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Malaria transmission and prevalence in rice-growing versus 
non-rice-growing villages in Africa: a systematic review and 
meta-analysis
Kallista Chan, Lucy S Tusting, Christian Bottomley, Kazuki Saito, Rousseau Djouaka, Jo Lines

Summary
Background Rice fields in Africa are major breeding sites for malaria vectors. However, when reviewed in the 1990s, in 
settings where transmission was relatively intense, there was no tendency for malaria indices to be higher in villages 
with irrigated rice fields than in those without. Subsequently, intervention coverage in sub-Saharan Africa has been 
massively scaled up and malaria infection prevalence has halved. We re-examined this rice–malaria relationship to 
assess whether, with lower malaria transmission, malaria risk is greater in rice-growing than in non-rice-growing areas.

Methods For this systematic review and meta-analysis, we searched EMBASE, Global Health, PubMed, Scopus, and 
Web of Science to identify observational studies published between Jan 1, 1900, and Sept 18, 2020. Studies were 
considered eligible if they were observational studies (cross-sectional, case-control, or cohort) comparing 
epidemiological or entomological outcomes of interest between people living in rice-growing and non-rice-growing 
rural communities in sub-Saharan Africa. Studies with pregnant women, displaced people, and military personnel as 
participants were excluded because they were considered not representative of a typical community. Data were 
extracted with use of a standardised data extraction form. The primary outcomes were parasite prevalence (P falciparum 
parasite rate age-standardised to 2–10-year-olds, calculated from total numbers of participants and number of 
infections [confirmed by microscopy or rapid diagnostic test] in each group) and clinical malaria incidence (number 
of diagnoses [ fever with Plasmodium parasitaemia confirmed by microscopy or rapid diagnostic test] per 1000 person-
days in each group). We did random-effects meta-analyses to estimate the pooled risk ratio (RR) for malaria parasite 
prevalence and incidence rate ratio (IRR) for clinical malaria in rice-growing versus non-rice-growing villages. RRs 
were compared in studies conducted before and after 2003 (chosen to mark the start of the mass scale-up of antimalaria 
interventions). This study is registered with PROSPERO (CRD42020204936).

Findings Of the 2913 unique studies identified and screened, 53 studies (including 113 160 participants across 
14 African countries) were eligible for inclusion. In studies done before 2003, malaria parasite prevalence was not 
significantly different in rice-growing versus non-rice-growing villages (pooled RR 0·82 [95% CI 0·63–1·06]; 
16 studies, 99 574 participants); however, in post-2003 studies, prevalence was significantly higher in rice-growing 
versus non-rice growing villages (1·73 [1·01–2·96]; seven studies, 14 002 participants). Clinical malaria incidence was 
not associated with residence in rice-growing versus non-rice-growing areas (IRR 0·75 [95% CI 0·47–1·18], 
four studies, 77 890). Potential limitations of this study include its basis on observational studies (with evidence 
quality rated as very low according to the GRADE approach), as well as its omission for the effects of seasonality and 
type of rice being cultivated. Risk of bias and inconsistencies was relatively serious, with I² greater than 90% indicating 
considerable heterogeneity.

Interpretation Irrigated rice-growing communities in sub-Saharan Africa are exposed to greater malaria risk, as well 
as more mosquitoes. As increasing rice production and eliminating malaria are two major development goals in 
Africa, there is an urgent need to improve methods for growing rice without producing mosquitoes.
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Introduction
Rice cultivation and malaria are linked in sub-Saharan 
Africa because of two biological characteristics of the 
most important African mosquito vector, Anopheles 
gambiae sensu lato (sl; the species complex referring to 
Anopheles gambiae sensu stricto [ss], Anopheles coluzzii, 
and Anopheles arabiensis). The first of these characteristics 
is that adults of this species complex are long-lived and 

prefer to bite humans, making them exceptionally 
efficient in transmitting malaria;1 this fact is why Africa 
accounts for 96% of the world’s malaria mortality burden, 
with approximately 602 000 of the 627 000 global malaria 
deaths occurring in the region in 2020.2 The second 
characteristic is that the larvae of A gambiae sl are very 
well adapted to, and can breed abundantly in, the aquatic 
conditions in rice fields.3
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Against this biological background, in many African 
countries, ministries of agriculture and their partners are 
planning for a massive expansion in irrigated rice 
cultivation, in response to rapidly increasing consumer 
demand.4 Rice is the fastest growing food in Africa; 
harvested areas increased by over 600% from 1961 to 
2019.5 Meanwhile, ministries of health and their partners 
are working towards the eventual elimination of malaria. 
Therefore, it is important to consider the potential 
interactions between these two development processes, 
and whether they might interfere with one another.

