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Abstract 

Background: Immortal time bias is common in observational studies but is typically described for pharmacoepide-
miology studies where there is a delay between cohort entry and treatment initiation.

Methods: This study used the Clinical Practice Research Datalink (CPRD) and linked national mortality data in Eng-
land from 2000 to 2019 to investigate immortal time bias for a specific life-long condition, intellectual disability. Life 
expectancy (Chiang’s abridged life table approach) was compared for 33,867 exposed and 980,586 unexposed indi-
viduals aged 10+ years using five methods: (1) treating immortal time as observation time; (2) excluding time before 
date of first exposure diagnosis; (3) matching cohort entry to first exposure diagnosis; (4) excluding time before proxy 
date of inputting first exposure diagnosis (by the physician); and (5) treating exposure as a time-dependent measure.

Results: When not considered in the design or analysis (Method 1), immortal time bias led to disproportionately 
high life expectancy for the exposed population during the first calendar period (additional years expected to live: 
2000–2004: 65.6 [95% CI: 63.6,67.6]) compared to the later calendar periods (2005–2009: 59.9 [58.8,60.9]; 2010–2014: 
58.0 [57.1,58.9]; 2015–2019: 58.2 [56.8,59.7]). Date of entry of diagnosis (Method 4) was unreliable in this CPRD cohort. 
The final methods (Method 2, 3 and 5) appeared to solve the main theoretical problem but residual bias may have 
remained.

Conclusions: We conclude that immortal time bias is a significant issue for studies of life-long conditions that use 
electronic health record data and requires careful consideration of how clinical diagnoses are entered onto electronic 
health record systems.
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Background
Electronic health records are increasingly being used to 
conduct real-world observational studies to determine 
the association between a treatment or exposure and out-
come. However, such studies are prone to a number of 
biases. In particular, immortal time bias is a recognised 

limitation of observational studies [1–3] that has come 
to the forefront in recent years owing to the increasing 
complexity of observational cohort designs [4–8]. This 
bias occurs where there is a period of time during follow 
up where an event or death cannot occur [4]. It is often 
discussed in the context of pharmacoepidemiology where 
a delay between entering the study and being allocated 
a given therapy at baseline creates an ‘immortal’ period 
for the subject thereby creating an apparent advantage 
for the group that is given the therapy. In these types of 

Open Access

*Correspondence:  fct2@le.ac.uk
1 Department of Health Sciences (Biostatistics Research Group), University 
of Leicester, Leicester, UK
Full list of author information is available at the end of the article

https://orcid.org/0000-0003-2877-4342
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-022-01581-1&domain=pdf


Page 2 of 11Tyrer et al. BMC Medical Research Methodology           (2022) 22:86 

study, immortal time bias can generally be reduced, if 
not eliminated completely, by adapting the analysis; for 
example, through application of prescription time-distri-
bution matching (PTDM), time-dependent or sequential 
Cox approaches, or landmark analyses [9–11].

However, immortal time bias is not specific to phar-
macoepidemiology studies and can represent a signifi-
cant problem where the exposure is a life-long condition 
or disability, defined here by a long-term condition that 
typically starts before adulthood and cannot, at present, 
be cured. This is a particular issue for electronic health 
record studies where there is a period of delay between 
onset and diagnosis of a given condition during which 
the individual is effectively ‘immortal’. We demonstrate 
this using an example of electronic health record data of 
life expectancy among patients with and without intellec-
tual disabilities from the UK Clinical Practice Research 
Datalink (CPRD). Primary care incentives in England to 
identify people with intellectual disabilities between 2004 
and 2008 (and 2014 for young adults/children) [12–16] 
means that we might expect to see increases in diagnoses 
over time in patients who are already registered at a given 
surgery. We show that lack of consideration of immortal 
time bias in this population may lead us to draw incorrect 
conclusions about life expectancy across different calen-
dar year periods. Our findings also have applicability to 
other long-term conditions with delays in diagnosis or 
prolonged latency periods.

