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Abstract

Background: Multidrug-resistant Mycobacterium tuberculosis (Mtb) is a significant global public health threat.
Genotypic resistance prediction from Mtb DNA sequences offers an alternative to laboratory-based drug-
susceptibility testing. User-friendly and accurate resistance prediction tools are needed to enable public health and
clinical practitioners to rapidly diagnose resistance and inform treatment regimens.

Results: We present Translational Genomics platform for Tuberculosis (GenTB), a free and open web-based
application to predict antibiotic resistance from next-generation sequence data. The user can choose between two
potential predictors, a Random Forest (RF) classifier and a Wide and Deep Neural Network (WDNN) to predict
phenotypic resistance to 13 and 10 anti-tuberculosis drugs, respectively. We benchmark GenTB's predictive
performance along with leading TB resistance prediction tools (Mykrobe and TB-Profiler) using a ground truth
dataset of 20,408 isolates with laboratory-based drug susceptibility data. All four tools reliably predicted resistance
to first-line tuberculosis drugs but had varying performance for second-line drugs. The mean sensitivities for GenTB-
RF and GenTB-WDNN across the nine shared drugs were 77.6% (95% Cl 76.6-78.5%) and 75.4% (95% Cl 74.5-76.4%),
respectively, and marginally higher than the sensitivities of TB-Profiler at 74.4% (95% Cl 73.4-75.3%) and Mykrobe at
71.9% (95% ClI 70.9-72.9%). The higher sensitivities were at an expense of < 1.5% lower specificity: Mykrobe 97.6%
(95% Cl 97.5-97.7%), TB-Profiler 96.9% (95% Cl 96.7 to 97.0%), GenTB-WDNN 96.2% (95% Cl 96.0 to 96.4%), and
GenTB-RF 96.1% (95% Cl 96.0 to 96.3%). Averaged across the four tools, genotypic resistance sensitivity was 11%
and 9% lower for isoniazid and rifampicin respectively, on isolates sequenced at low depth (< 10X across 95% of
the genome) emphasizing the need to quality control input sequence data before prediction. We discuss
differences between tools in reporting results to the user including variants underlying the resistance calls and any
novel or indeterminate variants

Conclusions: GenTB is an easy-to-use online tool to rapidly and accurately predict resistance to anti-tuberculosis
drugs. GenTB can be accessed online at https://gentb.hms.harvard.edu, and the source code is available at
https://github.com/farhat-lab/gentb-site.
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Background

Human tuberculosis, a chronic infectious disease caused
by members of the Mycobacterium tuberculosis complex,
is a leading cause of death from a bacterial infectious
agent [1]. The proliferation of multidrug-resistant tuber-
culosis (MDR-TB) is threatening TB prevention and con-
trol activities worldwide [1]. Timely detection of
antimicrobial resistance is vital to guide therapeutic op-
tions and contain transmission. Antimicrobial resistance is
conventionally determined by in vitro drug susceptibility
tests (DST) on solid or liquid antibiotic-containing cul-
ture, which uses drug-specific testing breakpoints (“critical
concentration”) to classify the infecting strain into drug-
susceptible or drug-resistant [2]. Being contingent on
mycobacteria’s slow growth rate, these phenotypic tests
require days to weeks [3, 4]. In contrast, molecular
methods have emerged as rapid resistance prediction al-
ternatives to complement and speed up traditional DST,
leveraging known and reliable genotype-phenotype rela-
tionships between variants in the M. tuberculosis genome
and in vitro drug resistance [5].

Over recent years, whole-genome sequencing (WGS) of
M. tuberculosis has become an affordable tool to provide
genetic information for genotypic resistance prediction
and high-resolution outbreak reconstruction [6]. Large
scale genotype-phenotype assessments have demonstrated
high diagnostic accuracy for clinical use to predict suscep-
tibility to first-line drugs based on WGS [7]. While some
evidence suggests that WGS-based mycobacterial diagnos-
tics is feasible with fast turnaround in a clinical research
setting further validation studies under routine care condi-
tions are warranted [3]. Following these results, public
health authorities have begun to discontinue phenotypic
testing when pan susceptibility is predicted from the geno-
type, a step with considerable cost and time benefits [8].
Start-to-end applications which analyze sequencing data
to predict resistance phenotypes and are accessible to
non-bioinformatic experts are required as WGS based
analyses become part of the standardized diagnostic
process in clinical laboratories. A range of published tools
available for command-line [9, 10] or web-based/desktop
use [11-13] or both [14, 15] exists. These applications
vary in quality control and sequence preprocessing steps
and rely on detecting pre-defined resistance-conferring
mutations such as single nucleotide polymorphisms
(SNPs) or small insertions/deletions (indels) in the WGS
data to predict the resistance phenotype. They also vary in
the type of information fed back to the user including
error rates and specific variants detected.

Here, we present GenTB (https://gentb.hms.harvard.
edu), an open user-friendly start-to-end application to
predict drug resistance phenotypes to 13 drugs from
WGS data. Resistance prediction is made based on a
previously observed set of variant positions spanning 18
resistance-associated genetic loci and a validated random
forest (RF) classifier [16] as well as a wide and deep
neural network (WDNN) combining a logistic regression
model with a multilayer perceptron [17]. GenTB pro-
vides access to multivariate statistical models of resist-
ance to non-expert users. These models can consider
the simultaneous effect of one or more mutations.
GenTB’s online interface allows users to interactively ex-
plore the sequencing data, prediction results and geo-
graphic distributions. The GenTB analysis pipeline is
also available for command-line use wrapped in Snake-
make [18]. In this study, we benchmark these two classi-
fication models implemented in GenTB along with two
other tools with a command-line interface, TB-profiler
[14], and Mykrobe [15], on a large dataset of > 20k clin-
ical M. tuberculosis isolates (Additional file 1) starting
from raw Illumina sequence data.