The links between rice and malaria were studied in a 
series of case studies in west and east Africa during the 
1990s and early 2000s.6,7 An overall review of the findings 
revealed that, although mosquito vectors (especially 
A gambiae sl) were substantially more abundant in villages 
beside irrigated rice fields than in nearby non-rice-
growing areas, the prevalence of malaria in rice-growing 
villages was unexpectedly either the same as or slightly 
lower than that in non-rice-growing control communities. 
Ijumba and Lindsay coined the term “paddies paradox” to 
describe this phenomenon.6 Investigations into the 
possible causes of this paradox suggested that, in many 
cases, rice cultivation also brought substantial economic 
benefits, particularly improvements to family income 
(and hence better access to commercial mosquito nets 
and antimalarial drugs) and community infrastructure 
(housing, transport, and health services). Thus, families 
could protect themselves and respond to malaria episodes 

more promptly and effectively.8 Density-dependent effects 
could also contribute: some studies9–13 found a reduction 
in vectorial capacity at high mosquito densities through 
reduced adult longevity (probably due to greater larval 
competition) and reduced blood feeding success (probably 
due to greater use of bed nets). For 20 years, this 
paradoxical conclusion has helped to reassure rice experts 
in Africa that they are contributing to development and 
not making the malaria problem worse.14

We were prompted to re-examine this conclusion 
because the malaria situation across sub-Saharan Africa 
has changed radically in the past two decades. The 
massive upscaling in coverage of modern malaria 
control interventions (such as insecticide-treated nets 
and antimalarial drugs) has greatly reduced the 
intensity of transmission for most of the at-risk 
population in Africa, where the population exposed to 
hyperendemic or holoendemic transmission has fallen 
from 33% to 9%.15 Moreover, there is clear evidence that 
intervention scale-up has reduced previous inequities 
in bed-net coverage, suggesting less severe inequality 
between rice-growing and non-rice-growing villages.16 
Furthermore, the paddies paradox was often interpreted 
as an implication that the extra mosquitoes from rice 
fields were generally harmless, which was misleading. 
Therefore, we re-examined whether these recent 
changes in malaria epidemiology have altered the 
relationship between malaria risk and irrigated-rice 
cultivation in Africa.

Research in context

Evidence before this study
Rice fields in Africa are major breeding sites for malaria vectors, 
bringing greater abundance of Anopheles species in 
rice-growing villages. When reviewed two decades ago, it was 
observed that these extra mosquito vectors did not increase the 
incidence of malaria in humans, and some reductions in malaria 
infection prevalence were observed. Since then, antimalarial 
intervention coverage across sub-Saharan Africa has greatly 
increased and become more equitable, and malaria infection 
prevalence has halved, calling for a re-examination of this 
rice–malaria relationship. Between May, 23, 2018, and 
Sept 18, 2020, we searched EMBASE, Global Health, PubMed, 
Scopus, and Web of Science, without restrictions on language or 
date of publication, to identify community-based studies that 
compared malaria risk between rice-growing and non-rice-
growing areas in sub-Saharan Africa. Combinations of the 
following keywords were used: malaria, Plasmodium falciparum, 
Anopheles, mosquito, prevalence, incidence, risk, Africa, rice, 
paddies, paddy, irrigation, human biting rate, sporozoite rate, 
and entomological inoculation rate. Risk of bias of eligible 
studies was generally of an intermediate level.

Added value of this study
In this systematic review and meta-analysis, by comparing older 
studies included in previous reviews with more recently 

published studies, we assessed whether the decline in malaria 
transmission has changed the associations between rice 
cultivation and malaria risk. It was confirmed that before the 
year 2003, infection prevalence was not higher in rice-growing 
communities. However, after 2003, malaria prevalence was 
almost two times higher in rice-growing communities. It was 
also confirmed that as underlying malaria intensity decreased, 
there was an increase in the strength of the association 
between rice cultivation and malaria risk. Malaria transmission 
(measured as the rate of infective biting on exposed residents) 
was also greater in rice-growing areas, indicating that although 
rice-field malaria vectors might have somewhat lower 
sporozoite rates, this reduction does not compensate for their 
substantially greater numbers.

Implications of all the available evidence
African ministries of health are considering how to eliminate 
malaria, while ministries of agriculture are actively planning the 
expansion and intensification of irrigated rice production. 
These objectives are both desirable, but our updated review 
indicates that the latter process might interfere with the 
former, as rice cultivation brings increased malaria risk. 
To reconcile these two goals, African countries urgently need to 
develop and promote methods of growing rice without 
growing malaria vectors.
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Methods
Search strategy and selection criteria
We did a systematic review and meta-analysis following 
the PRISMA reporting guidelines.17 EMBASE, Global 
Health, PubMed, Scopus, and Web of Science were 
searched without language restrictions to identify studies 
published between Jan 1, 1900, and Sept 18, 2020 (the end 
date of our search). Combinations of the following 
keywords and Medical Subject Headings were used: 
malaria, Plasmodium falciparum, prevalence, incidence, 
risk, Africa, rice, padd*, and irrigation. The full search 
strategy is summarised in the appendix (p 1). Additional 
references were identified using citation searches of 
obtained articles, conference proceedings (such as the 
Multilateral Initiative on Malaria’s Pan-African Malaria 
Conferences and the American Society of Tropical 
Medicine and Hygiene), and contact with authors.

