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Background: Translating research outputs into practical tools for medical practitioners

is a neglected area and could have a substantial impact. One of the barriers to

implementing artificial intelligence (AI) and machine learning (ML) applications is their

practical deployment in the field. Traditional web-based (i.e., server sided) applications

are dependent on reliable internet connections, which may not be readily available

in rural areas. Native mobile apps require device specific programming skills as

well as contemporary hardware and software, with often rapid and unpredictable

platform specific changes. This is a major challenge for using AI/ML tools in

resource-limited settings.

Methods: An emerging technology, progressive web applications (PWAs), first

introduced by Google in 2015, offers an opportunity to overcome the challenges of

deploying bespoke AI/ML systems. The same PWA code can be implemented across

all desktop platforms, iOS and Android phones and tablets. In addition to platform

independence, a PWA can be designed to be primarily offline.

Results: We demonstrate how a neural network-based pneumonia mortality prediction

triage tool was migrated from a typical academic framework (paper and web-based

prototype) to a tool that can be used offline on any mobile phone—the most convenient

deployment vehicle. After an initial online connection to download the software, the

application runs entirely offline, reading data from cached memory, and running code

via JavaScript. On mobile devices the application is installed as a native app, without the

inconvenience of platform specific code through manufacturer code stores.

Discussion: We show that an ML application can be deployed as a platform

independent offline PWA using a pneumonia-related child mortality prediction tool as

an example. The aim of this tool was to assist clinical staff in triaging children for hospital

admission, by predicting their risk of death. PWAs function seamlessly when their host

devices lose internet connectivity, making them ideal for e-health apps that can help
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improve health and save lives in resource-limited settings in line with the UN Sustainable

Development Goal 3 (SDG3).

Keywords: artificial intelligence (AI), progressive web applications (PWAs), digital health, pneumonia, mortality,

machine learning (ML)

BACKGROUND

Research on the application of machine learning algorithms
in the healthcare sector has grown quickly in recent years
and aims to develop and improve disease diagnosis, prognosis,
and treatment, including personalized medicine (1). This in
turn can accelerate the attainment of Sustainable Development
Goal 3 (SDG3).1 However, the deployment of such models
is challenging in resource-limited settings, particularly in
peripheral health facilities. For example, biomarkers are widely
used in clinical medicine in several prediction frameworks,
but their publication in the scientific literature rarely results
in marketable applications (2). Two key impediments to
successfully deploying machine learning (ML) based prediction
models are the lack of standardization of research methods (3–5)
and lack of engagement from practitioners.

We aim to demonstrate a generic deployment process for
neural networks using, as an example, a recent pneumonia
mortality prediction machine learning algorithm (6) developed
at the Medical Research Council Unit The Gambia at the London
school of Hygiene and tropicalMedicine (MRCUnit The Gambia
at LSHTM). The initial goal of this study was to develop and
validate a predictive mortality model in children 1–59 months
old using variables readily available to clinicians at the time
of admission. As the vast majority of childhood Pneumonia
deaths occur in low and middle income countries (7), it is
important health workers can easily access and implement these
predictive models in their clinical practice. This means deploying
a prospective tool across all mobile platforms with seamless
offline functionality as health facilities may have compromised
internet connectivity. The primary aim of this paper is to
describe the deployment of a neural network model; a complete
description of the machine learning algorithm is given in another
publication (6).

The machine learning model was developed using R software
(8) as it is a fast development environment and widely used
language for statistics and data science. The tool2 was initially
deployed as a web application using R Shiny3 as it can
then be conveniently deployed and distributed, via a private
webserver, GitHub (a software repository) or shinyapps.io (a
public webserver). Shiny is a web framework for R allowing rapid
prototyping and deployment for researchers and data scientists.
It is a server sided application, with no offline capacity and
webpages do not always integrate well with mobile devices.

1https://sdgs.un.org/goals/goal3. Goal 3 | Department of Economic and Social

Affairs.
2https://github.com/MRCG-djeffries/mortality-prediction. GitHub -

MRCG-djeffries/mortality-prediction.
3https://shiny.rstudio.com. Shiny.

The primary requirement for the deployment of our proposed
tool was that it should be available offline, on standard tablets
and phones (mainly Android with an iOS minority) used in The
Gambia. Secondly, we wanted it to run as a native app, but avoid
the development of product and version specific apps as they add
time, cost and skills overheads.

Until 2015, there was little alternative to developing platform
specific apps. However, this changed with a new set of standards
for Progressive Web Apps (PWAs) published by the Google Web
Framework (9). In addition to cross-platform app compatibility,
these standards also introduced offline support, synchronization
tools and automatic conversion to app icons, i.e., no sideloading.

METHODS

PWAs are multiplatform web application development
approaches that can operate on most mobile and desktop
platforms (Android, iOS, Windows, Linux.) via a browser which
is ubiquitous on most operating systems (10). In addition to the
usual web application components of HTML, CSS and JavaScript
(JS), a PWA also consists of a manifest file and a service worker.
The manifest file controls how the PWA is integrated into the
desktop or mobile platform. A service worker is a JavaScript file
that takes requests from the application and if it detects that
the user is offline redirects requests to the appropriate cached
resources for a seamless offline experience (11). PWAs are
usually implemented via JavaScript and many web frameworks
(software methods for standardizing and structuring web site
development) have tools for bespoke development of PWA. For
transparency, we wrote the code without using a web framework.

