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The use of disaggregate data in evaluations
of public health interventions: cross-
sectional dependence can bias inference
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Abstract

Higher availability of administrative data and better infrastructure for electronic surveys allow for large sample sizes
in evaluations of national and other large scale policies. Although larger datasets have many advantages, the use of
big disaggregate data (e.g., on individuals, households, stores, municipalities) can be challenging in terms of
statistical inference. Measurements made at the same point in time may be jointly influenced by contemporaneous
factors and produce more variation across time than suggested by the model. This excess variation, or co-
movement over time, produce observations that are not truly independent (i.e., cross-sectional dependence). If this
dependency is not accounted for, statistical uncertainty will be underestimated, and studies may indicate reform
effects where there is none. In the context of interrupted time series (segmented regression), we illustrate the
potential for bias in inference when using large disaggregate data, and we describe two simple solutions that are
available in standard statistical software.
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Electronic surveys, technology such as bar code scan-
ners, and administrative (register) data allow for huge
sample sizes in evaluations of public health policies. For
example, a study on the impact of excise tax on sugar-
sweetened beverages included data from over 15 million
checkouts from stores in Berkeley [1]. Larger datasets
can increase precision and provide higher power to de-
tect effects of public health measures. However, as we
will demonstrate below, more data is not always better,
and sometimes it can produce a false impression of high
precision.
In the evaluation of public health interventions, one

often has the option to collapse data across units and

analyse changes at the aggregate level, such as propor-
tion of smokers or the total sales of unhealthy products.
The problem described in the present article does not
apply to these types of analyses; it applies to evaluations
using unit-level data (e.g., on individuals, households or
municipalities). Such disaggregate data are often used
when unit-level covariates are included in the analysis,
for example, to control for compositional changes or to
test for moderation by variables such as socioeconomic
status or geography. In these cases, the increased preci-
sion from large samples may be illusive because there
are dependencies between units measured at the same
point in time. This is particularly a problem when a pol-
icy is introduced for a large proportion of—or typically
the entire—sample at the same point in time (e.g., the
introduction of excise taxes, restrictions on the availabil-
ity of a product, health warning labels).
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Below we will first describe how the problem of de-
pendence between units measured at the same point in
time can be considered as a problem of excess variation
(similar to the notion of overdispersion), then we pro-
vide indications that this problem is neglected in ana-
lyses on disaggregate data in the literature on public
health interventions. We provide an empirical example
that demonstrate how severe the problem can be, along
with two simple solutions that utilize methods that are
familiar to the applied researcher. We will focus on the
use of disaggregate data in the design typically referred
to as interrupted time series (ITS) or segmented regres-
sion, but our point is highly relevant also in designs in-
volving non-equivalent control groups.

Unmodelled common influences produce excess
variation
There are many problems in causal inference when the
data is observational and when a policy is introduced at
one specific point in time [2]. One problem that is of
particular relevance when datasets grow bigger is unmo-
delled common influences on data sampled at the same
point in time. Such influences could be the weather,
major social events, news, marketing, research methods
(interviewer effect, selective sampling), contagious dis-
eases, changes in the economy, social network effects, or
fads and fashions. In disaggregate data (e.g., repeated
cross-sectional and panel data on individuals), the excess
variation from unmodelled common influences produce
a form of dependency between units that is often re-
ferred to as cross-sectional dependency or contemporan-
eous correlation. When observations are not truly
independent, standard measures of statistical uncertainty
will typically be biased downwards (i.e., the uncertainty
of the result is underestimated).
In analyses on aggregate data (e.g., aggregate time

series of total consumption in a country) there cannot
be a problem of dependence between observations
within each time point because there is only one obser-
vation per time point. However, unmodelled common
influences on the underlying sample from which the ag-
gregate measure is derived can still produce excess vari-
ation if the variance is pre-determined by the statistical
model, such as in standard count and binomial models.
In these models, excess variation is referred to as over-
dispersion, which may be a more familiar concept than
cross-sectional dependence. Overdispersion is typically
not considered as relevant in disaggregate analyses, for
example in analyses on binary responses [3]. Yet, if an
analysis on aggregated data in a logistic binomial regres-
sion indicates overdispersion, one cannot avoid the
problem by running a logistic regression on individual-
level data [4].

