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Abstract: Malaria rapid diagnosis test (RDT) is crucial for managing the disease, and the effectiveness
of detection depends on parameters such as sensitivity and specificity of the RDT. Several factors
can affect the performance of RDT. In this study, we focused on the pfhrp2 sequence variation and
its impact on RDTs targeted by antigens encoded by Plasmodium falciparum histidine-rich protein 2
(pfhrp2). Field samples collected during cross-sectional surveys in Tanzania were sequenced to
investigate the pfhrp2 sequence diversity and evaluate the impact on HRP2-based RDT performance.
We observed significant mean differences in amino acid repeats between current and previous
studies. Several new amino acid repeats were found to occur at different frequencies, including
types AAY, AHHAHHAAN, and AHHAA. Based on the abundance of types 2 and 7 amino acid
repeats, the binary predictive model was able to predict RDT insensitivity by about 69% in the study
area. About 85% of the major epitopes targeted by monoclonal antibodies (MAbs) in RDT were
identified. Our study suggested that the extensive sequence variation in pfhrp2 can contribute to
reduced RDT sensitivity. The correlation between the different combinations of amino acid repeats
and the performance of RDT in different malaria transmission settings should be investigated further.

Keywords: malaria diagnosis; Pfhrp2; amino acid repeats; sequence variation; genetic polymorphism;
Plasmodium falciparum

1. Introduction

Malaria control and elimination largely depend on prompt and accurate diagnosis for
effective treatment [1]. Since its inception in the early 1990s, point-of-care diagnosis proved
to be reliable in malaria diagnosis in most parts of the world [2,3]. There has been a steady
rise in demand and supply of test kits over the last 20 years [4]. There were approximately
348 million malaria rapid diagnostic test kits sold in 2019 by several companies [5]. The
sub-Saharan African region (SSA) received about 80% of all RDT kits globally distributed,
with more than 25 million (7%) of those kits distributed in Tanzania [5].

There is increasing evidence of Plasmodium falciparum lacking the hrp2/3 gene, en-
abling it to evade detection by HRP2-based RDTs. A study from Eritrea indicated that
pfhrp2/3 deletions are prevalent at 80.8% and 92.3%, respectively, and that prompted the
switch to non-HRP2 RDTs [6]. Studies conducted in Tanzania have shown no pfhrp2/3
deletion in some areas [7,8], but a low percentage has been reported in other parts of the
country [9,10]. In regards to pfhrp2/3 deletions, false positivity by RDT is a challenge that
can result in the underestimation of the deletions.

The diagnostic coverage of RDT in Tanzania is around 90% in public and private health
facilities replacing microscopy, which is only used in about 10% of all health facilities [11].
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Most of the available RDT kits are based on histidine-rich protein 2 (HRP2), which is
specific for detecting P. falciparum, a predominant parasite in Tanzania [5,12–14].

PFHRP2 is a 60–105 kDa water-soluble protein secreted by P. falciparum trophozoites
and schizonts [15–17]. Approximately 2 hours after an infection, it is synthesized and
secreted in the human host [18]. Gene encoding for this subtelomeric protein is located
at positions 1374236 to 1375299 on chromosome 8 [19]. pfhrp2 has a length of 1063 bp
and consists of two exon (coding) regions and an intron (non-coding) region. The gene is
flanked by four upstream and three downstream microsatellites [20,21].

The pfhrp2 subtelomeric coding region is prone to chromosomal rearrangements
with nine gene breaking points, making it highly polymorphic [22]. A large region
of tandem repeats within the pfhrp2 sequence encodes a polypeptide containing histi-
dine, alanine, and aspartic acid. RDT detection panels include monoclonal antibodies
(MAbs), which target specific HRP2 antigen epitopes [16,20]. There are about 13 major
epitopes targeted by different monoclonal antibodies impregnated in the flow panel of RDT
cassettes [23,24]. Detection sensitivity correlates well with the frequency and abundance
of epitopes present in the sample. With the amino acid repetitive rearrangement in the
pfhrp2 region, partial epitopes can exist that are less reactive with capture antibodies than
full-length epitopes [23].