Implementation

Backend and website build

GenTB is a bespoke Django website hosted by the Har-
vard Medical School O2 high performance computing
environment and collaboratively developed on GitHub
(https://github.com/farhat-lab/gentb-site) [19]. The web-
site uses off-the-shelf frontend components; Bootstrap
for styling and mobile-friendly delivery, nvd3 for plots
and graphs, resumable.js for robust uploading and sup-
plements these with custom Javascript functionality for
integration. The backend is a Python-Django web service
using a PostgreSQL database which integrates with
Dropbox for file uploading, and python-chore for slurm
cluster job submission and management. GenTB predict
jobs are run by modular programs organized into pipe-
lines. The modularity allows for easy maintenance and
management of dependencies and outputs. Administra-
tion screens allow a non-expert developer design new
program calls and construct new pipelines and integrate
them without redeployment of the website. Further tools
provide error tracking. GenTB predict results are inte-
grated into the PostgreSQL database allowing website
generated plots to be populated quickly. All generated
files for the intermediary pipeline steps are provided for
download by the user. GenTB Map uses a PostGIS data-
base to rapidly link strain mutation and lineage
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information with geo-spatial objects; these are fed into
the leaflet,js display to render strain information to the
user. Map allows users to display strain data groupings
by country, lineage, drug resistance phenotype, or spe-
cific genetic mutation through tabs that can nest the
groups in any order.

Raw read processing

Upon uploading single-end or paired-end FastQ files,
GenTB first validates the input using fastQValidator
(Fig. 1). Low-quality reads and sequencing adapters are
then trimmed with fastp [20]. Kraken is used as a quality
control step to assess the percentage of reads that map
to the M. tuberculosis complex using a custom-built
Kraken database comprising M. tuberculosis complex
reference sequences [21]. Reads not classified as M. tu-
berculosis complex are filtered internally using seqtk
(https://github.com/lh3/seqtk). Paired-read matching is
performed with fastq-pair (https://github.com/linsalrob/
fastq-pair) followed by minimap2 alignment (parame-
ters: -ax sr) of reads to the H37Rv reference genome
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(AL123456) [22]. In the present benchmarking we re-
moved unclassified reads only for those isolates with >
10% non-M. tuberculosis reads. Samtools is used for
sorting the aligned reads, removing duplicates, and
indexing [23]. After read mapping is performed the
coverage of drug resistance genes is confirmed (Add-
itional file 2: Table S1). Sequence read datasets with a
coverage of <95% at 10x or less across these resistance
genes will not be further processed, and an error mes-
sage is displayed to the user. Variants are called with
pilon (parameters: default) [24] to obtain SNPs and
indels in the variant calling format (VCF) requiring that
they have a PASS or Amb filter tags with read allele fre-
quency >0.40. The allele frequency threshold of 0.40
was chosen based on our observation that lower thresh-
olds only marginally increased sensitivity of resistance
prediction with a larger decrease in specificity (see
Farhat et al [16]). Fast-Lineage-Caller then detects the
M. tuberculosis lineage based on five lineage typing
schemes as implemented by Freschi et al. [25]. Subse-
quently, invariant sites in the VCF file are removed, and

Upload raw

q p =
Raw data
| e | FaStQ
|

sequence data

Sequencing

FastQ Validation
FastQValidator

Read trimming

N

Trimmed
> FastQ

Fastp

Taxonomic
classifcation
Kraken

Sorting, duplicate removal, indexing

Alignment SAM

minimap2

\ /—| Check depth

Variant calling
BAM
Pilon

VCF

Samtools

/ Call lineage

Provide single
mutation

i i Generate 3
Variant filtering VAR Ve
Variant annotation prediction
matrix

Upload

VCF file

l

Prediction with
GenTB-RF and GenTB-WDNN

Rifampicin

L

Fig. 1 Schematic overview of the GenTB pipeline. Raw sequence data is quality checked and adapter trimmed before alignment to the H37Rv
reference strain (accession AL123456). Variants are called with Pilon, and variant matrices used by the prediction models are prepared using
custom scripts available on Github. The analysis will fail if quality criteria are not met (blunt end arrows). Numbers represent the three moments
in the pipeline where users can upload their data to predict resistance for their isolate.
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a custom Perl script annotates each variant as frameshift,
synonymous or non-synonymous, stop codon, indel
along with the H37Rv locus tag for each respective gene.
A custom python script generates a matrix file with all
model features/variables in the columns used as input to
the two prediction steps specified below. These scripts
are available from Github [19] and are open source
(AGPLv3 license). All intermediate sequence files are
accessible to the user for download and verification.

For runtime evaluation, we pulled start and end time
of all successfully completed pipeline runs submitted be-
tween April 12th and May 12th and computed average
and median processing times.

