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Abstract

The pan- genome is defined as the combined set of all genes in the gene pool of a species. Pan- genome analyses have been very 
useful in helping to understand different evolutionary dynamics of bacterial species: an open pan- genome often indicates a free- living 
lifestyle with metabolic versatility, while closed pan- genomes are linked to host- restricted, ecologically specialized bacteria. A detailed 
understanding of the species pan- genome has also been instrumental in tracking the phylodynamics of emerging drug resistance 
mechanisms and drug- resistant pathogens. However, current approaches to analyse a species’ pan- genome do not take the species 
population structure into account, nor do they account for the uneven sampling of different lineages, as is commonplace due to over- 
sampling of clinically relevant representatives. Here we present the application of a population structure- aware approach for classify-
ing genes in a pan- genome based on within- species distribution. We demonstrate our approach on a collection of 7500 Escherichia coli 
genomes, one of the most- studied bacterial species and used as a model for an open pan- genome. We reveal clearly distinct groups of 
genes, clustered by different underlying evolutionary dynamics, and provide a more biologically informed and accurate description of 
the species’ pan- genome.

DATA SUMMARY
The authors confirm all supporting data, code and protocols have 
been provided within the article or through supplementary data 
files. All analyses were performed using custom R and Python 
scripts, available at https:// github. com/ ghoresh11/ twilight/ tree/ 
master/ manuscript_ scripts.

INTRODUCTION
Advances in whole genome sequencing in the last two decades 
and the ability to sequence multiple isolates of the same species 
have revealed that, often, only a small fraction of genes are shared 
by all species members. Conversely, a substantial proportion of 
the combined pool of genes within a species – the pan- genome 
– consists of highly mobile genetic material with heterogeneous 
distributions across its members [1].

In a traditional pan- genome analysis, genes are divided into 
core genes, describing those present across the majority of the 
members of the species, and accessory genes, which are only 
present in some. The accessory genome is often further subdi-
vided into rare and intermediate genes based on their frequency 
in the dataset. However, measuring gene frequencies across the 
whole dataset does not account for the population structure 
or biased sampling of the genomes in the dataset. Such simple 
classification can be particularly problematic when the popula-
tion of interest consists of multiple deep- branching lineages 
that are unevenly represented in the collection. For example, if 
50 % of a genome collection is represented by one lineage that 
was heavily over- sampled compared to other lineages, and all 
isolates of that lineage have a particular gene which is absent 
in all other lineages, this gene will simply be defined as an 
‘intermediate’ gene. Based on these definitions alone, it would 
not be differentiated from a gene that is found in all isolates of 

OPEN

ACCESS

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://creativecommons.org/licenses/by/4.0/deed.ast
https://github.com/ghoresh11/twilight/tree/master/manuscript_scripts
https://github.com/ghoresh11/twilight/tree/master/manuscript_scripts


2

Horesh et al., Microbial Genomics 2021;7:000670

all the other lineages, or evenly distributed across the different 
lineages comprising 50 % of the total isolates. Notably, ecological 
adaptation of a globally disseminated lineage may be driven by 
a large set of genes found in all isolates of that lineage, which 
are rare outside the lineage [2]. Hence, the biological reality 
requires more refined concepts when classifying genes in the 
pan- genomic context.

Here, we introduce a population structure- aware approach to 
classify the genes of a pan- genome beyond accessory and core 
categories, which accounts for the relative representation of the 
lineages in the population being studied. This refined classification 
allows us to better describe the pan- genome and its underlying 
evolutionary dynamics in organisms with complex population 
structures. Recent hypotheses on the evolution of the pan- genome 
have highlighted that different evolutionary mechanisms are 
required to explain the observed patterns of large open pan- 
genomes [3–6]. Several competing and non- exclusive hypotheses 
have been proposed, including the selectively neutral spread of 
accessory genes – including, but not limited to highly mobile 
selfish elements [3, 4], or indeed adaptive evolution [6]. Here we 
illustrate how an analysis of the patterns of within- species gene 
distribution informed by population structure can provide a more 
precise view of genes following different evolutionary trajectories. 
We demonstrate this on a compiled dataset of over 7500 carefully 
curated Escherichia coli genomes: one of the most well- studied 
bacterial species and used frequently as a model to illustrate an 
open pan- genome [7–9].

