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Abstract

Human immunodeficiency virus (HIV) infected adults are at a higher risk of pneumococcal

colonisation and disease, even while receiving antiretroviral therapy (ART). To help evalu-

ate potential indirect effects of vaccination of HIV-infected adults, we assessed whether

HIV-infected adults disproportionately contribute to household transmission of pneumo-

cocci. We constructed a hidden Markov model to capture the dynamics of pneumococcal

carriage acquisition and clearance observed during a longitudinal household-based naso-

pharyngeal swabbing study, while accounting for sample misclassifications. Households

were followed-up twice weekly for approximately 10 months each year during a three-year

study period for nasopharyngeal carriage detection via real-time PCR. We estimated the

effect of participant’s age, HIV status, presence of a HIV-infected adult within the household

and other covariates on pneumococcal acquisition and clearance probabilities. Of 1,684

individuals enrolled, 279 (16.6%) were younger children (<5 years-old) of whom 4 (1.5%)

were HIV-infected and 726 (43.1%) were adults (�18 years-old) of whom 214 (30.4%) were

HIV-infected, most (173, 81.2%) with high CD4+ count. The observed range of pneumococ-

cal carriage prevalence across visits was substantially higher in younger children (56.9–

80.5%) than older children (5–17 years-old) (31.7–50.0%) or adults (11.5–23.5%). We esti-

mate that 14.4% (95% Confidence Interval [CI]: 13.7–15.0) of pneumococcal-negative
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swabs were false negatives. Daily carriage acquisition probabilities among HIV-uninfected

younger children were similar in households with and without HIV-infected adults (hazard

ratio: 0.95, 95%CI: 0.91–1.01). Longer average carriage duration (11.4 days, 95%CI: 10.2–

12.8 vs 6.0 days, 95%CI: 5.6–6.3) and higher median carriage density (622 genome equiva-

lents per millilitre, 95%CI: 507–714 vs 389, 95%CI: 311.1–435.5) were estimated in HIV-

infected vs HIV-uninfected adults. The use of ART and antibiotics substantially reduced car-

riage duration in all age groups, and acquisition rates increased with household size.

Although South African HIV-infected adults on ART have longer carriage duration and den-

sity than their HIV-uninfected counterparts, they show similar patterns of pneumococcal

acquisition and onward transmission.

Author summary

We assessed the contribution of HIV-infected adults to household pneumococcal trans-

mission by applying a hidden Markov model to pneumococcal cohort data comprising

115,595 nasopharyngeal samples from 1,684 individuals in rural and urban settings in

South Africa. We estimated 14.4% of sample misclassifications (false negatives), represent-

ing 85.6% sensitivity of a test that was used to detect pneumococcus. Pneumococcal car-

riage prevalence and acquisition rates, and average duration were usually higher in

younger or older children than adults. The use of ART and antibiotics reduced the average

carriage duration across all age and HIV groups, and carriage acquisition risks increased

in larger household sizes. Despite the longer average carriage duration and higher median

carriage density in HIV-infected than HIV-uninfected adults, we found similar carriage

acquisition and onward transmission risks in the dual groups. These findings suggest that

vaccinating HIV-infected adults on ART with PCV would reduce their risk for pneumo-

coccal disease but may add little to the indirect protection against carriage of the rest of

the population.

Introduction

Streptococcus pneumoniae (pneumococcus) caused an estimated 3.7 million cases of invasive

pneumococcal disease (IPD) and 317,300 deaths in children <5 years-old, globally in 2015

[1,2]. While severe disease is largely concentrated in young children and older adults, human

immunodeficiency virus (HIV)-infected adults are also at an increased risk of both colonisa-

tion and IPD [3–7]. HIV affects the T and B cell function, resulting in impaired responses to

control pneumococcal carriage at mucosal level [8–10]. Although the universal scale-up of

antiretroviral therapy (ART) [11,12] has successfully reduced IPD risk in HIV-infected adults

[13,14], the IPD risk remains elevated if compared to HIV-uninfected adults [5,6]. ART par-

tially reconstitutes mucosal immunity by increasing B and T cell quantity and functionality

[8,15], but deficiencies in humoral mucosal response due to depleted or persistent defects in

memory cell function persist after ART initiation [16–18].

Despite mature pneumococcal conjugate vaccine (PCV) infant immunisation programmes,

continued circulation of vaccine preventable serotypes in adults has been observed throughout

Africa [19–25]. In some countries, such as Malawi, Mozambique, and Kenya, this intersects

with areas of high HIV prevalence. Adult HIV prevalence in Africa remains high [26] as a con-

sequence of improved survival with ART use [11,12] and persistently high HIV incidence [27],
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thus the high risk of pneumococcal carriage and IPD in HIV-infected adults in Africa remains

a concern.