A previous study by Baker et al. [20] classified the amino acid sequence of PfHRP2
into 24 repeat types. Type 2 (AHHAHHAD) and type 7 (AHHAAD) occur in high fre-
quency (100%), and type 2 is associated with the basic function of the protein [25–27].
Based on the frequency of types 2 and 7 repeats, a prediction regression model was
developed to estimate the sensitivity of RDT kits [28]. The model predicted that with
parasitaemia ≤ 250 parasites/µL and the function of frequency between types 2 and 7 < 43,
HRP2-based RDT will fail to detect P. falciparum [28]. However, the model could not be
reproduced 5 years later when its prediction did not match the WHO lot testing results
set at >200 parasites/µL [27]. Several studies have shown that the sequence variation
in pfhrp2, which leads to extensive epitope modification, might affect the performance
of RDTs [24,28].

In light of pfhrp2 deletions and sequence variations [9,29], the WHO recommends
the systematic surveillance of RDT performance in areas with a high coverage of HRP2-
based test kits [30]. This study investigated the natural amino acid sequence variation in
P. falciparum field isolates to assess the performance of RDTs.

2. Materials and Methods
2.1. Study Areas and Samples

The samples used in this study were collected during community-based cross-sectional
surveys in the long rainy season between April and June 2018 in Handeni and Moshi,
north-eastern Tanzania. Community sensitization and engagement were carried out, and
only participants who voluntarily consented to participate were enrolled. Handeni is
characterized as a moderate–high malaria transmission area, whereas Moshi is a low
malaria-endemic area [31,32].

2.2. Plasmodium Falciparum Detection

Dried blood samples were shipped to The London School of Hygiene and Tropical
Medicine (LSHTM), where DNA extraction was carried out using a robotic DNA extraction
system (Qiasymphony, QIAGEN, Hilden, Germany) [10,29,33]. A nested polymerase chain
reaction (PCR) using specific primers for P. falciparum amplifying a fragment of 206 bp was
performed as described elsewhere [34].

2.3. Pfhrp2 Exon 2 Amplification and Sequencing

Pfhrp2 exon 2 was amplified with primers Pfhrp2-F1 (5′-CAAAAGGACTTAATTTAAA
TAAGAG-3′) and Pfhrp2-R1 (5′-AATAAATTTAATGGCGTAGGCA-3′). We employed semi-
nested PCR using primer pairs Pfhrp2-F2 _5′-ATTATTACACGAAACTCAGCCAG-3′ and
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Pfhrp2-R1 _5′-AATAAATTTAATTGGCGTAGGCA-3′), designed to amplify pfhrp2 exon 2
from filter papers, to assure sensitivity with an expected band size of 400–1050 bp [28].
PCR amplicon purification and sequencing were performed based on a previously pub-
lished protocol [35].

2.4. Sequence Data Analysis

We used Geneious (Biomatters, San Diego, CA, USA) to conduct sequence analysis,
including DNA quality check and translation into amino acid. Repeat pattern frequency
and sequence length were analysed using R studio.

2.5. Statistical Analysis

Samples with parasitaemia of more than 1000 p/µL were used for this analysis. HRP2-
RDT sensitivity prediction was performed following the model developed by
Baker et al. [28]. Four categories were established based on the score of the function
of the frequency of types 2 and 7. HRP2-RDT will be very sensitive if the score of types
2 and 7 frequencies is >100, sensitive if the score is 50–100, borderline if the score is 44–49,
and non-sensitive if the score is <43 [36].

Data were entered and analysed using SPSS version 20 (SPSS Inc. Chicago, IL, USA)
and the computer program Excel (Microsoft Office Excel 2016). Results are presented
in tables and graphs as absolute numbers (N) and percentage values (%). The median
amino acid (aa) length was compared using the non-parametric Mann–Whitney U test. The
median frequencies of aa were compared using Fisher’s exact test since the expected values
were less than 10. A p-value less than 0.05 was considered significant.

3. Results

The present study showed a sequence analysis of exon 2 of pfhrp2 of 39 P. falciparum
field isolates from Tanzania (Figure 1). The results of Plasmodium species identification
in the study area have already been published elsewhere [24], and samples that were
positive by RDT and microscopy (parasitaemia > 1000 p/µL) and identified as P. falciparum
were selected for the direct sequencing. However, we were able to generate high-quality
sequences in the samples from Handeni only probably due to the low levels of parasitaemia
in the samples from Moshi.
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The amino acid classification was carried out following the classification developed by
Baker et al. [27]. Out of 24 amino acid repeat types, 15 were identified in this study, of which
types 2 (AHHAHHAAD), 4 (AHH), and 7 (AHHAAD) were present in a high frequency
(>89%) and abundance in all 39 samples. Types 10 (AHHAAAHHATD),
12 (AHHAAAHHEAATH), and 15 (AHHAHHAAN) were present in low frequency (2.6%)
(Table 1).