Methods
Source of data
For this example, we used the Clinical Practice Research 
Datalink (CPRD GOLD), linked (person-level) with hos-
pital episode statistics (HES) and death registrations 
from the Office for National Statistics (approved study 
protocol number: 19_267RA3). The CPRD is an elec-
tronic health record research database of more than 11.3 
million patients, broadly representative of the national 
population in terms of age, gender, and ethnicity [17], 
from general practice (GP) surgeries in the UK – of 
which approximately 75% in England consent to linkage 
to deaths data. The study followed the Reporting of stud-
ies Conducted using Observational Routinely-collected 
health Data (RECORD) checklist [18] (see supplementary 
Table S1).

Diagnostic codes used in this study are reported in 
supplementary Table S2. The initial extract from the 
CPRD has been described previously [19] and was 
based on the following inclusion criteria: registered at 
the GP surgery at any time between 1 Jan 2000 to 29 
Sept 2019; linkage data available; and 10 years old or 
over to account for delays in reporting of diagnoses of 
intellectual disability in children [20]. An additional 23 

patients with Angelman or Cockayne syndrome were 
added in August 2021 after an amendment to the origi-
nal protocol (approved March 2020 but delayed dur-
ing the COVID period). A random sample of people 
without intellectual disabilities was used for the com-
parison group with the same eligibility criteria (but 
without a diagnosis of intellectual disability; please see 
Fig. S1 in the supplementary material for a data flow 
diagram). The initial extract included 33,867 people 
with intellectual disabilities ever in their records (the 
exposed population) and a random sample of 980,586 
people (initially 1 million prior to exclusions) without 
intellectual disabilities (the unexposed population), 
although population sizes varied by the immortal time 
bias approach adopted. Baseline totals, age and obser-
vation period under the five approaches are shown in 
Table  1. Further baseline characteristics are shown in 
supplementary Table S3.

Date of entry into the cohort was defined as the lat-
est date according to the person and practice’s charac-
teristics: 01 Jan 2000; date of registration with the GP 
practice; date the practice was defined as being up to 
standard (using the CPRD’s own quality indicators); or 
date the individual turned 10 years old (to align with 
the eligibility criteria). Additional entry cohort cri-
teria were specified according to the approach used. 
Date of exit from each calendar period was calculated 
in the same way throughout as: date of death; date of 
end of calendar period; date of last practice update 
(latest 29 Sep 2019); or date of transfer out of prac-
tice, whichever was first. If the patient died after their 
date of exit from the cohort, they were censored on 
the date of exit.

Exposure/control definitions to handling immortal time 
bias under five different approaches
We present five approaches to defining cohort entry 
time when calculating life expectancy in people with 
and without intellectual disabilities and describe the 
impact that each approach has on life expectancy esti-
mates in the context of immortal time bias. All meth-
ods involved changes in the handling of the exposed 
population. The second and third method also involved 
changes to the unexposed (control) population. The five 
methods compared are summarised in Fig. 1.

Method 1: treating immortal time as observation time
Method 1 (‘immortal time included’) involved applying 
no additional cohort entry criteria to either exposed or 
unexposed populations such that both populations are 
treated in the same way.
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Method 2: excluding immortal time before date of first 
exposure diagnosis
Method 2 (‘immortal time excluded’) involved adding 
date of intellectual disability diagnosis to the entry crite-
ria such that date of entry into the cohort was set to the 
date of intellectual disability diagnosis if this was after 
the entry criteria defined for Method 1 (Fig. 1). The com-
parison group patients entered at the date of registration/
start of follow-up, as in Method 1. This approach has 
been described in pharmacoepidemiology studies in the 
context of excluding immortal time prior to treatment 
initiation in the treated group [10].

