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Aims Incorporation of sex in study design can lead to discoveries in medical research. Deep neural networks (DNNs) accur-
ately predict sex based on the electrocardiogram (ECG) and we hypothesized that misclassification of sex is an important
predictor for mortality. Therefore, we first developed and validated a DNN that classified sex based on the ECG and
investigated the outcome. Second, we studied ECG drivers of DNN-classified sex and mortality.

Methods
and results

A DNN was trained to classify sex based on 131 673 normal ECGs. The algorithm was validated on internal (68 500
ECGs) and external data sets (3303 and 4457 ECGs). The survival of sex (mis)classified groups was investigated using
time-to-event analysis and sex-stratified mediation analysis of ECG features. The DNN successfully distinguished female
frommale ECGs {internal validation: area under the curve (AUC) 0.96 [95% confidence interval (CI): 0.96, 0.97]; external
validations: AUC 0.89 (95% CI: 0.88, 0.90), 0.94 (95% CI: 0.93, 0.94)}. Sex-misclassified individuals (11%) had a 1.4 times
higher mortality risk compared with correctly classified peers. The ventricular rate was the strongest mediating ECG
variable (41%, 95% CI: 31%, 56%) in males, while the maximum amplitude of the ST segment was strongest in females
(18%, 95% CI: 11%, 39%). Short QRS duration was associated with higher mortality risk.

Conclusion Deep neural networks accurately classify sex based on ECGs. While the proportion of ECG-based sex misclassifications
is low, it is an interesting biomarker. Investigation of the causal pathway between misclassification and mortality uncov-
ered new ECG features that might be associated with mortality. Increased emphasis on sex as a biological variable in
artificial intelligence is warranted.
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Introduction
Despite increasing awareness of sex differences in cardiology, wo-
men remain underrepresented in randomized clinical trials.1,2

Often, even when enough women are included, a focus on sex strati-
fication is absent, despite pronounced differences between the
sexes.2,3 This also applies to the recent advancement of artificial in-
telligence (AI) in cardiology.1 Artificial intelligence and specifically
deep neural networks (DNNs) are increasingly used in cardiac re-
search to analyse raw electrocardiogram (ECG) signals for predic-
tion, diagnosis, and prognosis of cardiovascular disease (CVD).4–7

Sex differences in the ECGs are well known, as females have a high-
er heart rate, shorter PR interval andQRS duration, longer corrected
QTduration (QTc), different T-wavemorphology, and lower precor-
dialQRS andT-wave amplitudes thanmales.8–10Many studies have in-
vestigated long-term prognostic information available in the ECG.11

QRS prolongation, corrected QT prolongation, and T-wave morph-
ology are associatedwithmortality, with different relations per sex.11–
14 For example, different types of T-wave morphology are associated
with all-causemortality in males and females.14 For QRS duration and
QTc interval, the relation is also different per sex, as healthy males
have longer QRS durations and shorter QTc intervals.13

Recent advancements in AI and DNN have opened up many new
possibilities for clinical applications of the established ECG

technology.15,16 Deep neural networks classify sex based on ECG
with an extremely high accuracy, but it remains unclear where these
DNNs base their decisions on (e.g. differences in pathological
changes).17 ECG-based prediction of sex with DNNs could lead to
new discoveries and insights. This might provide us with more infor-
mation on the differences in longevity between the sexes.
We hypothesized that misclassification of sex based on the ECG is

associated with survival and that sex-misclassified individuals mirror
the survival of their predicted biological sex. Deep neural net-
work–based misclassified men (classified as women) are hypothe-
sized to have similar survival as biological women, and vice versa.
Therefore, we externally validate a DNN trained on normal ECGs
for classification of sex in large cohort studies and evaluated the out-
come. We highlight how sex-specific ECG features affect mortality
with mediation analysis.

Methods

Study participants and data acquisition
University Medical Center Utrecht training and internal
validation data set
All 10 s 12-lead resting ECGs (n= 1 136 113) were acquired in the
University Medical Center Utrecht (UMCU) between July 1991 and
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December 2019 from individuals (n= 249 262) aged between 18 and 85
years were selected. Demographic (age, sex, and years of follow-up) and
ECG data were extracted from hospital files of these individuals. All in-
dividuals (n= 137 000) with at least one normal ECG (n= 287 547)
were selected (Figure 1). Only ECGs that were deemed interpretable
by the Marquette 12 SL algorithm (GE Healthcare, Chicago, IL, USA)
or the annotating physician were included.