Operation

GenTB is a free tool and registration is open to every-
one. User registration is needed for security and to allow
users to run predictions, track intermediary files and re-
sults. Users with low internet bandwidth can use the
Dropbox integration to upload files. Both raw sequence
reads and variants in variant call format (VCF) can be
uploaded for resistance prediction. The required mini-
mum genomic input, i.e., in case of targeted sequencing
data, is specified on the input page and derived from
Farhat et al. [16]. The user can select an option to delete
uploaded source data after prediction or otherwise to
save it for their future access through GenTB. Files are
user-specific and not shared or accessible by others.
Users can submit their genomic data for prediction and
log off and will be sent an email with a link to the results
when they are completed. Their prediction result will be
stored indefinitely unless the user deletes it. Raw se-
quence data and intermediary files will be stored for
three days.

The upload and processing stability of the GenTB online
interface has been tested with up to 300 isolates uploaded
in one batch. For batch processing of larger numbers of
raw sequence data, we provide a command-line GenTB
workflow based on Snakemake v5.20.1 [18] where
dependent software will be sourced via conda [26]. The
Snakemake workflow can be accessed via Github (https://
github.com/farhat-lab/gentb-snakemake) [27]. This re-
pository contains a README file detailing the installation
process and a description of the output files.

Validation sequencing and phenotype data

We collated a database of 20,408 Illumina raw sequence
read datasets for which laboratory-based phenotypic
DST data was available from public sources (Additional
file 1). Sequence data was downloaded from NCBI nu-
cleotide databases. Custom scripts were used to pool the
phenotype data from Patric [28], ReseqTB [29], Zignol
et al. [30], Wollenberg et al. [31], Phelan et al. [32],
Hicks et al. [33], Coll et al. [34], and Dheda et al. [35]
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(scripts available at https://github.com/farhat-lab/
resdata-ng). Phenotypic testing was performed using
WHO endorsed methods (Additional file 2: Table S2).
Sequence data was merged in case of multiple sequen-
cing runs per isolate for downstream processing and re-
sistance prediction. The 20,408 sequence read datasets
are not completely independent of the original training
datasets with a small overlap (< 5%) and we thus do not
expect this to affect the diagnostic accuracy.

Genotypic resistance prediction using two statistical
models

Two multivariate models are used to predict the resist-
ance phenotype, an RF model (GenTB-RF) and a
WDNN (GenTB-WDNN). GenTB-RF was trained on
isolates with available resistance phenotype data and was
validated as described in Farhat et al. [16]. Briefly, 1397
clinical isolates sampled as detailed in Farhat et al. [16]
underwent targeted sequencing at 18 drug resistance loci
using molecular inversion probes and in parallel under-
went binary drug culture-based DST to 13 drugs (Add-
itional file 2: Table S1). One RF was built for each drug
using the randomForest R package (v. 4.6.7) with a sub-
set of the total 992 SNPs/indels observed. Variants of
highest importance for resistance prediction to each
drug were selected by iteratively paring down the model
and measuring loss of performance. Important variants
are shown in Additional file 2: Fig. S1 for isoniazid and
rifampicin.

Pyrazinamide resistance is known to rely on a large
number of individually rare variants. Given the large in-
crease in published M. tuberculosis WGS and linked
DST data as well as the recent implication of novel re-
sistance loci we retrained the pyrazinamide RF here
using a newer version of randomForest R package (v.
4.6.-14) on variants in the genes pncA, panD, clpCl, and
clpP [36]. We used 75% (15,267 isolates) of the dataset
to train the model and 25% (5098 isolates) to validate its
performance. During retraining, we excluded silent vari-
ants, those that occurred only in phenotypically suscep-
tible isolates, and the final model was trained on 393
variants occurring in 3,262 phenotypically pyrazinamide
resistant isolates [25]. We chose the randomForest mtry
variable that yielded the smallest out-of-bag error and
varied the classwt variable to maximize the sum of sensi-
tivity and specificity.

GenTB-WDNN is a multitask logistic regression
model combined with a multilayer perceptron. It has
been previously shown to have equal or higher perform-
ance than the RF architecture when both are trained on
the same data [17]. GenTB-WDNN was trained on
3,601 isolates (sampled as detailed in Chen et al. [17])
for 11 drugs using the Keras 2.2.4 library in Python 3.6
with a TensorFlow 1.8.0 backend. The model uses 222
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features (i.e., SNPs or small insertions/deletions) along
with derived variables (i.e., the number of non-
synonymous SNPs across all resistance-conferring genes)
to predict the resistance phenotype. GenTB-WDNN was
trained on the same genetic loci like GenTB-RF plus the
resistance genes rpsA (plus its promoter region) and eis
(plus its promoter region) (Additional file 2: Table S1).

Performance of GenTB and comparison with other tools
To assess the performance of GenTB for predicting re-
sistance, all isolates were processed through the GenTB
pipeline. We compared the diagnostic accuracy with two
leading resistance prediction tools, TB-profiler 2.8.12
[14] and Mykrobe v0.9.0 [15], that were run with default
parameters. These two tools rely on a curated list of mu-
tations and make a resistance call once they identify one
of these mutations in a sample. The two tools and two
GenTB prediction models’ predictive ability was ob-
tained by comparing the genotypic prediction to the
phenotype data that was considered the ground truth.
We calculated the true positive rate (sensitivity), the true
negative rate (specificity), and area under the receiver
operating curve (AUC for short) to measure test accur-
acy for each drug and tool. We evaluated 1,000 probabil-
ity thresholds per drug to call resistance or susceptibility
for GenTB-RF while using the GenTB-WDNN thresh-
olds described in Chen et al. [17] (Additional file 2: Fig.
S2 and Additional file 2: Fig. S3).