The original machine learning prediction model (6) was fitted
to data on 11,012 children with clinical pneumonia from hospital
admission data in The Gambia. The neural network was fitted in
R using the caret machine learning library (12). To implement
the machine learning component in a PWA, it must be converted
into a JavaScript compatible format. The most efficient approach
would be to transform the native R formats of the already fitted
neural network directly into a JavaScript TensorFlow4 format, as
it requires no recoding of the original model. Unfortunately, we
were not able to convert the neural network weights and meta
data into the necessary JavaScript TensorFlow format, but this
remains a desirable goal.

TensorFlow is an open source machine learning library
with an R interface and we amended the original R code to
use TensorFlow with the Keras (13, 14)5 R library to fit a
neural network to the same data as in Jarde et al. (6). We

4https://www.tensorflow.org/js. TensorFlow.js | Machine Learning for JavaScript

Developers.
5https://tensorflow.rstudio.com/. TensorFlow for R.
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re-coded the nested cross-validation in the original R code
using the TensorFlow library rather than the caret library. The
TensorFlow/Keras R libraries have lower-level functionality than
caret and there is no direct replacement for the convenient
wrapper functions. As the wrapper functions tend to obfuscate
the processes it was not a straightforward code substitution
process to replicate the original model. The nested cross
validation algorithm with its performance metrics are described
in detail in the Appendix 1 in Supplementary Material.

The chosen Neural Network from the TensorFlow/Keras R
code was saved in a native TensorFlow format. This format
can be used across both R and Python, but not in web-based
JavaScript application. The native format can be transformed
into an appropriate JavaScript format using the TensorFlow
JavaScript converter (for more details see the Appendix 2 in
Supplementary Material).

RESULTS

With the neural network now available in a JavaScript compatible
format, a standard HTML webpage can be built, where users
can input patient data for the selected predictor variables.
These are then imported to the neural network model via
JavaScript code, that predicts the mortality risk. Even for clinical
staff, risk probabilities may not always be easy to interpret,
especially if the mortality threshold cut-off is not 0.5. We
used the positive and negative likelihood ratio discrimination
metrics to divide the risk into low, medium and high categories.
(Appendix 3 in Supplementary Material). For a production
version, it is likely that the risk stratification would also
involve consultation with clinical staff and not be based purely
on an algorithmic approach. The relevant risk category is
then returned to the webpage via HTML. This is a standard
web application, which becomes a PWA when a manifest
and a service worker are included. As we are releasing a
publicly available version of this PWA, we have anonymized
the 5 predictor variables as variable 1 to 5 to prevent
inappropriate use.

Figure 1 shows the structure of the application (described in
more detail in the Appendix 4 in Supplementary Material) and
the central role played by the service worker. Users can now
access the PWA application from a web server, which are the
hardware and software necessary to distribute webpages. These
are extremely common and can be locally or cloud hosted and are
straight forward to set-up. The code (CSS, JavaScript and HTML)
are stored in the Cache Storage for offline use. Data (input and
output) are more conveniently stored in an IndexedDB database,
where each saved object has a key, easily allowing it to be set
or retrieved via JavaScript code. Data stored here can also be
encrypted, which is important for clinical data. Cache Storage
and IndexedDB are available in all modern browsers. In this
example the TensorFlow neural network meta data is stored in
an IndexedDB and no patient data is stored.

The PWA pneumonia mortality prediction app is hosted on
theMRCGambia servers at https://stats.mrc.gm/NNmodel.Given
that PWA was a Google initiative, Chrome gives the best browser

experience, although it is also supported on all major browsers.
When users connect to this application on an Android phone,
they see the mortality prediction webpage, but with an “add to
home screen” button at the top of the screen (this is controlled
by the manifest file, described above in the previous section
and in the Appendix 4 in Supplementary Material), as shown
in Figure 2A. After clicking this button, users are prompted
to install the webpage as PWA from an “Install app” pop-up
message (Figure 2B), which creates the app icon (defined in the
manifest file, Figure 2C).

The icon in Figure 2C can now be clicked and the prediction
tool can be used like a “native app,” even though it is a webpage.
As soon as the app has been downloaded it is immediately
available to run as an offline app. The quality of the native
experience depends on the styling of the webpage and web
frameworks6 can provide a richer user experience in comparison
to this vanilla application which has minimum styling. The
integration of PWA with iOS is constantly evolving but offers a
similar experience with PWA icon functionality, except that users
have to click the iOS “Share” button and select “Add to Home
Screen” from the list of options as shown in Figure 3. The most
reliable and automated way to update PWAs with new content is
to use push notifications, which are clickable messages that are
propagated to appropriate users. They are accepted by default
for Android users, but it is the opposite for iOS users and with
rapidly evolving standards it is not currently a stable option for
iOS users.