Method 3: matching cohort entry to first exposure diagnosis
The third approach (‘matched’) involved excluding 
immortal time, as in Method 2, but then matching the 
exposed individuals to unexposed individuals at a 1:10 
ratio (chosen to maximise the number in the comparison 
group without losing controls) by date of cohort entry. 
This approach was designed to give a more balanced dis-
tribution of cohort entry date than Method 2 (in which 

entry dates for the comparison group tended to be earlier 
by design). The method is similar to the PTDM approach 
described for pharmacoepidemiology studies where dates 
of initiating therapy vary between treatment groups [10, 
21, 22]. The difference between this and our approach is 
that PTDM involves differentiating between the ‘never 
treated’ and ‘ever treated’ groups such that cohort entry 
dates in the ‘never treated’ group are shifted to the date 
that the ‘ever treated’ group first started their treatment 
[10]. The approach, therefore, requires conditioning on 
the future and depends on length of the follow-up period 
since those in the ‘never treated’ group are allowed to 
move to the ‘ever treated’ group if the follow-up period is 
sufficiently long. Instead, our approach involved match-
ing cohort entry dates against unexposed individuals, 
which included ‘never exposed’ individuals (i.e. with-
out intellectual disabilities; PTDM approach) and ‘ever 
exposed’ individuals (i.e. people with intellectual disabili-
ties prior to their first diagnosis). Therefore, individuals 
with intellectual disabilities could contribute person-time 
to both unexposed (prior to their first diagnosis) and 
exposed populations (after their first diagnosis).

Table 1 Characteristics of the study population using different methods to handling immortal time bias

a n = 641,916 individuals from the unexposed population were discarded under Method 3 because they were not matched
b n = 623 individuals from the exposed population were excluded from this analysis under Method 4 because they entered on or after they were censored/died (i.e. 
system date linked to the diagnosis was after date of leaving/death)
c Individuals could contribute to both the exposed and unexposed populations under Method 5, as reflected in the baseline values

CHARACTERISTICS EXPOSED NON-EXPOSED

People with intellectual disabilities
N (%) / median (range)

People without intellectual 
disabilities
N (%) / median (range)

Method 1
 Total 33,867 (100.00) 980,586 (100.00)

 Age (years) at baseline: 29.0 (10–102) 34.0 (10–108)

 Length of observation time (years) 6.5 (< 0.1–19.7) 5.0 (< 0.1–19.7)

Method 2
 Total 33,867 (100.00) 980,586 (100.00)

 Age (years) at baseline: 31.0 (10–102) 34.0 (10–108)

 Length of observation time (years) 4.6 (< 0.1–19.7) 5.0 (< 0.1–19.7)

Method 3a

 Total 33,867 (100.00) 338,670 (100.00)

 Age (years) at baseline: 31.0 (10–102) 34.0 (10–108)

 Length of observation time (years) 4.6 (< 0.1–19.7) 3.6 (< 0.1–19.7)

Method 4b

 Total 33,244 (100.00) 980,586 (100.00)

 Age (years) at baseline: 33.0 (10–106) 34.0 (10–108)

 Length of observation time (years) 2.2 (< 0.1–19.6) 5.0 (< 0.1–19.7)

Method 5c

 Total 33,867 (100.00) 991,879 (100.00)

 Age (years) at baseline: 31.0 (10–102) 34.0 (10–108)

 Length of observation time (years) 4.6 (< 0.1–19.7) 5.0 (< 0.1–19.7)



Page 4 of 11Tyrer et al. BMC Medical Research Methodology           (2022) 22:86 

Ten matches (random without replacement) for each 
exposed individual were initially selected from the pool 
of unexposed individuals who entered the study within 
150 days (to balance follow-up time) prior to the index 
date (i.e. date of cohort entry for exposed individuals). 
Where all 10 matches could not be found within this time 
constraint (n = 24 patients), controls were selected from 
the pool of unexposed individuals who entered at any 
time prior to the index date and were still at risk. Dates 
of cohort entry in the unexposed population were then 
updated to the index date.