Statistical analyses and data visualization

Prediction files from all tools were parsed and analyzed
in Jupyter Notebooks running Python 3.7 using the
Pandas [37] and JSON libraries. Receiver operating char-
acteristic curves were plotted using the Seaborn library
[38]. The Vioplot package was used for violin plots [39].
We used the randomforestExplainer v0.10.1 package to
visualize important variants in random forest models.
Summary tables were created in R version 3.6.3 [40]
using the packages from the tidyverse [41] and kable
(https://cran.r-project.org/web/packages/kableExtra/
index.html). Sequencing depth in resistance loci was cal-
culated and plotted using Mosdepth version 0.2.9 [42].
Confidence intervals were obtained by bootstrapping,
comparing 5000 predictions per tool and drug on a
resampled dataset.

Comparison of output between tools

We collated the output files and information produced
by the GenTB online application, the webserver of TB-
Profiler (https://tbdr.Ishtm.ac.uk, version 3.0.0), and the
Desktop version of Mykrobe (MacOS app v0.90) using
one example raw sequence dataset (accession
ERR1664619). The tools’ output was compared based on
the following criteria: (1) type and accessibility of output
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data formats; (2) communication of genotypic prediction
results, i.e., binary classification versus probability; (3)
disclosure of the prediction model's error rate; (4) de-
scription of known resistance-conferring variants identi-
fied; (5) reporting any novel mutation not listed in the
resistance variant database; (6) detailed account of de-
tected lineage variants and what lineage typing scheme
was used; and (7) report quality metrics on the input
sequence data.

Questionnaire

We conducted a survey among past GenTB users in
May 2021 to explore how easy the GenTB website is to
use (Additional file 3). The survey was developed using
Google Forms in English and administered on May 3rd
to 166 registered users. The five questionnaire items
assessed how (1) pleasing, (2) how clear, (3) how easy to
use, (4) how stable, and (5) how usable the GenTB tool
is. Responses were recorded on a Likert scale where 0
means “worst” and 10 “best.”

Results

A user-friendly application to analyze M. tuberculosis
sequencing data

GenTB was developed as a free and benchmarked online
application to help public health and clinical practi-
tioners deconvolute the complexity of M. tuberculosis
WGS data. GenTB Predict allows users to predict resist-
ance to 13 anti-TB drugs from a clinical isolate’s raw
[lumina sequence data (FASTQ) obtained from either
WGS or targeted sequencing. Two validated machine
learning models are used to make predictions: GenTB-
RF and GenTB-WDNN (“Implementation” and [16, 17]).
GenTB-RF is the default prediction model. The average
computing time based on 23 runs for the prediction
pipeline was 35 min (SD 4 min, median 35 min, IQR 33
to 38 min). In addition to the GenTB Predict function
that we focus on here, the web-application has add-
itional features for sharing, mapping, and exploring M.
tuberculosis genetic and phenotypic data (Fig. 2). GenTB
Data enables researchers to store, version, and share M.
tuberculosis sequence and phenotype data and is pow-
ered by the Dataverse research data repository [43].
Users can select an option to delete source files upon
processing the prediction. GenTB Map enables users to
geographically visualize genetic and phenotype data.
Users can explore the subset of 20,408 isolates with geo-
graphic tags (n = 12,547 isolates) used for GenTB pre-
dict validation (“Implementation”) or can upload and
explore their own data in enriched-VCF format (https://
gitlab.com/doctormo/evcf/-/blob/master/docs/Enriched_
VCF_Format.md). Raw data and results can be exported
to a tabular data format.
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A questionnaire-based evaluation of GenTB’s user-
friendliness among previous users (12 respondents)
showed that GenTB is a clear, pleasing, stable, easy to
use, and usable application (Additional file 2: Fig. S4).

Dataset description

We curated a dataset of 20,408 M. tuberculosis isolates
with known phenotypic resistance status to benchmark
GenTB Predict performance (“Implementation” and
Additional file 1). We excluded 29 isolates as they failed
FastQ validation. Of the remaining, 1339 isolates did not
pass our taxonomy filter criterion, and their non-M. tu-
berculosis reads were removed. The GenTB pipeline
identified an additional 499 isolates where more than 5%
of the genome was covered at depth <10x and these iso-
lates were excluded from further analysis. These isolates
had a median depth of 21x (IQR 17 to 26). The
remaining 19,880 isolates with high quality sequencing
data were majority lineage 4 (52%), with lesser represen-
tation of lineage 2 (21%), lineage 3 (15%), lineage 1
(10%), M. bovis (0.6%), lineage 6 (0.3%), and lineage 5
(0.2%). Completeness of phenotypic DST data varied by
drug and was highest for the first-line drugs rifampicin
(98.3%), isoniazid (96.4%), ethambutol (77.5%), and

pyrazinamide (71.5%) (Additional file 2: Table S3). The
second and third-line drug phenotype data ranged from
35.1% completeness for streptomycin to 7.8% for ethion-
amide. Of the 20,408 isolates, 13,817 were phenotypic-
ally susceptible to first-line drugs, 4743 (23.3%) were
phenotypically MDR (i.e., resistant to isoniazid and ri-
fampicin) and 396 (1.9%) were phenotypically XDR
(MDR and resistant to fluoroquinolones and the second-
line injectables—amikacin, kanamycin, or capreomycin).
We ran GenTB-RF and GenTB-WDNN to predict resist-
ance on 19,880 isolates and compared the predictions to
phenotypic data.