The inclusion criteria for epidemiological studies were 
as follows: studies with participants of any age residing 
in sub-Saharan Africa; studies with a cross-sectional, 
case-control, or cohort design; studies conducted in rice-
growing and non-rice-growing areas; and studies 
reporting on any epidemiological outcomes of interest 
(parasite prevalence or malaria incidence). Studies with 
pregnant women, displaced people, and military 
personnel as participants were excluded because they 
were considered not representative of a typical 
community. The inclusion criteria for entomological 
studies were as follows: studies with a cross-sectional, 
case-control, or cohort design; studies conducted in rice-
growing and non-rice-growing areas; and studies 
reporting on any entomological outcomes of interest 
(human biting rate, sporozoite rate, and entomological 
inoculation rate), reported as summary estimates. The 
titles and abstracts of studies identified by the searches 
were screened by KC and JL, and, for those that were 
potentially relevant, full texts were assessed. Any conflicts 
were resolved by LT.

The protocol for this study is available online.

Data analysis
Data on the following study variables were extracted 
using a predefined and standardised form: participants 
(age and recruitment methods), sampling method 
(ie, type of mosquito trap and ascertainment of malaria 
positivity [microscopy or rapid diagnostic test]), exposures 
(ie, residence in rice-growing or non-rice-growing area), 
comparisons (type of rice growing [number of cropping 
seasons] vs type of non-rice-growing area [control area]), 
epidemiological and entomological outcomes (parasite 
prevalence, malaria incidence, human biting rate, sporo-
zoite rate, ento mological inoculation rate), summary 
measures (odds ratio [OR], risk ratio [RR], and incidence 
rate ratio [IRR], including adjusted values), study design, 
setting (physical environment [ie, semi-arid, forest, 
highlands, coastal]), sample size, vector species, long-
lasting insecticidal net and indoor residual spraying 

coverage, and malaria transmission intensity. Data were 
extracted by KC and a 10% sub-sample was randomly 
selected for validation by JL. Any duplicate data 
(ie, multiple reports from the same study) were excluded.

The primary outcomes were epidemiological outcomes 
in human participants: parasite prevalence (confirmed by 
microscopy or rapid diagnostic test, in any age group) and 
malaria incidence (fever with Plasmodium parasitaemia 
confirmed by microscopy or rapid diagnostic test, in any 
age group). Secondary outcomes were entomological 
indices of interest: human biting rate (the number of 
mosquitoes in contact with a person per night), sporozoite 
rate (the percentage of female Anopheles mosquitoes with 
sporozoites in the salivary glands), and entomological 
inoculation rate (the estimated number of infective bites 
per person per year, which is a product of human biting 
rate and sporozoite rate). Indoor and outdoor human 
landing catches were considered the gold standard for 
measuring entomological outcomes, followed by Centers 
for Disease Control and Prevention (CDC) light traps or 
pyrethrum spray catches.

For continuous outcomes (human biting rate and 
entomological inoculation rate), the arithmetic or geo-
metric means, corresponding SDs or SEs, and number of 
participants in exposed and control groups were extracted. 
For dichotomous outcomes (sporozoite rate and parasite 
prevalence), the total numbers of participants and events 
in each group were extracted. For count data (clinical 
malaria episodes), the number of events and the total 
person-time at risk in each group were extracted. Adjusted 
effect sizes of entomological and epidemiological 
outcomes, where reported, were also extracted. Study 
authors were contacted for missing data.

Analyses were structured first by outcome, second by 
vector species (if applicable), and third by study design. 
All eligible studies were included in a qualitative analysis. 
Studies were also analysed semiquantitatively if sufficient 
data to calculate crude effects were reported (but 95% CIs 
were not reported) and quantitatively if crude or adjusted 
effects with 95% CIs were reported. Because age is an 
important source of heterogeneity in parasite prevalence 
data, P falciparum parasite rates were age-standardised to 
2–10-year-olds (PfPR2–10) to enable study comparability 
using a modified Pull and Grab algorithm, via an 
R package called ageStand.18

Entomological and epidemiological data were com-
bined in meta-analyses via the R metafor package.19 
Regardless of heterogeneity (I²), random-effects models 
were used to calculate pooled (crude or adjusted) effect 
measures from quantitative studies only (ratio of means 
[ROM] for quantitative outcomes, RR for dichotomous 
outcomes, and IRR for clinical malaria), as well as 
corresponding 95% CIs, to illustrate the effect of rice 
cultivation on each outcome of each study. Separate 
meta-analyses were done for crude and adjusted results.