Both overdispersion and the type of cross-sectional de-
pendence discussed in the present article reflect influ-
ences on data that increase variance beyond mere
sampling error (note that there also exists other forms of
cross-sectional dependence and overdispersion, e.g., sub-
cluster dependencies, and overdispersion not related to
time of measurement). This excess variation can be con-
sidered as a misspecification problem, for example, due
to missing variables in the model. As such, it should mo-
tivate more rigorous modelling of factors that can influ-
ence the outcome of interest. However, it is often
impossible to fully model a process that unfolds over
time, and it has been argued that excess variation is the
rule rather than the exception [5 (p.124)]. Thus, unless
one can avoid conducting the analysis altogether, one
needs to assume that, after careful modelling, the
remaining excess variation is random.
In count and proportion models on aggregate time

series, there are a range of ways to account for excess
random variation, such as scaling the standard errors of
the coefficients by an overdispersion parameter or by
directly modelling the overdispersion (e.g., beta-binomial
models, observation-level-random effects; see [6]). In the
case of disaggregate data, several solutions to the related
problem of cross-sectional dependence have been pro-
posed, particularly in the context of panel models in the
econometric literature [7–11]. Below we will provide an
empirical example of cross-sectional dependence and
suggest how to accommodate the problem. Before the
empirical example, we briefly present indications that
this issue may have been neglected in applied research
on public health interventions.

Is there a problem?
We inspected the primary studies of a recent meta-
analysis of studies on sugary beverage tax [12]. Two of
the studies did not include inferential statistics, three in-
vestigated multiple within-state changes, and one was a
cross-sectional comparison, but of the thirteen
remaining studies, ten studies did not adjust or test for
excess variation over time. One study accounted for het-
erogeneity in the time dimension in the selection of con-
trol group, one study used aggregate data, and only one
study adjusted standard errors for clustering on the time
dimension.
Based on the original data of a recent review of inter-

rupted time series studies in epidemiology [13], we
noted the following pattern: Of fourteen ITS studies
where the data was based on binary outcomes and the
analysis was a logistic regression (including GEE and
GLMM with logit link), twelve studies used individual-
level data and did not adjust or test for excess variation
(i.e., cross-sectional dependence/residual heterogeneity).
One of two studies that used aggregate data adjusted for
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overdispersion. Of thirteen studies where the underlying
data was similarly based on binary outcomes but the
analysis was variations of Poisson regressions (on aggre-
gate data except for one individual-level study), seven
studies accounted for overdispersion by random inter-
cept of time, quasi-poisson, or the use of robust standard
errors. The above suggests that overdispersion is often a
concern in aggregate analyses, whereas cross-sectional
dependence is not a concern in individual-level analyses.
Below we provide an example of why the latter could be
a problem.

An illustrative case: The potential effect of a
sugary product tax
When analyzing aggregate data with a linear regression
model, it is largely inconsequential whether the variation
in the data is due to the random variation between and

within the underlying observations (e.g., individuals) or
due to random common influences (such as the weather,
sports events, marketing campaigns, variations in re-
search methods, etc.). The error term in a linear inter-
rupted time series on aggregate data reflects any source
of variation, and inference is based on this overall vari-
ation. For analyses on disaggregate data, when measure-
ments of several units are made at multiple time points,
inference is less straightforward.
To illustrate this point, we present analyses using

cluster-robust standard errors with time as a grouping
factor. Applied researchers habitually apply heterosce-
dastic robust standard errors (Eiker-Huber-White or
“sandwich” estimator), and also its generalization, the
Cluster-Robust Standard Errors, where the robust stand-
ard error is calculated on residuals collapsed by clusters
[8]. However, the clustering variable in public health

Fig. 1 The effect of ignoring the time variable in analyses of policy change on disaggregate data. The Cluster-Robust Standard Error (Rob.SE) with
clustering on Stores gives increasingly biased standard errors as a function of increasing sample size (panels A to C). The Rob. SE with clustering
on both Stores and Time gives results in line with the analysis on aggregated data (panel D)
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research is typically the cross-sectional unit such as geo-
graphical regions, individuals, households, etc. Below we
use a version of cluster-robust standard errors that al-
lows for clustering on both the cross-sectional units (in
our case grocery stores) and the time dimension (week).
See reference 7 for a detailed description of such multi-
way cluster-robust standard errors.
Figure 1 present analyses of sales data from two years

before to one year after the implementation of a sub-
stantial increase in the sugary product tax in Norway. It
shows the residuals of the log-transformed sales of choc-
olate plates after accounting for the following variables
at the level of individual grocery stores: intercepts, sea-
sonality (week number), moving holidays, linear time
trends and level change from before to after the inter-
vention. For the purpose of illustrating the potential ef-
fect of the intervention, the trend and level change
terms were added back into the residuals and drawn as
lines (i.e., the graphs are not partial regression plots, but
plots that maintain the chronology of time).