Presently, no pneumococcal immunisation program for HIV-infected adults exist in South

Africa and low-income African countries [28]. Vaccination of African HIV-infected adults

with PCV, similar to the recommendations in many high-income countries, may not only

reduce their disease burden but also vaccine serotype pneumococcal acquisition and hence

onward transmission and may thus benefit non-vaccinated populations [29]. We hypothesised

that children living with HIV-infected adults have higher rates of pneumococcal carriage

acquisition due to increased exposure from frequently colonised HIV-infected adults who usu-

ally have a prolonged higher carriage prevalence [5]. In this study, we assessed whether HIV-

infected adults contribute more to pneumococcal transmission within the household than

their HIV-uninfected counterparts.

Methods

Ethics statement

The longitudinal pneumococcal carriage data described in this study were obtained from

South African children and adults through a written consent as part of the PHIRST study. For

a child participant, written consent was obtained from a parent or guardian. The use of data

was granted by the University of Witwatersrand, Human Research Ethics Committee (HREC)

and the Protocol Review Committee (PRC) under approval #150808, the US CDC’s Institu-

tional Review Board relied on the local review (#6840), and the London School of Hygiene &

Tropical Medicine Observational Research Ethics Committee under approval #17902.

Data description

The temporal dynamics of pneumococcal colonisation were observed in a cohort study (Pro-

spective Household Observational Cohort Study of Influenza, Respiratory Syncytial Virus and

Other Respiratory Pathogens Community Burden and Transmission Dynamics—PHIRST)

conducted between 2016 and 2018 in a rural (Agincourt) and an urban (Klerksdorp) commu-

nity in South Africa. Households were randomly selected, and were eligible for the study if they

had�3 household members and the household members resided in the household for�1 year

prior to study commencement, had no plan to relocate during study duration, and consented to

participate in the study. Also, enrolment ensured that more than half of the households included

at least one child aged<5 years, and a new cohort was enrolled every study year [30,31].

A total of 1,684 individuals from 327 households were enrolled and followed up from May

to October in 2016 and January to October in 2017 and 2018. The median household size was

5 (interquartile range 4–7). Nasopharyngeal (NP) swabs were taken twice weekly, resulting in

115,595 total NP samples from 1,684 individuals. The swabs were tested for the presence of

pneumococci using real-time quantitative polymerase chain reaction (qPCR), targeting the

autolysin (lytA) gene [32]. Serotyping was not performed. On enrolment, the demographic

characteristics of the study participants were recorded, and household members were tested

for HIV infection according to the double rapid test algorithm in South Africa [33]. Partici-

pants were considered HIV infected if they had two positive rapid HIV tests, evidence of a pos-

itive HIV laboratory result or evidence of ART treatment. Participants were considered HIV

uninfected if they had a documented negative HIV test result. A documented HIV negative

status for the mother confirmed HIV negative status for a child aged<10 years. HIV infection

was confirmed by PCR in children aged<18 months. In all HIV infected individuals, speci-

mens were collected for CD4+ T cell and quantitative HIV viral load testing. Newly HIV diag-

nosed patients were referred to the local HIV/ART clinic [30].

PLOS COMPUTATIONAL BIOLOGY HIV-infected adults pneumococcal transmission in South African households

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009680 December 23, 2021 3 / 19

https://doi.org/10.1371/journal.pcbi.1009680


Modelling framework

We used a continuous time, time homogeneous, hidden Markov model (HMM) which

assumed a Susceptible–Infected–Susceptible (SIS) framework [34–40], to fit to individual level

trajectories of colonisation during the study period. An individual can be either infected (I or

2) and currently carrying pneumococci or be susceptible (S or 1). Thus, the model can be

described by transition intensities between S and I for acquisition (q12) and clearance (q21) in

the transition intensity matrix Q ¼
� q12 q12

q21 � q21

 !

. The effect (β) of ith individual covariate

(zi) for acquisition and clearance rates over all transitions (T) are incorporated via propor-

tional hazard models q12ðziðtÞÞ ¼ qð0Þ12 expðb
T
12
ziðtÞÞ and q21ðziðtÞÞ ¼ qð0Þ21 expðb

T
21
ziðtÞÞ, respec-

tively. To obtain the transition probabilities, matrix P ¼
1 � p12 p12

p21 1 � p21

 !

is defined and

explicitly calculated through matrix exponential, P = exp(Q(t)), where p12 is the probability of

being in state 2 (I) at time t>0, given that the previous state was 1 (S). A more detailed descrip-

tion of the Markov transition process is provided in the Supplement.

In the hidden Markov modelling (HMM) framework [36,41–46], the states S and I of the

Markov Chain (Xi(t)) for individual i at time t are not observed directly, but approximated by

the results of a NP swab. The link between the modelled, true infection status and observed

pneumococcal carriage states in the model (Yi(t)) is governed by emission probabilities condi-

tional on the unobserved state. We assumed 100% specificity of the NP swab and the PCR (no

false positive) while estimating the proportion of false negative results (e) probabilistically

(observed vs hidden/truth states). Hence, the emission matrix is given as E ¼
1 0

e21 1 � e21

 !

where e21 = Pr(Yi(t) = 1|Xi(t) = 2).