Table 1. Prevalence and occurrence of different amino acid repeats observed in P. falciparum HRP2
from field isolates in north-eastern Tanzania.

AA Code AA Type Occurrence Frequency

TYPE 1 AHHAHHVAD 29 38.5%
TYPE 2 AHHAHHAAD 335 100%
TYPE 3 AHHAHHAAY 36 71.8%
TYPE 4 AHH 228 94.9%
TYPE 5 AHHAHHASD 35 76.9%
TYPE 6 AHHATD 50 69.2%
TYPE 7 AHHAAD 122 89.7%
TYPE 8 AHHAAY 32 66.7%
TYPE 9 AAY 2 5.1%

TYPE 10 AHHAAAHHATD 1 2.6%
TYPE 11 AHN 0 0%
TYPE 12 AHHAAAHHEAATH 1 2.6%
TYPE 13 AHHASD 2 5.1%
TYPE 14 AHHAHHATD 5 10.3%
TYPE 15 AHHAHHAAN 1 2.6%
TYPE 16 AHHAAN 0 0%
TYPE 17 AHHDG 0 0%
TYPE 18 AHHDD 0 0%
TYPE 19 AHHAA 18 41%
TYPE 20 SHHDD 0 0%
TYPE 21 AHHAHHATY 0 0%
TYPE 22 AHHAHHAGD 0 0%
TYPE 23 ARHAAD 0 0%
TYPE 24 AHHTHHAAD 0 0%

3.1. Distribution of PfHRP2 Amino Acid Repeats in Tanzania

Our analysis of repeat amino acid sequence was compared with a previous study
conducted in Tanzania in 2010 [27], and both studies analysed 39 samples. In about seven
of the 24 types presented between the two studies, the mean number of amino acid repeats
significantly differed (p < 0.05), whereas type 2 (AHHAHHAAD) more frequently occurred
in all samples than the other types in the current study (Table 2).
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Table 2. Comparison of amino acid mean length and frequency of each repeat in PfHRP2 in parasites from previous and current studies in Tanzania.

Surveys n Length
(aa)

Number of Individual Repeats

1 * 2 * 3 4 * 5 6 * 7 8 9 * 10 * 11 12 13 14 15 16 17 18 19 * 20 21 22 23 24

Global # 458 187–306 0–7 5–19 0–3 0–4 0–3 0–7 0–13 0–3 0–1 0–4 0–1 1 0–2 0–1 - - - - 0–1 0–1 0–1 0–1 0–1 0–1
Previous
study # 39 207–287 0–7 8–17 0–2 0–2 0–2 2–6 2–9 0–3 0 0–3 0 1 0–1 0–1 - - - - 0 0 0 0 0–1 0

Current
study 39 173–260 0–5 3–12 0–2 0–20 0–2 0–3 0–9 0–2 0–1 0–1 0 0–1 0–1 0–2 0–1 0 0 0 0–3 0 0 0 0 0

Mean 232 0.7 8.6 0.9 5.8 0.9 1.3 3.1 0.8 0.05 0.02 0 0.03 0.05 0.1 0.03 0 0 0 0.5 0 0 0 0 0
Median 237 0 9 1 4 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* Mean number of this repeat is significantly different from that in Baker et al.′s [27] study (p < 0.05), # [27].
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3.2. HRP2-RDT Sensitivity Prediction in Detecting P. falciparum in Tanzania

RDT insensitivity was estimated to be 69% in detecting P. falciparum in the samples
analysed using the Baker predictive model and sensitivity classification. The overall
predicted sensitivity was 28%, and only 3% of the samples fell into the borderline sensitive
group (Table 3).

Table 3. Prediction of RDT sensitivity in field isolates of P. falciparum in north-eastern Tanzania.