To evaluate the effect of the recent changes in malaria 
on the rice–malaria relationship, effect sizes were 

For the study protocol see 
https://www.crd.york.ac.uk/
prospero/display_record.
php?ID=CRD42020204936

See Online for appendix

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204936
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204936
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204936
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204936
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analysed in two ways. First, we did a subgroup analysis 
in which studies were separated by whether they 
were done before 2003 or from 2003 onwards; this cut-
off year was chosen partly because it was the time at 
which previous reviews reached the paddies paradox 
conclusion, but mainly because it was when inter-
vention scale-up started.20 Antimalarial inter ventions 
started scaling up in sub-Saharan Africa between 2001 
and 2005, varying between countries, and so 2003 was 
chosen as the midpoint to represent this change. 
A sensitivity analysis between these years (2001 and 
2005) was done to evaluate the robustness of the year 
2003 as a cut-off point. Second, a Pearson’s correlation 
test was done between study effect sizes (log-
transformed) and their underlying malaria intensity 
(parasite prevalence in the control group). Results from 
the meta-analyses and subgroup analyses were depicted 
using bar graphs.

Risk of bias for cross-sectional and cohort studies was 
assessed using the Newcastle-Ottawa Scale.21 Publication 
bias was assessed by the visual inspection of funnel plots 
and the Egger’s test for funnel plot asymmetry.22 Quality 
and strength of the evidence were evaluated using the 
Grading of Recommendations, Assessment, Development 
and Evaluation (GRADE) approach.23

This study is registered with the International 
Prospective Register of Systematic Reviews 
(CRD42020204936).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Our search yielded 2913 studies after removal of 
duplicates (figure 1). 53 studies8,24–75 (with a total of 
113 160 participants) met the inclusion criteria, various 
subsets of which were included in the quantitative, semi-
quantitative, and qualitative analyses depending on the 
outcome of interest (appendix pp 2–7). 23 (43%) studies 
reported data on parasite prevalence, five (9%) on malaria 
incidence, 36 (68%) on human biting rate, 22 (42%) on 
sporozoite rate, and 19 (36%) on entomological inocu-
lation rate. A description of the included studies can 
be found in the appendix (pp 2–7). All studies were 
conducted between 1971 and 2016 in rural settings across 
14 sub-Saharan African countries. 27 studies were done 
in west Africa (eight countries), six studies in central 
Africa (Cameroon), and 20 studies in east Africa (five 
countries). Descriptions of study areas reported that the 
type of rice grown varied, and included  swamps, rain-fed 
rice, (small-scale) traditional flooded irrigated rice, and 
(large-scale) rice irrigation schemes. Control villages 
were usually 5–20 km away from rice-growing villages 
and engaged in traditional crop farming, market 
gardening, sugar plantations, pastoralism, or were 
savannah areas and inland valleys without rice cultivation.

22 studies reported malaria prevalence in rice-growing 
and non-rice-growing villages and were included in the 
meta-analysis, with 16 studies26,27,29,30,32,33,37–40,43,47,49,52,55,58 
conducted before 2003 and seven studies58,64,66,70,73–75 since 
2003 (one study included analyses both before and since 
2003; figure 2A). Before 2003, rice-growing was not 
associated with increased malaria prevalence (crude 
RR 0·82 [95% CI 0·63–1·06], 16 studies, 99 574 partici-
pants; adjusted OR [aOR] 0·73 [95% CI 0·57–0·89], 
two studies, 11 955 participants; appendix p 8).49,52 From 
2003 onwards, however, there was a 73% greater risk of 
malaria infection in rice-growing than in control villages 
(1·73 [1·01–2·96], seven studies, 14 002 partici pants; 7·69 
[2·72–12·66], one study, 1019 participants).73 A Wald-type 
test indicated that the pooled RR estimated from studies 
conducted since 2003 was significantly different from 
that of studies before 2003 (p=0·014). The sensitivity 
analysis found that 2003 was a robust year to mark the 
start of the scale-up of interventions; the pooled RRs 
from post-scale-up studies were unaffected by the choice 
of the cut-off year, but the pre-scale-up RR moved towards 
the null as cut-off year increased (appendix p 8).

When we assessed whether the effect of rice growing 
on malaria was influenced by the underlying malaria 

112 articles excluded 
49 did not have appropriate outcomes
22 did not have control groups
20 did not concern rice farming
10 were qualitative studies

3 were reviews
3 were conducted for shorter than 

one malaria transmission season
3 full-text articles could not be found
2 were reports from the same studies

8704 records identified
8665 through database search

39 through other sources

5791 records screened on the basis of title and abstract

165 full-text articles assessed for eligibility

53 studies included in qualitative, semi-quantitative,
and quantitative analysis
36 studies with entomological data
23 studies with epidemiological data

2913 duplicates removed

5626 records excluded

(Figure 2 continues on next page)

Figure 1: Study
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intensity (PfPR2–10), we found an increase in effect size 
with decreasing malaria prevalence in the control (non-
rice-growing) villages (coefficient –0·417 [95% CI 
–0·688 to –0·034], p=0·038). Where malaria prevalence 
was very high (>75%) in control villages, there was almost 
no difference in prevalence in rice-growing villages; 
areas where prevalence was medium to high (26–75%) in 
control villages mostly had a lower prevalence in rice-
growing villages; and, conversely, in areas with low 
prevalence (≤25%) in control villages, malaria risk was 
usually higher in rice-growing villages (figure 2B).

