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Abstract

Policy decisions on COVID-19 interventions should be informed by a local, regional and 

national understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, 

variants with new phenotypic properties successfully invade, or infection spreads to susceptible 

subpopulations. Three COVID-19 epidemic waves have been observed in Kenya. Using a 

mechanistic mathematical model, we explain the first two distinct waves by differences in 

contact rates in high and low social-economic groups, and the third wave by the introduction 

of higher-transmissibility variants. Reopening schools led to a minor increase in transmission 

between the second and third waves. Socioeconomic and urban-rural population structure are 

critical determinants of viral transmission in Kenya.

After the first polymerase chain reaction (PCR)-confirmed case of COVID-19 in Kenya on 

13 March 2020, the Kenyan government rapidly introduced measures aimed at suppressing 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in the country. 

These measures included the closure of international borders, with the exception of cargo 

movement; closing of schools and other learning institutions; a ban on social gatherings 

and meetings; closure of places of worship, bars, and restaurants; a dawn-to-dusk curfew; 

mandatory wearing of masks in public places; physical distancing guidelines, including 

on public transportation; and restrictions on movement into or out of counties with high 

infection rates, including the two main Kenyan cities, Nairobi and Mombasa (1) (Fig. 1). 

Despite these measures, the rate of new COVID-19 cases grew in Kenya, indicating that 

measures had not been enough to consistently push the effective reproduction number R(t) 
below 1. Moreover, serological surveillance indicated that a higher-than-expected fraction of 

the Kenyan population had been exposed to SARS-CoV-2 given the case reports at the time: 

June 2020 adjusted seroprevalences, based on blood donor samples from the Kenya National 

Blood Transfusion Services (KNBTS), were 5.6% for Kenya, 8% for Mombasa, and 7.3% 

for Nairobi (2).

Detected COVID-19 incidence in Kenya first peaked in early August 2020 during a period 

of relaxation of measures: the end of the Nairobi and Coastal counties (including Mombasa) 
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lockdown (7 June 2020), and the resumption of international air travel (1 August 2020). 

A single-wave epidemic in Kenya peaking within 100 to 200 days after SARS-CoV-2 

introduction into the country was initially predicted, based on assumptions that included a 

single population group and the development of immunity to reinfection (3–6). However, 

second and third waves occurred in mid-November 2020 and in March 2021, respectively. 

Multiple waves of COVID-19 incidence in high-income country settings have usually been 

associated with a relaxation of previous restrictions—for example, in the United Kingdom 

(7). More recently, the emergence of new variants has been associated with further waves 

of infection (8). In Kenya, and other countries in Africa, a temporal association between 

relaxation of restrictions and subsequent waves is implausible. Understanding the causation 

of such multiple waves is critical for forecasting hospitalization demand and the likely 

effectiveness of interventions, including vaccination strategy.

There are multiple potential explanations for sequential wave dynamics in COVID-19 

incidence, which might be acting singly or in concert: social clustering (9), changing 

adherence to measures over time (7), seasonal effects on transmission (10), reopening of 

places of learning (11), lower transmission rates in rural settings leading to later peaks in 

those areas (4), and waning immunity after an infection episode, as well as the introduction 

of new SARS-CoV-2 variants that are more transmissible than previous strains and/or evade 

prior immunity acquired by natural infection (12). The decrease in cases following the 

peak of the first wave occurred at a time of relaxation of social distancing measures in 

Kenya (Fig. 1). Hence, the end of the first wave cannot be explained by the imposition of 

nonpharmaceutical interventions. In this work, we present evidence that the most plausible 

explanation for the pattern of cases and seroprevalence observed in Kenya is a combination 

of differential adherence to measures between sub-populations that we identify with lower 

and higher socioeconomic status (SES) in 2020 followed by a sharp increase in virus 

transmissibility in 2021, consistent with that observed in other countries affected by variants 

of concern, e.g., the United Kingdom (13) and India (14). Previous studies undertaken in 

sub-Saharan Africa at the level of individual country (4) or pan-African exploring the impact 

of climate (15) have not had the opportunity to integrate longitudinal PCR, serology, and 

Google mobility data.