We assumed that the observed states are conditionally independent given the values of the

unobserved states and that the future Markov chain is independent of its history beyond the

current state (Markov property) (Fig 1). Thus, the likelihood is the product of the emission

probability density and the transition probability of hidden Markov chain summed over all

possible paths of the hidden states (explicitly defined in the Supplement).

Our model assumed that carriage acquisition at the current observation point was a func-

tion of individual age group (younger child aged<5 years, older child aged 5–17 years, or

adult aged�18 years), HIV status (infected or uninfected), number of HIV-infected adult(s)

in the household, place of carriage exposure (household or community), and household size.

Carriage duration was modified by individual age, HIV status, ART status, and antibiotic use.

The place of carriage exposure is generally unknown without fine-scale serotype data. Crudely,

we assumed that if a household member is currently infected while all other household mem-

bers were susceptible at the last observation point, then current carriage acquisition of that

member was attributable to community transmission [34]. Otherwise, we assumed that the

transmission was from within the same household (Fig 1).

Model fit, convergence and prediction

The model was fitted to longitudinal data of pneumococcal carriage dynamics in a maximum

likelihood framework using Bound Optimisation By Quadratic Approximation optim algo-

rithm facilitated by msm R package [36,47]. To ascertain convergence of the model, we pur-

posefully selected five unique pairs of initial transition intensities {S, I} for the Q matrix, then

refitted the model five times, each time starting a Markov chain with a unique dyad and
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iterating 1,000 times to obtain similar final transition intensities and -2log-likelihood. Model

predictions were assessed by comparing infection and susceptibility prevalence in 14-day

intervals for the observed data to the fitted values. (S1 Fig in S1 File) [36].

Decoding the underlying carriage sequence

After fitting the HMM, a Viterbi algorithm with the msm function was used to recursively con-

struct the sequence of pneumococcal carriage with the highest probability through the hidden

states [48]. The probability of each hidden state at each observation point, conditionally on all

the data was computed using Baum-Welch forward/backward algorithm. Thus, an overall mis-

classification probability of the observed states given the hidden states was computed. Model

estimates of carriage transition intensity and probability were adjusted for misclassification

probability (S2 Fig in S1 File).

Sensitivity analysis

In a sensitivity analysis, three alternative and potentially more parsimonious models were fit-

ted separately to the data. Fits of these models were compared to the main model using Akaike

Information Criterion (AIC) [49] and checked whether they yielded qualitatively different

Fig 1. Susceptible-infected-susceptible (SIS) hidden Markov model schemas of pneumococcal carriage dynamics

in South African households between 2016–2018. Continuous-time time-homogeneous hidden Markov model

where X(t) represents hidden states, and Y(t) observed states, and in which Y(t) is conditionally independent given X
(t) and the Markov property holds (A). Pneumococcal nasopharynx (NP) carriage sequence of a specified individual

representing hidden and observed states, with a probability that an individual truly carrying a pneumococcal serotype

may be detected negative by a real-time quantitative polymerase chain reaction test (B). An SIS hidden Markov model

structure that captures a snapshot of part A and carriage sequence of part B in order to estimate transition rates and

probability of misclassification/false negative (C). Transition intensity matrix, Q, and emission matrix, E, respectively

capture the SIS model transition rates and emission or misclassification probability in part C to compute the

maximum likelihood estimates of transition intensities and misclassification probability (D).

https://doi.org/10.1371/journal.pcbi.1009680.g001
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results to the main model. Each of the four fitted models assumed the same number of covari-

ates to modify carriage acquisition intensity but varying number of covariates assumed to

modify carriage duration. Potential modifiers of carriage duration included age and HIV status

for model 1; age, HIV status and antibiotic use for model 2; age, HIV status and viral load

based ART status for model 3; and age, HIV status, antibiotic use and viral load based ART sta-

tus for main model 4 (S1 Table).

Further, we examined the impact of alternative stratification of covariates on the changes in

carriage transition probabilities: (i) while the main analysis estimated age- and HIV-stratified

carriage acquisition rates comparing households with�1 HIV-infected adult(s) versus house-

holds without HIV-infected adults, in the sensitivity analysis, we estimated age- and HIV-strat-

ified carriage acquisition rates comparing households with 0,1, 2, 3, 4 and 5 HIV-infected

adult(s) and (ii) rather than assuming time-homogeneous intensities throughout the study

period, we relaxed this assumption by fitting a time-inhomogeneous model with yearly piece-

wise follow-up periods; 2016, 2017, and 2018 (S3 Fig in S1 File).

Statistical significance was set at<0.05. All analyses were conducted in R v3.5.0 [36,50] and

are available via https://github.com/deusthindwa/hmm.pneumococcus.hiv.south-africa.

