use change, I additionally found pronounced 

species-specific abundance responses. The differential response of mosquito species to land-

use change is likely to be driven by the unique life-history characteristics and habitat 

preferences of each species (Becker et al., 2010; Tucker Lima et al., 2017). As expected, I 

found increased abundance of opportunistic species in disturbed landscapes, including Ae. 

aegypti and Ae. albopictus mosquitoes. Several Aedes mosquitoes such as Ae. aegypti and Ae. 

albopictus are highly adapted to human-dominated landscapes, which provide a range of 

artificial breeding sites such as crops, water storage containers, tyres and drains (Paploski et 

al., 2016). These novel habitats facilitate increased abundance, densities, development and 

survival of Aedes mosquitoes in urban and agricultural areas (Thongsripong et al., 2013; Li et 

al., 2014). The adaptation of Aedes mosquito vectors to anthropogenic landscapes represents a 
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threat to human health due to a greater number of opportunities for vector-human contact in 

areas with high population densities (Wilke et al., 2021). However, here I was unable to detect 

a significant positive effect of Ae. aegypti abundance in urban areas. This could be due to the 

diversity of sites classified as urban in the study, which range from rural and peri-urban sites, 

to densely populated and developed cities. Peri-urban sites with minimal use intensity in this 

study likely have a reduced number of aquatic breeding habitats in comparison to urban centres. 

Accounting for finer-scale variation across urban landscapes, as well as use intensity may 

enable the response of Ae. aegypti in urban landscapes to be teased out. For example, gradients 

of urban development could be accounted for by using estimates of human population density 

at 1 km resolution from WorldPop (https://www.worldpop.org), enabling the detection of finer-

scale responses of mosquito species to urbanisation. 

 

Habitat disturbance can increase the number of transitional environments across a landscape 

and facilitate opportunistic species well-suited to disturbance. In the southern Amazon, 

landscape disturbance was linked to increased biodiversity (richness and abundance) of 

arbovirus vectors, specifically in small forest remnants with high edge densities (da Silva 

Pessoa Vieira et al., 2021). In contrast to Ae. aegypti, I found that Ae. albopictus abundance 

was greater in disturbed primary vegetation and in secondary vegetation sites. Ae. albopictus 

is commonly found in rural domestic environments in close proximity to humans, and is 

capable of dispersing into densely urbanised areas (Tsuda et al., 2006; Ayllón et al., 2018). 

Human population densities and therefore vector-human contact rates are expected to be higher 

in these disturbed sites compared to areas with more pristine primary vegetation. Ae. aegypti 

abundance was highest in managed sites and there was evidence of a similar positive trend for 

Ae. albopictus. These findings have important consequences for the emergence of arboviruses 

transmitted by Ae. aegypti and Ae. albopictus, such as dengue, yellow fever and chikungunya, 

as disease transmission could be facilitated in anthropogenic environments without the 

implementation of adequate control measures. The strong response of these mosquitoes to 

anthropogenic disturbance combined with rapid development in the Amazon, expansion of 

arboviruses into urbanised forest (Lowe et al., 2020) and rising climate suitability (Romanello 

et al., 2021), poses a substantial threat of mosquito-borne disease in Latin America.  

 

In contrast to Ae. aegypti and Ae. albopictus, several Aedes mosquitoes displayed a negative 

response to land-use change. For example, Ae. serratus, a vector of yellow fever (Cardoso et 

al., 2010) and Ae. scapularis, exhibited reduced abundance at managed sites and primary 
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vegetation sites with substantial use intensity. Ae. serratus is likely not adapted to 

anthropogenic environments and the ecological conditions associated with reduced primary 

vegetation, which include the loss of forest habitat structures and natural water bodies, as well 

as higher temperatures. Indeed, Ae. serratus is highly sensitive to human activity, 

demonstrating strong declines in abundance with higher levels of disturbance in the Atlantic 

Forest (Orlandin et al., 2020).  

 

Whereas several Aedes mosquito species showed strong responses to land use, I detected a 

minimal response of Anopheles species. However, An. albitarsis an emerging secondary 

malaria vector in the Amazon (Povoa et al., 2006; Abou Orm et al., 2017) and the Atlantic 

Forest (da Silva et al., 2013), exhibited higher abundances at managed sites. Furthermore, 

higher An. albitarsis abundance was associated with increasing deforestation. This mosquito 

has become adapted to non-forest environments, where it exhibits highly anthropophilic 

behaviour (Tadei and Dutary Thatcher, 2000; Foley et al., 2014). These results provide 

important evidence that habitat alterations favouring secondary malaria vectors pose a 

substantial risk of disease emergence. In addition, the divergent abundance responses detected 

amongst Aedes and Anopheles mosquitoes highlights the importance of considering species-

specific responses to land-use change when developing both predictive disease models and 

targeted control programs.  

An. darlingi is a highly efficient anthropophilic malaria vector that predominates in the 

Amazon region (Natal et al., 2007; Sinka et al., 2010). It has been well-documented that An. 

darlingi exhibits a preference for disturbed deforested landscapes, especially in locations close 

to human settlements in agricultural frontier regions (Vittor et al., 2009; Barros et al., 2011). 

Here, An. darlingi exhibited the strongest response to deforestation and a trend towards 

increased abundance in secondary vegetation. Secondary growth, particularly at forest fringes, 

offers a range of suitable environmental conditions for An. darlingi, including increased 

sunlight, refugia and ground pools (Barros et al., 2011; Rejmánková et al., 2013; Sanchez-

Ribas et al., 2017). There was however substantial uncertainty in the abundance response of 

An. darlingi detected at secondary vegetation sites.  

 

Owing to the lack of representative sampling of secondary vegetation sites in the study (n=57), 

I was unable to capture fine-scale ecological processes that likely drive mosquito-borne disease 

risk. For example, there is a strong temporal component in the relationship between malaria 



 

 135 

and deforestation (Laporta et al., 2021). Greater availability of forest edge habitat and lower 

forest cover, which occurs at intermediate levels of deforestation (Chaves et al., 2021), is 

favoured by An. darlingi. Based on this evidence, it is highly likely that An. darlingi exhibits a 

positive abundance response at younger secondary vegetation sites with greater amounts of 

forest fringe habitat. However, as the age of secondary vegetation renewal was not accounted 

for in this study, there was a high level of uncertainty and divergence in the response. By 

combining remotely sensed estimates of recent deforestation (in the last five years) with the 

mosquito dataset, I was able to detect an increase in An. darlingi abundance with deforestation. 

This association likely captures the effect of increased abundance at intermediate levels of 

forest loss and is supported by previous findings of elevated An. darlingi abundance in 

deforested sites (Vittor et al., 2009). Moreover, these findings support studies that have 

demonstrated higher malaria risk with deforestation, in areas where An. darlingi is a vector 

(Chapter 3). 

Despite providing important evidence of species- and genus-specific responses to land-use 

change, this study has several limitations. First, owing to the high levels of mosquito 

biodiversity in the Amazon and Atlantic forests captured in this study, the dataset is 

geographically biased towards these regions and rainforest biomes. Indeed, 68% of sites 

included in the study were in the Amazon basin. However, the findings of this study were 

broadly robust to both random and species-level subsampling. Second, studies included in the 

dataset are likely to underestimate the true abundance of mosquito species as the methods 

employed in each study were biased towards anthropophilic mosquitoes and species that are 

easier to find and capture. Nonetheless, several studies included in the dataset sampled 

mosquitoes using multiple sampling methods. For example, mosquito sampling was performed 

in many studies using human-landing catch, which primarily captures anthropophilic 

mosquitoes, although can be used to capture both endophilic (indoor-resting) and exophilic 

(outdoor) mosquitoes (Lima et al., 2014). Other studies used baited traps and ovitraps left 

overnight to capture nocturnal mosquitoes and those at different life stages, such as larvae and 

pupae.  

 

In addition, the random effects structure of the model accounted for differing sampling 

methodologies that may explain a proportion of the variation in mosquito abundance observed. 

The mosquito species included in the dataset are likely to be biased towards dominant and 

incriminated vector species, such as An. darlingi and Ae. aegypti. Future assessments could 
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consider species bias by taking into account publication effort (Gibb et al., 2020) to ensure 

under-represented species that may well be efficient vectors of human diseases are included. 

Additionally, abundance records in the dataset included a high number of zero observations, 

resulting from sampling of species at sites where occurrence was low. Incorporating species 

occurrence probability into the modelling framework may be a method to address the zero-

inflation of abundance data (Gibb et al., 2020).   

 

Mosquitoes are ectothermic and are therefore highly sensitive to climate conditions, such as 

seasonal temperature fluctuations (Huber et al., 2018). The responses of mosquitoes to land-

use change detected in this study therefore could be confounded by climate conditions. 

However, the inclusion of ecoregion as a model random effect will likely account for variation 

due to climate. Other potential confounders in this study include mosquito vector control, 

which would underestimate and potentially mask the effect of land use, especially in areas with 

high population exposure such as urban landscapes. Finally, the mosquito biodiversity dataset 

lacked a large number of representative samples from several land-use types and use intensities. 

These included agricultural sites, plantations, and pasture. For example, the dataset only 

included 93 managed sites and only 48 secondary vegetation sites. Additionally, in the 

abundance and species richness models, land-use intensity only varied at primary vegetation 

sites, which represented 47% of total sites in the dataset.  

 

Global studies assessing biodiversity responses to land-use change have enabled the detection 

of fine-scale responses at varying levels of use-intensity and at more specific land-use types. 

For instance, variations in terrestrial biodiversity have been detected in cropland, and young- 

and mature-secondary vegetation sites (Newbold et al., 2015). Moreover, vertebrate 

biodiversity responses to land use have also been linked to species’ climatic tolerances, 

enabling an enhanced understanding of the interacting effects of climate and land-use on 

biodiversity (Williams and Newbold, 2021). A larger dataset with a greater number of 

representative samples, across more diverse sites with differing levels of use-intensity could 

help disentangle more complex responses to anthropogenic land-use change. Despite shortfalls 

in representative data sampling, this study demonstrates the utility of a comparative approach 

to detect considerable genus- and species-specific mosquito responses to land-use change. 

 

Ecological changes caused by anthropogenic land-use change have a wide range of cascading 

effects on mosquito-borne disease risk. By affecting habitat availability and the abundance and 
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distribution of mosquito vectors, patterns of emerging and re-emerging diseases can be 

dramatically altered. A comprehensive grasp of how mosquito species are affected by 

anthropogenic disturbance will facilitate the development of highly effective disease control 

measures. A greater understanding could additionally equip vector control efforts with species-

specific information to support targeted elimination efforts for mosquito-borne diseases such 

as dengue, yellow fever, malaria and chikungunya. Here, I present a comparative dataset of 

10,004 Aedes and Anopheles mosquito records in Latin America and the Caribbean, which is a 

valuable resource for investigating the effect of land-use change on mosquito-borne disease 

risk that is epidemiologically relevant at the regional scale. I demonstrate considerable species-

specific responses, which represent the diverging impacts of land-use change on mosquito 

fauna. These findings add certainty to future assessments of how opportunistic species 

contribute to elevated mosquito-borne disease risk in anthropogenic environments. 
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Chapter 6 - Discussion and synthesis 
Mobilisation of the health sector and the recent ‘code red’ warning for human health in a 

warmer world (Romanello et al., 2021) has drawn a spotlight on the health argument for climate 

action. Fundamental to achieving global emissions targets is a greater understanding of how 

global environmental change is affecting human health. Addressing this problem through a 

Planetary Health lens, with an enhanced appreciation of how human and environmental health 

are interconnected, in the response to the climate change crisis will help accelerate 

understanding and provide key evidence for policymakers. In this final chapter, I synthesise 

research from this thesis to show how knowledge from multiple disciplines (climate science, 

public health and ecology) can be integrated to provide an understanding of how mosquito-

borne disease risk is influenced by climate variation, socioeconomic factors, including 

elimination efforts, and land-use change. I also highlight policy implications of this research, 

discuss the remaining challenges and possible routes forward. 

 

6.1. Summary of key findings and implications 

A key challenge for understanding mosquito-borne diseases is identifying, accounting for and 

attributing variation in disease risk to multiple interacting components in a complex system. 

Disease risk is determined by a combination of hazard, exposure and vulnerability (Figure 1.2), 

which includes environmental and socioeconomic factors including climate variation, land use 

and elimination efforts. Understanding the relative importance of each of these risk components 

can help focus disease elimination efforts. In Chapter 2, I developed a statistical modelling 

framework that integrates multiple environmental and socioeconomic data sources to explore 

how malaria risk is influenced by the combination of the three risk components. Then, using 

the modelling framework I tested how the combined impact of climate variation and 

elimination efforts influences the spatiotemporal incidence of malaria, using a timely case 

study of malaria elimination in a high-risk border region of Ecuador. Whilst mechanistic 

studies have greatly improved our understanding of mosquito-borne disease transmission 

dynamics, such as the thermal optima for parasite development (Mordecai et al., 2013), it is 

important not only to understand these processes empirically, but in context. This thesis has 

demonstrated how environmental factors, such as climate variation, influence mosquito-borne 

disease risk alongside socioeconomic factors such as healthcare accessibility and vector control 

measures. The detection of a strong climate response in Chapter 2, despite successful 

elimination efforts and low levels of transmission, draws attention to the ongoing risk of 
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malaria resurgence in southern Ecuador with changing environmental conditions. 

Anthropogenic warming is increasing the environmental suitability of mosquito-borne 

diseases, including malaria, and risk remains high especially in developing countries 

(Romanello et al., 2021). This is an important finding that needs to be communicated to 

policymakers, who must be aware that despite local elimination of malaria in regions 

vulnerable to climate change and experiencing ongoing migration, disease surveillance needs 

to be maintained and incorporated into funding for disease control.  

 

In Chapter 2, I revealed that P. falciparum malaria is more climate-sensitive than P. vivax 

malaria, a key finding which has previously not been well-explored. Specifically, a 1°C 

increase in minimum temperatures was associated with a 146% increase in P. falciparum 

incidence, but a smaller 77% increase in P. vivax. The differential sensitivity is likely due to 

the relapsing nature of P. vivax infections, which are problematic to predict and infections can 

remain dormant for multiple months (White, 2011). In addition, minimum temperature was an 

important driver of malaria risk in southern Ecuador and explained nearly all the seasonal 

variation in P. falciparum malaria incidence, but not P. vivax. These findings have important 

implications for future climate warming in the region, which is likely to have a greater impact 

on P. falciparum malaria. Since different antimalarials are used to target the different parasites 

(WHO, 2021a), and effectiveness of vector control also varies between the two parasites 

(Chapter 2), health authorities will need to target interventions during periods of sustained 

warmer temperatures to optimise control efforts. This has consequences for climate change 

adaptation as it is clear that current control efforts, such as treatment, will need to be adjusted 

in the future to target a potential increase in P. falciparum malaria, in comparison to P. vivax.  