Predictive performance of the GenTB-Random Forest

We assessed each tools’ predictive performance by com-
parison with phenotypic culture-based DST results.
Overall, the four tools had comparable performance
characterized by varying sensitivities and high specific-
ities (Tables 1 and 2, Fig. 3A, Additional file 2: Fig. S5).
Diagnostic performance was better for first-line than
second-line drugs. As sensitivity varied most widely, we
discuss it by drug class below. Specificities varied less by
tool or by drug. GenTB-RF's diagnostic specificity was >
92% for all drugs including the second-line injectables
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Table 1 Diagnostic accuracy of GenTB RandomForest and GenTB wide and deep neural network compared with two other leading
prediction tools on a depth filtered dataset

Drug name Phenotype GenTB - RF GenTB - WDNN Mykrobe TB-Profiler

R(n) S(n) Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

(95% ClI) (95% CI) (95% ClI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Isoniazid 6,043 13,112 91% (91 t0 92) 98% (97 t0 98)  90% (89 to 91)  99% (99 to 99) 87% (86 t0 88) 98% (98 t0 98)  91% (90 to 92) 98% (97 to 98)
Rifampicin 5068 14474 93% (93 to 94) 98% (98 to 98)  88% (88 to 89) 99% (99 to 99) 90% (89 to 91) 98% (98 t0 99)  92% (91 to 93) 98% (98 to 99)
Ethambutol 2936 12362 86% (85 to 87) 92% (92 to 93)  82% (80 to 83) 93% (93 to 94) 79% (77 to 80) 93% (93 to 94)  86% (85 to 88) 92% (92 to 93)
Pyrazinamide 508 1,544  79% (76 to 83) 94% (93 to 95) 80% (79 to 82) 95% (94 to 95) 72% (71 to 74)  98% (97 to 98)  83% (80 to 86) 96% (96 to 97)
Amikacin 618 3458 67% (63 t0 71) 99% (99 to 100) 66% (62 to 70)  99% (99 to 100)  63% (60 to 67) 99% (99 to 100) 55% (51 to 59) 99% (99 to 100)
Capreomycin 648 3,733 63% (59 to 67) 97% (97 t0 98)  57% (53 to 61) 98% (98 to 99) 60% (56 to 64) 98% (98 t0 99)  56% (52 to 60) 96% (95 to 96)
Ethionamide 502 1,094 67% (63 to 72) 78% (75 to 80) 70% (66 to 74)  73% (70 to 76)
Kanamycin 576 3,707 68% (6410 72) 99% (98 to 99)  66% (62 to 70) 100% (99 to 100) 66% (63 to 70) 99 (99 to 100)  68% (64 to 71)  98% (98 to 99)
Streptomycin 2,126 4,968  82% (80 to 83) 89% (88 to 90)  87% (85 to 88) 87% (86 to 88) 68% (66 to 70)  95% (95 to 96)  71% (70 to 73)  95% (95 to 96%)
Ofloxacin 743 4038 68% (6510 72) 99% (98 to 99)  62% (58 to 66) 96% (95 to 96) 62% (58 t0 65) 99% (98 t0 99)  67% (63 to 70) 98 (98 to 99)

and fluoroquinolones with the exception of ethionamide
(specificity = 78% [95% CI 75-80]) and streptomycin
(specificity = 89% [95% CI 88—90]). GenTB-RF’s specific-
ities were similar or higher than the other three tools
with the exception of pyrazinamide (94% [95% CI 93—
95]) and streptomycin (89% [95% CI = 88-90]) com-
pared to TB-Profiler (96% and 95%, respectively) as well
as Mykrobe (98% and 95%, respectively).

First-line drugs

Rifampicin resistance prediction by GenTB-RF was most
accurate compared to other tools: AUC 0.96 (95% CI =
0.95-0.96), sensitivity 93% (95% CI = 93-94), and speci-
ficity 98% (95% CI 98-98), second highest sensitivity was
for TB-Profiler at 92% (95% CI = 91-93) (Tables 1 and
2, Fig. 4). The accuracy of isoniazid resistance prediction
was high and comparable across three of the four tools
including GenTB-RF (sensitivity 91% [95% CI =91-92],
specificity 98% [95% CI 97-98]). For ethambutol,

Table 2 Area under the receiver operating characteristic curve
for GenTB-RF and GenTB-WDNN

Drug GenTB-RF GenTB-WDNN
Area under the ROC curve (95% Cl)
Isoniazid 0.94 (0.94 to 0.95) 0.94 (0.94 to 0.95
Rifampicin 0.96 (0.95 to 0.96) 0.94 (0.93 to 0.94
Ethambutol 0.89 (0.88 t0 0.9) 0.87 (0.87 to 0.87

0.90 (0.88 to 91)

(

(

(

Pyrazinamide (
0.83 (0.81 to 0.85)

(

(

(

(

0.83
0.78 (0.76 to 0.80

Amikacin 110 0.84

( )

( )

( )

0.88 (0.87 to 0.88)

08 )

0.80 (0.78 to 0.82) ( )
0.73 (0.7 t0 0.75) -

0.83 (0.81 to 0.85) 0.83 (0.81 to 0.85)

0.85 (0.84 to 0.86) 0.87 (0.86 to 0.88)

0.83 (0.82 to 0.85) 0.79 (0.77 to 0.81)

RF = random forest, WDNN = wide and deep neural network

Capreomycin
Ethionamide
Kanamycin

Streptomycin

Ofloxacin

GenTB-RF and TB-Profiler had the best and comparable
performance with sensitivity 86% (95% CI = 85-87) and
specificity 92% (95% CI 92-93).