The ECGs were recorded using a General Electric MAC V, 5000, or
5500 (GE Healthcare) at 250 or 500 Hz and extracted in raw voltage for-
mat. Approximately 31% of the ECGs were recorded at 250 Hz and lin-
ear interpolation was used to resample every ECG to 500 Hz. The
representative median beat was used in this study and derived from
10 s recordings by aligning all QRS complexes and calculating the median
voltage. R peaks were detected using the Stationary Wavelet Transform
detector.18 Extraction of the conventional ECG features, such as PR
interval, is described in more detail in the Supplementary material
online, Methods. All recordings obtained at non-cardiology departments
were systematically annotated by a physician as part of the regular clinical
workflow. The other ECGs were annotated by the Marquette 12SL algo-
rithm (GE Healthcare). Diagnostic ECG statements were extracted from
these free text annotations using a text mining algorithm described be-
fore and were used to determine if an ECG was interpreted as normal
(e.g. the classification ‘normal ECG’ was given by either the physician
or the computerized algorithm).4

The data set was split randomly 50:50 into a training and internal val-
idation set on the individual level, making sure that there were no over-
lapping individuals between the training and internal validation data set.
For training, all ECGs (n= 131 673) per individual (n= 68 500) were

used. For internal validation, only the first normal ECG of each individual
was selected, excluding 87 374 ECGs. This resulted in the UMCU internal
validation data set of 68 500 ECGs in 68 500 individuals. All data were
de-identified during extraction in accordance with the EU General
Data Protection Regulation and the written informed consent require-
ment was waived by the UMCU ethical committee.

University Medical Center Utrecht follow-up data set
A subset of the UMCU internal validation data set was used to determine
the association between ECG-classified sex and all-cause mortality.
Survival data from all individuals were extracted from the Dutch
Population Register. Individuals with ,1 year of follow-up (n= 4452)
and individuals aged ,18 or .85 years during ECG recording (n=
405) were excluded. This enabled the investigation of long-term follow-
up and reduced bias caused by individuals who are already in the hospital
for a specific reason that reduces life expectancy (e.g. severe trauma or
palliative care). These exclusions resulted in a final data set of 63 643 in-
dividuals and an equal number of ECGs (Figure 1).

External validation: Know-Your-Heart data set and
Utrecht Health Project data set
External validation of the algorithm was performed in two data sets. The
Know-Your-Heart (KYH) data set is a cross-sectional population-based
study from two Russian cities, Arkhangelsk and Novosibirsk.19 This co-
hort consisted of 4647 individuals, aged between 35 and 69 years.
Only individuals (n= 3303, 1989 females, 60%) with a normal ECG
were selected. The full protocol of the KYH study has been described

Figure 1 Selection of individuals in the different University Medical Center Utrecht data sets; University Medical Center Utrecht training data set,
internal validation data set, and data set for time-to-event and mediation analysis.
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elsewhere.19 A detailed description of the ECG acquisition in this data set
is provided in the Supplementary material online, Methods.

The Utrecht Health Project (UHP) is an ongoing dynamic population
study initiated in a newly developed large residential area in Leidsche Rijn,
part of the city of Utrecht.20 All new inhabitants were invited by their
general practitioner to participate in the UHP.Written informed consent
was obtained and an individual health profile was made by dedicated re-
search nurses. Survival data were obtained by the general practitioner via
the International Classification of Primary Care (ICPC)-codes. The UHP
study was approved by the Medical Ethical Committee of the University
Medical Center, Utrecht, The Netherlands. The UHP included baseline
normal ECGs of 4457 individuals (2469 females, 55.4%), with a median
age of 35 years (IQR: 30–43). The full protocol of the UHP cohort has
been described elsewhere.21

Deep neural network development
A convolutional DNN architecture with several one-dimensional causal
dilated convolutional layers was trained to classify sex on the ECG.
This network architecture is inspired by van den Oord et al. and was de-
scribed in detail previously.22,23 The architecture has been previously op-
timized for use on median beats and no further hyperparameter tuning
was performed on the UMCU training data set.23,24 Training was per-
formed with a binary cross-entropy loss and the Adam optimizer with
a learning rate of 0.0001 and batch size of 128.25,26 Early stopping was
performed when the validation did not decrease for 20 epochs. Deep
neural network output was a probability indicating the likelihood of an
ECG belonging to a female individual. The cut-off value was set to 0.5,
i.e. a probability of,0.5 resulted in the classification of the ECG belong-
ing to a male. All algorithm development was performed with the
PyTorch package (version 1.7.0).27