 

Evaluating the effectiveness of disease control measures against the backdrop of environmental 

influences has previously proven difficult, owing to the lack of accurate data available. By 

accounting for vector control measures alongside climate variation, I found in Chapter 2 that 

the measures implemented differentially affected P. falciparum and P. vivax malaria in 

southern Ecuador. There was also additional spatial heterogeneity in the effectiveness of the 

control measures. Space spraying contributed the largest reduction in P. vivax incidence (19% 

with every household sprayed), whilst for P. falciparum IRS caused the largest reduction, 

although it was a modest 8%. A demonstration of the effectiveness of disease control measures 

in relation to other driving factors can be used as a basis for targeting future local disease 
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control measures in southern Ecuador. Local policymakers can use this information to decide 

on optimal strategies for vector control in the area, including which methods such as space 

spraying, should be deployed. This is now becoming ever more important as malaria cases are 

increasing across the country and recent elimination targets have not been met (WHO, 2020).  

 

The differential impact of vector control measures on P. falciparum and P. vivax malaria 

identified, is also important to consider given the shifting epidemiological patterns of malaria 

in southern Ecuador. During the elimination phase of the study (2001-2018), P. falciparum was 

reduced more than P. vivax, and more so in rural compared to urban areas. As urban 

development continues to grow in Ecuador, it is therefore likely that P. vivax malaria, a 

complex disease governed less by environmental conditions, will become more dominant. 

Traditionally, malaria transmission is higher in rural areas (Hay et al., 2005), but findings from 

Chapter 2 suggest that once vector control is implemented, urban malaria could become more 

problematic and difficult to eliminate. This has implications for policymakers when developing 

elimination programs targeted in urban areas, which may require a different suite of vector 

control approaches, such as the targeting of urban aquatic mosquito habitats. Since 2003, 

malaria transmission in sub-Saharan African cities has been increasing and mosquito vectors 

have adapted to the diversity of aquatic habitats provided in urban landscapes (Doumbe-Belisse 

et al., 2021). In addition, high population mobility in urban and suburban areas can facilitate 

the expansion of malaria transmission, posing further challenges for malaria control in urban 

areas (Johansen et al., 2020; Salla et al., 2020). Shifting urban and rural patterns of malaria 

transmission highlight the need for dynamic vector control programmes that keep pace with 

and adapt alongside changing disease epidemiology. 

 

In Chapter 2, I assessed the relative importance of climate variation against the backdrop of 

socioeconomic influences such as elimination efforts, which determine disease exposure. 

However, land use and environmental degradation also modify mosquito-disease exposure. In 

Chapter 3, I used a timely case study of malaria-re-emergence in Venezuela to demonstrate 

that mining was an influential factor driving the spatial patterns of malaria incidence in Bolívar, 

an important malaria foci in the country. Previous research had hypothesised that mining 

activity was facilitating the rapid resurgence of malaria across Venezuela (Grillet et al., 2021), 

but this had not been quantified. Evidence has also linked mining activity to rising malaria 

cases in other Latin American countries, although the majority of this evidence was based on 

using proxies for mining activity, such as gold prices (De Salazar et al., 2021). Building on this 
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evidence, I explicitly quantify the malaria variation that is explained by mining activity, which 

is an important step forward. Using remotely sensed locations of mining sites, I showed that 

mining accounted for up to 51% of the spatial variation in P. falciparum incidence in the San 

Isidro parish hotspot. In contrast, less (40%) spatial variation in P. vivax incidence could be 

explained by mining. The overall picture was similar across Bolívar. Including mining activity 

in the model reduced the unexplained spatial variation in P. falciparum malaria in nearly half 

of parishes in Bolívar, and for P. vivax in 43% of parishes. These results support the findings 

of Chapter 2, where I demonstrated a stronger sensitivity of P. falciparum malaria to 

environmental conditions, specifically minimum temperatures. Under conditions of land-use 

change, environmental degradation such as gold mining, creates suitable habitats for the 

proliferation of malaria vectors (Moreno et al., 2007; Vittor et al., 2009). In addition, warmer 

temperatures facilitate increased mosquito and parasite development and enhance malaria 

transmission (Bayoh and Lindsay, 2003; Ohm et al., 2018). Further support for the differential 

environmental sensitivity of P. falciparum and P. vivax highlights the need to design suitable 

targeted control efforts and incorporate this sensitivity into future predictions of how climatic 

change may influence malaria distribution both regionally and globally. 

 

P. vivax malaria incidence was positively associated with deforestation in southern Venezuela, 

whilst no association was found for P. falciparum malaria (Chapter 3). The differential impact 

of deforestation on malaria risk is important to consider in light of findings from Chapter 2, 

where the effect of control measures on P. falciparum and P. vivax malaria varied substantially. 

For instance, if deforestation is unlikely to increase P. falciparum malaria in some areas (e.g. 

in Bolívar state, Chapter 3) then policymakers should preferentially target interventions at P. 

vivax, conserving precious public health resources. The relationship between deforestation and 

malaria has proved contentious in previous research and can be highly context-dependent 

(Tucker Lima et al., 2017; Burkett-Cadena and Vittor, 2018). As detailed in Chapter 1, initial 

stages of deforestation in agricultural frontiers result in rapid ecological changes that favour 

proliferation of anopheline vectors such as An. darlingi, a vector of both P. falciparum and P. 

vivax malaria parasites (Laporta et al., 2021). However, as time progresses deforestation 

frontiers become more developed and malaria risk is greatly reduced. Bolívar state, in which 

the study in Chapter 3 was conducted is not a typical agricultural frontier region. Instead, the 

majority of deforestation is driven by small-scale artisanal mining and so the socioeconomic 

development that typifies frontier regions does not occur. The detection of an association 

between deforestation and increased P. vivax malaria in Bolívar could be explained by 
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inadequate access to treatment, and high population mobility and exposure, which allows for 

sustained circulation of P. vivax malaria parasites.  

 

An increasing number of studies are beginning to account for the spatiotemporal complexities 

in the deforestation-malaria relationship. For example, a recent study in Laos demonstrated a 

positive association between malaria and deforestation, which was only evident in the early 

years of deforestation (1-3 years) and in deforested areas that were further away from villages 

(Rerolle et al., 2021). In Chapter 5, I was able to detect a positive association between An. 

darlingi abundance and recent deforestation (in the last five years) adding further evidence to 

support the dynamics of malaria risk in deforested landscapes. This suggests that increases in 

P. vivax malaria with deforestation in southern Venezuela (Chapter 3) may be facilitated by 

rises in An. darlingi abundance. Despite this recent evidence, accounting for complex 

socioecological processes in the deforestation-malaria relationship remains problematic and 

can be a hindrance to developing effective disease control efforts at deforestation frontiers.  

 

Understanding how components of global environmental change interact with each other to 

determine overall mosquito-borne disease risk and identifying those most vulnerable to global 

environmental change are other challenges addressed in this thesis. Interacting effects are 

important to consider as more regions of the world are compounded by the combined impacts 

of climatic change and land-use alterations. By combining Earth observations of climate 

variables and land-use change, I provided evidence that environmental degradation can modify 

the climate-malaria relationship (Chapter 3). This is an important new insight in climate-

disease research, which had previously received little attention. In high mining areas of 

southern Venezuela, the influence of temperature on malaria incidence was exacerbated, with 

warmer temperatures (up to 26.5°C for P. falciparum and 28.1°C for P. vivax) associated with 

elevated malaria incidence. This contrasted with the minimal effect of temperature on malaria 

in low mining areas. Based on these results, mining communities remain highly vulnerable to 

the compounding health effects of environmental degradation and warming temperatures. 

Therefore, health authorities should target malaria intervention efforts preferentially in these 

areas, as they are more at risk of climate-induced malaria surges. These findings also add 

support to arguments for conserving the environment to protect human health. Further, these 

results have implications for understanding the complexities of global environmental change, 
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principally how components can interact to determine overall disease risk and how such 

complexities can be accounted for in predictive models.  

 

The malaria situation in Venezuela shows little sign of abating and is a major threat to 

elimination in the Latin American region (Daniels, 2018; WHO, 2020). Findings of Chapter 3, 

principally how malaria can rapidly re-emerge in a country that had previously achieved 

elimination throughout much of its territory (Gabaldon, 1983), highlight the vulnerability of 

regions with high levels of political instability. Even if local elimination is achieved and 

transmission rates remain low, a combination of environmental threats such as gold mining and 

climate variation can work together to provoke a surge in mosquito-borne diseases. Serious 

lessons can be learned here, as other countries in Latin America approach malaria elimination. 

The synergistic effects of climate warming and anthropogenic environmental degradation pose 

a substantial threat for mosquito borne disease risk in the Latin American region.   

 

A major obstacle when accounting for multiple components of the disease risk framework to 

investigate global environmental change and mosquito-borne disease (Chapters 2-3), is the 

integration of relevant data. The climate data products used to inform the underlying hazard 

risk component in Chapters 2-3 were selected based on their fine-scale spatial resolutions and 

temporal coverage, which matched the malaria case data. However, it was not clear whether 

choice of product would affect the estimated climate-disease association. In Chapter 4, I 

discussed the issue of data product choice with reference to climate services for health. I 

provided an assessment of the challenges associated with integrating climate data products into 

health applications, such as climate-sensitive disease models. These challenges include issues 

of matching health and climate data across differing spatial scales and selecting the most 

appropriate data product despite such wide availability and accessibility. In addition, ensuring 

remotely sensed climate observations are matched carefully to ground truth data such as that 

obtained from local meteorological stations before their use, is also important. 

 

By comparing the climate data products used in Chapters 2-3 alongside three other products, I 

revealed important differences in temperature and precipitation trends of the global products, 

compared to local meteorological station observations (Chapter 4).  For instance, temperatures 

from the CRU and ERA5-Land global datasets were up to 5°C cooler than the local 

meteorological station observations. In addition, up to 40 mm more rainfall per day was 
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observed in the ERA5-Land dataset, compared to the meteorological station observations. 

These findings highlight that in some instances, global climate data products may not be able 

to adequately capture local climate conditions on the ground and therefore may not be the most 

appropriate data source to use in climate-sensitive disease models.  

 

In Chapter 4, I also demonstrated that five different climate data products applied to the same 

disease models (dengue and malaria) resulted in measurable differences in the climate-disease 

association. Previous studies using global sources of climate data in health impact models have 

not considered the impact of data product choice, despite the wide range of products that are 

available. In temporal models of dengue and malaria in southern Ecuador using different 

climate data as inputs, model parameter estimates varied substantially from each other and from 

local station data, translating into substantial differences in disease risk. In the dengue model 

informed by local meteorological station observations, a 68% increase in dengue was linked to 

1°C rise in temperature. In contrast, the model informed by CRU climate data showed only a 

40% increase in dengue cases. In the malaria models, the parameter estimates diverged even 

further, with some climate-informed models demonstrating increased malaria risk with 

temperature (ERA5-Land dataset and local station observations), whilst others showed no 

relationship (TerraClimate, CRU and CHELSA datasets). The rainfall estimates for the malaria 

models also diverged, with the CRU model showing a positive relationship, whilst the local 

meteorological observations, CHELSA and ERA5-land models showed that increased rainfall 

would lead to a reduction in malaria cases. The results of this chapter highlight the challenges 

associated with incorporating knowledge across disparate disciplines in Planetary Health, such 

as climate and public health. These findings also have considerable implications for how data 

products are used in climate-sensitive disease modelling, including an appreciation of how 

health outcomes can be influenced by underlying data. As described in the recommendations 

in Chapter 4, future climate-sensitive disease models that are developed should firstly probe 

model sensitivity with different data products to ensure downstream health outcomes are not 

heavily influenced by product choice. Data challenges however can be overcome through 

improved communication and co-development of the climate service, and ensuring 

transparency is maintained with policymakers.  

 

The findings of Chapter 4, principally the variation in model results due to different data 

products highlights a wider challenge in epidemiological research; translating and 
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communicating model output to policy. Communicating model results is important given that 

the way in which model results are communicated to policymakers can influence how resulting 

control measures are designed and implemented in practice (Leach and Scoones, 2013). In 

Chapter 4 for example, the relationship between malaria risk and rainfall diverged depending 

on the choice of model, which would also influence how and when interventions would be 

deployed in rainy conditions. If the diverging results of all models were presented to 

policymakers this would however give a confusing message to policymakers, who may lose 

trust in these models as tools to provide evidence for policymaking. Here, it is important that 

when translating models into policy, the narrative of how the model output will be used, such 

as for identifying environmental predictors of disease risk, should be clear. In addition, 

modelling tools should be shaped alongside policymakers from their early development, to 

ensure they have not only impact but are truly useful for decision making. 

 

In Chapters 2-3, I used climate variation to account for the underlying hazard component of 

the risk framework (the mosquito vector). However, the mosquito vectors are not only 

influenced by climate variation but also by land-use change. To address this gap, I drew on 

ecological knowledge in Chapter 5 to understand how mosquito vectors of diseases 

investigated in Chapters 2-4 are affected by anthropogenic land-use change. By compiling an 

extensive dataset of mosquito abundance records in Latin America and the Caribbean, I 

demonstrated that both Aedes and Anopheles species richness is substantially reduced in 

anthropogenic environments. In this study, I combined records across 605 sites whilst 

accounting for between-study differences and sampling methods. I demonstrated consistent 

regional responses of mosquito biodiversity to land-use change and taxonomic differences in 

the responses. Despite the reduction in overall biodiversity with anthropogenic disturbance, 

key malaria and arboviral vectors responded positively, including the mosquito vectors Ae. 

aegypti, Ae. albopictus and An. albitarsis. These results suggest that human disturbance, whilst 

facilitating an overall reduction in biodiversity, can favour the emergence of opportunistic and 

synanthropic disease vectors, highlighting the vulnerability of populations living in heavily 

modified environments. This knowledge complements findings from previous chapters, 

providing evidence on how mosquito vectors of dengue and malaria are influenced by 

anthropogenic land-use changes such as deforestation, in addition to climate variation 

(Chapters 2-4).  
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I also showed how a hazard-based approach could further be used to address important 

questions in mosquito ecology, including how deforestation differentially impacts Aedes and 

Anopheles mosquitoes. In Chapter 3, I demonstrated elevated P. vivax malaria risk with 

deforestation, supporting small-scale local studies that have previously demonstrated 

sensitivities of select mosquito vectors to land-use change, such as An. darlingi and 

deforestation (Barros and Honório, 2015). I also found a positive response of An. darlingi to 

deforestation in Chapter 5, which was in comparison to the minimal response of Aedes vectors. 