METHODS
Gene classification into ‘distribution classes’
Each gene cluster was assigned to a distribution class based on its 
frequency within genomes belonging to the same phylogenetic 
clusters, termed lineages (Fig. 1a). Within each lineage, a gene 
was defined as ‘core’ if it was present in more than 95 % of the 
isolates of that lineage, ‘intermediate’ if present in 15–95 % of 
isolates of the lineage, and ‘rare’ if present in up to 15 % of the 
isolates of the lineage (Fig. 1b). Three main distribution classes, 
‘Core’, ‘Intermediate’ and ‘Rare’, contained all the genes that were 
always observed as being ‘core’, ‘intermediate’ or ‘rare’, respectively, 
across the lineages in which they were present (Fig. 1c). ‘Collec-
tion core’, ‘collection intermediate’ and ‘collection rare’ genes were 
present and in their respective frequencies across all the lineages 
of the collection. ‘Multi- lineage core’, ‘multi- lineage intermediate’ 
and ‘multi- lineage rare’ genes were present in multiple lineages in 
their respective frequencies. ‘Lineage specific core’, ‘lineage specific 
intermediate’ and ‘lineage specific rare’ genes were present only in 
one lineage in their respective frequencies. The final main distri-
bution class, or ‘varied’ genes, included all the genes which were 
observed as either a combination of ‘core’, ‘intermediate’ or ‘rare’ 
across multiple lineages. All the possible combinations are ‘core, 
intermediate and rare’, ‘core and intermediate’, ‘core and rare’, and 
‘intermediate and rare’ (Fig. 1c). The classification of all genes in 
the E. coli collection is available in Table S1 (available in the online 
version of this article).

Measuring the genetic composition of each lineage
The number of genes from each of the 13 distribution classes 
was counted in each of the 7693 E. coli genomes in the collec-
tion. The median number of genes from each distribution class 
was calculated per lineage. The genetic composition of a typical 
E. coli genome was measured as the median across the medians 
calculated per lineage for each distribution class.

Gene-tree species-tree reconciliation
GeneRax (v1.2.2) was used to infer the probability of a hori-
zontal gene transfer event for each gene using species- tree 
gene- tree reconciliation [10]. A multiple sequence alignment 
of all the representative sequences of each gene cluster which 
had at least four members (available as file F6 in Horesh et 
al. [11]) was performed using mafft (v7.310) [12]. An initial 
tree for each gene cluster, used as the input for GeneRax, was 
reconstructed using iqtree (v1.6.10) with SH- like approximate 
likelihood ratio test (SH- aLRT) with 1000 replicates [13] The 
reconciliation was performed against the species tree provided 
in Horesh et al. [11] with strategy SPR, reconciliation model 
UndatedDTL and substitution model GTR+G. The probability 
of transfer was inferred by GeneRax for each of the gene clusters 
when reconciled against the species tree.

Counting gain events
The phylogenetic tree representing the 47 lineages was down-
loaded from Horesh et al. [11]. The phylogenetic distance 
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between every two lineages was measured as the patristic 
distance using the function ‘cophenetic’ from the R package 
ape (v5.3) [14]. The patristic distance is the sum of the total 
distance between two leaves of the tree, which represent the 
lineages, and hence summarizes the total genetic change in 
the core gene alignment represented in the tree.

The leaves or tips of the phylogenetic tree represent the 
47 lineages. Presence of a gene in a lineage (tree leaf) 
was defined as the gene being observed at least once in 
at least one isolate of the lineage, i.e. the frequency in the 
lineage was ignored. The presence or absence of a gene in 
an ancestral node, i.e. an internal node, was determined 
using accelerated transformation (ACCTRAN) reconstruc-
tion implemented in R [15]. ACCTRAN is a maximum 

parsimony- based approach which minimizes the number of 
transition events on the tree (from absence to presence and 
vice versa) while preferring changes along tree branches 
closer to the root of the tree.

Gain and loss events were counted based on the results of 
the ancestral state reconstruction. If there was a change 
from absence to presence from an ancestor to a child along 
a branch in the phylogeny, a gain event was counted. If 
there was a change from presence to absence a loss event 
was counted. The total number of gain and loss events was 
counted for each gene as well as on each branch for all 
distribution classes. ggtree (v1.16.6) was used for phyloge-
netic visualization [16].