There was no association between rice cultivation and 
clinical malaria (IRR 0·75 [95% CI 0·47–1·18], 
four studies, 77 890 participants; figure 2C).43,49,52,70

36 studies collected entomological outcomes, all of 
which reported comparative figures on Anopheles human 
biting rates in rice-growing and non-rice-growing villages. 
Human biting rates were mostly measured directly using 
human landing catches (27 studies), and, in some circum-
stances, indirectly using CDC light traps (seven studies) 
or pyrethrum spray catches (two studies). In most studies 
(n=35), A gambiae sl was the dominant vector, followed by 
Anopheles funestus and Anopheles pharoensis (figure 3). It 
was not determined which sibling species of the 
A gambiae sl species complex was predominant because 
only eight studies conducted identification to that level. 
Where sibling species identification was done, the 
dominant species were A arabiensis in Cameroon and east 
Africa (seven studies), and A gambiae ss (molecular form 
unknown) in Nigeria (one study).

Meta-analysis of the four quantitative studies44,59,60,62 
that measured the human biting rate of A gambiae sl 
(from 1971 to 2016) showed a pooled effect (ROM) of 
6·54 times (95% CI 1·99–21·46) higher human biting 
rate in rice-growing villages than in non-rice growing 
villages. Vector densities were consistently higher in 
rice-growing than in non-rice-growing communities 
(figures 3, 4). After taking into account 31 semi-
quantitative studies8,24,25,27,28,30,31,34–36,39–42,45,46,48,50,53–57,61,63,65,67–69,71,72 

(those reporting crude effects without CIs), the median 
vector density in rice-growing villages was 34·0 bites 
per person per night (IQR 13·4–63·0), which is more 
than eight times greater than in non-rice villages 
(4·2 bites per person per night [1·0–12·8]). In the three 
most extreme cases, human biting rates were more 
than 30 times greater in rice-growing than in non-rice-
growing villages. 

A gambiae sl collected from rice-growing villages had 
71% lower sporozoite rates than those found in non-rice-
growing villages (RR 0·29 [95% CI 0·19–0·46], 
17 studies).8,27,34,39,42,44,46,54,57,59,62,63,65,67–69,71 

In quantitative studies that reported the ento mological 
inoculation rate of A gambiae sl, this rate was doubled in 
rice-growing compared with non-rice-growing villages 
(ROM 2·03 [95% CI 1·02–4·06], two studies [three 
analyses]).59,62 In semiquantitative studies, estimates of 
entomological inoculation rate were higher in rice-
growing villages than in non-rice-growing villages in 
ten studies34,39,50,53,54,57,63,65,68,71 and lower in six studies 
(figure 4).8,27,42,46,67,69 Including the results from quantitative 
studies,59,62 the proportion of studies in which the 
entomological inoculation rate was higher in rice-
growing than in non-rice-growing villages was 68% 
(13 of 19 analyses, sign test p=0·1671).

Of the studies that reported the human biting rates of 
A funestus in rice-growing and non-rice-growing areas, 
only one was eligible as a quantitative study.59 In this 
study, an 89% lower abundance of A funestus was 
observed in rice villages (ROM 0·11 [95% CI 0·08–0·14]). 
A visualisation of the semiquantitative studies suggests a 
mixed effect: 13 studies24,25,30,31,35,44,45,50,53,57,63,65,67 found more 
A funestus in rice-growing areas than in non-rice areas 
whilst ten studies8,27,28,54,56,61,62,59,69,71 found fewer A funestus 
(figure 3; appendix p 9).

Concerning shifts in the ratio of sibling species 
between rice-growing and non-rice-growing villages, 
only two studies (both conducted in Cameroon)63,67 did 
not report a complete dominance of one species, and the 
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Figure 2: Meta-analyses of the association between residence in rice-growing areas and malaria epidemiological outcomes
Crude risk ratios for malaria infection prevalence (PfPR2–10) plotted ordered by year of study and subgroup (before and after 2003) (A), and by underlying malaria intensity (PfPR2–10 in control group) (B). 
An increase in effect size was found with decreasing malaria prevalence in the control (non-rice-growing) villages (coefficient –0·417 [95% CI –0·688 to –0·034], p=0·038). (C) Crude incidence rate 
ratios for clinical malaria incidence (per 1000 person-days) ordered by year of study. Pooled effect estimates based on quantitative studies, calculated using random-effects models, are presented at the 
bottom of the graphs (and separately for each subgroup in panel A). Error bars are 95% CIs. PfPR2–10=Plasmodium falciparum parasite rate age-standardised to 2–10-years age group.
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constituent species did not change radically. We also 
looked for species shifts among Anopheles vectors and 
observed that, in west Africa,8,27,36,39,40,45,46,48,50,51,53,54,56,57,59,60 the 
majority of vector populations in rice villages were 
A gambiae sl, while higher proportions of A funestus were 
found in control villages (figure 3). In east Africa, no 
conspicuous patterns were seen.24,25,28,30,31,34,35,41,42,65,71,72