Method 4: excluding time before proxy date of inputting first 
exposure diagnosis
The fourth approach (‘proxy input date’) involved incor-
porating the date that the exposed population’s diagno-
sis was assumed to be input by the physician onto the 
GP surgery’s electronic health record system. This is not 
typically an issue with pharmacoepidemiology studies 
because the date of prescribing treatment is usually close 
to the date that the individual commences the treatment. 
However, for a life-long condition such as intellectual 
disabilities, physicians may choose to backdate the first 
exposure diagnosis to the patient’s date of birth. As well 
as diagnosis date, the CPRD provides a linked variable 

(‘system date’) for each diagnosis which can correspond 
to the date that the diagnosis was entered. However, this 
variable is also updated when a person transfers to the 
GP surgery, when there is an update in the GP software 
system used, or when the record is amended [23] which 
may lead to erroneous loss of person-years in the exposed 
group. To investigate this, date of entry was set to the 
date attached to the first intellectual disability diagnosis 
if it was later than the date of entry defined in Method 1 
or Method 2 (by design; Fig. 1). In this method, the unex-
posed patients entered at the date of registration/start of 
follow-up period as in Method 1.

Method 5: treating exposure as a time‑dependent measure
The final approach (‘time-dependent’) to handling 
immortal time bias involved treating the exposure as a 
time-dependent variable. This is perhaps the most com-
mon approach used in pharmacoepidemiology studies 
to control for immortal time bias and involves adapting 
the analysis so that individuals’ exposure to a therapy is 
allowed to change during the follow-up period [10, 22]. 
It can be used to investigate the effect of individual thera-
pies where more than one is under investigation [24] and 
is also advocated as a means of avoiding immortal time 
bias caused by temporal variability in the onset of certain 

Fig. 1 Diagram of  exposeda person-time under five methods for studies of life-long conditions using electronic health record data. a individuals 
with an intellectual disability diagnosis prior to registration/transfer (i.e. prevalent users in pharmacoepidemiology studies) entered the cohort as 
normal. b Time 2 represents the date that the clinician was assumed to have input the first intellectual disability diagnosis on their GP electronic 
health record database, given by the system date (‘sysdate’) attached to the diagnosis and diagnosis date
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conditions, such as the menopause [3]. In this study, the 
approach involved allowing individuals in the exposed 
population to contribute to the unexposed population 
until their first intellectual disability diagnosis where-
upon they started contributing to the exposed population 
(Fig. 1). The advantage of this method is that people with 
intellectual disabilities contribute person years in the 
same way as those who died before they had the opportu-
nity to have an intellectual disability diagnosis.

Statistical analyses
For the purposes of this work, data were split into the fol-
lowing calendar periods: 2000–2004; 2005–2009; 2010–
2014; and 2015–2019.

To calculate life expectancy (additional life years 
expected to live) in both the exposed and unexposed 
populations, the Chiang’s abridged life table approach 
[25–28] was used. This approach has been described in 

detail elsewhere [28], but briefly involves stratifying by 
exposed and unexposed status and constructing a table 
of probabilities that individuals will survive in a defined 
age interval conditional on surviving to the start of that 
age interval. The product of probabilities is then used 
to calculate survival to each age interval and life expec-
tancy is estimated as the cumulative number of years 
lived using information from all subsequent age inter-
vals divided by the population at the start of the given 
age interval.

Confidence intervals for the derived life expectan-
cies were calculated using the Chiang II approach as 
advocated by Eayres & Williams [29]. This involves 
adding a correction term to the original Chiang vari-
ance to account for the under-estimation of the ‘true’ 
variance at the last age interval by assuming variance 
is zero rather than basing the estimate on length of 
survival [30].

Fig. 2 Life expectancy by calendar period in exposed individuals (people with intellectual disabilities) under the five methods to handling immortal 
time bias
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Results
Figures 2 and Fig. 3 summarise the life expectancy find-
ings for the exposed (Fig.  2) and unexposed (Fig.  3) 
population under the five methods. Each of the meth-
ods is described in more detail below.

Method 1: treating immortal time as observation time
We can see from Fig. 2 that there is an apparent survival 
advantage in the first calendar period for the exposed 
population using Method 1, which is not observed in 
the unexposed population (Fig.  3). At age 10 years, for 
example, the estimated additional years expected to live 
in 2000–2004 was 65.6 (95% confidence interval [CI] 
63.6,67.6) compared with 59.9 (58.8,60.9), 58.0 (57.1,58.9) 
and 58.2 (56.8,59.7) in the subsequent calendar periods. 
In the first calendar period and under Method 1, 38.5% 
of person-time (n =  21,506 person years) in the cohort 
with intellectual disabilities was before the first intel-
lectual disability diagnosis (i.e. when a death could not 
occur), compared with 23.4, 9.1 and 4.8% in the second, 
third and fourth calendar periods respectively. Therefore, 

person-time was accrued for the exposed population 
during which a death could not occur.