Fig. 1. Twilight pan- genome analysis workflow. (a) A collection of genomes are grouped into lineages of closely related isolates. (b) Each 
gene is classified as core, intermediate or rare in each lineage, depending on its frequency within the lineage (as defined in the grey box). 
(c) The classification of the entire gene pool across all lineages consists of a total of 13 distribution classes. These include the number 
of lineages in which a gene is present (all lineages, multiple lineages or a single lineage), and the combination of frequency assignments 
of the gene in those lineages (core, intermediate or rare).
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Measuring gene sharing between lineages
The number of genes shared from each distribution class 
between every two lineages was counted using custom R 
and Python scripts. To identify whether some lineages 
shared more genes than expected, we corrected for gene 
sharing driven by the phylogeny or by a large sample size. 
To correct for phylogenetically driven gene sharing, for 
each lineage we only counted the number of genes shared 
with lineages which had a patristic distance of 0.15 or more 
from it on the species tree. This threshold was chosen based 
on the observation that isolates from the same phylogroup 
had a patristic distance lower than 0.15 (Fig. 2). To correct 
for the lineage size, we subsampled each lineage to a size 
of 20 genomes, so that all lineages had the same size, and 
repeated this process 40 times. We then measured the mean 
number of shared ‘intermediate and rare’ genes across the 
40 repeats (Fig. S1). The new counts no longer correlated 
with the size of the lineages (Fig. S1).

Functional assignment of COG categories
The predicted function and COG (Clusters of Orthologous 
Groups) category of each gene cluster were assigned using 
eggNOG- mapper (1.0.3) on the representative sequence 
of each of the gene clusters [17]. Diamond was used for a 
fast local protein alignment of the representative sequences 
against the eggNOG protein database (implemented 
within eggNOG- mapper). The COG classification scheme 
comprises 22 COG categories which are broadly divided 
into functions relating to cellular processes and signalling, 
information storage and processing, metabolism, and genes 
which are poorly categorized [18]. When no match was 
found in the eggNOG database, the genes were marked as 
‘?’ in their COG category.

Sub- sentences of all lengths were extracted from each of 
the functional predictions for each gene cluster using the 
function ‘combinations’ from the Python package ‘itertools’, 
while ignoring common words. For instance, for the func-
tional prediction ‘atp- binding component of a transport 
system’, the words ‘of ’, ‘a’ and ‘system’ were ignored, and the 
extracted sub- sentences were ‘atp- binding component’, ‘atp- 
binding component transport’ and ‘component transport’. 
The number of times each sub- sentence appeared in each 
distribution class was counted. Overlapping sub- sentences 
which only had a difference of 3 or smaller in their total 
counts per distribution class were merged in the final count 
to include only the longer sub- sentence. For instance, if 
‘atp- binding component transport’ was counted 100 times 
and ‘atp- binding component’ was counted 103 times, the 
final count would only include the longer sub- sentence ‘atp- 
binding component transport’ with a count of 100.

Code availability
The script used to classify the genes into distribution classes and 
generate the figures presented in this study is available at https:// 
github. com/ ghoresh11/ twilight. The script can be applied on any 
other dataset, given a gene presence absence file as generated by 
pan- genome analysis tools and a grouping of each genome into a 
lineage. ggplot2 was used for all plotting [19].

RESULTS
Case study: population structure-aware pan-
genome analysis of a collection of 7500 E. coli 
genomes
To demonstrate how one can refine a pan- genome description 
while accounting for population structure, we used a recently 

Fig. 2. Relationship between sharing of ‘intermediate and rare’ genes, phylogenetic distance and lineage size. Relationship between 
the number of ‘intermediate and rare’ genes shared between every two lineages and the size of the smaller lineage of the two being 
compared (a) or the phylogenetic distance between them (b). Pairwise comparisons were considered between every two of the 47 
lineages.