We developed a county-specific, two-SES group, SEIRS-type transmission model, using 

a waning immunity rate derived from recent studies on the protectiveness of a natural 

infection to future reinfection (16–19). Our model includes, for each Kenyan county, (i) a 

SEIRS transmission model predicting new infections on each day, socioeconomic group, and 

county, which accounts for assortativity in infections— that is, the propensity for infected 

individuals to cause more intragroup infections compared to intergroup infections; and (ii) 

an observation model reflecting the data streams: PCR testing (positive and negative results), 

seroprevalence surveys, Google mobility data, and determined COVID-19 deaths. The 

model developed for this study differs from the standard SEIRS model with homogeneous 

mixing, adding the impact of new variants as detected by genomic surveillance and allowing 

the model to fit two socioeconomic groups in counties where this was supported by the data 

streams. We used a hierarchical approach to inferring the underlying epidemic trajectories 

in each of the 47 Kenyan semiautonomous counties by the following three steps: (a) 

grouping counties by similarity over a range of sociological and epidemiological metrics 
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using machine learning; (b) for the 11 counties with a relatively high density of serology 

tests, we jointly inferred epidemiological model parameters for each county, e.g., (i) baseline 

R 0 for the county, (ii) the effect of schools being open on R(t), (iii) the increase in 

transmissibility in February 2021 when B.1.1.7 lineage (Alpha variant) SARS-CoV-2 was 

first detected in Kenya (20), (iv) the fraction of the population in the higher SES group in 

each county and their assortative mixing rate, and (v) the fraction of cases reported for the 

county using Hamiltonian Markov chain Monte Carlo (21) with mildly informative priors; 

and (c) we inferred model parameters for the remaining 36 counties using informative priors 

for reporting fractions derived from a synthesis of the posterior distributions of counties 

grouped as similar to that county (see supplementary materials for details). We conducted 

formal model selection to compare one, two, and three SES group models, finding that the 

one-group model was an inadequate fit to the data, and the three-group model was not an 

improvement on the two-group model (see supplementary materials). We also conducted 

sensitivity analysis for different assumptions on waning immunity, finding consistent results 

for a range of scenarios (see supplementary materials).

The two-SES group transmission model was able to capture the timing and intensity of 

all three waves of Kenyan COVID case incidence and the trend of increasing proportion 

seropositive among Kenya National Blood Transfusion Service (KNBTS) donors (Fig. 2). 

We also validated the fitted model by comparing forecasts of seropositivity rates with 

those from data not used to infer model parameters. We used rounds 1 and 2 of the 

seropositivity survey using KNBTS donors for model parameter inference, collected during 

Mayto September 2020. Estimated seroprevalence among the Kenyan population, derived 

from the fitted two-SES group transmission model, was in good agreement with the out-of-

sample round 3 of KNBTS seroprevalence data, collected January to March 2021 (Fig. 2). 

The Nairobi-specific epidemic trajectory inferred in this study agrees with seroprevalence 

estimates from a randomized survey from Nairobi and is congruent with the observation 

that it was public hospitals in Nairobi (favored by lower SES groups) that came under 

pressure in the first wave, whereas the second wave showed increased admission to private 

health facilities (figs. S7 and S8). As well as capturing the past trends of case reporting and 

seropositivity in Kenya, the fitted two-SES group transmission model accurately predicts the 

daily rate of new confirmed COVID-19 cases reported by the Kenyan Ministry of Health for 

the month after the censoring date of the PCR test data used to infer model parameters (Fig. 

2).

The two-SES group transmission model reconciled the apparent paradox between evidence 

of the effectiveness of the rapidly introduced Kenyan measures in reducing mobility out of 

the home among Kenyan smartphone users, which was close to that observed in European 

and North American countries (fig. S1), and that case rates and fatality rates display two 

distinct waves in Kenya in 2020. The model provides an explanation for the end of the 

first wave through the depletion of susceptibles in geographically distinct, largely urban, 

subpopulations of lower SES. In some Kenyan counties (e.g., the urban counties Nairobi 

and Mombasa, and some of the semi-urban counties), we infer that a substantial group 

of people belong to the higher SES group whose mobility is well represented by Google 

smartphone data; a combination of school closures and reduction in mobility (by 44.5%; see 

supplementary materials) reduced the effective reproduction number sufficiently that newly 
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infected people among the higher SES group were on average generating less than one 

secondary infection by April 2020 (Fig. 3). In the counties where the model finds evidence 

for distinct two-group dynamics (fig. S13), the model predicts low rates of intergroup 

infection transmission (posterior mean for the assortativity parameter estimates of 2 to 40 

disassortative infections per 1000 potential infection events). We believe this can be ascribed 

to pandemic-induced changes in social behavior that enhanced intra-SES group infectious 

contacts (such as longer contact durations in families or local communities) and decreased 

inter-SES group infectious contacts as a result of, for example, avoiding public transport 

and cancelling domestic staff visits. The growth rate in cases, and relatively high levels of 

seroprevalence among KNBTS donors, are explained by the rest of the population in the 

lower SES group having R(t) > 1 into May and June 2020 (Fig. 3). The model inferred that 

the reduction in mobility among the lower SES group was substantially less than among the 

higher SES group: The posterior mean estimate for reduction in mobility among the lower 