Method 2: excluding immortal time before date of first 
exposure diagnosis
Under Method 2, we can now see that the life expectancy 
advantages in the first calendar period are not as appar-
ent. However, life expectancy remains slightly higher 
compared with the other calendar periods. This could be 
a real effect, but we speculate that some of the GP surger-
ies may have backdated intellectual disability diagnoses 
to date of birth during some key periods in response to 
policy initiatives in England (see discussion). In the first 
calendar period, 14.5% of person time (n =  8091 per-
son years) had a backdated intellectual diagnosis to year 
of birth. This compares with 16.2 and 17.0% in the sec-
ond and third calendar period during which many of the 
policy initiatives occurred and 14.6% in the final calen-
dar period. We are unable to determine whether these 
records were updated when the patient was registered 
with the practice (when immortal time bias would not 

Fig. 3 Life expectancy by calendar period in unexposed individuals (people without intellectual disabilities) under the five methods to handling 
immortal time bias
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present a problem) or at some point during the regis-
tration period (see Method 4 [proxy input date] for one 
approach to handling this).

There is also an additional problem that, by excluding 
immortal time from the observation period, we intro-
duce time-related bias by forcing many of the exposed 
individuals to enter later than the unexposed population 
(Fig. 1). Under Method 2, the median length of follow-up 
was shorter in the exposed population (4.6 yrs. vs 5.0 yrs.; 
Table S3). The percentage of people with intellectual dis-
abilities in the entire cohort (i.e. combining the cohort 
with and without intellectual disability) was also smaller 
in the first year of cohort entry period, increasing there-
after (see Fig.  4). Bias introduced from this approach 
is believed to be negligible if the person-years in the 
exposed cohort is much smaller than the person-years 
in the unexposed cohort [10], but this does mean that a 
smaller sample of people with intellectual disabilities are 
investigated in earlier cohort periods. The next method 
attempts to evaluate this using matching techniques.

Method 3: matching cohort entry to first exposure 
diagnosis
Compared to only excluding immortal time before date 
of diagnosis (Method 2), matching on cohort entry 

resulted in a more balanced distribution of people in 
the exposed population over the observation period 
(Fig. 4). As expected, the life expectancy calculations for 
exposed individuals were identical to Method 2 (Fig. 2). 
Life expectancy was also similar in the unexposed group 
(Fig.  3), although person-time contribution was smaller 
because 65.5% (n = 641,916) of individuals from this pop-
ulation were discarded from the analysis because they 
were not matched.

Method 4: excluding time before proxy date of entering 
first exposure diagnosis
Method 4, implemented under the assumption that the 
CPRD’s system date represented the date that the physi-
cian input the intellectual disability diagnosis, produced 
the lowest life expectancy estimates for people with intel-
lectual disabilities in the earlier calendar year periods 
(Fig.  2). All calendar periods, except the last calendar 
period, showed a markedly lower life expectancy for peo-
ple with intellectual disabilities than the other two meth-
ods. The graphs show that life expectancy estimates in 
the unexposed population for this method increased only 
slightly over time (Fig.  3) with life expectancy in peo-
ple with intellectual disabilities showing more dramatic 
improvements (Fig. 2).