Statistical analysis
Descriptive statistics of data set and performance
evaluation of DNN
The baseline characteristics of the data sets were described as mean
+ standard deviation (SD) or median with IQR, where appropriate.
The discriminatory performance of the DNN in the UMCU internal val-
idation set and KYH and UHP external validation set was assessed with
the area under the receiver operating characteristic (AUC) and accuracy,
calculated as the number of correctly classified individuals divided by the
total number of individuals. The 95% confidence interval (CI) around the
performance measures was obtained using 2000 bootstrap samples.
Four groups were identified for subsequent analyses using a predicted
probability cut-off of 0.5: correctly classified males and females, biological
females classified as male, and biological males classified as female.
Conventional ECG features (e.g. PR interval) were compared between
these groups. No P-values were provided in these comparisons.

Survival analysis in University Medical Center Utrecht
follow-up data set
Using data from the UMCU follow-up and the UHP external validation
data set, sex-stratified survival analyses with the Kaplan–Meier curves
and Cox regression were done to evaluate the differences in survival be-
tween the correctly classified and misclassified individuals per sex. All
analyses were performed with age as the primary time variable (i.e. cor-
rection for late entry or left-truncation), as included individuals had their
first ECG at different ages (Figure 2).

To investigate underlying mechanisms of the association between
DNN-based sex classification and survival, a biological sex-stratified me-
diation analysis with conventional ECG features (n= 57) was performed
using the UMCU follow-up data set. Therefore, we used left-truncated

Cox regressions, separately for males and females. These regressions
modelled the association between all-cause mortality, (mis)classification,
and the conventional ECG parameter. The difference method was ap-
plied to quantify the proportion of the association between
DNN-based sex classification and mortality that could be explained by
conventional ECG features.28,29 Therefore, the change in the coefficient
of the DNN-based classification was first calculated when an ECG fea-
ture was added to the Cox regression, compared with the model that
did not include that feature. Second, the mediation was determined by
calculation of the proportion effect explained (PEE), i.e. the change in co-
efficient as a percentage of the total effect (the coefficient of ECG-based
classification without the ECG feature). Bootstrap resampling with re-
placement (n= 500) was implemented to obtain 95% CI around the
PEE.28

To investigate possible non-linear relationships between ECG vari-
ables and survival, we included a sex-stratified post hoc evaluation of
the association between conventional ECG features that mediated
.10% of the association between classification and all-cause mortality
or where the difference in PEE in males and females was .10%. These
cut-off points were chosen as we assume these are clinically relevant
and as these might explain sex differences in ECG features. In this ana-
lysis, the selected ECG features were added one-by-one to a Cox regres-
sion model with age as the underlying time scale. A natural cubic spline
was modelled for the relation between the ECG feature and all-cause
mortality as the outcome. Models were developed for males and females
separately. Hazard ratios (HRs) relative to the median value of the ECG
variable in all samples were used to visualize the non-linear relationship.

All statistical analyses were executed using R version 3.5 (R Foundation
for Statistical Computing). The Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis Statement for the
reporting of diagnostic models was followed, where appropriate.30

Results

Characteristics of the study population
The median age of included individuals at the time of their ECG ac-
quisition in the UMCU data set was 57.2 [interquartile range (IQR):
44.7–67.6] years. Supplementary material online, Table S1 shows the
baseline characteristics of the ECGs used in the UMCU training and
internal validation set separated for males and females. No significant
differences in patient characteristics and ECG features were present
between the data set used for training and internal validation.
Follow-up was available for 104 848 (76.5%) of individuals and the
median follow-up time for the UMCU follow-up data set was 8.7
(IQR: 4.4–14.6) and 8.9 (IQR 4.6–15.0) years for males and females,
respectively. Table 1 shows the distributions of the ECG features,
stratified by sex and classification of sex, for the UMCU follow-up,
the KYH external validation, and the UHP external validation data
sets. Follow-up was available in the UHP data set [median follow-up:
16.9 years (IQR: 15.3–18.0)], but not for the KYH cohort.