https://github.com/ghoresh11/twilight
https://github.com/ghoresh11/twilight
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published genome collection that includes over 7500 E. coli 
and Shigella sp. genomes isolated from human hosts, referred 
to as the Horesh collection [11]. Shigellae are in fact special-
ized pathotypes of E. coli and were thus included [20, 21]. 
Briefly, the genomes in the Horesh collection were collated 
from publications and other public resources, representing 
the known diversity of the clinical E. coli isolate genomes 
available in public databases, and underwent quality- control 
steps to ensure a final set of high- quality genomes. The 
genomes were grouped into lineages of closely related isolates 
(Fig. 1a) using a whole genome- based clustering method that 
was designed to determine bacterial within- species popula-
tion structure [22]. In total, the collection featured 1158 line-
ages representing the E. coli species (as described in Horesh 
et al. [11]). We restricted our population- structure aware 
pan- genome analysis to the largest 47 lineages, which repre-
sented the majority of this dataset (7692/10 158 genomes). 
Importantly regarding the demonstration of our approach, 
70 % (5349/7692) of all genomes in this collection belong to 
six highly overrepresented lineages, further highlighting the 
inherent biases that need to be overcome in such datasets. 
The pan- genome of the Horesh collection was classified into 
50 039 homologous gene clusters (as described by Horesh 
[11]).

The classical definition of the core genome is 
heavily influenced by the underlying biases of the 
studied datasets
We defined the distribution for each gene cluster in the E. coli 
and Shigella genome dataset by considering their frequency 
in each of the above- defined lineages independently. A gene 
cluster can thus be core, intermediate, rare or absent based 
on its frequency within each respective lineage (Fig. 1a, b) 
but can have varied distributions in different lineages (Fig. 1c, 
e.g. core in some and rare in other lineages). We summarized 
the combination of gene cluster occurrence patterns across 
lineages into a set of 13 species- wide distribution patterns, 
which we propose as novel categories for a more appropriate 
and complete description of datasets with complex under-
lying population structure (Fig. 1c). Compared to traditional 
pan- genome analyses, the ‘collection core’ genes represent the 
classical definition of the core genome, whereas we consider 
the accessory genome as subdivided into 12 new classes, 
informed by the population structure, whose distribution 
reflects several different evolutionary dynamics.

Fig. 3(a) illustrates the new distribution classes, based on the 
number of lineages in which they were observed and their 
mean frequency within those lineages. Only the top right corner 
represents the traditional set of core genes. The rest of the panel is 
what is usually summarized as the accessory genome; the colours 
describe the underlying distribution classes. The plot shows the 
continuity of gene frequencies across the entire collection, with 
genes present across almost the entire distribution frequency 
spectrum; this information is lost by using the traditional binary 
approach and highlights the increased richness of information 
that can be obtained and explored using these 13 categories. In 
the case of E. coli, most gene clusters in the pan- genome sit at the 

extreme ends of the matrix, as described below and in Figs 3(a), 
S2 and S3.

Within this expanded classification, ‘collection core genes’ 
are equivalent to the traditional classification of core 
(assuming a threshold of  ≥95 % of the genomes in the 
collection encoding for a gene for it to be defined as core). 
In this analysis, the collection core consists of 1426 gene 
clusters, representing 3 % of the total number of gene clus-
ters comprising the E. coli pan- genome (1426/50 039) and 
30 % of the total number of genes in a typical E. coli genome 
(defined as the weighted median across the 47 lineages, see 
Methods, Fig. 3b, c, Table S1).

An additional 1532 gene clusters (3 % of the pan- genome) 
are now defined as multi- lineage core: that is, they are 
present in ≥95 % of isolates per lineage in multiple (but 
not all) lineages (2–46 lineages; Fig.  3b). Another 2040 
genes (4 % of all genes) were core to only a single lineage 
(‘lineage- specific core’; Fig. 3b). Both classes would have 
been assigned to the accessory genome following the clas-
sical definition of the pan- genome, as genes that are core 
to lineages with low representation in the dataset would 
have been categorized as rare genes. Importantly, these two 
additional distribution classes allow us to capture more 
recent acquisition or loss events that have remained fixed 
in a respective lineage or lineages.