GenTB-RF predictions for pyrazinamide using the ori-
ginal model (v1.0) had low sensitivity at 56% (95% CI
54-58) with adequate specificity (98% [95% CI = 98-
99]) compared to the other tools when evaluated on the
19,880 isolates (2336 phenotypically resistant and 11,932
susceptible) [16]. Pyrazinamide resistance is known to be
caused by a large number of individually rare variants in
the gene pncA [44]. Given the large interval increase in
available WGS data and recent implication of novel re-
sistance loci (panD, clpCl, clpP) [36] since GenTB-RF
was last trained, we assessed the number of rare variants
in the four aforementioned genes linked to pyrazinamide
resistance. In a random 75% subset of the 20,379 iso-
lates, we detected a total of 393 different variants in
pncA, panD, clpCl, and clpP with 40% (158/393) occur-
ring only once. The majority of these variants, i.e., 73%
(285/393) were not previously seen by the original
model. As a result of these observations, we retrained a
GenTB-RFv2.0, on 75% of the data using all 393 non-
synonymous variants including singletons and insertion/
deletion variants from pncA, panD, clpCl, and clpP. The
retrained model, when benchmarked on an independent
validation dataset of 5,098 isolates, offered a sensitivity
(79% [95% CI 76-83]) and specificity (94% [95% CI 93-95])
similar to the other tools) (Table 1).

Second-line drugs

For second-line drugs, larger discrepancies between
genotype and resistance phenotype have been previously
described compared with first-line drugs [14, 15]. Diag-
nostic sensitivity to the second-line injectable drugs ami-
kacin and kanamycin ranged between 63 and 68% across
the four tools, with the exception of a sensitivity of 55%
by TB-Profiler for amikacin (Table 1). Specificities to
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these drugs were > 98% for all four tools. For the fluoro-
quinolone ofloxacin, sensitivity ranged from 62-68%
and specificity from 96%-99% across the four tools.
Three drugs had too few isolates with known pheno-
typic resistance (ciprofloxacin [# = 63], levofloxacin
[#n = 111], and para-aminosalicylic acid [#n = 46]), and
hence the tool's predictions had wide confidence
intervals for these drugs (Additional file 2: Table S4
and Additional file 2: Table S5). For levofloxacin,
GenTB’s diagnostic sensitivity was 81% (95% CI 73-88)
with a specificity of 77% (95% CI 66—87) (Additional file 2:
Table S4).

Predictive performance of GenTB-WDNN

We sought to determine the performance of GenTB-
WDNN that was previously shown to outperform other
statistical resistance prediction approaches [17]. To

determine the probability of phenotypic resistance,
GenTB-WDNN combines multitask logistic regression
to learn the effect of individual mutations with a three-
layer perceptron to account for more complex epistatic
effects on antibiotic resistance [45, 46]. Similar to
GenTB-RF, the overall GenTB-WDNN performance was
marked by high prediction accuracy of first-line drug re-
sistance and lower accuracy of second-line resistance
(Table 1). AUC 95% CI overlapped for all drugs between
the two models except for ofloxacin and rifampicin for
which the GenTB-RF AUC was higher (Table 2). For
streptomycin, the GenTB-WDNN offered the best sensi-
tivity and specificity of all four models (sensitivity 87%,
95% CI 85—-88%, specificity 87% (95%CI 86—88%). Speci-
ficities were > 95% for all drugs except for streptomycin
(87%, 95% CI 85 to 88) and ethambutol (93%, 95% CI 93
to 94).
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Predictive performance depends on sequencing depth

We evaluated the need for quality control on sequencing
depth as several tools do not currently implement this
prior to resistance prediction [9, 14, 15]. We observed
predictive performance to be highly dependent on se-
quencing depth as indicated by lower sensitivity to pre-
dict rifampicin or isoniazid resistance by all four tools
for the 499 isolates that did not meet the threshold of >
10xdepth across > 95% of the genome (median depth of
21x, IQR 17 to 26, Fig. 3E, F). Using GenTB-RF, the
mean sensitivity of isoniazid and rifampicin prediction
was 84.6% (SD 3.6) and 87.3% (SD 3.6) respectively
among low-depth isolates, compared with 91% and 93%,
respectively, on high-depth isolates (Additional file 2:
Table S6, Fig. 3E, F). Loss of sensitivity due to low
sequencing depth was comparable across the four tools.

Discordant resistance predictions

To gain insight into model performance, we probed dis-
crepancies between GenTB-RF's genotype-based predic-
tion and the resistance phenotype. We focused on this
model as it had the highest overall sensitivity. We exam-
ined specifically rifampicin and isoniazid as resistance to

these two drugs defines MDR-TB, and their genetic
resistance mechanisms are well understood. We investi-
gated isolates for which GenTB-RF predicted resistance
while the phenotype was reported as susceptible (false
positives) and isolates for which GenTB-RF predicted
susceptibility with a resistant phenotype (false negatives).
We confirmed that false negative predictions were not
due to low sequencing depth in relevant drug resistance
loci (i.e., that depth was > 10x across all bases, Add-
itional file 2: Fig. S6 and Additional file 2: Fig. S7).