Identification of species-specific mosquito responses to anthropogenic land use that are 

consistent across geographical regions has implications for designing vector control programs 

in areas undergoing rapid land-use change. Since different mosquito species have different 

control methods, policymakers can use this information when designing vector control 

programs by optimising them for species-specific disease threats. High-risk areas include 

agricultural frontier regions in the Amazon, vulnerable mining communities in Venezuela 

(Chapter 3) as well as encroached parts of the Atlantic Forest due to expanding human activity. 

In the remainder of this chapter, I discuss the wider implications and contributions of this thesis 

to Planetary Health research, key methodological developments and remaining challenges in 

the field.  

 

6.2. Contributions to malaria research 

Since 2000, global malaria incidence rates have declined by 37% and mortality by 60%, 

primarily due to the scaling up of insecticide-treated nets and indoor residual spraying 

campaigns (Cibulskis et al., 2016). Since beginning the work for this thesis, substantial 

advances in malaria control have been achieved, including the recommendation of the ground-

breaking RTS,S vaccine for P. falciparum malaria in children (WHO, 2021b). Despite great 

leaps in progress, malaria still remains a significant challenge to public health, exemplified by 

the fact that half of the world is still at risk (WHO, 2020). The complex nature of P. vivax 

malaria, including the characteristic relapsing infections, concerns of insecticide and 

antimalarial drug resistance, emergence of peri-urban malaria, as well as weakening of control 

programmes, still poses a formidable challenge for malaria control (Recht et al., 2017).  

 

The success of malaria control and elimination efforts is underpinned by a thorough 

understanding of the factors driving transmission. The comparative differences in the climate 

responses of the two most prevalent malaria parasites, P. falciparum and P. vivax remains to 
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be fully understood and is only recently being considered in mechanistic models of malaria and 

climate (Villena et al., 2020). In addition, the two parasites are frequently combined in 

spatiotemporal models, which does not allow for the detection of comparative climate 

responses (Hurtado et al., 2018; Rodó et al., 2021). I addressed this gap in Chapter 2, where I 

showed that modelling P. falciparum and P. vivax separately, enables the detection of a 

differential sensitivity to climate conditions. This is an important development in the 

understanding of malaria that has been previously little explored and will be useful to inform 

future predictive models of disease risk, as well as vector control measures. By identifying key 

differences in the climatic responses of P. falciparum and P. vivax malaria I hope to enhance 

understanding and facilitate incorporation of these differences into targeted disease control 

programmes.  

 

In Chapter 5, I also provide a meaningful contribution to malaria research, by identifying 

differing taxonomic responses of malaria vectors to anthropogenic land-use change, 

specifically mosquito abundance and species richness. Prior to this thesis, much of the work 

on malaria-environment relationships had focused on identifying climatic responses. For 

example, global predictive models of how malaria risk is likely to change under future climate 

change scenarios have identified that highland areas are prone to increases in outbreak 

frequency (Caminade et al., 2014). Other studies have demonstrated the added value of climate 

information in explaining the spatiotemporal patterns of malaria, for example in Malawi (Lowe 

et al., 2013). However, land cover and land use patterns significantly influence the distribution 

of malaria vectors, which is especially important to consider given the synergistic effects of 

land use on climate-malaria relationships (Chapter 3).  

 

To enhance understanding of how factors other than climate influence disease risk, I provided 

an investigative framework in Chapter 5 to address this. I demonstrated that the most important 

malaria vector in the Amazon region, An. darlingi (Sinka et al., 2010), shows a consistent 

increase in abundance with deforestation across Latin America. This supports the findings of 

Chapter 3, where I showed that deforestation was associated with increased P. vivax malaria in 

a region where An. darlingi is dominant, providing support to local-scale studies that have 

demonstrated increased abundance with deforestation (Vittor et al., 2006, 2009). I also showed 

in Chapter 5 that other secondary malaria vectors, such as An. albitarsis increased in abundance 

in managed landscapes, which has implications for designing sustainable land management 

practices in malaria-endemic areas where this vector is present. These results provide an 
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important way forward, signalling the relative importance of land use in determining current 

and future risk of malaria.  

 

6.3. Methodological developments 

Hierarchical mixed effects models, estimated in a Bayesian framework, enable underlying 

sources of uncertainty to be accounted for (Lowe et al., 2012, 2014). For example, parameter 

uncertainty can be accounted for by assigning prior distributions to the parameters (Blangiardo 

et al., 2013; Lawson, 2021). These models also allow additional unknown sources of variation, 

such as changing population immunity, to be accounted for in spatiotemporal disease models 

(Lowe et al., 2018). In Chapters 2 and 3, I developed statistical modelling frameworks to 

integrate multiple sources of data (climate, land use and vector control measures) to examine 

the spatiotemporal variation in malaria incidence in Ecuador and Venezuela. By comparing the 

seasonal random effects of a model with and without minimum temperature, I found that 

temperature was influential in driving the seasonality of P. falciparum malaria incidence in 

Ecuador (Chapter 2). This approach improves upon quantifying directional associations 

between climate and malaria, allowing for the explicit attribution of temperature to seasonal 

malaria variation. By using the model random effects structure further, I was able to explore 

other sources of unexplained heterogeneity not accounted for in the model of malaria incidence 

in Ecuador. This proved useful for identifying possible disease risk determinants, including 

when strong El Niño events may have elevated malaria risk. Exploring additional sources of 

variability in this way will also prove useful when developing risk estimates with stakeholders 

and public health experts. Local on-the-ground knowledge can be combined with peaks in 

disease variability uncovered from model random effects and used as a tool to identify 

additional sources of variation in disease risk.  

 

The use of the random effects model structure was further developed in Chapter 3. I performed 

a sensitivity analysis of the model random effects to assess the impact of mining on the spatial 

variation in malaria incidence. This enabled the identification of specific areas in southern 

Venezuela where the impact of mining on malaria was most influential, such as disease 

hotspots, in addition to areas where malaria incidence was likely not driven by factors in the 

model. A similar approach could be applied in other instances, where the relative influence of 

an environmental factor on disease risk is unknown. Probing the random effects of 
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spatiotemporal models in this way, to identify sources of variation will be a useful tool for 

assessing future impacts of environmental change on mosquito-borne disease.  

 

Earth observations, such as the remotely sensed mining sites used to inform models of malaria 

re-emergence in Chapter 3, represent important resources for accelerating research in Planetary 

Health. In this thesis, I showed how multiple sources of Earth observations could be integrated 

to gather a more coherent picture of the environmental, socioeconomic and ecological 

processes that determine disease risk. Remotely sensed observations provide a direct advantage 

over using proxy variables, such as gold prices (De Salazar et al., 2021), as the risk component 

can be directly accounted for. Climate observations have been employed on a number of 

occasions to investigate climate-driven disease patterns (Ebhuoma and Gebreslasie, 2016) and 

land use (Rubio-Palis et al., 2013), although are rarely used together. Remotely sensed climate 

data are also used to inform disease early warning systems. For example, temperature, rainfall 

and humidity observations were recently used to inform seasonal probabilistic dengue forecasts 

for Vietnam (Colón-González, Soares Bastos, et al., 2021). Disease forecasts that rely on this 

climate data must be well-matched to local climate conditions in order to provide reliable and 

timely information for public health decision-making.  

 

Whilst Earth observations of climate variables are widely available, integrating data products 

into climate-disease models is not straightforward (Chapter 4). From the outset of this thesis, 

it was challenging to select the most appropriate climate data product for analyses (Chapters 2-

3), with no assessment of whether choosing a certain product would have an impact on the 

overall health outcome. By addressing this important methodological gap in Chapter 4, I 

provide an enhanced understanding of how and why health outcomes might differ when using 

different data products. By doing so I hope to guide future climate-disease research, ensuring 

data products are not selected solely on their availability. Finally, in Chapter 5 I developed an 

approach to identify consistent mosquito responses to anthropogenic land-use change, 

demonstrating important proof-of-concept that can be applied to other regions, diseases and 

vectors. This approach has already proved useful for identifying global responses of terrestrial 

biodiversity to land use (Newbold et al., 2015; Millard et al., 2021), although has not yet been 

applied to understand disease risk in changing landscapes. Applying this approach to mosquito 

vectors can help solidify findings from local-scale studies and identify generalised vector 

responses relevant in multiple disease control settings. 

 



 

 151 

6.4. Deciphering climate change and vector-borne disease research for policymakers 

Attributing the effects of climate variation and change on vector-borne disease is vital for 

informing impact assessments. However, while reviewing the literature for this research, it 

became clear that the way in which variation in vector-borne diseases is attributed to climate 

variation and change varies greatly. For example, in Chapter 1.5 I described how the impact of 

climate variation on vector-borne disease risk can be quantified by attributing the variation 

explained by a climate variable, or by linking an increase in disease risk with a unit increase in 

a climate variable. In this discussion piece, I show that a major limitation in understanding the 

effects of climate variation and change on vector-borne disease risk, is how these effects are 

quantified. I draw attention to this issue and identify best-practice approaches for quantifying 

the impact of climate variation and change on vector-borne diseases for policy-relevant impact 

assessments. This will enable climate-disease associations, such as those reported in Chapters 

2-4 to be more effectively incorporated in policy-relevant material. This discussion piece is 

extended to encompass other vector-borne diseases as well as mosquito-borne diseases, which 

is in line with policy-relevant impact assessments including the work of the Intergovernmental 

Panel on Climate Change (IPCC) Working Group II (WGII).  

 

Quantifying the impacts of historical climate change on vector-borne disease is vital for 

assessing the health implications of a warmer world. A unified approach, whereby other 

influencing and interacting factors, such as land-use change and socioeconomic pressures are 

considered, is needed to effectively communicate the impacts of climate variation and change 

on vector-borne diseases to policymakers. This will ensure a diverse range of research informs 

evidence-based policies to build resilience to climate change. In particular, there is also an 

increasing need to consider individual contexts, whereby influencing factors such as 

environmental degradation will have a specific localised effect. This will require tailoring 

climate services to ensure their maximal value in decision making processes. The IPCC 

Working Group I (WGI) recently warned that unless immediate action is taken to reduce global 

greenhouse gas emissions, more than 1.5°C warming of the global climate will be inevitable 

(IPCC, 2021). Already the effects of climate change are rapidly intensifying and they will have 

widespread and overwhelming consequences for human health and wellbeing (Myers, 2017). 

Of particular concern is the threat of emerging and re-emerging vector-borne diseases due to 

global heating and more frequent extreme weather events. Indeed, there is already profound 

evidence that climate change is altering vector-borne disease transmission, with impacts likely 
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to worsen if current trends in greenhouse gas emissions continue to rise (Romanello et al., 

2021). 

 

The WGI recent report has exemplified the importance of effectively communicating the 

evidence for climate change, including the impacts on human health (IPCC, 2021). Now more 

than ever, accurate and coherent quantification of both the impacts of short-term weather 

variations (weather sensitivity) and long-term climate change (attribution of observed changes 

to climate change) is needed for evidence-based policies to protect human health and 

wellbeing. Currently, the lack of consistency in quantifying the weather sensitivity of vector-

borne diseases or the contribution of long-term climate change to observed changes in disease 

occurrence presents an obstacle to effectively integrating climate and vector-borne disease 

research into policy. Despite ample evidence for the impacts of climate variation and long-term 

change on vector-borne diseases, making global assessments for the IPCC is challenging, and 

limited to selected studies with consistent reporting methodologies. Here, I call for improved 

reporting of the health impacts of climate change to ensure valuable climate change research is 

not excluded from decision-making. To generate critical understanding of the contribution of 

climate variation and change to observed changes in vector-borne diseases, robust detection 

and impact attribution assessments are urgently required.  
 

6.4.1. Communicating uncertainty in impact assessments 

The IPCC WGII aims to assess the global consequences and vulnerability of socioeconomic 

and natural systems to climate change, as well as the historical impacts. This assessment 

includes quantifying a wide range of observed changes in natural systems due to climate change 

such as coral bleaching, water availability and crop yields (IPCC, 2014). Impacts on society 

are often derived from empirical models quantifying observed responses to weather 

fluctuations. These include impacts on heat-related mortality, malnutrition, social conflict and 

migration. Empirical models provide an opportunity to attribute observed changes in human 

systems to climate change, or other socioeconomic drivers such as population fluctuations, 

economic development and disease control measures. It is important to adequately distinguish 

the attribution of observed changes in vector-borne diseases to long-term climate change from 

the detection of responses to short-term (e.g. monthly or annual) weather fluctuations. For 

example, evidence demonstrating that variations in weather conditions induce interannual 

variation in vector-borne disease incidence does not imply the attribution of observed changes 

or fluctuations to long-term climate change.  



 

 153 

 

The IPCC Fifth Assessment Report (AR5) defines impact attribution as addressing the 

magnitude of the contribution of long-term climate change to an observed change in a system 

(Cramer et al., 2014), in this case vector-borne diseases. In addition, “detection of impacts” of 

climate change is defined as addressing the question of whether a natural or human system is 

changing beyond a specified baseline that characterises its behaviour in the absence of climate 

change (Stone et al., 2013). The ‘no climate change’ baseline can be stationary or vary 

according to changes in the drivers of vector-borne diseases other than climate. In this way, the 

IPCC has developed a framework to enable the production of a comprehensive assessment of 

the impacts of climate change, with consistent messaging. However, in practice the detection 

of impacts and impact attribution can be challenging given the difficulty in isolating the 

impacts of climate change amongst from confounding factors, including disease control 

measures and socioeconomic development.  

 

The IPCC framework enables global comparisons to be made and increases the effectiveness 

of the assessment for policymakers to use as the basis for sound decision-making. 