Risk of bias within individual cohort and cross-sectional 
studies was generally at an intermediate level (appendix 
pp 10–17). There was no evidence of publication bias in the 
meta-analysis of all outcomes except in malaria infection 
in the subgroup of studies done since 2003, where there 

was evidence of funnel plot asymmetry suggesting 
bias towards publication of positive findings (bias 
coefficient 2·82, p=0·0014; appendix pp 18–19). There 
were insufficient studies to test for asymmetry in the meta-
analysis of entomological inoculation rate and clinical 
malaria. The GRADE approach indicated that the quality 
of evidence for the comparisons between rice-growing and 
non-rice-growing villages was very low (table).

Discussion
To assess whether declining malaria rates in sub-Saharan 
Africa have changed the relationship between rice 
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Figure 3: Human biting rate in non-rice-growing and rice-growing villages
Comparison of the human biting rate (mosquitoes per person per night) of major malaria vectors in non-rice-growing and rice-growing villages in Africa, by vector 
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cultivation and malaria, we compared entomological 
and epidemiological malaria indicators between rice-
growing and non-rice-growing villages using data from 
53 observational studies. The results confirmed that 
before 2003, infection prevalence was not higher in 
rice-growing than in non-rice-growing communities. 
Conversely and most importantly, since 2003, prevalence 
was almost two times higher in rice-growing than 
in non-rice-growing communities. Additionally, the 

intensity of malaria transmission, measured as the 
entomological inoculation rate, tended to be higher in 
rice-growing areas: the lower sporozoite rates found in 
rice-dwelling A gambiae sl did not generally compensate 
for their greater numbers.

Previous reviews6,7 based on studies done before 2003 
showed that malaria prevalence was not higher in rice-
growing than in non-rice-growing communities. Our re-
examination of pre-2003 studies produced findings 
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consistent with those reviews, and also showed that 
many sub-Saharan African countries had high malaria 
transmission intensities during this period. However, in 
more recent studies (applicable to the current malaria 
situation), we found higher infection prevalence in rice-
growing than in non-rice-growing areas.

The differences between time periods could be 
explained by the introduction of the Roll Back Malaria 
initiative and the background developmental processes 
(general economic development, including housing) in 
Africa, both of which have changed the malaria picture in 

Africa drastically.15 In the past, rice-growing communities, 
compared with their non-rice-growing counterparts, 
tended to be wealthier and therefore had better socio-
economic conditions and access to drugs and mosquito 
nets, which might have constituted a protective factor 
against malaria.76 However, Roll Back Malaria brought 
about a massive upscaling of coverage of modern 
antimalaria interventions, including vector control, 
diagnostics, and treatment. Coverage has since become 
much more equitable within and between communities.16 
Similarly, general development across the continent 

Summary of findings Quality of evidence Overall GRADE 
rating

Relative 
effect 
(95% CI)

Number of 
participants 
(studies)

Risk of bias Inconsistency Indirectness Imprecision Publication bias

Human biting 
rate, 
A gambiae sl

ROM 6·54 
(1·99–21·46)

823 
(5)

Serious*: all 
studies were 
non-randomised 
and 
observational

Serious*: minimal 
overlap of confidence 
intervals and 
considerable 
heterogeneity 
(I²=99·97%, 
p<0·0001)

Serious: studies were 
conducted only in west 
and east Africa; these 
results might not be 
generalisable to central 
Africa

Serious*: at least one study 
showed a small number of 
events with wide 95% CIs

Not detected: 
Egger’s test for bias 
found no evidence 
for funnel plot 
asymmetry (bias 
coefficient <1·00, 
p>0·05)

Very low: 
estimate is very 
uncertain

Sporozoite rate, 
A gambiae sl

RR 0·29 
(0·19–0·46)

212 705 
(18)

Serious*: all 
studies were 
non-randomised 
and 
observational

Serious*: minimal 
overlap of confidence 
intervals and 
considerable 
heterogeneity 
(I²=95·05%, 
p<0·0001)

Not serious: studies were 
conducted in a variety of 
sites in rural settings 
across sub-Saharan Africa; 
these findings are 
generalisable elsewhere

Serious*: at least one study 
showed a small number of 
events with wide 95% CIs

Not detected: 
Egger’s test for bias 
found no evidence 
for funnel plot 
asymmetry (bias 
coefficient <1·00, 
p>0·05)

Very low: 
estimate is very 
uncertain

Entomological 
inoculation rate, 
A gambiae sl

ROM 2·03 
(1·02–4·06)

2334 
(3)