Rifampicin false positives

Most of the variants linked to rifampicin resistance are
concentrated in a 81-bp window in the rpoB gene a.ka
the rifampicin resistance determining region (RRDR,
H37Rv coordinates 761081 to 761162, accession
AL123456) [47]. For rifampicin, we observed 254 false
positive predictions (phenotypically susceptible isolates
predicted resistant). GenTB-RF detected one or more
non-silent RRDR variants in 198 of these 254 isolates
(78%). The most common RRDR variants were S450L
(occurred in 49/254 isolates), L430P (in 33/254), and
H445N (in 31/254) (Additional file 2: Table S7). The
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remaining 56 of 254 isolates, harbored non-RRDR vari-
ants, the two most common were rpoB 1491F (occurred
in 29/56) and rpoB V695L (occurred in 24/56). Twenty-
eight of the 56 isolates (50%) were phenotypically resist-
ant to isoniazid and a further 16 (29%) were resistant to
ethambutol.

Rifampicin false negatives

Among the 333 false negative rifampicin predictions
(phenotypically resistant isolates predicted susceptible),
96 (29%) isolates harbored a variant in rpoB and of these
75 (23% of the 333) were in the RRDR (Additional file 2:
Table S7). These included most commonly three base
pair insertion in rpoB codon 433 (occurred in 14/333
isolates) and rpoB codon 443 (occurred in 9/333 isolates)
and rpoB substitution Q432L (in 9/333) [48]. These rpoB
variants were not previously seen by the GenTB-RF
model when initially trained. For the remaining 237 of
333 isolates (71%), phenotypic resistance remained
unexplained.

Isoniazid false positives

For isoniazid, we observed 315 false positive predictions
(phenotypically susceptible isolates predicted resistant by
GenTB-RF). Among these isolates, 119/315 (38%) had a
total of 40 unique non-silent non-lineage variants in
genes linked to isoniazid resistance (inhA, katG, ahpC,
fabG1I) (Additional file 2: Table S8). Most variants, 36/
40, were rare, occurring in only 2 or fewer isolates. Five
out of the 40 unique mutations detected in 75/315 (24%)
isolates are considered important for isoniazid resistance
prediction by GenTB-RF [16]. The most frequent INH
resistance variants were the canonical isoniazid resist-
ance mutation katG S315T [49] (occurred in 56/315 iso-
lates) and non-silent variants at inhA codon 94
(occurred in 14/315 isolates). Seventy-six of the 315
(24%) apparent false positive isolates were phenotypically
resistant to rifampicin and 189 (60%) isolates had a
phenotypic resistance to at least one other drug.

Isoniazid false negatives

Among the 518 false negative isoniazid predictions
(phenotypically resistant isolates predicted susceptible
by GenTB-RF), 194/518 (37%) harbored non-silent
variants in isoniazid resistance-associated genes (Add-
itional file 2: Table S8). Only 13 of the 139 unique
variants observed in the 518 isolates were seen before
by GenTB-RF and none of these were considered im-
portant isoniazid resistance mutations. KatG W328L
was the variant detected most frequently (occurred in
10/518 isolates predicted false negative) and although
not previously seen by GenTB-RF was described to
occur in 0.2% of isoniazid resistance in one study
[50]. Most variants linked to isoniazid resistance
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observed in these isolates were rare, i.e. 134/139

(96%) occurred in < 3 isolates.

Output comparison across the three tools

All four tools are accessible to the non-experienced user
via either an online interface (GenTB, TB-Profiler) or via
a Desktop application. We compared each tool's output
using the criteria specified in the “Implementation” sec-
tion (Table 3). GenTB-RF provides a heatmap indicating
the probability of resistance including the models’ error
rate with all prediction and intermediary files available
for download. TB-Profiler and Mykrobe present binary
(resistant or susceptible) predictions in overview tables
with download options in CSV or JSON formats, re-
spectively. TB-Profiler and GenTB present resistance
causing variants and variants not associated with resist-
ance. All tools provide the main- and sub-lineage call
made but GenTB also specifies the lineage typing
schemes used.

Discussion

The increasing affordability of WGS and our improving
comprehension of mycobacterial drug resistance mecha-
nisms has placed sequencing at the forefront of M. tu-
berculosis resistance diagnosis in clinical and public
health laboratories (e.g., Public Health England in the
UK and the Centers for Disease Control and Prevention
in the USA) [7, 51]. Yet, the complexity of resistance
biology is such that large and diverse bacterial isolate
datasets are needed to confirm the accuracy of
genotype-based  resistance  prediction and its
generalizability. Further, the required computational re-
sources and knowledge to conduct sequencing analysis
prohibit both the access to and confidence in WGS
based resistance prediction in clinics in both low- and
high-incidence settings. High confidence automated
tools that are systematically benchmarked on diverse
datasets are needed to facilitate adoption, and to act as
the standard for future tool development and regulation
by oversight agencies such as the World Health
Organization (WHO).

GenTB is an automated open tool for resistance pre-
diction from WGS. Here we benchmarked its two pre-
diction models against two other leading TB prediction
tools. Both GenTB models predicted resistance and sus-
ceptibility against first-line drugs with high accuracy.
Predictive performance for second line drugs showed
lower sensitivity, and this may be helped by studying a
larger number of isolates with ethionamide, amikacin,
capreomycin, kanamycin, and fluoroquinolone resistance
in the future. Specificity was high for several second line
drugs, i.e., capreomycin, kanamycin, and ofloxacin. This
high specificity may be used to rule out resistance when
no resistance-conferring variant for these drugs was
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Table 3 Output comparison across tools
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Criteria GenTB TB-Profiler Mykrobe
1) Output
Type Heatmap and barplot Overview tables Overview table
Download All intermediate and output Yes (CSV) Yes (JSON)
files (JSON)
2) Genotypic Probability Binary Binary
predictions
3) Error rate Yes N.A. N.A.