SES group in Nairobi was 13.8% [confidence interval (CI) 11.3–17.5%)] and in Kenya’s 

second city Mombasa was 18.9% (CI 17.4–20.4%); posterior mean estimates for lower SES 

group mobility reduction across all 47 Kenyan counties had a median of 15.7% [interquartile 

range (IQR) 10.9–19.6%]. We assumed that school closures reduced R(t) for both SES 

groups equally. The inferred reduction in R(t) due to schools closing varied from county to 

county, and the median reduction in R(t) over counties was 13.5% (IQR 4.3–23.7%); the 

Nairobi estimate for school closure effect was 23.8% (CI 16.5–31.6%), and the Mombasa 

estimate for school closure effect was 20.2% (CI 15.2-25.2%) (Fig. 3).

The second wave in Kenya in 2020 was due to the superimposition of two trends: (i) in 

mainly urban areas, a second wave was triggered by the higher SES group returning to 

pre-COVID-19 mobility patterns by early November 2020 (fig. S1) and, therefore, R(t) was 

>1 for the higher SES group (Fig. 3, top and bottom left); and (ii) in more rural areas, 

the inferred size of the higher SES group was small, and R(t) was low but persistently 

>1 for the lower SES group [R(t) ~ 1 to 1.5] until November 2020 (Fig. 3, bottom right, 

and fig. S13; see supplementary materials). Low rates of mobility somewhat shielded the 

higher SES group from infection in the first wave among the lower SES group. Therefore, 

the lower SES group, in cities, suffered two waves in 2020, whereas the higher SES group 

effectively suffered one wave that peaked in late 2020 (Fig. 4). The overall detection rate 

was determined in part by the number of PCR tests performed each day, and this rate 

dropped in September 2020 (fig. S4). A consequence of the drop in the testing rate was that 

the case reporting shows a much sharper delineation between the first two waves (Fig. 2) 

than the underlying inferred infection rates (Fig. 4), which reveal only a moderate dip in 

infections in August–September 2020. By accounting for the delay between infection and 

COVID-19 fatality, and fitting SES group-specific infection-fatality-detection ratios (IFR 

detection; see materials and methods and supplementary materials) to each county, we found 

reasonable agreement between the predicted and observed timings of peak fatality rates in 

Kenya (Fig. 4). Overall, our model-based estimate was that only 11% of the total Kenyan 

population was in the higher SES group, whose mobility was well-described by Google 

mobility data, with the highest concentration of higher SES group individuals in the two 

main cities: 43.4% of the Nairobi population (CI 35.4–49.2%) and 40.3% of the Mombasa 

population (CI 35.0–45.4%). Additionally, we estimate that infections among the higher 
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SES group were substantially more likely to be detected than among the lower SES group: 

The odds ratio for Nairobi for detection per case between higher and lower SES was 4.5 

(C11.5–17.9), and for Mombasa for detection per case between higher and lower SES was 

4.8 (CI 3.2–6.8). The odds ratio between detection per infection in the two SES groups was 

inferred to be even more extreme across Kenya as a whole, with substantial variation from 

county to county: The median odds ratio estimate over counties was 18.5 (counties estimate 

IQR 2.5–27.9), although most counties had a small number of people in the higher SES 

group.

Fully reopening schools in January 2021 was associated with a slight increase in cases 

and deaths in Kenya, with a peak in January and early February 2021 (Figs. 3 and 4). 

However, school reopening does not explain the third wave in Kenya observed in March 

and April 2021, which was considerably larger than the increase in January and February 

2021. The two-SES group model was not a sufficient explanation for a third wave, neither 

was loss of immunity or any detectable trend in mobility. The first cases of the more 

transmissible Alpha variant B.1.1.7 were identified in Kenya from mid-January 2021 (20). 

We investigated if the data supported an increase in transmissibility per infected person 

starting at the beginning of February 2021, as well as an influx of new exposed individuals 

representing domination of wild-type strains of SARS-CoV-2 by a fitter new variant. In the 

Kenyan urban counties, we found a credible range of increase in transmissibility of 15.0 to 

46.6% [Nairobi 32.5% (CI 18.1–46.6%); Mombasa 22.8% (C115.0-31.2%)], and this was 

reflected in increased transmissibility estimates across Kenyan counties: The median over 

county estimates was 46.1% (IQR 31.6–72.9%). The fitted model predicted that this large 

increase in transmissibility will push the overall exposure to SARS-CoV-2 in Kenya from 

a back-calculated estimate of 53.5% in February 2021 to 78.1% by June 2021 (Fig. 2). 