Communicating uncertainty in the findings by reporting quantitative estimates, reviewing and 

evaluating the evidence and considering all plausible sources of uncertainty, is a key 

component. To do this, calibrated language is used to synthesise judgements about the 

confidence of a finding as a measure of the evidence, i.e., quality of individual studies and the 

level of agreement across the literature. For example, if multiple high-quality studies provide 

evidence of an increasing trend in malaria cases with warming temperatures, the assessment 

would be made with robust evidence and agreement across different studies i.e., high 

confidence. In contrast, if only a single study provided evidence attributing observed increases 

in malaria cases to warming trends, the confidence level would be very low. This consistent 

messaging allows for evidence to be summarised and communicated effectively to 

policymakers. However, supporting evidence may fail to conform with this consistent 

messaging. Climate and vector-borne disease research may provide a valuable impact 

attribution, but in a format incompatible with IPCC assessments. Consequently, pertinent 

scientific research risks being excluded, resulting in low confidence assessments. 
 

6.4.2. Quantifying observed impacts of climate variation and change on vector-borne 

diseases 
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The climate-vector-borne disease literature is vast and constantly expanding. Despite advances 

in our understanding of climate and disease relationships at the local level, the diversity with 

which climate-disease relationships are reported has created a barrier to integrating empirical 

research into policy-informative material, such as IPCC assessment reports. The IPCC 

framework for impact attribution requires quantitative evidence on the links between long-term 

climate change and observed trends or strength of disturbances of a vector-borne disease. The 

framework also relies on evidence quantifying the variation in vector-borne diseases that can 

be explained by weather fluctuations (‘weather sensitivity’) as a first step to actual impact 

attribution. Here, I summarise approaches used to quantify the impact of short-term climate 

variation and long-term change on vector-borne diseases (Table 6.1). The myriad ways that 

researchers quantify the impact of climate on disease risk and communicate their findings 

makes it challenging to synthesise research into global impact assessments. 

 

To compare how the impacts of climate on disease risk are quantified, representative case 

studies of climate-disease relationships were selected based on how the impacts were 

quantified, for example by quantifying variation explained or change in the distribution of a 

disease vector (Table 6.1). Examples of other common vector-borne diseases, such as Lyme 

disease and West Nile, were also selected to represent the diversity in the approaches that are 

used in impact assessments, such as that for the IPCC. All studies in Table 6.1 would qualify 

for inclusion as evidence for climate-impacts on disease risk in the IPCC WGII assessment 

report.  

 

Several studies combine multiple data sources, such as Earth observations from satellites and 

case data into spatiotemporal modelling frameworks to identify the sensitivity in vector-borne 

disease burden to climate conditions (Lowe et al., 2021). Other studies use indirect measures, 

such as vector infestation and oviposition (da Cruz Ferreira et al., 2017; German et al., 2018). 

Evidence directly attributing changes in vector-borne disease risk to long-term trends in climate 

is more challenging and difficult to quantify, since this relies on long-term observations. As a 

result, there is limited evidence explicitly linking long-term warming trends or climate 

variability associated with climate change, to changes in vector-borne disease risk. However, 

some studies have been able to explicitly link warming trends to disease risk (Table 6.1). For 

example, resurgent malaria epidemics from the 1970s to the 1990s, in the east African 

highlands have been linked to warming temperature trends (e.g. Pascual et al., 2006; Chaves 

et al., 2012). Other studies have quantified the impact of climate change on vector-borne 
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disease risk by linking warming trends to alterations in vector abundance, distribution and 

range. For example, increasing climate suitability is linked to the northward range expansion 

of the Lyme disease vector Ixodes scapularis in Canada (Clow et al., 2017). Other studies have 

assessed climate suitability for other vector-borne diseases, such as dengue. For example, 

between 1950-2020 the global climate suitability for dengue transmission has increased by 

13% (Romanello et al., 2021).  
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Table 6.1. Summary of attributions of long-term climate trends and weather sensitivity to vector-borne disease risk. Selected studies providing evidence 

of observed changes in vector-borne diseases due to climate change, attributing long-term trends in vector-borne disease risk and sensitivity to climate change.  

Attribution Method Vector-borne disease Study area Quantification Reference 
Long-term 
climate trends 

Time-series 
analysis 

Malaria African 
highlands 

Warming trends between 1950-2002 were 
associated with increased incidence 

Pascual et al., 2006 

Generalised 
additive model 

Dengue South and 
Southeast 
Asia 

Outbreak risk peaks at the highest monthly 
temperatures of 33.5°C and due to climate 
change, these high monthly temperatures 
now occur in previously colder areas 

Servadio et al., 
2018 

Mixed 
multivariable 
logistic regression 
model 

Lyme disease Canada The Ixodes tick vector has expanded its 
range northward 

Clow et al., 2017 

Spatial analysis Malaria Global Between 2010-2019 transmission suitability 
in highland areas was 39% higher compared 
to the 1950s baseline 

Romanello et al., 
2021 

Weather 
sensitivity 

Spatiotemporal 
model 

Dengue Thailand 8% of interannual variation in relative risk 
was be explained by temperature and 
precipitation 

Lowe et al., 2016 

Spatiotemporal 
model 

Malaria Ecuador 1°C increase in minimum temperature was 
associated with a 146% rise in P. 
falciparum malaria incidence 

Fletcher et al., 2020 
(Chapter 2) 

Case-crossover 
study 

West Nile  USA 5°C increase in maximum weekly 
temperatures was associated with 32-50% 
higher incidence 

Soverow et al., 
2009 
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Attributing variation in vector-borne diseases to short-term weather fluctuations (e.g. daily, 

monthly or annual variation) is more common, although highly varied (Table 6.1). I identified 

several studies providing evidence attributing observed variation in vector-borne diseases to 

weather variations in an intuitive way for policymakers. For example, the variation explained 

by particular climate variables can be quantified (e.g. Lowe et al., 2016) or the percentage 

change in disease incidence can be linked to a unit change in a climate variable (e.g. Chapter 

2). Moreover, I identified studies quantifying the effect of climate variation on other vector-

borne disease parameters, such as mosquito oviposition and infestation (da Cruz Ferreira et al., 

2017; German et al., 2018). I recommend communicating the impact of climate variation on 

vector-borne disease by quantifying the variation explained by a given climate variable, using 

robust modelling techniques that account for unexplained sources of variation and confounding 

factors. Alternatively, observed changes in disease risk can be quantified with respect to 

changes in key climatic variables, such as temperature and rainfall (Table 6.1). Producing 

quantifications in this way will allow for robust quantitative assessment of the sensitivity of 

vector-borne disease to weather variations, providing higher confidence impact assessments.  

 

The increased momentum in the engagement of health professionals in climate change has 

generated valuable research and insights into quantifying the effects of historical climate 

change on vector-borne diseases. Despite this and given the substantial global variation in the 

response of vector-borne diseases to climate variation and long-term change, it has been 

challenging to synthesise, compare and attribute the effects of climate change on vector-borne 

diseases at the global and regional scale. Inconsistent reporting practices obstruct the inclusion 

of valuable policy-relevant research into important global assessments. I hope that by 

identifying these inconsistencies and highlighting the types of research that are included in the 

assessments of observed impacts, will raise awareness in the health and climate science 

community of how to make research relevant and useful for policymakers.  
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6.5. Remaining challenges and future research directions 

Achieving a greater understanding of the impacts of global environmental change on mosquito-

borne diseases that will be useful for policymakers, requires a careful considered approach to 

leveraging data, knowledge and disciplines. This presents several challenges. In particular, 

there is a need to account for socioeconomic dynamics such as population mobility and 

connectivity, which influence spatiotemporal disease risk but are difficult to quantify 

(Prothero, 1977; Stoddard et al., 2009; Lee et al., 2021). In Chapter 2, due to the study location 

along a migratory route in southern Ecuador, it was highly likely that malaria cases were driven 

by human mobility, in addition to the other socioeconomic and environmental factors included 

in the model. However, no detailed data were available to capture the effect of population 

mobility on malaria incidence during the study period. In Chapter 3, I accounted for the 

environmental disturbance effect of mining activity, which is expected to affect malaria risk 

through habitat-mediated alterations to mosquito vector abundance (Moreno et al., 2007; Jorge 

E. Moreno et al., 2009). Nonetheless, another important component is the altered human 

behaviour and dynamic population fluxes that are typically associated with small-scale mining 

communities. Accounting for human mobility patterns is important because they determine the 

exposure to mosquito vectors. In addition, understanding how underlying population mobility 

and connectivity impacts disease risk is important for improving surveillance programs and the 

strategic planning of elimination strategies (Pindolia et al., 2012).  

 

Mining populations such as those in Chapter 3, are incredibly mobile and are often vulnerable 

populations with limited access to healthcare (Ache et al., 2002; Douine et al., 2020). It is 

therefore likely that this human movement has a considerable impact on resulting malaria 

transmission patterns, although is poorly understood. Accounting for changing socioeconomic 

dynamics, including population mobility is a particular challenge in Planetary Health research. 

The rising availability of human mobility data provides a valuable resource for evaluating how 

human population movements influence disease risk (Tizzoni et al., 2014). Moreover, recent 

applications of novel data streams, such as Google mobility data (Cot et al., 2021), alongside 

the incorporation of mobile phone data to improve dengue forecasts (Kiang et al., 2021) and 

to identify malaria source-sink dynamics (Wesolowski et al., 2012) is contributing solutions to 

address this challenge. However, integration and application of these data into disease risk 

analysis is limited and improvements in estimating population mobility remain to be made.  
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Since many epidemiological and ecological processes, such as deforestation and climate-land 

use interactions, operate dynamically over multiple spatiotemporal scales, it is also challenging 

to accurately and reliably account for these processes. Applications of new technologies such 

as drones can help address this data gap and gather fine-scale information to better understand 

these processes. In particular, the amount of forest cover remaining is an important determinant 

of the deforestation-malaria relationship (Laporta et al., 2021), which I was unable to account 

for in Chapter 3, owing to the lack of fine-scale data. Leveraging fine-scale point data in 

combination with new technologies may allow for the further teasing out of the mechanistic 

relationships between climate variation, land use and malaria incidence.  

 

In Chapter 5, I found a high level of uncertainty in the response of the main Amazonian malaria 

vector An. darlingi to secondary vegetation. This is likely due to the habitat preferences of An. 

darlingi that were not captured in the aggregated land use categories in the study. Another 

important step forward is to identify specific mosquito bionomic traits, such as feeding and 

resting behaviours, which facilitate mosquito vector responses to land-use change. Answering 

this question could be tackled by combining mosquito abundance data across land-use types 

with other regional databases of mosquito bionomic information (e.g. Massey et al., 2016). 

Doing so would enable a more comprehensive, mechanistic understanding of how mosquito 

vectors are favoured in human-altered environments, and further inform land use management 

strategies.  

 

An understanding of how mosquito-borne disease risk varies across fine-scale urban gradients 

also remains to be disentangled. In the models of land use and mosquito biodiversity in Chapter 

5, a broad urban category was defined, which included sites ranging from urban parks, dense 

cities and informal settlements. Urban environments are extremely heterogeneous and include 

highly developed areas as well as urban fringes and peri-urban settlements with limited 

infrastructure, such as piped water and sewage systems. Therefore, these areas often have 

higher rates of mosquito-borne diseases due to lack of water supply, sanitation and adequate 

housing (Delmelle et al., 2016; Espinosa et al., 2016). The urban category in Chapter 5 likely 

does not allow for variation across the urban landscape. In Chapter 5, I demonstrated overall 

decreased mosquito richness, with some synanthropic mosquitoes such as Ae. aegypti and Ae. 

albopictus increasing in abundance. However, it is probable that mosquito abundance and 

richness varies across gradients of urbanisation. Indeed, Ae. albopictus has been found to be 

more common in rural areas (Tsuda et al., 2006), which have distinctive ecological habitats 
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compared to dense urban conglomerates. Combining the mosquito biodiversity dataset with 

high resolution urban footprint data (e.g. Liu et al., 2020) may enable the teasing out of finer 

scale graded responses. Identifying species that are tolerant to higher or lower levels of 

urbanisation would be more useful at a policy-relevant scale, i.e., within cities and between 

neighbourhoods. The high level of uncertainty and lack of data representation for some land 

use categories in Chapter 5 also highlights the need for greater data coverage and sampling in 

these landscapes, such as plantations, managed forests, and pasture.  

 

Predictions on how mosquito distribution and disease risk are likely to change under future 

warming conditions is central to informing adaptation capacities and mitigation policies. 

Typically, predictions are based on climate- and population-driven models of risk. For 

example, recent projections for how malaria and dengue suitability will change, estimate an 

additional 4.7 billion people will be at risk of these two diseases by 2070 if no concerted action 

is taken to limit carbon emissions (Colón-González, Sewe, et al., 2021). In Chapter 3, I showed 

that warmer temperatures were associated with increased malaria risk but only in areas that 

were environmentally degraded by mining activity. This finding has important implications for 

informing prediction models and identifying areas that face compounding disease risk from 

climate variation and land-use change. The interaction between climate variation and land use 

on mosquito-borne disease could be considered in a model which combines predictions of 

future land use under a combination of Shared Socioeconomic Pathways (SSPs) and 

Representative Concentration Pathways (RCP) (Chen et al., 2020) to understand not only the 

impact of climate change but also future land use.  

 

6.6. Concluding remarks 

Concrete change to combat the negative impacts of global environmental change relies on a 

fundamental understanding of how our activities are affecting our health. Enhanced 

understanding requires the harnessing of novel data sources and technologies, as well as 

enriched communication and knowledge exchange across multiple environmental and health 

disciplines. Whilst the research presented in this thesis represents a snapshot of the vast 

Planetary Health literature, it contributes crucial knowledge that accelerates understanding of 

how global environmental change impacts mosquito-borne diseases. In addition, these findings 

also provide important insight into how disease control programmes should be adapted with 

ongoing climate change, for example by considering an increase of P. falciparum with 
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warming temperatures. By incorporating concepts from climate, health and ecological 

disciplines into distinctive case studies of mosquito-borne diseases in Latin America and the 

Caribbean, I enhance understanding of the impacts of environmental change, by considering 

multiple factors including climate variation, land-use change and socioeconomics. This thesis 

contributes not only a greater understanding of how multiple environmental and social 

processes interact to determine mosquito-borne disease risk in changing landscapes (Chapters 

2-3), but also identifies practical considerations in Planetary Health research (Chapter 4) and 

integrates knowledge from multiple disciplines (Chapter 5). I show how climate variation 

jointly influences disease risk relative to the impact of elimination efforts (Chapter 2) and how 

the impact of climate on disease risk is amplified in environmentally degraded areas (Chapter 

3). I additionally show that data product choice used to inform climate-disease models 

influences the associations between climate hazards and disease risk (Chapter 4). Finally, to 

address the lack of ecological information in epidemiology and health research I demonstrate 

diverging species-specific responses of mosquito vectors to land-use change (Chapter 5). I also 

highlight how climate-disease research should be communicated intuitively for integration into 

policy-relevant impact assessments. This thesis contributes to the Planetary Health and 

infectious disease knowledge base, providing sound evidence to help policymakers design 

effective interventions to build climate and environmental resilience to mosquito-borne disease 

threats. 
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Appendices 

Appendix I – Understanding the combined impact of climate 

variation and elimination efforts on malaria incidence in a high-

risk border region of Ecuador 
 

This appendix provides supplementary figures, tables and text for Chapter 2.  