Sex classification and feature detection
The AUC for sex classification with DNN in the UMCU internal val-
idation data set (n= 68 500) was 0.96 (95% CI: 0.96–0.97), with an
accuracy of 0.89 (95% CI: 0.89–0.89). Overall, misclassified indivi-
duals had ECG characteristics resembling those of their biological
counterparts (Table 1 and see Supplementary material online,
Table S2). Thus, males classified as females had higher ventricular
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rate, shorter PR and QRS duration, longer QTc, and lower
Sokolow–Lyon and Cornell voltages than correctly classified males.
Females classified as males, when compared with correctly classi-
fied females, had a longer PR and QRS duration, but differences
were less evident.

Evaluation of the individuals that were misclassified on sex in the
UMCU follow-up data set (Table 1) showed that they were older
than their correctly classified biological peers. The median age of mis-
classified females was 61 (IQR: 49–72) vs. 56 (IQR: 42–67) years for

correctly classified females, and 61 (IQR: 49–70) and 57 (IQR: 44–66)
years for misclassified and correctly classified males, respectively.

External validation using
Know-Your-Heart and Utrecht Health
Project data set
The AUC and accuracy for the DNN in the KYH external validation
data set were, respectively, 0.89 (95% CI: 0.88–0.90) and 0.81 (95%

Figure 2 Kaplan–Meier curves (left-truncated) of males (A) and females (B), separately plotted for correctly classified and misclassified groups,
corrected for late entry and stratified by classification of sex as was the output of the deep neural networks.
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CI: 0.80–0.82). Similar trends regarding the distribution of ECG fea-
tures as in the UMCU internal validation data set were seen when
different classifications were compared (Table 1). Moreover, misclas-
sified individuals were overall older (median age misclassified females:
57, IQR: 49–64, vs. correctly classified females: 54, IQR: 45–62, me-
dian age misclassified males: 56.0, IQR: 47–64, vs. correctly classified
males: 53, IQR: 45–61).

The AUC and accuracy for the DNN in the UHP data set were,
respectively, 0.94 (95% CI: 0.93–0.94) and 0.82 (95% CI: 0.80–
0.83). In this data set, the individuals were overall younger than in
the KYH data set and UMCU internal validation data set with a me-
dian age of 36 (IQR: 31–44) for males and 34 (IQR: 29–42) for fe-
males. Yet, only misclassified males were older than their correctly
classified biological peers (median age: 40, IQR: 34–51 vs. 36, IQR:
31–43). The median age between misclassified and correctly classi-
fied females did not differ (misclassified females: 33, IQR: 29–41 vs.
correctly classified females: 34, IQR: 29–43).

Sex-specific survival analysis
In the UMCU follow-up data set, 3251 (10%) of included females and
4193 (13%) of included males died during follow-up. Mortality risk in
this data set was higher for biological males compared with biological
females (HR: 1.33, 95% CI: 1.27–1.39). In both sexes, a higher pro-
portion of misclassified individuals died compared with their correct-
ly classified biological peers: 16.4% (n= 210) vs. 10% (n= 3041) of
misclassified and correctly classified females, 17.2% (n= 880) vs.
12.3% (n= 3313) of misclassified and correctly classified males.
This was also shown in the Kaplan–Meier curves of both sexes
(Figure 2) and confirmed by the Cox regression that showed misclas-
sified individuals had a higher mortality risk referenced to their cor-
rectly classified biological peers (HR misclassified females compared
with correctly classified females: 1.37, 95%CI: 1.19–1.57 and HRmis-
classified males compared with correctly classified males: 1.38, 95%
CI: 1.28–1.49).

Follow-up was also available for the individuals in the UHP exter-
nal validation data set. In this data set, mortality was low, with 28
(1.1%) females and 42 (2.1%) males who died. The mortality risk
for males was higher compared with females (HR: 1.62, 95% CI:
1.01–2.62). Misclassified females, when compared with their correct-
ly classified peers, had a higher mortality risk, although not significant-
ly (HR: 1.61, 95% CI: 0.76–3.46), while misclassified males had a
lower mortality risk when compared with their correctly classified
peers (HR: 0.39, 95% CI: 0.09–1.64).