Fig. 4 Percentage of exposed individuals by year of observation a, b,c. a Method 4 can contain more than one individual where first intellectual 
disability diagnosis date is greater than the date of entry (e.g. a person entering the cohort in 2000 but diagnosed first with intellectual disability in 
2006 enters the cohort without intellectual disabilities in 2000 and enters again with intellectual disabilities in 2006). b Please note that, as a random 
sample of the general population without intellectual disabilities for the comparison (unexposed) group, this graph cannot be interpreted as 
representing prevalence of intellectual disability. c As Method 3 involved matching on cohort entry at a 1:10 ratio by design, approximately 10% of 
the sample had intellectual disabilities throughout the observation period
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However, this method led to a substantial loss in per-
son-year contributions (median follow-up period 2.2 yrs. 
vs 5.0 yrs) in the earlier cohort periods (Fig.  4). During 
the first calendar period (2000–2004), almost three-quar-
ters of person-year contributions were lost compared 
with Method 1 (78.4%, n  = 43,787 yrs) and two-thirds 
compared with Method 2 (64.9%, n = 22,281 yrs). Person-
years lost gradually lowered for the subsequent calendar 
periods (64.1 and 53.3%, respectively, for 2005–2009, 
41.2 and 35.3% for 2010–2014; 24.0 and 20.2% for 2015–
2019). We can see, therefore, that people with a good 
prognosis (i.e. surviving long enough to have a system 
update at some later point) may have systematically been 
removed. The supplementary Fig. S2 shows the propor-
tion of system dates that were linked to first diagnosis but 
were after that diagnosis. Between 45 and 80% of individ-
uals had a linked system date after the date of their first 
diagnosis and between 1 and 3% of individuals (n = 623 
in total) had a linked system date recorded after date of 
death or leaving the practice, which suggests that these 
may have been software system updates. Moreover, the 
use of system date as a proxy date for entering the cohort 
is not advocated for CPRD data because it is not suffi-
ciently specific [31].

Method 5: treating exposure as a time-dependent measure
The final approach, treating the exposure as a time-
dependent variable, showed very similar results to 
Method 2 and 3 for the exposed population (Fig. 2) and 
marginal differences to the life expectancy calculations in 
the unexposed population (Fig. 3) because the additional 
person-year contribution from the exposed population 
was relatively small.

Discussion
Through the use of electronic health records data, we 
demonstrate that immortal time presents a significant 
problem for time-to-event analyses where one or more of 
the exposures is a life-long condition or disability. Treat-
ing immortal time as exposure time (Method 1) led to 
an over-estimation of life expectancy advantages in the 
exposed population and could lead us to draw incor-
rect conclusions about survival in this population. Even 
when immortal time was excluded or treated as unex-
posed time (Methods 2, 3 and 5), some residual immortal 
time bias may have remained where diagnoses had been 
backdated to date of birth. Using proxy date of physician’s 
input of exposure diagnosis (Method 4) resulted in a 
substantial loss of person-time and subjects, and did not 
appear to be used in a consistent way in our data source. 
Our findings highlight that interpretation is key for any 
study where the exposure can occur after the start of the 

follow-up period and consideration of immortal time 
bias is needed to avoid drawing incorrect conclusions.

To our knowledge, this is the first time that the issue of 
immortal time bias has been studied in detail for life-long 
conditions or disabilities, although there is a wealth of lit-
erature that discusses immortal time bias in the context 
of pharmacoepidemiology studies. This literature largely 
corresponds with Methods 3 (matched) and 5 (time-
dependent) in our study by recommending the control of 
immortal time bias through PTDM or time-dependent 
approaches that allow exposure status to vary [9, 10, 22]. 
Time-dependent analyses have also been recommended 
to control for the effects of immortal time bias where 
time of onset of certain health conditions varies, such as 
the menopause [3]. The reason that the issue of immor-
tal time bias for life-long conditions/disabilities has not 
been considered before may be that it seems conceptually 
inappropriate to consider someone with a life-long con-
dition to be ‘disease-free’ for any period of observation. 
However, this is likely to be the best solution for elec-
tronic health records that do not follow up individuals 
from birth.