 

Text S2.1. Zero-inflated negative binomial models 

Text S2.2. Prior distribution specifications 

Text S2.3. Malaria vector control measures in El Oro 2001-2015. 

 

Figure S2.1. Model posterior distributions with and without intervention information for P. 

falciparum and P. vivax malaria in El Oro 2001-2015. 

Figure S2.2. Urbanised areas in El Oro province, 1990-2018. 

Figure S2.3. Annual parasite incidence (API) in El Oro 1990-2015. 

Figure S2.4. Rural and urban malaria in El Oro 1990-2018. 

Figure S2.5. Seasonality of malaria incidence in El Oro. 

Figure S2.6. Model improvement for climate variables in El Oro 1990-2018. 

Figure S2.7. Minimum temperature trends in El Oro 1990-2018. 
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intervention models of malaria incidence in El Oro 2001-2015. 
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Table S2.4. Model adequacy for lagged climate variables in non-linear models of malaria 

incidence in El Oro 1990-2018. 

Table S2.5. Parameter estimates for explanatory covariates in full and intervention models of 

malaria incidence in El Oro 1990-2018. 
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Table S2.1. Summary of model data sources. Data sources for variables included in spatiotemporal models of malaria incidence in El Oro 1990-

2016 and intervention models 2001-2015.  
Data Inclusion in 

model 
Description Temporal 

resolution 
Spatial 
resolution 

Time period Rationale Source 

Malaria cases Response Number of P. falciparum and P. vivax cases recorded Monthly Canton 
(district) 

January 1990-December 2018 -  Ministry of Health 

Population Offset Population values from national census Annual Canton 
(district) 

1990-2018 (2011-2018 were provided 
as projections. Annual estimates 
between census years were obtained 
using linear interpolation) 

Controlling for the effects of 
human population on malaria 
incidence 

Instituto Nacional 
de Estadística y 
Censos (INEC) 

Poverty Covariate Proportion of the population with unmet basic needs NA Canton 
(district) 

2010 Level of poverty influences 
housing quality and sanitation 
infrastructure and therefore 
Anopheles vector exposure 

Instituto Nacional 
de Estadística y 
Censos (INEC) 

Minimum 
temperature 

Covariate Average values derived from gridded remotely sensed 
observations  

Monthly Canton 
(district) 

January 1990-December 2018 Temperature influences the 
environmental suitability for 
Anopheles vectors, and parasite 
development 

TerraClimate 

Precipitation Covariate Average values derived from gridded remotely sensed 
observations 

Monthly Canton 
(district) 

December 2018 Precipitation provides important 
breeding habitat for Anopheles 
vectors 

TerraClimate 

Level of 
urbanisation 

Covariate Proportion (%) of urban land cover, derived from 
gridded remotely sensed observations 

Annual Canton 
(district) 

1990-2018 Level of urbanisation impacts 
availability of Anopheles vector 
habitat, which is generally lower 
in urban areas, and healthcare 
accessibility (vulnerability) 

European Space 
Agency (ESA) 
Climate Change 
Initiative (CCI) 

Indoor 
residual 
spraying 
(IRS) 

Covariate 
(intervention 
model only) 

Number of households treated using IRS with 
insecticides (deltamethrin 5% concentrated 
suspension, deltamethrin 2.5%, malathion 50%, 
alphacypermethrin 10% concentrated suspension and 
betacipermethrin 2.5%) 

Monthly Canton 
(district) 

January 2001-September 2013 Interventions decrease exposure 
to Anopheles vectors 

Ministry of Health 

Ultra-low-
volume 
(ULV) 
fumigation 

Covariate 
(intervention 
model only) 

Number of neighbourhoods treated with 96% 
malathion via fumigation 

Monthly Canton 
(district) 

January 2004-May 2015 Interventions decrease exposure 
to Anopheles vectors 

Ministry of Health 

Space 
spraying 

Covariate 
(intervention 
model only) 

Number of households sprayed with 2.5% 
deltamethrin 

Monthly Canton 
(district) 

January 2004-May 2015 Interventions decrease exposure 
to Anopheles vectors 

Ministry of Health 



 

 184 

Text S2.1. Zero-inflated negative binomial models 

Zero-inflated models have been developed to account for the high occurrence of zeros observed 

in overdispersed count data. A standard negative binomial model for the malaria case data in 

El Oro 1990-2018, would assume monthly malaria cases, yst in each canton (s = 1,…14) for 

each timestep (t = 1,…,348) follow a negative binomial distribution yst ~ NegBin(μst, κ), where 

μst is the mean number of monthly cases of malaria in each canton, with parameter κ accounting 

for overdispersion, frequently observed with count data. The zero-inflated negative binomial 

model assumes that each zero j, has a probability p, to arise from the negative binomial 

distribution and a probability, 1 - p to arise as a result of a non-zero being undetected (excess 

zero). The zeros in the data are therefore modelled as a mixture of the negative binomial 

distribution and the logit distribution (Rue et al., 2009). The distribution of yst can then be 

written as: 

 

PPr'yst = j( = )
πi+(1- πi) NegBin'yi= 0( when j = 0
(1- πi) NegBin 'yi(          when j > 0

 * 

 

Text S2.2. Prior distribution specifications 

Model parameters were estimated in a Bayesian framework using Integrated Nested Laplace 

Approximation (INLA) and implemented in R-INLA (http://www.r-inla.org/) using R version 

3.6.0. Unstructured random effects were included in the model framework to account for 

unknown and unobserved confounding factors influencing malaria in El Oro, such as 

healthcare access and population movements. These random effects introduce an extra source 

of variability into the model that can assist in modelling overdispersion (Lowe et al., 2016). 

The annual cycle of malaria was accounted for by assigning autocorrelated random effects for 

each month, mt. The monthly effect was assigned a random walk prior, in which the effect in 

one month is derived from the effect in the previous month, mt – mt-1 ~ N(0, σ2β), where β is 

the parameter estimate for each month January-December. Random effects for each year of the 

study, yt (1990-2018) were assigned exchangeable priors, yt ~ N (0, σ2y). Hyperparameters for 

the random effects were assigned the default gamma prior on the precisions, the inverse of the 

variance τ = 1/σ2 (Lowe et al., 2018). The fixed effects in the models were assigned the default 

prior in R-INLA, β  ~ N(0,1000). Non-linear relationships for the climate variables (minimum 

temperature, precipitation) were introduced using a random walk prior of order 1.  
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Text S2.3. Malaria vector control measures in El Oro 2001-2015. 

Detailed monthly and district-level data of vector control interventions that were implemented 

across El Oro were provided by the Ecuadorian Ministry of Health for the period 2001-2015. 

Monthly estimates per canton for three control measures were available. The first measure was 

for the number of households that were sprayed using indoor residual spraying (IRS) with 

different insecticides; deltamethrin 5% concentrated suspension, deltamethrin 2.5%, malathion 

50%, alphacypermethrin 10% concentrated suspension and betacipermethrin 2.5%. The 

number of households that were fogged, using a backpack fogger that creates a fog of 

insecticide to treat both inside and outside the home, for which 2.5% deltamethrin concentrated 

emulsion was used. Finally, data were available for ultra-low-volume (ULV) fumigation, 

which is performed by spraying entire neighbourhoods, or blocks using 96% malathion. These 

interventions were all carried out at different times with varying intensity, up until 2015. It is 

highly likely that other malaria interventions, such as smaller scale vector control programs, 

environmental management, insecticide treated net (ITN) distribution were implemented in El 

Oro during the whole study period (1990-2016), but no detailed data were available. 

Incorporating unstructured spatiotemporal random effects into the models allows for any 

additional variation due to unmeasured interventions (Lowe et al., 2018).  

 

As the detailed vector control measure data were only available between 2001-2015, I wanted 

to determine how influential the inclusion of these data were in the fitted models, i.e. whether 

they impacted the parameter estimates for the other covariates and model posterior 

distributions. To do this, I constructed two Bayesian hierarchical mixed effects models, for 

each malaria parasite, one to take advantage of the whole time series of case data for the period 

1990-2018, with the assumption that interannual random effects can be used to account for 

variation caused by the vector control measures and other unknown and unmeasured factors, 

such as changes to malaria treatments and diagnostics. This model is referred to as the main 

model. Another model was formulated for the time period 2001-2015 and included the 

available data on the vector control measures implemented. This model is referred to as the 

intervention model. All other explanatory variables and random effects remained the same. I 

compared the posterior distributions for P. falciparum and P. vivax malaria incidence between 

2001-2015 from the full models for the whole study period, without the vector control 

information to distributions from the intervention models. There was a greater amount of 

uncertainty in the model posterior distributions of the intervention models, especially between 

2010-2015 and the posterior distributions from the full models were closer to the actual 
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observed incidence (Figure S2.1). To test the inclusion of the limited vector control data 

further, I also tested if any of the variation in malaria incidence due to the vector control 

measures could be captured in the random effects structure of the full model. Here, I aimed to 

assess the extent to which the random effects could account for these variations in the absence 

of detailed intervention data for a longer time period, or another location without such data.  

 

 
Figure S2.1. Model posterior distributions with and without intervention information for 

P. falciparum and P. vivax malaria in El Oro 2001-2015. Observed (grey solid line), 

posterior mean (blue dashed line) and 95% credible intervals (blue shading) for annual parasite 

incidence (API) for A) the full model for the whole time period (1990-2018) without 

intervention data and B) the intervention model for the period 2001-2015 including 

intervention data.  
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Table S2.2. Parameter estimates and model adequacy for lagged vector control measures 

in intervention models of malaria incidence in El Oro 2001-2015. Posterior mean estimates, 

lower (2.5%) and upper (97.5%) credible intervals (CI), deviance information criterion (DIC) 

and Watanabe-Akaike information criterion (WAIC) for intervention models of P. falciparum 

and P. vivax malaria in El Oro 2001-2015 that include the control measures, indoor residual 

spraying, ULV fumigation and space spraying, at time lags from 0-3 months. Time lags 

highlighted in grey are those selected to be used in the final model.  
Control 
measure 

Parasite Lag  Estimate LCI UCI DIC WAIC 

Indoor 
residual 
spraying 

P. falciparum 

0 -0.12 -0.33 0.08 3755.73 3760.48 
1 -0.12 -0.32 0.09 3757.23 3761.49 
2 -0.12 -0.33 0.08 3757.61 3761.96 
3 -0.12 -0.32 0.08 3749.58 3754.29 

P. vivax 

0 0.03 -43.88 43.89 6013.69 6021.87 
1 0.01 -0.05 0.08 6015.51 6023.68 
2 0.02 -0.04 0.08 6015.30 6023.71 
3 -0.04 -0.10 0.02 6013.86 6021.52 

ULV 
fumigation  

P. falciparum 

0 -0.12 -0.33 0.09 3757.63 3762.34 
1 -0.16 -0.38 0.06 3756.92 3761.56 
2 -0.14 -0.35 0.07 3757.28 3762.78 
3 -0.11 -0.32 0.10 3756.02 3761.52 

P. vivax 

0 0.06 -0.09 0.23 6015.16 6024.08 
1 -0.01 -0.19 0.16 6015.83 6024.96 
2 -0.09 -0.23 0.05 6013.72 6022.63 
3 -0.20 -0.38 -0.01 6011.34 6019.63 

Space 
spraying 

P. falciparum 

0 0.03 -0.61 0.66 3757.70 3762.37 
1 -0.06 -0.72 0.57 3756.38 3758.43 
2 -0.10 -0.76 0.54 3756.07 3757.18 
3 -0.01 -0.66 0.62 3758.32 3760.46 

P. vivax 

0 -0.09 -0.17 0.00 6015.43 6024.24 
1 -0.15 -0.25 -0.05 6012.22 6020.17 

 2 -0.11 -0.19 -0.02 6014.39 6022.65 
 3 -0.17 -0.28 -0.06 6010.41 6018.35 
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Table S2.3. Parameter estimates and model adequacy for lagged climate variables in 

linear models of malaria incidence in El Oro 1990-2018. Posterior mean estimates, lower 

(2.5%) and upper (97.5%) credible intervals (CI), deviance information criterion (DIC) and 

Watanabe-Akaike information criterion (WAIC) for full models of P. falciparum and P. vivax 

malaria in El Oro 1990-2018 that include minimum temperature, maximum temperature and 

precipitation as linear terms at time lags from 0-3 months.  
Variable Parasite Lag  Estimate LCI UCI DIC WAIC 

Minimum 
temperature 

P. 
falciparum 

0 11938.92 11960.72 -0.28 -0.66 0.09 
1 11948.20 11963.51 0.22 -0.14 0.57 
2 11961.86 11980.42 0.84 0.62 1.05 
3 11927.02 11940.85 1.01 0.79 1.23 

P. vivax 

0 17824.32 17833.30 0.08 -0.17 0.33 
1 17820.73 17829.48 0.42 0.17 0.66 
2 17815.34 17823.67 0.55 0.34 0.73 
3 17804.16 17812.64 0.58 0.37 0.79 

Maximum 
temperature 

P. 
falciparum 

0 11941.31 11970.30 -0.04 -0.32 0.23 
1 11948.45 11962.52 0.33 0.10 0.57 
2 11937.95 11954.81 0.59 0.45 0.74 
3 11937.51 11950.74 0.61 0.47 0.75 

P. vivax 

0 17820.63 17829.29 0.18 0.02 0.34 
1 17813.42 17821.37 0.4 0.25 0.54 
2 17806.51 17814.84 0.44 0.32 0.55 
3 17810.93 17819.62 0.34 0.20 0.48 

Precipitation 

P. 
falciparum 

0 11944.85 11961.75 -0.03 -0.18 0.13 
1 11944.55 11960.66 0.00 -0.14 0.14 
2 11943.98 11961.78 -0.03 -0.20 0.13 
3 11938.59 11963.29 0.24 0.09 0.38 

P. vivax 

0 17824.24 17833.24 -0.06 -0.15 0.02 
1 17822.93 17831.12 -0.07 -0.17 0.02 
2 17828.16 17837.31 0.01 -0.08 0.11 
3 17828.61 17837.34 0.10 0.01 0.18 
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Table S2.4. Model adequacy for lagged climate variables in non-linear models of malaria 

incidence in El Oro 1990-2018. Deviance information criterion (DIC) and Watanabe-Akaike 

information criterion (WAIC) for full models of P. falciparum and P. vivax malaria in El Oro 

1990-2018 that include minimum temperature, maximum temperature and precipitation as non-

linear function at time lags from 0-3 months. Time lags highlighted in grey are those selected 

to be used in the final model.  
Variable Parasite Lag DIC WAIC 

Minimum temperature 

P. falciparum 

0 11948.55 11964.97 
1 11944.32 11960.74 
2 11936.44 11953.48 
3 11921.09 11934.96 

P. vivax 

0 17830.35 17836.07 
1 17814.22 17822.74 
2 17800.4 17810.46 
3 17792.98 17801.97 

Maximum temperature 

P. falciparum 

0 11924.61 11940.9 
1 11935.75 11952.17 
2 11944.67 11956.47 
3 11934.27 11946.95 

P. vivax 

0 17812.66 17831.57 
1 17809.03 17822.45 
2 17802.44 17817.49 
3 17778.01 17806.46 

Precipitation 

P. falciparum 

0 11943.34 11961.06 
1 11953.66 11985.54 
2 11949.65 11964.34 
3 11941.54 11961.58 

P. vivax 

0 17820.31 17832.98 
1 17820.92 17832.56 
2 17821.94 17830.92 
3 17823.07 17831.76 
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Figure S2.2. Urbanised areas in El Oro province, 1990-2018. A) Gridded land cover map 

of urban areas in El Oro, 2018. Sourced from the ESA CCI. B) Mean percentage of urban cover 

in each canton 1990-2018. Percent cover was defined as the proportion of the number of grid 

cells categorised as urban, according to the United Nations Land Cover Classification System 

(LCCS).  