The majority of rare and intermediate genes are 
lineage-specific
The majority of the E. coli gene clusters were classified as 
‘rare genes’ (Fig. 3b, defined as present in <15 % of isolates 
of a lineage) in one or multiple lineages within the dataset. 
In total, 63 % (34 624/55 039) of the E. coli pan- genome was 
classified as rare, with 67 % of all rare genes being specific 
to a single lineage (23 175/34 624; Fig. 3b). In relation to a 
single E. coli genome, these genes only form 0.1 % of a typical 
genome (Fig. 3c).

Intermediate frequency gene clusters, by contrast, formed 
only 4 % (2685/55 039) of the entire gene pool; however, 
similar to the rare gene clusters, 86 % of intermediate gene 
clusters (2329/2685) were only observed in a single lineage 
(‘lineage- specific intermediate’). Rare and intermediate 
genes observed in multiple lineages were most commonly 
observed in up to four lineages (‘multi- lineage rare’ and 
‘multi- lineage intermediate’, respectively) (Figs 3c and S3). 
We did not observe any rare or intermediate genes present 
across more than 30 lineages, and there were no ‘collec-
tion rare’ or ‘collection intermediate’ genes in this dataset 
(Figs 1a, 3a, b and S3).

A fifth of the pan-genome consists of genes 
observed in different frequencies across the 
lineages
‘Varied genes’ were defined as those observed in several 
lineages, but at different frequencies within the respective 
lineages. To summarize all of these observations, genes were 
categorized as ‘core and intermediate’, ‘core, intermediate 
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and rare’, ‘core and rare’, or ‘intermediate and rare’ depending 
on the combination of frequencies in which they appeared 
(Fig. 1c). For example, a core and intermediate gene cluster 
might be core in two lineages, and intermediate in one, 
whilst a gene core to one lineage but rare in another would 
be classed as a ‘core and rare’ gene (Fig. 1c). These repre-
sented 23 % of the pan- genome (12 732/55 039) (Fig. 3b) 
and 57 % of all genes in a typical E. coli genome (Fig. 3c). 
In a typical E. coli genome, ‘core and intermediate’ genes 
were commonly observed in more lineages and in higher 
frequencies within those lineages and represented 38 % of 
the genes (Figs 3a, c and S3). On the other hand, the group 

of ‘intermediate and rare’ genes had a lower frequency and 
were observed in fewer lineages (Figs 3a and S3).

Low-frequency genes are four times more likely 
to have been horizontally transferred than high-
frequency genes
As the pan- genome in any collection represents a snapshot 
of the gene pool at the time of sampling, our refined view of 
the different distribution classes may be used to infer how 
the genes are gained and lost and can indicate a gene’s future 
trajectory within a population. For instance, genes that are 
self- mobile or carried as cargo on mobile genetic elements 

Fig. 3. Population- structure aware pan- genome of E. coli. (a) Hexagonal binning of all genes of the E. coli pan- genome, presented as the 
number of lineages in which each gene was observed (x- axis), against the mean frequency across the lineages containing it (y- axis). 
Each hexagon is coloured by the most common distribution class on the panel (see colour key). The density of points in the figure is 
present in Fig. S2. (b) Number of gene clusters of the E. coli pan- genome from each of the novel distribution classes. (c) The relative 
abundance and gene count of each of the distribution classes in a typical E. coli genome in the collection. Only the collection core genes 
represent the traditional set of core genes; the rest represent what would usually all be summarized as the accessory genome.
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will have a markedly different pattern of distribution relative 
to genes that may be in the process of being selectively lost in 
any particular lineage.

To assess whether genes from the different distribution 
classes showed varying evidence of levels of mobility and 
estimate the probability of genes having been horizontally 
transferred, we applied a species- tree gene- tree reconcilia-
tion method [10] to each gene cluster of the pan- genome. 
As expected, higher frequency genes (Fig. 3b), i.e. those 
present in the ‘collection core’, ‘core and intermediate’, and 
‘multi- lineage core’ gene sets, were estimated to have the 
lowest probabilities of having been horizontally transferred 
(median 0.12, 0.13 and 0.1, respectively) (Figs 4a and S4). 
Conversely, the lower frequency gene classes, i.e. ‘multi- 
lineage rare’, ‘multi- lineage intermediate’, ‘intermediate 
and rare’, and ‘core, intermediate and rare’ gene sets, were 
estimated to be up to four times more likely to have been 
horizontally transferred than the high- frequency genes 
(median probabilities of 0.48, 0.46, 0.44 and 0.31, respec-
tively, Fig. S4). Consistent with this, by counting the total 
number of gene gain events predicted to have occurred on 

each branch using ancestral state- reconstruction, multi- 
lineage core gene gains most commonly occurred along 
the internal branches (Fig. 4b) whereas ‘intermediate and 
rare’ genes were predominantly gained at the branch tips 
(Fig. 4c).