Results

Descriptive analysis

A total of 327 households were recruited in the PHIRST study of which 166 (50.8%) had at

least one member living with HIV infection. At enrolment, of 1,684 individuals included in

the study, 279 (16.6%) were younger children aged less than 5 years old of whom 4 (1.5%)

were HIV-infected, and 679 (40.3%) were older children aged between 5–17 years old of

whom 31 (4.7%) were HIV-infected. Among the 726 (43.1%) study participants aged 18 years

or older (“adults”), 214 (30.4%) were HIV-infected, and 505 (69.6%) were females. Among

those HIV-infected adults, 196 (86.7%) self-reported to be on ART, although only 151 (79.5%)

had CD4+ cell count of more than 350. Most adults were non-smokers (69.6%) and did not

regularly consume alcohol (57.4%). A similar proportion of children lived in households with

(50.6%) and without (49.4%) at least one HIV-infected adult. Among 231 younger children

with vaccine information available, 227 (98.3%) received first PCV dose at 6 weeks, 225

(97.4%) second dose at 14 weeks and 216 (93.5%) third dose at 9 months of age (Table 1).

Carriage prevalence and density

We estimated carriage prevalence by diving the number of PCR positive samples by the num-

ber of swabs taken per visit per age or HIV group. Among HIV-uninfected participants,

observed pneumococcal carriage prevalence was higher in younger children (range across vis-

its: 56.9–80.5%, n = 256) than older children (31.7–50.0%, n = 634) and was lowest in adults

(11.5–23.5%, n = 489) (Fig 2A). Among HIV-infected participants, pneumococcal carriage

prevalence fluctuated in younger children (0–100%, n = 4), in older children (30–77%, n = 31),

and in adults (14–34%, n = 214) (Fig 2A). The likelihood of detecting pneumococcal carriage

during visits was higher for children than adults and for HIV-infected younger children or

older children or adults than their HIV-uninfected counterparts (Fig 2B). Carriage prevalence

among younger HIV-uninfected children was lower in households with less than 6 members

(65.5%, 95%CI: 64.5–66.5) than in households with 6–10 (72.5%, 95%CI: 71.5–73.5) or house-

hold more than 10 members (85.6%, 95%CI: 82.4–88.8) but it was similar in HIV-infected chil-

dren across household size groups (Fig 2C). Carriage prevalence fluctuated across visits by

HIV-infection and sex in adults, with similar ranges between HIV-uninfected male adults
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10.8–25.3% and HIV-uninfected female adults 10.2–24.0%, and between HIV-infected male

adults 6.3–40.7% and HIV-infected female adults 12.3–34.6% (S5A Fig in S1 File).

Median pneumococcal carriage density, in genome equivalents per millilitre (GE/ml), was

significantly higher in younger children (24,341, 95%CI: 22,638–26,122) than older children

(3,490, 95%CI: 3,168–3,754) or adults (476, 95%CI: 429–522). Also, median carriage density

Table 1. Baseline demographic and clinical characteristics of children and adults who were followed up twice weekly for ten months for nasopharynx swabbing for

pneumococcal carriage in South African households between 2016 and 2018.

Description Total Younger children Older children Adults

<5 years 5–17 years �18 years

N = 1,684 n = 279 (16.6%) n = 679 (40.3%) n = 726 (43.1%)

Mean age (SD) 22.1 (±19.8) 2.2 (±1.3) 10.5 (±3.7) 40.5 (±16.7)

Study site

Agincourt (rural) 849 (50.4) 171 (61.3) 376 (55.4) 302 (41.6)

Klerksdorp (semi-urban) 835 (49.6) 108 (38.7) 303 (44.6) 424 (58.4)

Sex

Female 1,009 (59.9) 137 (49.1) 367 (54.1) 505 (69.6)

Male 675 (40.1) 142 (50.9) 312 (45.9) 221 (30.4)

HIV status

Negative (-) 1,379 (84.7) 256 (98.5) 634 (95.3) 489 (69.6)

Positive (+) 249 (15.3) 4 (1.5) 31 (4.7) 214 (30.4)

Viral-load based ART status†

Not on ART 93 (40.8) 1 (50.0) 13 (52.0) 79 (39.3)

On ART 135 (59.2) 1 (50.0) 12 (48.0) 122 (60.7)

Self-reported ART status

Not on ART 30 (13.2) 0 (0.0) 1 (3.8) 29 (14.5)

On ART 198 (86.8) 2 (100.0) 25 (96.2) 171 (85.5)

Mean CD4 count (SD) CD4+ cell count‡ 673 (±430) 1,210 (±13.4) 857 (±418) 645 (±426)

Low 49 (22.8) 0 (0.0) 10 (43.5) 39 (20.5)

High 166 (77.2) 2 (100.0) 13 (56.5) 151 (79.5)