Sex-stratified analysis of mediation by
electrocardiographic features on survival
Sex-stratified mediation analyses in the UMCU follow-up data set
showed that the relationship between misclassification of sex and
mortality was mediated, at least in part, by conventional ECG fea-
tures in both sexes. Figure 3 shows the ECG features that were se-
lected according to clinically relevant criteria (n= 17). These
features either mediated for .10% or suppressed less than −10%.
Features with .10% difference in PEE between males and females
were also selected. The PEE of some of the features was clinically
relevant in both sexes, although for some features, the PEE was nega-
tive in one of the sexes. Features that were selected in both males

and females, i.e. features in which the PEE was less than −10% of
.10%, were ventricular rate (male: 41%, female: 12%), QRS duration
(male: 13%, female: –21%), and maximum T-wave amplitude in Lead I
(male: 13%, female: 10%). In males, the ventricular rate was the stron-
gest mediator between DNN-based sex classification and survival

Figure 3 Proportion of the relation between classification and
survival that is mediated by a selection of standard electrocardio-
graphic features, stratified for females (red, lower point in each sub-
plot) and males (blue, upper point in each subplot). Only
electrocardiographic features with more than 10% mediation or
with a more than 10% difference between mediation in males and
females are displayed. I/V2/V3 STMax/Min, maximum andminimum
amplitude of ST segment in Leads I, V2, andV3; PRi, PR interval;QRS,
duration of QRS complex; QTc, corrected QT interval; QTi, QT
interval; SLProd, Sokolow–Lyon product; V3/V4/V5 R/S Amp, R-
and S-wave amplitude in Leads V3, V4, and V5; VR, ventricular rate.
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(41%). In females, this was the maximum amplitude of the ST seg-
ment in V1 (18%). Moreover, a strongly negative PEE was found
for QRS duration in females. A complete overview of all ECG fea-
tures included in the mediation analyses is shown in
Supplementary material online, Table S3.

Figure 3 shows the features used as input for non-linearmodelling of
all-cause mortality, for males and females separately. The QRS dur-
ation was associated with a lower mortality risk in both sexes.
Restricted cubic spline analysis showed a non-linear relationship be-
tween QRS duration and mortality (Figure 4): in both males and fe-
males, the HR decreased with elongation of the QRS duration until
100 ms. After this threshold, QRS duration was no longer associated
with increasedmortality risk in bothmales and females. The non-linear
relation between short QRS duration and higher mortality risk was
confirmed in males in the UHP external validation data set, but not
in females (see Supplementary material online, Figure S1). Figures of
other selected ECG features and mortality risk are shown in
Supplementary material online, Figure S2.

Discussion
We show excellent performance of DNN in the classification of sex
based on ECGs across different populations and ECG devices.
Misclassification of sex on the ECG is associated with a higher mor-
tality risk, independent of age. We hypothesized that the survival
curve of misclassified individuals would copy the survival curve of
their biological counterparts. However, this hypothesis was not fully
confirmed as the survival of males classified as females was indeed
worse compared with the correctly classified males in the internal
validation data set. Yet, the UHP external validation data set showed
a non-significant trend towards confirmation of the hypothesis.

Subsequent mediation analyses on survival showed that conventional
ECG features, i.e. ventricular rate, QRS duration, and several features
that relate to the amplitude, are mainly important in misclassified
males, but less so in females. Unexpectedly, we observed that shor-
tened QRS duration increased mortality risk which has not previous-
ly been described. Our study highlights the importance of studying
sex differences with AI to uncover new biology.
Our study shows a similar performance of the DNN on median

beats for classification of sex as was described on full 10 s ECG, while
also validating these results in two external test sets with completely
different patient groups and ECG devices.17 This is one of the first
studies to show that DNNs trained on median beats are easily trans-
ferrable to other data sets. Moreover, the study by Attia et al. stated
the necessity to understand the relevance of discordance between
ECG-classified and true biological sex for the individual, as this re-
mained unknown until now. Our analysis of ECG features focused
on this knowledge gap and showed that misclassification occurs
when the ECGs become more alike, i.e. females who have ECG fea-
tures similar to males are more often misclassified and the same
holds for males who have ECG features similar to females, which
was confirmed in external validation. Furthermore, discordance be-
tween ECG-classified and true biological sex was associated with a
reduced survival in both sexes.
A higher mortality risk in sex-misclassified males (classified as fe-

male) was mediated by different ECG features such as ventricular
rate and QT interval. It is known that increased ventricular rate
and corrected QT interval are associated with mortality.31–35 It is as-
sumed that a higher resting heart rate is an indicator of an overall
worse physical condition.32,34 A longer QTc has been described be-
fore to be predicting a high risk of dying, even when the QTc is within
normal boundaries. This was confirmed in our post hoc analysis (see
Supplementary material online, Figure S2).11