In Panel A, where a sample of 4 stores have been
drawn from the dataset, the standard errors and p-values
of a model with cluster-robust standard errors at the
level of stores (one-way clustering) are not different
from a model with clustering on both store and time
(two-way clustering). In Panel B, with 100 stores, the
discrepancy between the one-way and two-way clustered
models becomes larger, and in Panel C, using data from
3092 stores, the difference between the one-way and
two-way clustered standard errors is extremely large.
The aggregated data in Panel D is based on the same
3092 stores as Panel C and therefore carries the same
amount of information in terms of the mean changes
from pre to post. Accordingly, the standard error of the
aggregated analysis (a standard interrupted time series
model), is fairly similar to the disaggregate analyses with
two-way clustered standard errors. As can be observed
by the two-way cluster-robust standard errors in Panels
B and C, a 30 times increase in sample size from 100 to
3092 stores did not increase precision of our effect esti-
mate when accounting for clustering on the time dimen-
sion, but it substantially increased the precision of the
analysis clustered only on the cross-sectional units.
As this example illustrates, cluster robust standard er-

rors grouped on both time and cross-sectional unit are
inflated relative to the standard errors grouped on the
cross-sectional unit only. This inflation compensates for
the “fake precision” given by a large sample when there
is dependence within measurements. The amount of in-
flation is a function of the within-cluster correlation of
the predictor (which, in terms of time clusters, is as high
as 1 for a term representing a policy that is introduced
at a specific point in time), the within-cluster correlation

of the residuals, and the number of observations within
each cluster [8]. After this inflation, standard errors
again give a better estimate of statistical uncertainty for
the specific model, also when the observations within
the clusters are not truly independent.
Note that when the sample size is very large and the

number of measurements across time is limited, it may
not even be necessary to cluster on the cross-sectional
units [14]. In supplemental analyses (not reported), one-
way SE clustered on time (not on stores) gave similar re-
sults as the two-way robust SE (stores + time) for the
data presented in Panel B and C, but not Panel A.
When robust and classical standard errors differ, this

can be interpreted as a sign of potential model misspeci-
fication and should motivate more rigorous modelling
[15]. When the excess variation is not random but sys-
tematically related to the impact variable, better model-
ling is required to obtain unbiased estimates of the
impact of a policy. Better modelling is also an issue of
statistical power. In the example presented in Fig. 1,
3000 stores do not really provide more information than
100 stores, suggesting that there is little to be gained
from increasing the sample even further. Increasing the
sample on the time axis can be risky in interrupted time
series, because secular trends may change. Sometimes,
the statistical power of evaluations can only be increased
by better modelling—not by sampling additional time
points or cross-sectional units.

Multilevel modelling and other approaches
If only a few pre- and post measurements are available,
the two-way cluster-robust standard errors will be biased
downwards. There are numerous attempts to correct for
bias in cluster-robust standard errors [8, 16, 17], but in
common statistical software, few methods are imple-
mented for two-way clustering (see e.g., [18] for a user-
written function in Stata). Another alternative based on
a tool commonly used by applied researchers, is to
model the grouping factor (i.e., time) as a random inter-
cept in mixed models (multilevel models).
In contrast to the cluster-robust SE correction, which

account for any cross-sectional dependence within the
measurements at each time points, random intercepts of
time only account for the macro-level co-movements,
with the additional assumptions that the distribution of
the excess variation has a certain shape. In principle, this
means that the multilevel models have stronger assump-
tions than the OLS models with cluster-robust SEs.
However, due to the bias in cluster-robust SEs when
there are few clusters, the mixed models are often more
conservative than the cluster-robust SEs. In the present
examples in Fig. 1, using a linear mixed modelling ap-
proach, the standard error for analysis of the data in
Panel A is 0.060 (versus 0.096 for two-way cluster-
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robust), for Panel B the standard error is 0.045 (versus
0.039) and for Panel C the standard error is 0.045 (ver-
sus 0.037).
Note that there are more specialized and comprehen-

sive ways of analyzing the type of data we have used. For
instance, dependence within time clusters can be mod-
elled as regional interdependencies [19], and potential
serial correlation can be modelled at the level of resid-
uals or as common persistent influences [14, 20]. We
have focused on the use of multilevel modelling and
cluster-robust standard errors because these are in-
cluded in the basic statistical toolkits of many applied re-
searchers. Furthermore, multilevel modelling and
cluster-robust standard errors are all-round tools that
can address cross-sectional dependence in panel/longitu-
dinal data, repeated cross-sections, and even overdisper-
sion in aggregate count and proportion data (see [ 3, 4]).

Conclusions
When a large number of units are sampled at the same
point in time, cross-sectional dependence can produce
bias in standard errors and p-values. As an illustration of
this, we provided a simplified case using chocolate sales
data before and after an increase in tax. Due to a high
level of heterogeneity across time, our example gave
large differences in inferential statistics between stand-
ard analyses and analyses that accounted for cross-
sectional dependence. Similar levels of bias in inferential
statistics may be achieved with less heterogeneity but
larger samples (e.g., population register data).
Note that this was not a best practice tutorial for the

analysis of public health interventions. There are cer-
tainly other threats to estimation and inference when
using observational data. Our goal was simply to illus-
trate how excess variation over time can produce se-
verely biased inference and to show how the inclusion of
time as a grouping factor can detect and prevent this.
The reporting of cluster-robust SEs or random inter-
cepts grouped on the time dimension should not be used
as a substitution for rigorous modelling.
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