Living with�1 HIV+ adults

No 818 (48.7) 133 (47.8) 346 (51.1) 339 (46.9)

Yes 860 (51.3) 145 (52.2) 331 (48.9) 384 (53.1)

PCV13 doses received#

At 6 weeks 227 (98.3) 227 (98.3) N/A N/A

At 14 weeks 225 (97.4) 225 (97.4) N/A N/A

At 9 months 216 (93.5) 216 (93.5) N/A N/A

Smoking (�18 years)

No 505 (69.6) N/A N/A 505 (69.6)

Yes 221 (30.4) N/A N/A 221 (30.4)

Alcohol use (�18 years)

No 417 (57.4) N/A N/A 417 (57.4)

Yes 309 (42.6) N/A N/A 309 (42.6)

† ART use status based on viral load results (on ART = Undetected; Not on ART = <20 copies per ml)

‡ Low CD4+ count�350 cells/mm3 and high CD4+ count >350 cells/mm3 in adults, and low CD4+ count�750 cells/mm3 and high CD4+ count >750 cells/mm3 in

children, in HIV-INFECTED only

# Pneumococcal conjugate vaccine (PCV13) vaccination status in younger children from available records

Standard deviation (SD)

N/A not applicable

https://doi.org/10.1371/journal.pcbi.1009680.t001
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was higher in HIV-infected than HIV-uninfected older children (11,156, 95%CI: 8,681–13,948

vs 3,221, 95%CI: 2,911–3,472) or adults (622, 95%CI: 507–714 vs 389, 95%CI: 311–435), and

not in younger children (33,050, 95%CI: 22,690–42,293 vs 24,124, 95%CI: 22,547–25,838) (Fig

2D). Conversely, median carriage density was similar between those not on ART compared to

those on ART in older children (9,624, 95%CI: 5,289–11,843 vs 8,818, 95%CI: 5,102–12,720)

or adults (861, 95%CI: 508–1,001 vs 499, 95%CI: 382–586), and not in younger children

(25,430, 95%CI: 13,138–40,245 vs 91,566, 95%CI: 43,355–265,628) (Fig 2E). About 14.4%, 95%

CI: 13.7–15.0 of negative NP swab results were estimated probabilistically to be false negatives.

Pneumococcal carriage acquisition

Overall, pneumococcal carriage acquisition was higher in older children (1.15, 95%CI: 1.08–

1.23) and younger children (1.52, 95%CI: 1.38–1.68) than adults. Acquisition of carriage was

more frequently observed when at least another household member was infected half a week

Fig 2. Human immunodeficiency virus (HIV)-stratified pneumococcal carriage dynamics in younger children (<5

years-old), older children (5–17 years-old) and adults (�18 years-old) in South African households between 2016–

2018. Age and HIV-stratified pneumococcal carriage prevalence by different nasopharyngeal sampling visits (A), the

likelihood of detecting pneumococcal carriage during visits (B), pneumococcal carriage prevalence by household sizes

with 95% confidence intervals (CI) (C) and carriage densities with mean (black diamond), median and associated 95%

CI of median, 25th and 75th percentiles, minimum and maximum, and outlier where carriage density is measured as

genome equivalents per millilitre (GE/ml) (D). Age and antiretroviral therapy (ART) stratified carriage density with

mean (red diamonds), median and associated 95%CI of median, 25th and 75th percentiles, minimum and maximum,

and outlier (notched boxplot) (E).

https://doi.org/10.1371/journal.pcbi.1009680.g002
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before (and hence attributed to household transmission) than in previously uninfected house-

holds (1.80, 95%CI: 1.68–1.93). Irrespective of age and HIV status, acquisition rates from

within the household increased with household size; by 1.05 (95%CI: 1.00–1.10) in households

with 6–10 members and by 1.41 (95%CI: 1.24–1.60) in households with 11 or more members

compared to households with less than 6 members. However, within household carriage acqui-

sition rates in children, irrespective of age group and HIV status, were not higher in the house-

holds with at least one HIV-infected adult (0.95, 95%CI: 0.91–1.01) (Fig 3 and Table 2). In

addition, daily carriage acquisition rates in HIV-uninfected younger children did not signifi-

cantly vary between households with HIV-infected female adults (0.14, 95%CI: 0.12–0.17) and

those with HIV-infected male adults (0.13, 95%CI: 0.11–0.15) (S5 Fig in S1 File).

We estimated 3.8 carriage acquisition episodes per year, (95%CI: 3.4–4.2) for HIV-infected

younger children, 5.9 (95%CI: 5.4–6.3) for HIV-uninfected younger children, 7.4 (95%CI: 6.7–

8.1) for HIV-infected older children and 10.6 (95%CI: 10.2–11.0) for HIV-uninfected older

children from households with at least one HIV-infected adult, and these were similar to their

counterparts from households without HIV-infected adults (3.8, 95%CI: 3.3–4.2 and 5.8, 95%

CI: 5.4–6.3, and 7.3, 95%CI: 6.6–8.0 and 10.3, 95%CI: 9.9–10.8, respectively) (Fig 3 and

Table B in S1 File).