Of the multi- lineage core genes, 54 % could be assigned as 
basic cellular processes such as metabolism, information 
storage and processing, and cell signalling (Fig. S5). On 
the other hand, 73 % of ‘intermediate and rare’ genes were 
either assigned to a poorly characterized function (often 
associated with genetic mobility) or of unknown function 
(Fig. S6).

Detection of shared horizontally transferred 
genes between lineages is strongly dependent on 
unbiased sampling
We observed that the number of ‘intermediate and rare’ 
genes shared between every two lineages was positively 
correlated with the size of the two lineages being compared, 
with larger lineages sharing more mobile genes (Fig. 2a, log 

Fig. 4. Different evolutionary dynamics of genes within the accessory genome. (a) Inferred probability of transfer using species- tree 
gene- tree reconciliation for the entire accessory genome (i.e. all 12 distribution classes which make up the accessory genome), only 
the ‘multi- lineage core’ genes, and only ‘intermediate and rare’ genes (Wilcoxon rank sum test, ***P<0.001). (b,c) Number of gain events 
estimated to have occurred on each branch using ancestral state reconstruction when considering the ‘multi- lineage core’ genes (b) or 
all the ‘intermediate and rare’ genes (c). Darker colours indicate that more gain events were estimated to have occurred on a branch.
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linear regression, R2=0.45, P<2.2e-16). By contrast, we did 
not observe a relationship between the number of ‘inter-
mediate and rare’ genes shared between every two lineages 
and their phylogenetic distance (Fig. 2b; linear regression, 
R2=0.005, P=0.01). Using our population- structure aware 
approach to measure sharing of the genes belonging to the 
different distribution classes suggests a lack of a barrier to 
gene flow between lineages. That said, our analysis highlights 
the need to increase sampling of under- studied lineages to 
overcome sampling- related biases and truly understand the 
level of horizontal transfer of genes between them.

Novel distribution classes can highlight lineages 
with evolutionary trajectories unusual for the 
species
We corrected the counts of shared genes due to the bias led 
by the size of the lineages and any sharing of genes driven 
by phylogenetic relatedness by repeated subsampling of 
the lineages (see Methods, Fig. S1). This revealed that two 
lineages (12 and 40) tended to share more ‘intermediate and 
rare’ genes than expected compared to other lineages in the 
collection [pairwise Wilcoxon rank sum test, P<0.001, false 
discovery rate (FDR) corrected, Figs 5a and S7]. Genomes in 
lineages 12 and 40, however, are smaller than those in other 
lineages (pairwise Wilcoxon rank sum test, P<0.001, FDR 
corrected, Fig. 5b), and the mean number of lineage- specific 
rare genes in a single genome was 32 and 30 genes, respec-
tively, compared to five in a typical E. coli genome (pairwise 
Wilcoxon rank sum test, P<0.001, FDR corrected; Figs 3c, 
5c and S8). Overall, the relative fraction of lineage- specific 
rare genes in the genomes of these lineages was seven times 
higher relative to the median fraction in the entire collection 
(median fraction in collection=0.001; median fraction in 

lineages 12 and 40: 0.007; Fig. 3c). Similar to the other low- 
frequency genes, the ‘lineage- specific rare’ genes were also 
most commonly predicted to be phage- derived or otherwise 
had other annotations related to genetic mobility (Fig. S5). 
Exploring these ‘outliers’ can provide insights into adaptive 
processes used by certain lineages but not others.

DISCUSSION
To date, the existence of complex population structure 
and diverse lineages in bacterial populations has not been 
taken into account in pan- genome analyses. We introduce a 
population- structure aware classification of the pan- genome 
as an extended set of 13 classes. Our study reveals distinctive 
patterns in the evolutionary dynamics of these gene classes, 
with differences in the relative importance of these gene 
classes between lineages within E. coli. Our approach can 
be further applied to other bacterial species of public health 
interest to provide insight into the evolutionary dynamics of 
genes within such species.