In contrast to males, the association between misclassified females
(classified as males) and survival was only minimally mediated by con-
ventional ECG parameters. The feature that mediated the relation to
the largest part, yet only 18%,was the positive T-wave amplitude in V1.
Deep neural network therefore picked up subtle ECG differences be-
tween males and females that seem to have prognostic value.
Surprisingly, the mediation analysis showed a negative mediation for

QRS duration in females. This means that QRS duration might act as a
suppressor. Indeed, the non-linear post hoc analysis showed increased
mortality risk in those with a short QRS duration (,80 ms). This was
validated in the UHP external validation data set. After an optimum at
100 ms for females and 125 ms for males, a higher QRS duration is as-
sociated with worse survival, which is confirmed by previous studies.13

The relationship between a shorter QRS duration and increased mor-
tality risk has, to our knowledge, not been previously identified.
However, it has been hypothesized that increasing extension of the
Purkinje system into the walls of the ventricular system is associated
with a shorter QRS duration, which makes these individuals more at
risk for idiopathic ventricular re-entrant arrhythmias.36

Strengths in this study are, first, the large amount of annotated ECG
data that have been used, which gave the opportunity to only select
normal ECGs.26 A large number of ECG data from regular care are
also important in the light of the structural underrepresentation of
women in cardiovascular research.37–39 Our study included many fe-
males, which gave us the opportunity to specifically study sex

Figure 4 Non-linear relation between QRS duration and hazard
ratio for all-cause mortality in males and females in the UMCU
dataset.
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differences and perform all analyses in a sex-stratified manner.
Secondly, this study was the first study to externally validate a sex clas-
sification algorithm. Despitemore awareness, sex stratification is often
not performed, which also applies to the validation of AI algorithms.1

Thirdly, this study is unique in that it provided new insights into sex-
specific ECG features that are associated with mortality, through
the classification of sex with ECG-based AI. The presented method-
ology and results feed future research into sex-specific conductivity
mechanisms that influence survival, unravelling the conundrum of
sex differences in longevity.

This study has some limitations. First, the hospital-visiting popula-
tion that was used in this study had an ECG for a specific reason, al-
though we selected only ECGs classified as ‘normal’ by either the
ECG recording software or the examining physicians. Underlying
pathophysiology that does not directly affect the ECG, but also stress
and anxiety related to an out-patient clinic or hospital visit, might in-
duce subtle changes on the ECG, including an increase in heart rate.
This could make the DNN less generalizable to non-hospital popula-
tions. However, our external validation analyses showed the de-
crease in performance to be limited.19,21 Secondly, no causes of
death were known for the UMCU follow-up data set, which ham-
pered the analysis of cardiovascular mortality. Thirdly, the UHP ex-
ternal validation data set was significantly different from the
UMCU internal validation data set. In general, individuals in the
UHP data set were younger. This, in combination with a low number
of events, might have caused our inability to show a significantly re-
duced survival risk in misclassified individuals. Yet, we were able to
validate the relation between shortening of the QRS duration in
the UHP external validation data set for males, which is a promising
feature for future studies. Fourthly, survival information in the KYH
external validation cohort was unavailable. Therefore, our findings
regarding survival and the influence of different ECG features of mis-
classified individuals warrant further validation. Nonetheless, the pat-
tern of differences in the ECG characteristics according to
classification status was replicated in the KYH data set.

Conclusion
Deep neural networks accurately classify sex based on the ECG.
While the proportion of misclassified individuals is low, ECG-based
sex misclassification is an interesting biomarker for mortality, with in-
creased mortality for misclassification in both sexes. Using mediation
analysis to investigate the causal pathway between misclassification
and mortality, new ECG features that might be associated with mor-
tality have been discovered. An increased emphasis on sex as a bio-
logical variable in AI is warranted.

Supplementary material
Supplementary material is available at European Heart Journal – Digital
Health.
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