The rate of seroreversion—that is, the loss of detectable antibodies rather than necessarily 

loss of protective immunity—has been identified as an important quantity for estimating 

population exposure prevalence from serological data (22). Because the serological data 

used for parameter inference was collected within 7 months of the first identified case in 

Kenya, we assumed that seroreversion was negligible over this period. However, assuming 

no future seroreversion led to closer agreement between model back-calculation and round 

3 KNBTS data than assuming a median 1 year between infection and seroreversion (Fig. 

2); that is, our modeling does not support the need to incorporate seroreversion to capture 

the true population exposure over the time scale of a year, unlike for Buss et al. (22). This 

finding highlights that seroreversion rate depends on the serological assay used (23) and 

cannot necessarily be extrapolated between settings. A negligible seroreversion rate may 

be more applicable for the enzyme-linked immunosorbent assay used in Kenya, where the 

cut-offs prioritize specificity over sensitivity (2, 24).

Our modeling exercise provides a credible mechanistic interpretation of the three waves 

of COVID-19 in Kenya. We hypothesize the presence of two SES groups in each county 

and allow the model freedom to fit the relative proportion in each by county, inferred from 

locally collected PCR and serological test data. The model results support the notion of 

two SES groups in urban settings defined by highly assortative mixing (Nairobi, Mombasa, 

and predominantly counties near Nairobi), whereas for most rural counties, mixing was 

inferred to be less assortative and/or effectively all the population is in a single SES 
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group (fig. S13). We invoke two key underlying assumptions. First, a stratified population 

differing in mobility (associated with lower and higher SES), and second, increased 

virus transmissibility compatible with competitive succession of a SARS-CoV-2 variant of 

concern in wave 3. A key simplifying assumption in this modeling study is that we assumed 

that the diversity of behaviors across the population in each Kenyan county can be reduced 

to stratifying into two groups with assortative mixing favoring transmission within group, 

and identifying these groups into lower and higher SES groups on the basis of similarity to 

mobility trends among smartphone users. We believe that this is a well-evidenced hypothesis 

for Kenya. Marked social and economic structuring has been described in Kenya; 36% of the 

population live below the national poverty line (25), and 55% live in informal settlements 

(26). Further, 83% of Kenya’s labor market is informal, characterized by unstable and 

unpredictable daily wages (27). Lower socioeconomic groups have been identified as 

vulnerable to SARS-CoV-2 in the Global South because of residence in informal settlements 

at high population density, reduced access to sanitation, and dependence on informal 

employment requiring daily mobility (28,29). By contrast, the higher SES group with job 

security can work from home, socially distance, and readily access water and sanitation, 

thereby decreasing transmission. In Kenya, Google mobility data from smartphone users 

indicate a sharp decline in movement to settings outside of the home (fig. S1). We found 

that the two-SES group model used in this study was able to capture pattern of cases 

and seroprevalence in Kenya over the first three waves, despite radically simplifying the 

underlying social structure.

We predict the proportion of the Kenyan population exposed to SARS-CoV-2 to be greater 

than 75% by the beginning of June 2021 (Fig. 2), corresponding to around 39 million 

people. However, fewer than 4000 confirmed COVID-19 deaths and 180,000 confirmed 

SARS-CoV-2 infections have been identified as of 1 June 2021. We found that people 

among the lower SES group were likely to be even more undersampled than people among 

the upper SES group, as well as identifying wide regional variation in the detection rate. 

These results emphasize the necessity of community surveys of SARS-CoV-2 prevalence 

and exposure, and an investigation into the underreporting of mortality and severe disease 

due to COVID-19. Multiple waves have been observed in many other African countries that 

do not appear to be completely explained by the timing of restrictions, and because they also 

have in common similar socioeconomic groupings in urban centers, we speculate that the 

explanations found to be plausible in our model for Kenya may apply more widely.