Pneumococcal carriage duration

The average duration of pneumococcal carriage was highest in HIV-infected and HIV-unin-

fected younger children (107.9 days, 95%CI: 92.1–124.7 and 56.3 days, 95%CI: 51.1–62.1) fol-

lowed by HIV-infected and HIV-uninfected older children (33.9 days, 95%CI: 29.9–38.6 and

17.9 days, 95%CI: 16.8–18.5), and HIV-infected and HIV-uninfected adults (11.4 days, 95%CI:

10.2–12.8 and 6.0 days, 95%CI: 5.6–6.3) (Fig 4C and 4D and Table C in S1 File).

Fig 3. Community and within household (HH) acquisitions of pneumococcal carriage in younger children (<5 years-old), older children (5–17

years-old) and adults (�18 years-old) in South African households between 2016–2018. Age and human immunodeficiency virus (HIV) stratified

estimates of community carriage acquisition probability per day (A) and within household carriage acquisition probability per day over the total

follow-up period (B), comparing household without HIV-infected adult(s) (HIV-) to households with HIV-infected adult(s) (+).

https://doi.org/10.1371/journal.pcbi.1009680.g003
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Pneumococcal carriage cleared slower in older children (Hazard Ratio [HR]: 0.34, 95%CI:

0.31–0.36) and younger children (HR: 0.10, 95%CI: 0.09–0.12) when compared to adults. Car-

riage clearance was slower in HIV-infected than in HIV-uninfected individuals (HR: 0.52, 95%

CI: 0.46–0.59), and faster in HIV-infected individuals with successfully suppressed viral load

than in those without successful viral suppression (HR: 1.29, 95%CI: 1.13–1.47) (Fig 4B and

Table 2). Antibiotic use may have accelerated pneumococcal clearance; however, the effect was

not statistically significant (HR: 1.47, 95%CI: 0.67–3.25) (Fig 4A and Table 2).

Sensitivity analysis

In the sensitivity analysis, a model that included age, HIV status, antibiotic use, and ART status

as potential modifiers for pneumococcal carriage duration had the lowest AIC score as well as

Table 2. Effects of included covariates on pneumococcal acquisition and clearance rates estimated in the hidden

Markov model.

Description Hazard Ratio (95%CI)‡

Pneumococcal carriage acquisition

Age in years (y)

Adult,�18y Reference

Older child, 5-17y 1.15 (1.08–1.23)

Younger child, <5y 1.52 (1.38–1.68)

HIV status

Negative Reference

Positive 0.95 (0.87–1.04)

Children living with�1 HIV-infected adults

No Reference

Yes 0.95 (0.91–1.01)

Place of carriage exposure

Community Reference

Within household 1.80 (1.68–1.93)

Household size

<6 members Reference

6–10 members 1.05 (1.00–1.10)

11+ members 1.41 (1.24–1.60)

Pneumococcal carriage clearance

Age in years (y)

Adult,�18y Reference

Older child, 5–17 0.34 (0.31–0.36)

Younger child, <5y 0.10 (0.09–0.12)

HIV status

Negative Reference

Positive 0.52 (0.46–0.59)

Antibiotic use

No Reference

Yes 1.47 (0.67–3.25)

Viral load-based ART status†

Not on ART Reference

On ART 1.29 (1.13–1.47)

† ART use status based on viral load results

‡ 95% confidence interval (95%CI)

https://doi.org/10.1371/journal.pcbi.1009680.t002
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for including both antibiotic use and ART status (Table A in S1 File). Increasing the number of

HIV-infected adults within household to 1, 2, 3, 4, and 5 resulted in similar estimates of pneu-

mococcal carriage acquisition in younger or older children (S3A Fig in S1 File). Our results

were also robust when instead of assuming a time homogeneous hidden Markov model, we

allowed for the estimation of time varying transition probabilities (S3B Fig in S1 File)

Discussion

We used a HMM to better understand pneumococcal carriage dynamics, and the role of HIV-

infected adults in it, using data from a densely sampled longitudinal South African cohort

using data from 115,595 nasopharyngeal swabs. We estimated that children have higher acqui-

sition rates and duration of carriage than adults, and that, within a household, HIV-infected

adults are not more likely to transmit pneumococci to children than HIV-uninfected adults.

Pneumococcal acquisition events increased with larger household size irrespective of age and

HIV status. Although ART use reduced pneumococcal carriage duration in HIV-infected chil-

dren and adults, they still carry pneumococci for longer than their HIV-uninfected

counterparts.