Serious*: all 
studies were 
non-randomised 
and 
observational

Serious*: minimal 
overlap of confidence 
intervals and 
considerable 
heterogeneity 
(I²=99·71%, 
p<0·0001)

Serious: studies were 
conducted only in west 
and east Africa; these 
results might not be 
generalisable to central 
Africa

Serious*: at least one study 
showed a small number of 
events with wide 95% CIs and 
there is uncertainty about the 
magnitude of effect of the 
intervention as it fails to 
exclude benefit or harm

Not detected: 
insufficient studies 
to construct funnel 
plots

Very low: 
estimate is very 
uncertain

Malaria 
infection, 
before 2003

RR 0·82 
(0·63–1·06)

99 574 
(16)

Serious*: all 
studies were 
non-randomised 
and 
observational

Serious*: minimal 
overlap of confidence 
intervals and 
considerable 
heterogeneity 
(I²=99·76%, 
p<0·0001)

Not serious: studies were 
conducted in a variety of 
sites in rural settings 
across sub-Saharan Africa; 
these findings are 
generalisable elsewhere

Serious*: at least one study 
showed a small number of 
events with wide 95% CIs and 
there is uncertainty about the 
magnitude of effect of the 
intervention as it fails to 
exclude benefit or harm

Not detected: 
Egger’s test for bias 
found no evidence 
for funnel plot 
asymmetry (bias 
coefficient <1·00, 
p>0·05)

Very low: 
estimate is very 
uncertain

Malaria 
infection, 
after 2003

RR 1·73 
(1·01–2·96)

14 002 
(7)

Serious*: all 
studies were 
non-randomised 
and 
observational

Serious*: minimal 
overlap of confidence 
intervals and 
considerable 
heterogeneity 
(I²=99·18%, 
p<0·0001)

Serious: studies were 
conducted only in west 
and east Africa; these 
results might not be 
generalisable to central 
Africa

Serious*: there is uncertainty 
about the magnitude of 
effect of the intervention as it 
fails to exclude benefit or 
harm

Strongly 
suspected*: Egger’s 
test for bias found 
some evidence for 
funnel plot 
asymmetry (bias 
coefficient 2·82, 
p=0·005)

Very low: 
estimate is very 
uncertain

Clinical malaria IRR 0·71 
(0·48–1·06)

77 890 
(4)

Serious*: all 
studies were 
non-randomised 
and 
observational

Serious*: minimal 
overlap of confidence 
intervals and 
considerable 
heterogeneity 
(I²=92·73%, 
p<0·0001)

Serious: studies were 
conducted only in west 
and east Africa; these 
results might not be 
generalisable to central 
Africa

Serious*: there is uncertainty 
about the magnitude of 
effect of the intervention as it 
fails to exclude benefit or 
harm

Not detected: 
insufficient studies 
to construct funnel 
plots

Very low: 
estimate is very 
uncertain

Patient or population: people of all ages living in rural areas of malaria-endemic sub-Saharan Africa. Settings: Burkina Faso, Burundi, Cameroon, Côte d’Ivoire, Ghana, Kenya, Madagascar, Mali, Nigeria, Rwanda, 
Sierra Leone, Tanzania, The Gambia. Exposure: rice cultivation. GRADE=Grading of Recommendations, Assessment, Development and Evaluations. A gambiae sl=Anopheles gambiae sensu lato. ROM=ratio of 
means. RR=risk ratio. IRR=incidence rate ratio. *Quality of evidence downgraded by 1 level.

Table: GRADE quality of evidence for the association between rice cultivation and epidemiological and entomological malaria outcomes
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brought about better infrastructure, transport, and 
housing, as well as better health systems.77 Consequently, 
it can no longer be assumed that rice-growing villages 
have much better defences against malaria, or that non-
rice-growing villages have no defences against the 
disease. It is presumed that the magnitude of change 
depends on which village characteristics were previously 
giving the differential protection between rice-growing 
and non-rice-growing villages; whether increased equity 
in antimalarial interventions or general development 
provided greater protection is a question that arises. As a 
consequence of the Roll Back Malaria initiative, there has 
also been a concomitant and equally widespread decline 
in the general intensity of transmission.15 Thus, the 
fraction of the population at risk who are exposed to high 
intensity transmission has substantially decreased. Many 
of those who were previously intensely exposed are now 
exposed only to low levels of transmission. Hence, the 
true differences in exposure between rice-growing and 
non-rice-growing villages are now observable in human 
clinical outcomes.