The high population exposure suggests that a fourth COVID-19 wave in Kenya before the 

end of 2021 would only be likely if (i) a variant arises with substantial further enhancement 

in transmissibility or immune escape, such as the B.1.617.2 Delta variant (30), or (ii) there 

is substantial waning of immunity in those previously exposed. We predict that ~75% 

of the Kenyan population has been exposed to SARS-CoV-2 by June 2021. This will 

mitigate the death rate that might be expected in the future, but taking together (i) the 

markedly increased transmissibility of Delta variant, (ii) the potential for reinfection, and 

(iii) the experience of other countries despite prevalent vaccination, this scenario is entirely 

consistent with a fourth wave in Kenya. We conclude that our analysis, which triangulates 

PCR test, seroprevalence, and mobility and genomic data to develop a coherent explanation 

of the transmission dynamics of COVID-19, provides insight of public health importance in 
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Kenya, including targeting health care capacity and pharmaceutical and nonpharmaceutical 

interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Seven-day moving average of daily positive PCR tests from the Kenyan national linelist 
and a timeline of the main mitigation events applied by the Kenyan government representing 
tightening (down-arrow) and relaxation (up-arrow) of measures.
(a) Curfew from 7 p.m. to 5 a.m.; (b) curfew from 11 p.m. to 4 a.m.; (c) curfew from 10 p.m. 

to 4 a.m.; (d) front-line workers and individuals older than 58 years (~1.2 million doses); 

(e) the region includes Nairobi, Kajiado, Machakos, Kiambu, and Nakuru; (f) this restricted 

movement into and out of the block of counties in (e) but not between these counties; (g) 

curfew from 8 p.m. to 4 a.m.
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Fig. 2. Daily PCR-confirmed COVID-19 cases (top) and weekly serology estimates from KNBTS 
donors with overall attack rate estimates (bottom).
Shown are daily numbers of PCR test positives from the Kenyan national linelist (top; gray 

dots are daily reports used in fitting the model, curves are 7-day moving averages). The 

model prediction for the 7-day moving average of daily case incidence (top; red dashed 

curve, shading shows 3-s intervals) were derived from inference on the county-specific 

linelist PCR data and rounds 1 and 2 of the KNBTS serology survey (bottom; blue dots). 

Predictions before mid-April 2021 are back-calculations using known numbers of PCR 

tests per day, whereas after mid-April 2021, model predictions are forecasts that also 
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estimate the number of PCR tests that will occur per day in each county. We show the 

next month of PCR test positive data, not used in fitting, as a validation of the model’s 

short-term predictive accuracy (top; black dashed curve). Back-calculated model estimates 

of seropositivity (bottom; green solid curve) are shown with round 3 of the KNBTS serology 

survey data (bottom; red dots, not used in model inference). We also show back-calculated 

estimates of seropositivity under the assumption that median time to seroreversion (loss 

of detectable antibodies rather than loss of immunity) from infection was 1 year. Model 

estimates of overall Kenyan seropositivity are adjusted from county-specific estimates by 

weighting by number of serology tests in each county (over KNBTS rounds 1 and 2). The 

overall estimated Kenyan attack rate (population exposure) is shown as unweighted (bottom; 

red curve).
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Fig. 3. Effective reproduction number over time [R(t)] for lower and higher SES groups in four 
representative counties.
These include Nairobi (top left), Mombasa (top right), Kiambu (bottom left), and Mandera 

(bottom right). Nairobi and Mombasa are Kenya’s two largest cities and form fully urban 

counties; Mandera county has a largely rural population and is remote from the main 

urban conurbations; Kiambu county borders Nairobi and has a ~60% urban population. 

The transmission model infers the proportion of the population in each SES group in each 

county. The highest proportion of higher SES group individuals are inferred to be in Nairobi 

and Mombasa out of all counties, whereas for Mandera county, very close to all individuals 

are inferred as being in the lower SES group, and the model effectively defaults to one 

group SEIRS transmission. The model inference for R(t) in Kiambu represents a county 

between these two extremes. In each county, the first discontinuous increase in R(t) is due to 

schools reopening, and the second is due to more transmissible variants becoming dominant 

in transmission.
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Fig. 4. Model-inferred underlying true incidence rates by SES group relative to the whole 
Kenyan population size (top) and reported PCR-confirmed deaths due to COVID-19 disease 
(bottom).
The size of the upper SES group was estimated to be 11% of the Kenyan population, 

explaining the lower absolute rate of incidence (red curve) compared to the lower SES 

group (blue curve). We inferred that the lower SES group has experienced three waves of 

SARS-CoV-2 transmission, whereas the upper SES group has experienced two. The model 

fit for 7-day moving average (green dashed curve, with shading as 95% prediction intervals) 
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is shown against the 7-day moving average for deaths reported in the Kenyan linelist (black 

curve). Cumulative observed and fitted deaths are shown in the top-right inset.
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