 

 

 



 

 191 

 
Figure S2.3. Annual parasite incidence (API) in El Oro 1990-2015. Mean API (per 1,000) 

for P. falciparum and P. vivax malaria for each canton in El Oro a) between 1990-2000 before 

the period for which intervention data was available and b) 2001-2015 during the intervention 

period. Grey areas show missing data.  
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Figure S2.4. Rural and urban malaria in El Oro 1990-2018. Annual parasite incidence 

(API), per 1,000, of P. falciparum (pink) and P. vivax incidence (blue) in A) rural and B) 

urbanised areas. Grey shading represents the period of intensive vector control in El Oro, 2001-

2015. Urban areas were defined as cantons that had urban cover above or equal to 5% of total 

land cover.  
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Figure S2.5. Seasonality of malaria incidence in El Oro. Monthly incidence (per 1,000) of 

A) P. falciparum and B) P. vivax malaria in El Oro before the vector control measures were 

implemented 1990-2000 (solid curve) and during the elimination period 2001-2015 (dashed 

curve).  
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Figure S2.6. Model improvement for climate variables in El Oro 1990-2018. Model 

improvement, calculated as percentage change in root mean square error (RMSE) between 

spatiotemporal models of P. falciparum and P. vivax malaria excluding each climate variable, 

minimum temperature and precipitation, and models including each variable. Minimum 

temperature, lagged by three months was included as a linear term for P. falciparum models 

and as a non-linear function for P. vivax models. Precipitation, lagged by three months for P. 

falciparum was included as a linear term and for P. vivax was lagged one month and included 

as a non-linear function.  
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Figure S2.7. Minimum temperature trends in El Oro 1990-2018. A) Mean monthly 

minimum temperatures for each year 1990-2018 and B) mean minimum temperature 1990-

2018 (red curve), logistic regression line (dashed curve) and 95% confidence intervals (grey 

shading).  
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Table S2.5. Parameter estimates for explanatory covariates in full and intervention 

models of malaria incidence in El Oro 1990-2018. Posterior mean estimates, lower (2.5%) 

and upper (97.5%) credible intervals (CI) for explanatory variables for main models of P. 

falciparum and P. vivax malaria in El Oro between 1990-2018 (without intervention data) and 

for intervention models between 2001-2015 (including intervention data). 
Variable Parasite Model Estimate LCI UCI 

Minimum temperature 

P. falciparum  
1990-2018 0.90 0.60 1.20 

2001-2015 1.31 0.84 1.79 

P. vivax 
1990-2018 0.57 0.35 0.79 

2001-2015 0.75 0.36 1.12 

Precipitation 

P. falciparum  
1990-2018 0.08 -0.05 0.21 

2001-2015 -0.12 -0.32 0.09 

P. vivax 
1990-2018 -0.05 -0.14 0.04 

2001-2015 0.03 -0.14 0.20 

Level of urbanisation 

P. falciparum 
1990-2018 0.23 0.06 0.40 

2001-2015 0.00 -0.16 0.16 

P. vivax 
1990-2018 0.02 -0.10 0.14 

2001-2015 0.04 -0.12 0.20 

Poverty 

P. falciparum 
1990-2018 0.56 -0.43 1.60 

2001-2015 0.15 -0.45 0.76 

P. vivax 
1990-2018 -0.03 -0.71 0.63 

2001-2015 0.82 0.12 1.46 
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Appendix II – Synergies between environmental degradation and 

climate variation on malaria re-emergence in southern Venezuela 
 

This appendix provides supplementary figures and tables for Chapter 3.  

 

Figure S3.1. Influence of El Niño on malaria incidence at varying monthly lags.  

Figure S3.2. Land-use change in Bolívar, southern Venezuela. 

Figure S3.3. Bivariate relationship between deforestation, mining, and urbanisation in Bolívar.  

Figure S3.4. Associations between El Niño and climate conditions in Bolívar.  

Figure S3.5. Variation in malaria incidence explained by mining activity. 

Figure S3.6. Environmental and socioeconomic drivers in linear models of malaria in Bolívar 

state. 

 

Table S3.1. Summary of model data sources. 

Table S3.2. Land cover classifications summarised from the original ESA CCI land cover 

classes. 

Table S3.3. Model adequacy of linear and non-linear models of malaria incidence in Bolívar. 
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Table S3.1. Summary of model data sources. Data sources for variables included in spatiotemporal models of malaria incidence in Bolívar 1996-

2016.  
Data Inclusion 

in model 
Description Temporal 

resolution 
Spatial 
resolution 

Time period Rationale Source 

Malaria cases Response Number of P. falciparum and P. vivax cases 
recorded 

Monthly Parroquia 
(parish) 

January 1996-December 2016 -  Ministry of Health 

Population Offset Population values Annual Parroquia 
(parish) 

1996-2016 Controlling for the effects of human population 
on malaria incidence 

Ministry of Health 

Mean 
temperature 

Covariate Average values derived from gridded remotely 
sensed observations  

Monthly Parroquia 
(parish) 

January 1996-December 2016 Temperature influences the environmental 
suitability for Anopheles vectors, and parasite 
development 

European Centre for 
Medium-Range 
Weather Forecasts 
(ECMWF) ERA5-
Land 

Precipitation Covariate Average values derived from gridded remotely 
sensed observations 

Monthly Parroquia 
(parish) 

January 1996-December 2016 Precipitation provides important breeding 
habitat for Anopheles vectors 

European Centre for 
Medium-Range 
Weather Forecasts 
(ECMWF) ERA5-
Land 

Niño 3.4 Covariate Sea-surface temperature anomalies for the Niño 
3.4 region 

Monthly NA January 1996-December 2016 The El Niño Southern Oscillation (ENSO) 
influences interannual variability in malaria 
incidence, through climatic changes 

National Oceanic 
and Atmospheric 
Administration 
(NOAA) 

Mining Covariate Number of suspected mining sites (mainly for 
gold) identified from satellite imagery 2009-2018 

NA Parroquia 
(parish) 

NA Environmental alteration caused by land 
clearance for mining is thought to increase the 
breeding habitat of Anopheles vectors 

Rede Amazónica de 
Información 
Socioambiental 
Georeferenciada 

Healthcare 
inaccessibility 

Covariate Mean travel time to nearest health site NA Parroquia 
(parish) 

NA Access to healthcare affects malaria diagnosis 
and treatment 

Malaria Atlas 
Project and 
Humanitarian Data 
Exchange  

Deforestation Covariate Cumulative decrease in forest cover (km2) Annual Parroquia 
(parish) 

1996-2016 Deforestation provides favourable habitat for 
Anopheles vectors, most notably An. darlingi 

European Space 
Agency (ESA) 
Climate Change 
Initiative (CCI) 

Urbanisation Covariate Cumulative increase in urban cover (km2) Annual Parroquia 
(parish) 

1996-2016 Level of urbanisation impacts availability of 
Anopheles vector habitat, which is generally 
lower in urban areas, and healthcare 
accessibility 

European Space 
Agency (ESA) 
Climate Change 
Initiative (CCI) 
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Figure S3.1. Influence of El Niño on malaria incidence at varying monthly lags. Posterior 

mean estimates and 95% credible intervals for spatiotemporal models of P. falciparum (left 

panel) and P. vivax (right panel) malaria in Bolívar state. The model included the Niño 3.4 

index lagged from zero to 18 months, and also included an interaction term between high and 

low levels of mining and nonlinear functions of temperature and rainfall. The model also 

included the impact of deforestation, urbanisation, healthcare accessibility and random effects, 

to account for seasonality, interannual variability and spatial dependency structures. The 

monthly time lag selected to be used in the final models was eight months.  
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Table S3.2. Land cover classifications summarised from the original ESA CCI land cover 

classes. Seven classes were aggregated to forest/tree cover and a single class defined as urban. 

The change in these land cover classes over time were then used to extract variables of 

deforestation and urbanization. 

Value Label Revalued class 

50 Tree cover, broadleaved, evergreen, closed to open (>15%) 

Forest/tree cover 

60 Tree cover, broadleaved, deciduous, closed to open (>15%) 

70 Tree cover, needleleaved, evergreen, closed to open (>15%) 

80 Tree cover, needleleaved, deciduous, closed to open (>15%) 

90 Tree cover, mixed leaf type (broadleaved and needleleaved) 

100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 

110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 

190 Urban areas Urban 
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Figure S3.2. Land-use change in Bolívar, southern Venezuela. A) Annual decrease (log +1 

km2) 1996-2016 in forest cover identified from satellite land cover maps for the 46 parishes of 

Bolívar state. Parishes are ordered by annual parasite incidence (API, per 1,000), with those at 

the top representing areas with the highest malaria incidence and those at the bottom with the 

lowest recorded malaria incidence. B) Annual increase (km2) 1996-2016 in urban cover 

identified from satellite land cover maps for the 46 parishes of Bolívar state. Parishes are 

ordered by annual parasite incidence (API), with those at the top representing areas with the 

highest malaria incidence and those at the bottom with the lowest recorded malaria incidence. 

*Dalla Costa parish, Sifontes municipality. †Dalla Costa parish, Caroní municipality. 
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Figure S3.3. Bivariate relationship between deforestation, mining, and urbanisation in 

Bolívar. A) Relationship between mining activity and forest loss between 1996-2016 across 

Bolívar. Dark purple colours represent parishes with both high levels of mining and high levels 

of deforestation, whilst pale colours represent areas with minimal mining activity and low 

deforestation. B) Relationship between urbanisation and forest loss between 1996-2016 across 

Bolívar. Dark purple colours represent parishes with both high levels of urbanisation and high 
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levels of deforestation, whilst pale colours represent areas with low urbanisation and low 

deforestation. Data shown is aggregated to the parish level.  
 

 

 

 
Figure S3.4. Associations between El Niño and climate conditions in Bolívar. Pearson 

correlation coefficients between the Niño 3.4 index and A) mean temperatures (°C) and B) 

mean precipitation (mm/day) between 1996-2016 in Bolívar, southern Venezuela. Climate data 

are aggregated to the parish level. 
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Figure S3.5. Variation in malaria incidence explained by mining activity. Marginal effect 

(mean and 95% credible intervals of the spatial random effect) of log annual parasite incidence 

(API), of spatiotemporal models for P. falciparum (left panel) and P. vivax (right panel) malaria 

that exclude (light blue) and include (dark blue) mining activity across Bolívar as a covariate. 

A reduction in mean estimate towards zero indicates where mining activity explains the spatial 

variation in malaria incidence. The model also included the impact of deforestation, 

urbanisation, El Niño, healthcare accessibility, and an interaction term between level of mining 

and nonlinear functions of temperature and rainfall, and random effects, to account for 

seasonality, interannual variability and spatial dependency structures. *Dalla Costa parish, 

Sifontes municipality. †Dalla Costa parish, Caroní municipality.  
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Table S3.3. Model adequacy of linear and non-linear models of malaria incidence in 

Bolívar. Deviance information criterion (DIC) and Watanabe-Akaike information criterion 

(WAIC) for spatiotemporal models of monthly P. falciparum and P. vivax malaria incidence 

in Bolívar 1996-2016 that included the linear effect of climate and the non-linear effect of 

climate and its interaction with mining. Models also included the impact of deforestation, 

urbanisation, El Niño, healthcare accessibility and random effects, to account for seasonality, 

interannual variability and spatial dependency structures. 
Model formula Parasite DIC WAIC 

Linear climate model 

 

P. falciparum 41241.52 41242.97 

log"ρst#= υs + νs + mt + yt + Sbxi  P. vivax 61721.31 61762.47 

Non-linear climate model, including an interaction between 

climate and level of mining 

P. falciparum 40704.95 40741.82 

log"ρst#= υs + νs + mt + yt + Sbxi + f(x1m)	+ f(x2m) P. vivax 61601.23 61653.46 
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Figure S3.6. Environmental and socioeconomic drivers in linear models of malaria in 

Bolívar state. Effect size and 95% credible intervals for environmental and socioeconomic 

covariates in spatiotemporal models of P. falciparum (purple bars) and P. vivax (pink bars) 

malaria incidence. Models accounted for the linear effect of climate (temperature and 

precipitation), and included random effects, to account for seasonality, interannual variability 

and spatial dependency structures.  
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Appendix III – Climate services for health: from global 

observations to local interventions 

 
This appendix provides supplementary figures and tables for Chapter 4: 
 
Figure S4.1. Seasonality of malaria and dengue cases, and climate.  

 

Table S4.1. Influence of climate on dengue risk in models using different global climate 

products. 