Heterogeneous household acquisition rates higher in children than adults have been

reported previously [34,51–55], reflecting setting-specific population mixing behaviour and

immunisation levels. Similarly, and for the first time in the presence of a mature infant PCV

routine vaccination programme, we find that children both have higher acquisition rates than

adults and carry pneumococci for longer, making them a likely key source for pneumococcal

transmission in and beyond the household [56,57]. Moreover, adults simply have far lower car-

riage duration than children. So, even though HIV-infected adults have slightly longer carriage

duration, the risk of carriage acquisition in children from an adult is far lower than from

another child or in the community.

We postulated that HIV-infected adults were more likely to carry pneumococci and may

have higher carriage density which individually or in combination may increase their risk for

pneumococcal transmission compared to HIV-uninfected adults. Thus, carriage density was

not controlled in this model for being on the causal pathway. Moreover, if carriage density

indeed influences carriage transmission, then false negatives in low density carriers are

Fig 4. Duration of pneumococcal carriage in younger children (<5 years-old), older children (5–17 years-old) and

adults (�18 years-old) in South African households between 2016–2018. Age and human immunodeficiency virus

(HIV) stratified average carriage duration in days comparing individuals on antibiotics (ABX) (triangular shape) to

those not on ABX (circular shape) (A), and individuals on antiretroviral therapy (ART) (triangle shape) to those not on

ART (circle shape) (B). Age and HIV stratified overall average carriage duration in days (C). Age and HIV stratified

daily probability of carriage clearance (D).

https://doi.org/10.1371/journal.pcbi.1009680.g004
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partially captured because individuals who are more transmissible are more likely to be cor-

rectly detected. Prior to infant PCV introduction, a study in Malawi showed that HIV-infected

adults on ART had higher carriage prevalence than those not on ART [5], and two studies in

South Africa also found that HIV-infected adults (mothers) had higher carriage prevalence

than their HIV-uninfected counterparts, irrespective of ART status [34,51]. In addition, HIV-

infected adults (mothers) were found to transmit pneumococci to their children more often

than HIV-uninfected peers [34]. We generated additional evidence showing that, in the PCV

era, carriage prevalence is slightly increased in HIV-infected adults on ART compared to HIV-

uninfected adults as a result of reduced carriage clearance rates. We also show that median car-

riage density is higher in HIV-infected than HIV-uninfected adults. However, we find no evi-

dence that carriage density is modified by ART status in HIV-infected adults (Fig 2). Further

research may need to investigate whether differential effects of ART on pneumococcal carriage

density in adults by country may be driven by types of ART regimens used.

Furthermore, our model estimates that the presence of an HIV-infected adult in the house-

hold does not increase the risk for pneumococcal carriage acquisition in co-habiting children.

Although it is possible that there may have been other HIV-infected adults within households

who were not enrolled into the study, it is unlikely this would alter the results given the insen-

sitive acquisition estimates with increasing number of HIV-infected adults within household

(S3A Fig in S1 File). These findings support the notion that ART largely, but not completely,

reconstitutes the anti-pneumococcal mucosal immune response in HIV-infected adults [8].

This would imply that HIV-infected adults do not contribute disproportionally to pneumococ-

cal transmission when on ART and hence that their vaccination is unlikely to substantially add

to the herd protection already induced by the childhood immunisation programme although

vaccination will provide direct protection against IPD in HIV-infected adults.

Our observation of increasing pneumococcal carriage acquisition rates with higher house-

hold size has also been reported previously [38] and suggests density dependent transmission

in the household [58]. In line with evidence before infant PCV introduction [34,38], we find

that pneumococcal carriage acquisition probabilities from the community were higher in chil-

dren than in adults irrespective of HIV status, likely in part due to frequent effective contacts

among playschool children [51,59] and immature immunity in children relatively to adults.

We also estimate that children were twice as likely to get infected from within the household

than from the community. However, we base this inference on the identified pneumococcal

carriage in a household member at the previous visit. On the other hand, unlike previous

household transmission models [34,38], our main model did not explicitly account for the

number of other house members with carriage when estimating individual probability to car-

riage acquisition. However, it included a household size covariate to adjust for the contribu-

tion to carriage acquisition from housemates. Since pneumococcal infection rates usually

increase with household size [38], this ensured that an individual living in a household with

more members and likely to spread pneumococci has higher probability to carriage acquisition

than smaller households with potentially fewer carrying individuals. A potential caveat could

be if only a relatively small number of persons in a large household are indeed carrying which

could overestimate infection contribution (S6 Fig in S1 File).

In the absence of serotyping of the pneumococcal isolates, our inferences may be prone to

overestimation within household transmission by linking family members who in fact were

infected with different pneumococcal serotypes. Similarly, serotyping would enhance our abil-

ity to differentiate a single and long carriage episode from almost immediate re-acquisition or

the clearance of the dominant serotype while the previously subdominant serotype persists.