Overall, malaria vector densities were six times higher 
in rice-growing than non-rice-growing areas. This 
finding was expected, because the ecological conditions 
of the early stages of rice fields are exactly those preferred 
by larvae of A gambiae sl (fresh sunlit water of 2–10 cm 
depth, still or very slow-flowing, with silt or clay, without 
suspended organic matter, and non-deoxygenated).3,78 
However, the magnitude of difference is perhaps 
surprisingly high. The tendency for sporozoite rates to be 
lower in rice-growing areas is presumably due to density-
dependent reductions in the vectorial capacity of the 
vector population,9 which could happen through a 
reduction in adult lifespan (eg, because of competition 
for food in the larval stage) or a reduction in adult feeding 
success (eg, because extreme biting nuisance drives most 
people to use bed nets).10–13 There are also cases in which 
specific mechanisms dependent on unusual local 
conditions were operating. For instance, in Tanzania, 
there was evidence that the introduction of rice had 
removed the marshy breeding sites of A funestus (a very 
efficient vector) and replaced them with rice fields, which 
A arabiensis (a less efficient, although still important, 
vector) is better suited for breeding in.42 In one study in 
The Gambia, there were two annual crops of rice and two 
corresponding peaks of mosquito abundance, but only 
one annual peak of malaria transmission, which was 
during the rainy season. Apparently, during the hot dry 
season, vectors were abundant but not transmitting the 
parasite, either because they were too short-lived or 
because it was so hot that the parasites were killed inside 
the vectors.79

Previous reviews of whether rice-growing communities 
have a greater malaria burden have suggested that in rice-
growing villages: (1) vector abundance tends to be higher; 
(2) sporozoite rates tend to be lower; and (3) the lower 
sporozoite rates compensate for the increased vector 

abundance, and there is no systematic tendency for 
malaria transmission to be more intense in rice-growing 
villages.6,7 Our findings are consistent with (1) and (2), but 
not (3). Specifically, in 14 of the 19 studies, the reduction 
in sporozoite rate was not enough to compensate for the 
increase in vector abundance, and the pooled estimate 
suggests that malaria transmission in rice-growing 
villages tends to be about twice as intense as that in non-
rice-growing villages. In other words, rice cultivation is, 
and apparently always was, associated with exposure to 
more intense transmission for unprotected people. It was 
never correct to assume that the mosquitoes from rice 
fields were numerous but somehow harmless.

This study has several limitations. First, it was based on 
observational studies, which can be subject to selection 
and information bias as well as confounders. Exposure 
and control groups might have low comparability: rice-
growing and non-rice-growing communities could have 
been intrinsically different in their characteristics, even 
before the introduction of rice cultivation schemes 
(ie, there could be prerequisites that affect both malaria 
risk and the suitability of a village for irrigated rice fields). 
Second, observational studies can be prone to confounding 
because factors such as socioeconomic status, housing 
conditions, and access to health care (eg, antimalarial 
drugs and bed nets) are not always accounted for. 
Although we attempted to reduce confounding of this 
nature by presenting adjusted effect measures, very few 
studies reported them. The rating of very low quality of 
evidence according to the GRADE system indicates low 
confidence in the effect estimate.23 Nonetheless, we were 
not expecting, nor looking for, a true effect of rice 
cultivation on malaria risk; rather, we were more 
concerned about the direction of effect, which, although 
different in magnitude, was relatively consistent across 
studies given our a priori subgrouping. Third, a number 
of factors were not, and could not be, considered. Because 
of limited reporting, seasonality (wet vs dry, and seasonal 
vs perennial), intrinsic differences in landscapes of study 
sites, and characteristics of rice cultivation (type of rice 
grown, size of irrigation schemes, and distance of rice-
growing communities from their fields) could not be 
accounted for. Control groups were also variable, each 
associated with different degrees of vector density. 
Additionally, of the seven post-2003 studies from which 
the pooled RR of malaria prevalence was calculated, three 
were done in central Tanzania by the same research group 
and could therefore be subject to bias.64,66,73

Considering that this review was based only on 
observational studies, it has highlighted the need for 
replicated studies comparing before and after the 
introduction of rice crops, and if possible, intervention 
studies to measure the effect of rice cultivation on malaria 
risk. Given the complex relationship between vector 
abundance, vectorial capacity, and malaria prevalence, 
future studies should include all entomological and 
epidemiological indicators to provide a clearer picture of 
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the rice and malaria story. Such studies should also 
address questions of equity by including information on 
bed-net coverage, use of antimalarial drugs, socioeconomic 
factors, and housing.

Despite low-quality evidence, subgroup analyses 
comparing studies before and after the scale-up of malaria 
interventions suggested that this turning point has 
changed the rice–malaria relationship in Africa. Rice 
fields tend to produce large quantities of mosquitoes and, 
in most cases, any reduced vectorial capacity is inadequate 
to compensate for this increase in abundance, such that, 
on balance, there is greater exposure to infective 
mosquitoes in rice-farming communities. Thus, if we 
want to greatly expand rice cultivation in Africa and at the 
same time work towards malaria elimination, then we 
will need to develop ways to reconcile these two goals. In 
short, we need to find ways of growing rice without 
producing mosquitoes. Although various methods of 
controlling mosquitoes in rice fields have been studied, 
in most cases, these methods are only partially effective 
or are effective for only part of the season or in specific 
circumstances. What we need to know is how to combine 
these methods to provide effective control for the entire 
season and in wide variety of rice-growing settings.
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