No Sample Type 2
(AHHAHHAAD)

Type 7
(AHHAAD) Score (Type 2 × Type 7) Sensitivity

1 B01_TZHRPR.ab1 11 1 11 Non-sensitive
2 B02_TZHRPR.ab1 9 1 9 Non-sensitive
3 B04_TZHRPR.ab1 9 1 9 Non-sensitive
4 B05_TZHRPR.ab1 4 3 12 Non-sensitive
5 B06_TZHRPR.ab1 10 6 60 Sensitive
6 B07_TZHRPR.ab1 9 1 9 Non-sensitive
7 B08_TZHRPR.ab1 9 5 45 Borderline
8 B11_TZHRPR.ab1 8 2 16 Non-sensitive
9 C01_TZHRPR.ab1 12 7 84 Sensitive

10 C02_TZHRPR.ab1 10 6 60 Sensitive
11 C03_TZHRPR.ab1 10 5 50 Sensitive
12 C04_TZHRPR.ab1 5 2 10 Non-sensitive
13 C06_TZHRPR.ab1 9 2 18 Non-sensitive
14 C07_TZHRPR.ab1 10 2 20 Non-sensitive
15 C08_TZHRPR.ab1 6 3 18 Non-sensitive
16 D01_TZHRPR.ab1 7 0 0 Non-sensitive
17 D03_TZHRPR.ab1 11 5 55 Sensitive
18 D07_TZHRPR.ab1 8 0 0 Non-sensitive
19 D11_TZHRPR.ab1 7 3 21 Non-sensitive
20 E01_TZHRPR.ab1 9 2 18 Non-sensitive
21 E02_TZHRPR.ab1 12 2 24 Non-sensitive
22 E03_TZHRPR.ab1 7 1 7 Non-sensitive
23 E04_TZHRPR.ab1 8 0 0 Non-sensitive
24 E05_TZHRPR.ab1 10 2 20 Non-sensitive
25 E06_TZHRPR.ab1 10 7 70 Sensitive
26 E07_TZHRPR.ab1 6 9 54 Sensitive
27 E08_TZHRPR.ab1 9 2 18 Non-sensitive
28 E11_TZHRPR.ab1 4 2 8 Non-sensitive
29 E12_TZHRPR.ab1 9 7 63 Sensitive
30 G02_TZHRPR.ab1 11 3 33 Non-sensitive
31 G03_TZHRPR.ab1 10 6 60 Sensitive
32 G06_TZHRPR.ab1 11 5 55 Sensitive
33 G07_TZHRPR.ab1 10 4 40 Non-sensitive
34 G11_TZHRPR.ab1 9 1 9 Non-sensitive
35 G12_TZHRPR.ab1 3 2 6 Non-sensitive
36 H02_TZHRPR.ab1 10 0 0 Non-sensitive
37 H03_TZHRPR.ab1 11 7 77 Sensitive
38 H06_TZHRPR.ab1 5 3 15 Non-sensitive
39 H07_TZHRPR.ab1 7 2 14 Non-sensitive

3.3. Distribution of “Non-Baker” Amino Acid Repeats

The most prevalent types were ADA and HAAD occurring at 100% in all samples.
Types AHHADY, AAAD, and AHHAY were the least prevalent (2.6%) (Figure 2).
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Figure 2. Frequency of “non-Baker” amino acid repeat types in 39 Tanzanian P. falciparum isolates.

3.4. RDT Major Epitopes in Tanzania

There are about 13 major antigenic epitopes in PfHRP2 that are targeted by differ-
ent classes of monoclonal antibodies (Mab) in HPR2-based RDTs. In the current study,
11 of the 13 (85%) were present. Epitopes such as DAHHAHHA, AHHAADAHHA, and
AHHAADAHH that are targeted by 3A4/PTL-3, C1-13, and S2-5-C2-3 MAbs, respectively,
were present in all samples (100%). Epitopes DAHHVADAHH and AAYAHHAHHAAY
were not present in the field isolates in this study (Figure 3).
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4. Discussion

Pfhrp2 exon 2 sequences from the field isolates of P. falciparum showed substantial
sequence diversity. We reported the sequence length, epitope type, and frequency and
predicted the sensitivity of HRP2-RDT detection.

A total of 39 amino acid sequences were generated, ranging in length from
172 to 259 amino acids. The possible causes of the differences in length are frequent
breaks and joining in chromosome 8 during meiosis and mitosis. The gene has about eight
breaking points, and, every time, a new sequence is generated leading to the observed
variation in length and arrangement [22,37–39]. Studies have demonstrated that this could
be a normal mechanism in the parasite and ultimately can lead to polymorphism in the
gene. In Tanzania, amino acid lengths ranging from 207 to 287 have been observed, which
is also the case in the global range of amino acid lengths [27].