This may have led to an overestimation of carriage duration and underestimated clearance

rates. However, the mean carriage duration of 56 days (51–62) in HIV-uninfected children
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estimated in this study aligns with studies that used serotype data [34,37,51,60]. While both the

estimates for duration of carriage and the contribution of household transmission may be

somewhat exaggerated, the lack of serotyping should not have affected our primary outcome,

the relative contribution of HIV infected adults to pneumococcal transmission.

The use of ART, as inferred from measured viral load in study participants, reduced pneu-

mococcal carriage duration by 22% compared to no ART use within each age group of HIV-

infected participants. However, mean pneumococcal carriage duration remained slightly

higher than their HIV-uninfected counterparts (Fig 4). Our model also estimated the sensitiv-

ity of the swabbing and qPCR testing regime for the detection of pneumococcal carriage. We

estimate that about 1 in 7 swabs were misclassified as pneumococcal negative. False negatives

might have arisen as a result of the sampling technique or if samples contained insufficient

quantities of bacteria to successfully amplify and detect [58]. We assumed 100% specificity of

an assay targeting the autolysin gene as the probability of false positives is seemingly very low

[32,60]. However, lower specificity would yield slightly lower acquisition rates than estimated

in this study. Our estimated misclassification probability in this study is within 10–20% range

of values that were reported elsewhere [60,61].

In conclusion, we used one of the most densely sampled longitudinal pneumococcal car-

riage studies to infer the role of HIV-infected adults in pneumococcal transmission in the PCV

and ART era. We find that the transmission risk from HIV-infected adults largely aligns with

that of their uninfected counterpart. This implies that PCV use in HIV-infected adults who

have access to ART would reduce their risk for pneumococcal disease but may have little

added benefit over vaccinating other adults to the indirect protection against carriage of the

rest of the population.

Supporting information

S1 File. Additional information on hidden Markov methods and model outputs. Table A.

Multistate model comparisons between hidden Markov models of specified degree of freedom

(df) using Akaike Information Criterion (AIC) after fitting the models to longitudinal pneu-

mococcal carriage data in South African households, 2016–2018. Table B. Maximum likeli-

hood parameter estimates and 95% confidence intervals (95%CI) for acquisition probabilities

within household and from community from a hidden Markov model that is fitted to pneumo-

coccal carriage data in South African households, 2016–18. Table C. Maximum likelihood

parameter estimates and 95% confidence intervals (95%CI) for carriage duration and by anti-

biotic use and antiretroviral therapy (ART) from a hidden Markov model that is fitted to pneu-

mococcal carriage data in South African households, 2016–18. S1 Fig. Hidden Markov model

(HMM) convergence and predictions. HMM convergence estimated using maximum likeli-

hood, given 5 Markov chains each with 1000 iterations. Each chain is a unique pair of initial

infected (q12) and susceptible (q21) intensities converging to similar final baseline transition

intensities, and 2�log-likelihood (A). HMM fitting assessment comparing the observed (dia-

mond) to predicted (line) pneumococcal carriage and clearance with 95% predictive intervals

of the model-fitted line, where observed data are grouped into 14-days intervals to compute fit-

ted values (B). S2 Fig. The probabilities of the underlying states and the most likely path

through them. Observed pneumococcal carriage results from NP swabs of two randomly

selected persons A and B (first row). The underlying sequences of a fitted HMM given the

observed sequence, found by the Viterbi algorithm through a recursive construction of the

path with the highest probability (second row). For each observed infected state (first row), if

the probability of the hidden infected state (third row) at each observation point is<100%

then it reflects misclassification. The probability of the hidden infected state is conditionally
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on all the data and computed using Baum-Welch forward/backward algorithm. S3

Fig. Sensitivity analysis of varying covariate values in younger children (<5 years-old), older

children (5–17 years-old) and adults (�18 years-old). The main analysis computed within

household HIV+ and age-stratified acquisition per day comparing households with HIV

+ adult(s) to those without, whereas here, we compare households with 0,1,2,3,4 or 5 HIV

+ adult(s) (A). Similarly, the main analysis estimated acquisition probabilities for entire study

follow-up period (0–289 days), whereas here, we estimate acquisition probability comparing

samples collected between different periods. S4 Fig. HIV and Age distribution of study partici-

pants, and household size carriage acquisition dynamics in younger children (<5 years-old),

older children (5–17 years-old) and adults (�18 years-old). Overall HIV and age distribution

of study participants (A). HIV and age distribution of study participants by their household

size (B). HIV and age-stratified carriage acquisition probability per day by household size (C).

S5 Fig. Pneumococcal carriage prevalence in adults (�18 years-old) (A), household pneumo-

coccal acquisition in younger children (<5 years-old) and older children (5–17 years-old) by

HIV status of household female adults living with these children (B), and household pneumo-

coccal acquisition in younger and older children by HIV status of household male adults living

with these children (C). S6 Fig. The contribution to individual pneumococcal carriage acquisi-

tion by age groups and HIV status. Within household individual carriage acquisition probabil-

ity estimated by accounting for infections through household size or daily contribution from

household members.
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