Table S4.2. Influence of climate on malaria risk in models using different global climate 

products. 
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Figure S4.1. Seasonality of malaria and dengue cases, and climate. A-B) Annual cycle of 

cases of P. vivax malaria 1990-2015 and C-D) dengue 2002-2014 with A-C) mean temperature 

and B-D) precipitation, in Machala, Ecuador. Red curves represent data from local 

meteorological station observations and grey curves represent data from the CHELSA, CRU, 

ERA5, TerraClimate and WorldClim global datasets.       
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Table S4.1. Influence of climate on dengue risk in models using different global climate 

products. Posterior mean estimates, lower and upper 95% credible intervals (CI) for climate 

models of dengue 1990-2015 in Machala, Ecuador, using climate data from local 

meteorological observations, the CHELSA, CRU TS, ERA5-Land, TerracClimate and 

WorldClim datasets. 
Variable Climate source Mean LCI UCI 

Mean temperature 

Station 0.52 0.32 0.73 

CHELSA 0.50 0.26 0.73 

CRU 0.33 0.09 0.57 

ERA5 0.39 0.08 0.70 

TerraClimate 0.49 0.22 0.77 

WorldClim 0.49 0.24 0.74 

Precipitation 

Station 0.17 -0.04 0.39 

CHELSA 0.04 -0.16 0.25 

CRU 0.21 -0.06 0.48 

ERA5 0.24 -0.08 0.58 

TerraClimate 0.10 -0.17 0.37 

WorldClim 0.16 -0.09 0.42 

 

Table S4.2. Influence of climate on malaria risk in models using different global climate 

products. Posterior mean estimates, lower and upper 95% credible intervals (CI) for climate 

models of malaria 1990-2015 in Machala, Ecuador, using climate data from local 

meteorological observations, the CHELSA, CRU TS, ERA5-Land, TerracClimate and 

WorldClim datasets. 
Variable Climate source Mean LCI UCI 

Mean temperature 

Station 0.32 0.22 0.43 

CHELSA -0.04 -0.22 0.13 

CRU 0.05 -0.08 0.18 

ERA5 0.41 0.30 0.51 

TerraClimate 0.12 -0.02 0.26 

WorldClim 0.15 0.02 0.29 

Precipitation 

Station -0.20 -0.30 -0.09 

CHELSA -0.15 -0.28 -0.02 

CRU 0.13 0.01 0.25 

ERA5 -0.31 -0.41 -0.21 

TerraClimate 0.06 -0.07 0.20 

WorldClim 0.04 -0.10 0.17 
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Appendix IV – Differing genus- and species-specific responses of 

mosquito vectors to anthropogenic land-use change in Latin 

America 
This appendix provides supplementary figures and tables for Chapter 5. 

 

Figure S5.1. PRISMA flow of the systematic data search process. 

Figure S5.2. Observed and fitted observations for models of mosquito abundance and species 

richness.  

Figure S5.3. Distribution of studies included in the mosquito biodiversity dataset by country. 

Figure S5.4. Responses of total Aedes and Anopheles mosquito richness and abundance to land-

use type and intensity.  

Figure S5.5. Geographical cross-validation of genus-level abundance and richness responses 

to land-use type and intensity. 

Figure S5.6. Ecoregion sensitivity analysis. 

Figure S5.7. Random subsampling cross-validation analysis. 

Figure S5.8. Species-level cross-validation of genus-level abundance responses to land-use 

type and intensity. 

 

Table S5.1. Search terms used for the systematic data search. 

Table S5.2. Summary of site-level information extracted from included studies.  

Table S5.3. Land-use intensity categories used in Aedes and Anopheles abundance and species 

richness models. 

Table S5.4. Summary of all main models included in the analysis. 

Table S5.5. Summary of land-use intensity models. 

Table S5.6. Anopheles and Aedes mosquito species included in species-specific abundance 

models of land-use intensity. 

Table S5.7. Iterative models for selecting the best-fitting random effects structure for models 

of land-use intensity and species richness. 

Table S5.8. Iterative models for selecting the best-fitting random effects structure for models 

of land-use intensity and abundance. 

Table S5.9. Summary of deforestation models. 

Table S5.10. List of Aedes and Anopheles mosquito species included in abundance and species 

richness models.  
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Table S5.11. Parameter estimates for land-use types in mosquito species richness models.  

Table S5.12. Parameter estimates for land-use types in mosquito abundance models.  

Table S5.13. Parameter estimates for land-use types in species-level mosquito abundance 

models.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 212 

Table S5.1. Search terms used for systematic data search. Mosquito, geographical and land 

use specific terms used to systematically search three databases (Medline, Scopus and Web of 

Science) for Aedes and Anopheles mosquito abundance records across multiple land-use types 

in Latin America and the Caribbean. * denotes wildcard terms.  

Mosquito search terms 

mosquito* OR anophel* or aedes 

Geographical search terms 

(south* AND 
america*) OR amazon* OR brazil* OR bolivia* OR colombia* OR surinam* OR guiana* OR vene
zuela* OR ecuador* OR peru* OR guyana* OR chile* OR argentin* OR uruguay* OR paraguay* 
OR america* OR (central AND america*) OR (latin AND 
america*) OR caribbean OR anguilla* OR antigua* OR barbuda OR (antigua* AND 
barbuda*) OR aruba* OR bahama* OR baham* OR barbados* OR barbadian* OR belize* OR ber
mud* OR (british AND virgin AND island*) OR cayman OR (cayman AND island*) OR (costa 
AND rica*) OR cuba* OR curacao* OR dominica* OR (dominica* AND republic) OR (el AND 
salvador*) OR grenad* OR guadeloup* OR guatemala* OR haiti* OR hondura* OR jamaica* OR 
martiniqu* OR mexic* OR montserrat* OR antill* OR nicaragua* OR panama* OR (puerto AND 
ric*) OR (saint AND kitts AND nevis) OR (saint AND kitts) OR (saint AND lucia*) OR (saint 
AND vincent) OR (saint AND vincent AND grenadine*) OR (saint AND martin) OR (sint AND 
maarten) OR trinidad* OR (trinidad AND tobago) OR tobago* OR (turks AND caicos))  
Land use search terms 

land* OR urban* OR deforest* OR logg* OR intensification OR manag* OR unmanage* OR 
felling OR plantation OR habitat* OR forest* OR mining OR mine* OR clear* OR degrad* OR 
develop* OR agricultur* OR landscape* OR crop* OR farm* OR canal* OR dams OR dam OR 
pond* 
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Figure S5.1. PRISMA flow of the systematic data search process. PRISMA flow diagram 

of the systematic data collection process for mosquito biodiversity data in Latin America and 

the Caribbean. Three databases were searched (Medline, Scopus and Web of Science) and 

results combined before studies were screened by title and abstract (n = 8,554). A total of 1,790 

studies were screened by full text, leading to inclusion of 85 studies that had suitable data. 
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Table S5.2. Summary of site-level information extracted from included studies. Site-level 

information extracted from each included study to formulate a dataset of mosquito vector 

biodiversity over different land-use types. The nested structure of the dataset (study number, 

site number, study block and study sample) followed that of the PREDICTS database (Hudson 

et al., 2014).  

Name Description 

Collection Sample collection indoor or outdoor 

Country Country sample was performed 

Development stage Sampled mosquito development stage (pupae, larvae, immature, adult) 

Ecoregion Assigned ecoregion according to the 14 WWF global terrestrial ecoregions 

(WWF, 2021) 

Genus Mosquito genus 

Site description Detailed description of sampled site, according to study 

Land use Predominant land-use type (primary vegetation, secondary vegetation, 

managed or urban) 

Land-use intensity Predominant intensity of land use (minimal or substantial) 

Lat  Latitude 

Lon Longitude 

Measurement Value of species-level abundance measurement 

Metric Metric of abundance measurement (e.g. number of individuals or larval 

density)  

Reference Study reference 

Sample daytime  Time of day when sample was taken 

Sample start Start date of sample 

Sample end End date of sample 

Sample month Month of sampling 

Sample season Climatic season of sampling (wet or dry) 

Sampling effort Value of sampling effort 

Sampling effort unit Unit of sampling effort (e.g. trap days or man hours) 

Sampling method Method of sampling (e.g. light trap, oviposition trap or human landing catch) 

Site number Assigned site number within study 

Species study name Species name according to study 

Study block Spatial arrangement of site within a study 

Study number Assigned study number 

Study sample  Sample within a study with consistent sampling methodology 
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Table S5.3. Land-use intensity categories used in Aedes and Anopheles abundance and 

species richness models. Site-level distribution and number of abundance records per land-

use category. Use intensity for managed and urban land-use types were aggregated due to low 

data representation.  

Land-use intensity Number of sites Number of records 
Primary vegetation   

Minimal 224 2,388 
Substantial 68 1,351 

Secondary vegetation   
Combined 57 1,325 

Managed   
Combined 98 1,420 

Urban   
Combined 195 3,520 
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Table S5.4. Summary of all main models included in the analysis. Genus-, j and species-

level, i, abundance yA and richness, yR models, deforestation abundance and richness models 

included in the main analysis. Models included land-use type as a fixed covariate, x1, and a 

combination of best-fitting random effects; study ν, site υ, species γ, study sample ε and 

ecoregion σ. Models where deforestation was included as a fixed continuous covariate, x2, are 

also shown.  

Models Response Random 
effects 

Equation 

Genus-level models  
Aedes richness 

Species richness 
study, site, 
study sample, 
ecoregion 

yRj=	β0+	β1x1j+	νj+	υj+	εj	+ σj 
Anopheles richness 
Total (Aedes and Anopheles) 
richness 
Aedes abundance log(adjusted 

abundance)+1 
 

study, site, 
species, study 
sample, 
ecoregion 

yAj= β0+ β1x1j+ νj+ υj + γj + εj + σj 
Anopheles abundance 
Total abundance 

Species-level abundance models  
Ae. aegypti 

log(adjusted 
abundance)+1 

study, site, 
study sample, 
ecoregion 

yAi=	β0+	β1x1i+	νi+	υi+	εi	+ σi 

Ae. albopictus 
Ae. scapularis 
Ae. serratus 
An. albimanus 
An. albitarsis 
An. darlingi 
An. nuneztovari 
Deforestation models  
Aedes richness 

Species richness 
Study, site, 
study sample, 
ecoregion 

yRj=	β0+	β2x2j+	νj+	υj+	εj	+ σj Anopheles richness 

Aedes abundance 

log(adjusted 
abundance)+1 

study, site, 
species, study 
sample, 
ecoregion 

yAj=	β0+	β2x2j+	νj+	υj+	γj+	εj	+ σj 
Anopheles abundance 

Ae. aegypti abundance 

study, site, 
study sample, 
ecoregion 

yAi= β0+ β2x2i+ νi+ υi+ εi + σi 

Ae. albopictus abundance 
Ae. serratus abundance 
Ae. scapularis abundance 
An. albitarsis abundance 
An. darlingi abundance 
An. mattogrossensis abundance 
An. nuneztovari abundance 
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Table S5.5. Summary of land-use intensity models. Summary of components of total, Aedes 

and Anopheles abundance and species richness models. The number of sites and site-level 

records in each model is shown.  

Model Response Random effects Number 
of sites 

Number of 
site-level 
records 

Total abundance Total log(adjusted 
abundance)+1 
 

study, site, species, study 
sample, ecoregion 

632 4,582 

Aedes abundance log(adjusted 
abundance)+1 
 

study, site, species, study 
sample, ecoregion 

379 2,118 

Anopheles abundance log(adjusted 
abundance)+1 
 

study, site, species, study 
sample, ecoregion 

495 2,464 

Total species richness Total (Aedes and 
Anopheles) species 
richness 

study, site, study sample, 
ecoregion 

434 656 

Aedes species richness Aedes species 
richness 

study, site, study sample, 
ecoregion 

238 330 

Anopheles species 
richness 

Anopheles species 
richness 

study, site, study sample, 
ecoregion  

291 433 

 
 

Table S5.6. Anopheles and Aedes mosquito species included in species-specific abundance 

models of land-use intensity. Site-level distribution and number of site-level abundance 

records per Aedes and Anopheles species with greatest representation in the dataset. 

Species Number 
of sites 

Number of site-
level records 

Disease(s) 

Aedes aegypti 233 422 Dengue, zika, chikungunya, 
Mayaro virus, yellow fever 

Primary vegetation - minimal 58 104  
Primary vegetation - substantial 18   33  

Secondary vegetation 22   27  
Managed 10   19  

Urban 125  239  
Aedes albopictus 248 519 Dengue, zika, chikungunya, 

yellow fever 
Primary vegetation - minimal 73 153  

Primary vegetation - substantial 22   50  
Secondary vegetation 29   40  

Managed 6    9  
Urban 128  267  

Aedes scapularis 230 395 Chikungunya, yellow fever 
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Primary vegetation - minimal 74 146  
Primary vegetation - substantial 23   29  

Secondary vegetation 24   30  
Managed 19   24  

Urban 90  166  
Aedes serratus 206 363 Yellow fever, chikungunya 

Primary vegetation - minimal 71  140  
Primary vegetation - substantial 15   20  

Secondary vegetation 18   23  
Managed 14   16  

Urban 88  164  
Anopheles albimanus 22 30 Malaria 

Primary vegetation - minimal 2 4  
Primary vegetation - substantial 8  8  

Secondary vegetation 5  7  
Managed 4  8  

Urban 3  3  
Anopheles albitarsis 68 129 Malaria 

Primary vegetation - minimal 22 39  
Primary vegetation - substantial 13  23  

Secondary vegetation 8  15  
Managed 17  39  

Urban 8  13  
Anopheles darlingi 170 354 Malaria 

Primary vegetation - minimal 88 149  
Primary vegetation - substantial 17   28  

Secondary vegetation 10   24  
Managed 37  113  

Urban 18   40  
Anopheles nuneztovari 55 111 Malaria 

Primary vegetation - minimal 15 18  
Primary vegetation - substantial 11  12  

Secondary vegetation 9  20  
Managed 11  34  

Urban 9  27  
 
 
 
 
 
 
 
 
 
 

 



 

 219 

Table S5.7. Iterative models for selecting the best-fitting random effects structure for 

models of land-use intensity and species richness. Deviance information criterion (DIC) and 

Watanabe-Akaike information criterion (WAIC) for models of total, Aedes and Anopheles 

species richness with the addition of random effects structures. Each random effect was added 

iteratively to assess model performance.  