The magnitude of immortal time bias is reported to be 
related to mean interval between date of cohort entry and 
date of (recording of ) exposure, proportion of exposed 
study participants, and length of study follow-up [32]. 
The prevalence of intellectual disability, as diagnosed 
in primary care, is approximately 0.5% [33] but the cur-
rent study population had a larger proportion of exposed 
individuals (~ 3%) because only a proportion of the 
unexposed population was selected for comparison. The 
cohort period of almost 20 years also increased the likely 
bias introduced by immortal time. Similarly, the choice of 
intellectual disability as an example may have led to sub-
stantially more immortal time bias than some other con-
ditions or disabilities. Intellectual disability itself does not 
require treatment so, for administrative purposes, may 
not need to be entered onto GP systems if it is already 
known or reported in the patients’ notes. This changed 
in 2004, with the introduction of the Quality Outcomes 
Framework (QOF) and incentives to report long-term 
conditions including intellectual disabilities [12, 13], 
closely followed by policy drives to maintain practice-
level intellectual disability registers in 2006 (adults) and 
2014 (children) [14–16], and annual intellectual disabil-
ity health checks in 2008 (adults) and 2014 (14–17 year 
olds) [14, 16]. We cannot identify another condition or 
disability where a policy drive has been so influential in 
changing practice in primary care. However, increased 
awareness is known to ‘artificially’ increase incidence of 
certain conditions over time, such as autism and coeliac 
disease [34, 35]. Our findings may also have applications 
for conditions where there is a delay between onset and 
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diagnosis, such as Crohn’s disease or rare diseases [36, 
37]. We also note that delays in time to diagnosis and, 
therefore, potential for immortal time bias may be more 
prevalent among people with certain characteristics, 
such as gender and ethnic inequalities in time to diagno-
sis of cancers [38, 39].

The study has a number of limitations that need to be 
considered. First, we only focused on one life-long con-
dition (intellectual disabilities) so are unable to quantify 
the impact of immortal time on other conditions. Sec-
ond, we included individuals with a diagnosis of intel-
lectual disabilities ‘ever’ in their electronic health records 
before the date that the surgery was known to be up-to-
standard using the CPRD’s quality indicators. Therefore, 
we may have included individuals with incorrect (or sus-
pected only) diagnoses of intellectual disabilities at birth, 
thereby overestimating life expectancy in this population. 
We may also have missed individuals from surgeries that 
did not have computerised health record data at the time, 
thereby systematically excluding individuals born in ear-
lier cohort periods who are likely to have had poorer life 
expectancy. We also chose to present five-year-period life 
expectancies to highlight our findings. We recognise that 
there may have been period and cohort effects during 
each five-year calendar period that were effectively aver-
aged out during each calendar period. In addition, we did 
not have information on severity of intellectual disabili-
ties which is a known predictor of premature mortality 
in this population [40], although we have no reason to 
believe that there has been a difference in reporting by 
severity over time.

We have shown that attempts to control for immortal 
time bias in the design or analysis stage does not guaran-
tee unbiased results. However, treating immortal time as 
observation time, thereby ignoring immortal time bias 
completely, is not recommended as we have shown that 
this will lead to spurious results owing to the ‘misclas-
sification of immortal time’ [10]. Incorporating date of 
assumed input of the exposure diagnosis by the physician 
(Method 4) may have potential in some data sources but 
we would also not recommend this for studies that use the 
CPRD owing to the apparent inconsistent use of the sys-
tem date field that we used to capture date of record input 
and substantial loss to person-time and subjects. Studies 
of electronic health records where date of input of diag-
nosis is more reliably recorded may be considered for this 
purpose. This approach may also be valuable for conduct-
ing sensitivity analyses where immortal time bias is not 
perceived to be adequately controlled. Methods that start 
follow-up for exposed individuals at diagnosis (Methods 
2, 3 and 5) all produce fairly similar findings and appear 
to solve the main theoretical problem, so any of these 
approaches could be adopted without a reference standard 

on which to compare. Although these methods all showed 
similar results for this study, Methods 3 (matched) and 
5 (time-dependent) have conceptual advantages over 
Method 2 (immortal time excluded) because they do not 
involve conditioning on the future [41]. In other words, 
they allow exposed individuals to contribute to the unex-
posed population prior to their first diagnosis when they 
are still “at risk”. Finally, we recommend adding an assess-
ment of immortal time bias as a key component of criti-
cal appraisal tools to assess the quality of observational 
studies with life-long conditions as exposures, particularly 
those that use electronic health records.
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