Following Baker’s amino acid classification, we reported the existence of 15 of 24
(62.5%) amino acid repeats, of which 12 repeats were also previously found in Tanzania [27].
Amino acid repeat types AAY, AHHAHHAAN, and AHHAA are new and hereby reported
for the first time in the field isolates from Tanzania. Only one repeat type (ARHAAD) was
previously reported but not in the current study [27]. It is argued that the recombination
of polyclonal infection of P. falciparum particularly in high transmission areas can result in
the diversity and emergence of different polymorphisms in the pfhrp2 gene [27]. Several
studies have demonstrated the possibility of reduced sensitivity and overall performance
of RDT due to the sequence variation in the pfhrp2 gene [24,28].

The results of the sequence analysis from this study showed that types 2 and 7 amino
acid repeats are common in most samples, occurring at a high prevalence but at different
frequencies. These two types are believed to form the basis of major epitopes, although
the overall function of these repeats in the functional mechanism of HRP2 in P. falciparum
is not known [40,41]. Different studies have shown a significant association between
the frequency of the two types and the performance of RDT at different parasitaemia
levels [28,42,43]. The results of our analysis based on a combined frequency between types
2 and 7 indicate that 69% of the samples had a score of <43 repeats. This score suggests a
low frequency of types 2 and 7, which implies a predicted reduced sensitivity to RDT. This
is in line with Baker’s regression model, which predicts RDT insensitivity, especially in
low parasitaemia.

We also found 14 amino acid repeats that are not in Baker’s classification (non-Baker
repeats). Types ADA and HAAD were present at relatively high proportions in all of the
samples (100%), suggesting an important role in the physiological system mechanisms of
the parasite; that is why it is expressed in high abundance. Studies in Madagascar and
Papua New Guinea previously reported some of the non-Baker repeats but at much lower
frequencies [26,44]. Their contribution to the efficacy and performance of RDT is yet to be
determined, and this calls for further investigation.

In this study, we found 11 of the 13 (85%) major epitopes that are globally targeted
by most of the distributed RDT kits. The most prevalent epitopes were DAHHAHHA,
AHHAADAHHA, and AHHAADAHH, which were present in all isolates analysed. These
findings indicate that RDT kits with monoclonal antibodies targeting these epitopes will
optimally perform in the study area. Apparently, the three epitopes also occur in high
proportions elsewhere in Africa [26]. Laboratory studies have tested the same MAbs in
different field isolates and observed significant differences in reactivity, suggesting that
sequence variation and frequency have an impact on RDT performance [23,24].

Genetic diversity in pfhrp2 can potentially result in the expression of more or less
complex PfHRP2. Previous studies have shown that high antibodies to PfHRP2 might
lead to reduced sensitivity of RDTs, particularly in high transmission areas due to the
formation of antibody–PfHPRP2 complexes making the protein unavailable in the plasma.
The protein elicits antibodies with a short low half-life since there is no correlation between
anti-PFHRP2 titres and the age of study participants [45].
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Our study provided evidence of sequence variation in pfhrp2 in the field samples
for Tanzania. Comparing our results with a previous study, it is evident that there are
significant differences in the amino acid repeats. We could not validate Baker’s model to
explain the level of RDT performance in this study, but we predicted the effect of pfhrp2
polymorphism on RDT sensitivity in Tanzania. More studies should focus on the correlation
between RDT performance in relation to the amino acid repeat types of both “Baker”
and “non-Baker”.

5. Conclusions

The findings from this study provided information on pfhrp2 sequence polymorphism
and predicted the effect on RDT performance. The data on antigenic epitopes presented in
this study will inform on the purchase and supply of effective RDT in Tanzania. There is an
urgent need to deploy a novel and unconventional point-of-care test that exploits magnetic
resonance in malaria diagnosis [46,47].

6. Study Limitations

The limited number of samples analysed in this study might have underestimated
the effect of amino acid repeats on RDT performance particularly in lower Moshi where
malaria prevalence is very low. Recent data from the study areas could highlight a different
amino acid repeat pattern. This study could not validate Baker’s model based on the field
isolates from Tanzania, but it could predict that, in an event of low parasitaemia, RDT
could be insensitive. We did not sequence pfhrp3, which is the isoform of pfhrp2 and usually
cross-reacts to anti-HRP2 and increases sensitivity to RDT.
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