PWA applications also run on all major desktop browsers,
but the integration available via the manifest file is constantly
changing depending on browser policy. For example, since early
2021, desktop Firefox browsers have discontinued their support
for installing a PWA as a standalone app. On all major desktop
browsers, the service worker functionality allows the applications
to run offline. The desktop browsers also offer the best facilities
for debugging PWA code and users can examine the offline
storage objects.

DISCUSSION

Health apps are generally deployed either as standalone (installed
on a specific device) or web-based applications (via browsers).
Standalone apps do not require an internet connection and
can be distributed as executable code, written in programming
languages such as C/C++, Java, R,Matlab, Python etc. These
applications can be cumbersome to deploy to end users and
requires the language and the application to be bundled
into clickable apps using for example, Python’s Pyinstaller
(15), Matlab’s compiler (16) or Electron based tools for R
(17). Given the difficulties with these processes, Microsoft’s
Access and Excel with Visual Basic for Applications (VBA)
(18), providing a comprehensive coding environment, are still
widely used. However, VBA lacks the scientific libraries that
are readily available in R, Python and Matlab. With these
limitations, server sided web apps are an attractive alternative,

6https://framework7.io/. Framework7 - Full Featured Framework For Building

iOS, Android \& Desktop Apps.
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FIGURE 1 | Structure of PWA for pneumonia prediction.

FIGURE 2 | Installing a PWA application on an android phone.

and easy to deploy and update on any platform with an
internet connection. The basic toolset of webpage design
and functionality HTML/CSS/JS (19), has been complemented
by many tools and frameworks that facilitate cross-platform
production versions of scientific web-based apps such as
Java Applets (20), Python’s Django (21), R’s Shiny and
Matlab’s web compiler (16). The primary disadvantage of

these server-sided applications is that they require a reliable
internet connection.

PWAs, via service workers allow seamless functioning of
websites, even when the host device is offline. Additionally, they
offer cross-platform deployment, and on phones and tablets the
web-applications are run as “native-applications” from bespoke
icons, without distribution through app stores. In a recent

Frontiers in Public Health | www.frontiersin.org 4 February 2022 | Volume 9 | Article 772620

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Mohammed et al. Deploying Machine Learning Models

FIGURE 3 | Installing a PWA application on an iOS phone.

development, Microsoft has also embraced PWA technology via
Blazor (22), which enables web development in C# rather than
being restricted to JavaScript.

In this paper we have not discussed data synchronization,
which is another feature available in a PWA. Using PouchDB
on the client side (i.e., phone or tablet) and CouchDB on the
server, synchronization between the two is automatic as users go
on and offline,7 managed by the JavaScript service worker code.
For programmers, this is a major advantage as there is no layer of
code handling the synchronization between the client and server
sided databases.

In this application we save no patient data but depending on
ethical approval we could store the entered data and ask users
to enter the actual mortality outcomes of anonymised subjects.
This could provide a powerful central resource for pneumonia
mortality machine learning prediction.

Generalization is a gold-standard for machine learning
applications, but in situations such as this, different standards
of care at different sites make this a very difficult goal. With
easy deployment of machine learning applications, a centralized
research institute could fit and deliver site specific models.
Particular attention would be needed to avoid overfitting local
data. PWAs on Android and iOS devices can access the GPS
sensors with user permission and geolocation could restrict
users to specific models for specific clinics. Data synchronization
between the sites and the centralized location could enhance the
performance of the learning algorithms.

7https://pouchdb.com/guides/replication.html. Replication.

Although offline usage is important for many settings,
periodic use with very long offline periods could have
unpredictable effects. Users will obviously miss app updates, but
they will also be subject to the device operating system policy for
managing app cache storage and inactive apps. There are also app
storage limits, for example iOS currently limits the IndexedDB
storage to 500MB. We will explore using push notifications (23)
to engage with active users and SMS for users who are offline.

Future work will also explore how to create PWAs for
additional machine learning algorithms. R and Python are very
common open-source programming languages for data science.
They offer complete environments for training, validating, and
testing machine learning algorithms. However, as demonstrated
in this paper, there is no common standard for saving the model
meta data. There are many JavaScript machine learning packages,
but for most data scientists the pipeline of developing machine
learning models that conform to good practice guidelines in
JavaScript is daunting, lacking many of the validation and
graphical tools offered by R and Python. Rapidly emerging
technologies offer alternative languages to just using JavaScript
in the web browser. For example, there is experimental work to
develop a version of Python to run entirely in the browser.8

In summary, we have demonstrated how to develop a cross-
platform machine learning app to implement a pneumonia
mortality prediction model that can be used on or offline.
Although applied to a particular model, the coding framework

8https://hacks.mozilla.org/2019/04/pyodide-bringing-the-scientific-python-

stack-to-the-browser/. Pyodide: Bringing the scientific Python stack to the

browser - Mozilla Hacks - the Web developer blog.
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is generic and can be applied to many data science applications.
Thus, we encourage researchers to consider PWAs for deploying
data science based products, particularly those developing
models to aid health workers in their daily efforts to improve
health and save lives in low-income settings.
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