Species Random effects DIC WAIC 
Total Study number + site number 2348.93 2336.89 

… + study block 2333.09 2312.23 
… + study sample 2329.84 2306.76 
… + ecoregion 2329.92 2304.82 

Aedes Study number + site number 975.97 960.29 
… + study block 975.78 960.11 
… + study sample 975.80 960.11 
… + ecoregion 975.90 960.10 

Anopheles Study number + site number 1639.04 1627.95 
… + study block 1621.46 1602.67 
… + study sample 1621.54 1602.76 
… + ecoregion 1642.26 1634.82 

 

 

Table S5.8. Iterative models for selecting the best-fitting random effects structure for 

models of land-use intensity and abundance. Deviance information criterion (DIC) and 

Watanabe-Akaike information criterion (WAIC) for models of total, Aedes and Anopheles 

abundance with the addition of random effects structures. Each random effect was added 

iteratively to assess model performance.  

Species Random effects DIC WAIC 
Total Study number + site number 12322.72 12394.87 

… + study block 12317.85 12400.60 
… + study sample 12317.60 12399.18 
… + species 11861.55 11953.24 
… + ecoregion 11791.30 11887.80 

Aedes Study number + site number 6078.77 6135.98 
… + study block 6055.94 6134.66 
… + study sample 6056.86 6134.80 
… + species 5838.37 5922.44 
… + ecoregion 5790.53 5881.50 

Anopheles Study number + site number 5933.34 5950.19 
… + study block 5909.92 5941.45 
… + study sample 5850.84 5879.15 
… + species 5532.90 5576.95 
… + ecoregion 5533.65 5577.34 
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Figure S5.2. Observed and fitted observations for models of mosquito abundance and 

species richness. Observed and fitted model A) abundance (log +1) and B) species richness in 

models of total and Aedes and Anopheles mosquitoes. Red line represents the expectation if 

observed values equal fitted values. 
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Table S5.9. Summary of deforestation models. Summary of components of Aedes and 

Anopheles abundance and species richness models in response to recent deforestation. The 

number of sites and site-level records in each model is shown. Only records at primary and 

secondary vegetation sites were included.  

Model Response Random effects Number 
of sites 

Number of 
site-level 
records 

Aedes abundance log(adjusted 
abundance)+1 
 

study, site, species, study 
sample, ecoregion 

81 572 

Anopheles abundance log(adjusted 
abundance)+1 
 

study, site, species, study 
sample, ecoregion 

167 526 

Aedes species richness Aedes species 
richness 

study, site, study sample, 
ecoregion 

36 50 

Anopheles species 
richness 

Anopheles species 
richness 

study, site, study sample, 
ecoregion 

89 101 
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Figure S5.3. Distribution of studies included in the mosquito biodiversity dataset by 

country. Number of included studies by country in Latin America and the Caribbean. The total 

number of included studies was 93. 
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Table S5.10. List of Aedes and Anopheles mosquito species included in abundance and 

species richness models. List of Aedes and Anopheles mosquitoes (n=91) included in models 

and number of abundance records per species. 

Genus Species Number of records 
Aedes aegypti 1819 
Aedes albifasciatus 50 
Aedes albopictus 1722 
Aedes angustivittatus 15 
Aedes argyrothorax 90 
Aedes busckii 20 
Aedes crinifer 62 
Aedes dupreei 5 
Aedes epactius 6 
Aedes fluviatilis 115 
Aedes fulvithorax 23 
Aedes fulvus 137 
Aedes guerrero 2 
Aedes hastatus 35 
Aedes hortator 27 
Aedes infirmatus 9 
Aedes mediovitattus 25 
Aedes mediovittatus 10 
Aedes nubilus 41 
Aedes oligopistus 34 
Aedes patersoni 8 
Aedes pennai 2 
Aedes phaenonotus 4 
Aedes podographicus 5 
Aedes quadrivittatus 32 
Aedes rhyacophilus 21 
Aedes scapularis 602 
Aedes serratus 548 
Aedes taeniorhynchus 79 
Aedes terrens 133 
Aedes tormentor 18 
Aedes tortilis 65 
Aedes trivittatus 4 

Anopheles albimanus 84 
Anopheles albitarsis 263 
Anopheles allopha 4 
Anopheles apicimacula 7 
Anopheles aquasalis 27 
Anopheles argyritarsis 129 
Anopheles arthuri 9 
Anopheles atropos 25 
Anopheles bellator 43 
Anopheles benarrochi 47 
Anopheles bradleyi 15 
Anopheles braziliensis 78 
Anopheles calderoni 4 
Anopheles costai 17 
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Anopheles cruzii 132 
Anopheles darlingi 698 
Anopheles deaneorum 25 
Anopheles dunhami 44 
Anopheles eiseni 47 
Anopheles evansae 161 
Anopheles fluminensis 68 
Anopheles forattinii 17 
Anopheles galvaoi 85 
Anopheles gilesi 1 
Anopheles goeldii 41 
Anopheles grabhamii 25 
Anopheles ininii 12 
Anopheles intermedius 96 
Anopheles janconnae 21 
Anopheles kompi 15 
Anopheles konderi 9 
Anopheles lanei 20 
Anopheles lutzii 59 
Anopheles maculipes 9 
Anopheles malefactor 9 
Anopheles marajoara 51 
Anopheles mattogrossensis 226 
Anopheles mediopunctatus 136 
Anopheles minor 16 
Anopheles neivai 4 
Anopheles neomaculipalpus 9 
Anopheles nimbus 176 
Anopheles nuneztovari 171 
Anopheles oryzalimnetes 22 
Anopheles oswaldoi 183 
Anopheles parvus 25 
Anopheles peryassui 34 
Anopheles pseudopunctipennis 34 
Anopheles pseudotibiamaculatus 4 
Anopheles punctimacula 15 
Anopheles rangeli 86 
Anopheles rondoni 25 
Anopheles shannoni 27 
Anopheles squamifemur 9 
Anopheles strodei 187 
Anopheles tibiamaculatus 3 
Anopheles triannulatus 407 
Anopheles vestitipennis 40 
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Figure S5.4. Responses of total Aedes and Anopheles mosquito richness and abundance 

to land-use type and intensity. Total (Aedes and Anopheles) mosquito richness (A) and 

abundance (B) responses to land-use types with minimal (circles), substantial (triangles) and 

combined (squares) use intensities. Effect sizes were adjusted to a percentage by expressing 

each mean fixed effect and 95% credible intervals as a percentage of the baseline (primary 

vegetation minimal use, shown as zero). Intensity levels for secondary vegetation, managed 

and urban land uses were aggregated due to a lack of data representation.  
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Table S5.11. Parameter estimates for land-use types in mosquito species richness models.  

Posterior mean estimates, lower (2.5%) and upper (97.5%) credible intervals (CI) for land-use 

types in species richness models of Aedes and Anopheles mosquitoes. 

Model Land-use type Mean LCI UCI 

Total species 
richness 

Primary vegetation – minimal (intercept) 1.36 1.19 1.53 
Primary vegetation - substantial -0.14 -0.32 0.04 
Secondary vegetation - combined -0.01 -0.18 0.16 
Managed - combined 0.04 -0.08 0.17 
Urban - combined  -0.48 -0.65 -0.31 

Aedes species 
richness 

Primary vegetation – minimal (intercept) 0.95 0.74 1.16 
Primary vegetation - substantial -0.12 -0.39 0.15 
Secondary vegetation - combined 0.01 -0.24 0.27 
Managed - combined -0.11 -0.39 0.16 
Urban - combined -0.31 -0.56 -0.05 

Anopheles species 
richness 

Primary vegetation – minimal (intercept) 0.95 0.74 1.16 
Primary vegetation - substantial -0.12 -0.39 0.15 
Secondary vegetation - combined 0.01 -0.24 0.27 
Managed - combined -0.11 -0.39 0.16 
Urban - combined -0.31 -0.56 -0.05 

 
 

Table S5.12. Parameter estimates for land-use types in mosquito abundance models.  

Posterior mean estimates, lower (2.5%) and upper (97.5%) credible intervals (CI) for land-use 

types in abundance models of Aedes and Anopheles mosquitoes. 

Model Land-use type Mean LCI UCI 

Total abundance 

Primary vegetation – minimal (intercept) 0.59 -0.17 1.46 
Primary vegetation - substantial -0.05 -0.20 0.10 
Secondary vegetation - combined  0.02 -0.15 0.18 
Managed - combined 0.08 -0.04 0.21 
Urban - combined -0.09 -0.19 0.01 

Aedes abundance 

Primary vegetation – minimal (intercept) 0.70 -0.22 1.64 
Primary vegetation - substantial -0.03 -0.21 0.16 
Secondary vegetation - combined 0.04 -0.16 0.24 
Managed - combined -0.06 -0.28 0.15 
Urban - combined -0.06 -0.16 0.04 

Anopheles 
abundance 

Primary vegetation – minimal (intercept) 0.59 0.33 0.84 
Primary vegetation - substantial  -0.12 -0.28 0.04 
Secondary vegetation - combined -0.05 -0.20 0.11 
Managed - combined 0.11 0.00 0.21 
Urban - combined -0.14 -0.25 -0.02 
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Table S5.13. Parameter estimates for land-use types in species-level mosquito abundance 

models. Posterior mean estimates, lower (2.5%) and upper (97.5%) credible intervals (CI) for 

land-use types in abundance models of four Aedes and four Anopheles mosquitoes. 

Model Land-use type Mean LCI UCI 

Aedes aegypti 

Primary vegetation – minimal (intercept) 1.60 0.87 2.33 
Primary vegetation - substantial  -0.39  -0.86   0.07 
Secondary vegetation - combined  -0.81  -1.34  -0.28 
Managed - combined   1.12   0.56   1.68 
Urban - combined   0.16  -0.07   0.39 

Aedes albopictus 

Primary vegetation – minimal (intercept)   0.87   0.16   1.59 
Primary vegetation - substantial   0.66   0.23   1.09 
Secondary vegetation - combined   0.52   0.05   0.98 
Managed - combined   0.40  -0.48   1.28 
Urban - combined   0.10  -0.11   0.31 

Aedes scapularis 

Primary vegetation – minimal (intercept)   1.83   1.05   2.62 
Primary vegetation - substantial  -0.59  -0.86  -0.32 
Secondary vegetation - combined   0.08  -0.18   0.35 
Managed - combined  -0.07  -0.35   0.21 
Urban - combined  -0.02  -0.13   0.09 

Aedes serratus 

Primary vegetation – minimal (intercept)   1.86   1.03   2.69 
Primary vegetation - substantial  -0.93  -1.41  -0.46 
Secondary vegetation - combined   0.24  -0.25   0.73 
Managed - combined  -1.08  -1.58  -0.59 
Urban - combined  -0.11  -0.31   0.08 

Anopheles 
albimanus 

Primary vegetation – minimal (intercept)   0.41  -0.92   1.71 
Primary vegetation - substantial   0.86  -0.62   2.34 
Secondary vegetation - combined   0.02  -1.54   1.57 
Managed - combined   0.47  -1.09   2.02 
Urban - combined   0.46  -1.23   2.20 

Anopheles albitarsis 

Primary vegetation – minimal (intercept)   0.80  -0.01   1.62 
Primary vegetation - substantial  -0.05  -0.75   0.68 
Secondary vegetation - combined   0.38  -0.52   1.27 
Managed - combined   0.97   0.30   1.65 
Urban - combined  -0.02  -0.92   0.88 

Anopheles darlingi 

Primary vegetation – minimal (intercept)   1.40   0.81   1.98 
Primary vegetation - substantial  -0.21  -0.79   0.36 
Secondary vegetation - combined   0.37  -0.33   1.06 
Managed - combined   0.21  -0.12   0.54 
Urban - combined  -0.13  -0.80   0.54 

Anopheles 
nuneztovari 

Primary vegetation – minimal (intercept)   0.81   0.30   1.32 
Primary vegetation - substantial  -0.19  -0.79   0.41 
Secondary vegetation - combined   0.22  -0.47   0.89 
Managed - combined  -0.13  -0.71   0.44 
Urban - combined  -0.41  -1.05   0.21 
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Figure S5.5. Geographical cross-validation of genus-level abundance and richness 

responses to land-use type and intensity. Response of Aedes (A, C) and Anopheles (B, D) 

mosquitoes to land-use type and intensity excluding sites from Brazil. Dark grey estimates 

show the genus-level richness (A-B) and abundance (C-D) models with all the data and the 

light grey estimates show modelled estimates excluding sites from Brazil. Effect sizes were 

adjusted to a percentage by expressing each mean fixed effect and 95% credible intervals as a 

percentage of the baseline (primary vegetation minimal use, shown as zero). Intensity levels 

for secondary vegetation, managed and urban land uses were aggregated due to a lack of data 

representation. 
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Figure S5.6. Ecoregion sensitivity analysis. Response of Aedes (A, C) and Anopheles (B, D) 

mosquito species richness (A-B) and abundance (C-D) to land-use type and intensity excluding 

each ecoregion in turn. Colours represent each ecoregion that was excluded. Effect sizes were 

adjusted to a percentage by expressing each mean fixed effect and 95% credible intervals as a 

percentage of the baseline (primary vegetation minimal use, shown as zero). Intensity levels 

for secondary vegetation, managed and urban land uses were aggregated due to a lack of data 
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representation. Both abundance and species richness were highly sensitive to rainforest sites 

(pink - tropical and subtropical moist broadleaf forests), which is not surprising given the 

distribution of study sites (E; red points). 

 
 
 

 
Figure S5.7. Random subsampling cross-validation analysis. Response of Aedes (A, C) 

and Anopheles (B, D) mosquito species richness (A-B) and abundance (C-D) to land-use type 

and intensity excluding 12.5% of the data at time. Colours represent each data group. Effect 

sizes were adjusted to a percentage by expressing each mean fixed effect and 95% credible 

intervals as a percentage of the baseline (primary vegetation minimal use, shown as zero). 

Intensity levels for secondary vegetation, managed and urban land uses were aggregated due 

to a lack of data representation.  
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Figure S5.8. Species-level cross-validation of genus-level abundance responses to land-

use type and intensity. Response of Aedes (A) and Anopheles (B) mosquito abundance to 

land-use type and intensity excluding influential species. Dark grey estimates show the genus-

level abundance model with all the data and the light grey estimates show modelled estimates 

excluding data for each species. For each genus, the four most represented species in the dataset 

were selected. Effect sizes were adjusted to a percentage by expressing each mean fixed effect 

and 95% credible intervals as a percentage of the baseline (primary vegetation minimal use, 
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shown as zero). Intensity levels for secondary vegetation, managed and urban land uses were 

aggregated due to a lack of data representation. 
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commentary is owned by Elsevier Inc. and re-publication for use in a thesis is permitted (see 

https://www.elsevier.com/about/policies/copyright/permissions). For this thesis, the research 
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