Subcategorizing the genes of the accessory genome allowed 
us to distinguish the evolutionary dynamics of different 
gene classes within the accessory genome. Grouping all 
the genes of the accessory genome together showed a large 
spread of probabilities of genes being horizontally trans-
ferred. Our refined approach showed that low- frequency 
genes transfer more frequently than high- frequency genes. 
Importantly, the study of outliers, which disagree with the 
general trend of each of the distribution classes, can reveal 
gene- specific evolutionary dynamics, including adaptive 
processes. For instance, multi- lineage core genes estimated 
to have high rates of transfer may represent genes that were 

Fig. 5. Redefining the pan- genome reveals key insights into particular lineages. (a) Number of shared mobile genes per isolate, for 
isolates belonging to lineage 12, lineage 40 or all other lineages. Counts were corrected for the dependency on the lineage size by 
measuring gene sharing across repeated subsampling of the lineages, and were corrected for gene sharing driven by phylogenetic 
relatedness by comparing lineages only from different phylogroups (pairwise Wilcoxon rank sum test, FDR corrected, *P<0.05, **P<0.01, 
***P<0.001). (b) Genome length of each isolate, for isolates belonging to lineage 12, lineage 40 and all other lineages (pairwise Wilcoxon 
rank sum test, FDR corrected, *P<0.05, **P<0.01, ***P<0.001). (c) Number of ‘lineage specific rare’ genes observed in each isolate, for 
isolates belonging to lineage 12, lineage 40 and all other lineages (pairwise Wilcoxon rank sum test, FDR corrected, *P<0.05, **P<0.01, 
***P<0.001).
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acquired and fixed independently on multiple occasions 
and could be cases of convergent evolution and adaptation 
to similar niches. While many of our observations were 
already assumed, our more nuanced approach enables 
the user to elegantly explore these hypotheses and further 
predict defining properties of lineages.

By expanding the number of distribution classes of the 
accessory genome relative to traditional approaches, we 
were able to observe a relationship between the number of 
rare genes per genome and high levels of sharing of hori-
zontally transferred genes in two lineages, 12 and 40. This 
relationship has biological implications, as it suggests that 
the higher levels of gene sharing are driven by an increased 
ability to gain mobile genes in each genome for isolates 
belonging to these lineages, or an inability to prevent 
invasion by foreign selfish elements. In total, 78 % of the 
isolates from lineage 12 are of sequence type (ST) 10 and 
43 % of the isolates in lineage 40 are from ST23. ST10 and 
ST23 are ubiquitous as they have been described as both 
commensal and pathogenic, multidrug- resistant, as well as 
isolated from human and animal sources [23, 24]. These 
properties have labelled these lineages as generalists and as 
potential facilitators of gene movement in the population 
[25]. Here we showed that these differences can be identi-
fied and exemplified through more refined analysis of the 
pan- genome of the entire dataset, as well as within each 
lineage separately. In doing so, we can also identify lineages 
that have a greater propensity as vectors for facilitating gene 
movement. Our observations are just the tip of the iceberg 
and future studies could further explore the biological 
differences underpinned by the genetic traits exhibited by 
different lineages.

It is clear that as available genomic data grow, and our 
understanding of the population structure becomes richer, 
a population structure- aware approach to analysing the 
gene frequency distribution is necessary to overcome 
several biases inherent in large datasets consisting of vari-
ably sampled populations, as these biases can overshadow 
the true distribution of the genes in a population. For 
example, using a traditional approach, treating all gene 
counts across the entire collection equally, genes that are 
core and specific to a single lineage that has a low represen-
tation or penetrance in the collection could be mistaken for 
rare genes. Identification of these genes is highly important, 
as being core to only a subset of the population suggests that 
they have an evolutionary advantage in a particular genetic 
context or ecological setting [26, 27]. Additionally, genes 
that are core to a subset of the population are particularly 
relevant to investigate further for their potential use in diag-
nostics and epidemiology. Identification of these patterns 
exemplifies the utility of this approach and its applicability 
to a wide range of species.
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