4) Resistance Variant by drug

Variant by drug incl. fraction of mutant/

Variant by drug incl. depth of mutant and

variants wild-type allele wild-type alleles
5) Unknown Yes, in all genes Yes, in candidate resistance genes No
variants
6) M. tuberculosis
Lineage
Main lineage Yes Yes Yes
Sublineage Yes Yes Yes
Typing scheme Yes No No

7) Quality metrics Trimming and

contamination report

No. of reads, Percentage of reads mapped ~ No

found. A detailed analysis of discrepant predictions
made by GenTB-RF illustrated that a number of false
positive predictions were supported by canonical resist-
ance variants, e.g., non-silent mutation in the rpoB
RRDR in case of rifampicin, suggesting that their pheno-
types were erroneously labeled as susceptible. Similarly,
nearly half (48%) of the variants found in isoniazid false
positive predictions are canonical resistance variants.
These isoniazid resistance variants, the large proportion
(60%) of phenotypic resistance to another drug among
these isolates, and the knowledge that isoniazid is usually
a gateway drug resistance, suggest that some phenotypes
were erroneously characterized as susceptible [52].
Accordingly, specificity of genotype-based prediction in
practice maybe even higher than reported here (Table
1). Given the estimated 2% prevalence of rifampicin re-
sistance among new TB cases in the USA in 2019 [1],
GenTB-RF's diagnostic accuracy translates to a positive
predictive value of 49.5% and a negative predictive value
of 99.9%.

For isolates with a resistant rifampicin phenotype that
were predicted susceptible by GenTB-RF, we found a
mutation in the rpoB RRDR in a nearly a quarter (23%)
of isolates that reasonably accounts for the resistance
phenotype, but had not been seen by the model pre-
viously. For the remaining majority of false negatives
(71% for rifampicin) no relevant resistance variant was
found. In these cases, phenotypic resistance remained
unexplained and could be due to erroneous phenotypes
or yet unknown resistance mechanisms. For isolates with
a resistant isoniazid phenotype predicted susceptible, no
important resistance-conferring mutations were found.

In these cases, phenotypic resistance could be due to
rare and yet undescribed resistance variants. A substan-
tial proportion of false negative predictions to isoniazid
or rifampicin had genotypic resistance to at least another
drug (48% of rifampicin false negatives and 40% of iso-
niazid false negatives). These observations overall sug-
gest that a viable option to reduce false negative
predictions by current models would be to leverage
genotypic predictions to other drugs and flag such iso-
lates for complementary phenotypic DST. In the future
as new larger datasets of paired genotype and resistance
phenotype are curated, e.g. by efforts sponsored by the
WHO [29], retraining existing resistance prediction
models will improve diagnostic sensitivity.

The final output produced by the four tools varies in
terms of detail and type of variants reported with GenTB
providing the most detail. In addition to resistance-
associated variants, GenTB outputs a description of
novel variants in resistance genes that have not been
previously seen by GenTB's models. The phylogenetic
lineage calling procedure implemented in GenTB [25]
uses several validated typing schemes to facilitate com-
parisons across lineage schemes.

Unlike other published resistance prediction tools
that rely on a curated list of resistance-conferring
mutations that call resistance when a specific variant
is present, GenTB-RF and GenTB-WDNN use multi-
variable statistical models to predict resistance pheno-
type. These models are better suited to account for
the complex relationships between resistance genotype
and phenotype. Among the advantages of multivariate
prediction models is that relationships between
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variables are taken into account as both individual
variants and gene-gene interactions cause phenotypic
drug resistance [45, 46]. As such, the two models
provide a probability value that a given isolate is re-
sistant or susceptible rather than a binary classifica-
tion. This is relevant in case of variants that, if
present alone, confer only weak to no resistance, but
may confer complete resistance if present in combin-
ation. Also, each variable in a multivariable model has
different weights depending on the strength of associ-
ation with resistance in the training data, reflecting
the biological reality where variants cause differing
levels of resistance. The benchmarking data presented
here confirm that these multivariate models offer
gains in sensitivity over the other two tools that use
curated mutation lists; however, this comes at a small
decrease in specificity overall. Given its higher overall
performance GenTB-RF is currently implemented as
the default prediction model. As larger and more di-
verse data will become available for model training,
especially for prediction of resistance more quantita-
tively, i.e., to predict minimum inhibitory concentra-
tions or MICs, we anticipate multivariate models
including the more complex GenTB-WDNN architec-
ture to have an even bigger advantage over direct
association of mutation lists.

This study was not without limitations. An important
prerequisite for reliable genotypic resistance prediction
is the quality of the raw sequencing data. Variants and
small indels in resistance-conferring genes can be accur-
ately and confidently called from Illumina raw sequence
data if the genes are adequately covered at an acceptable
sequencing depth [53]. However, short-read sequencing
data is recognized to have lower sensitivity for detecting
more complex genomic variants including long indels or
structural variation and these may have been missed in
this study. But these latter types of variants are expected
to be rare. Our finding of “apparent” false positive pre-
dictions (i.e., resistance call by GenTB-RF while suscep-
tible phenotype) in isolates harboring canonical
resistance variants portends some erroneous phenotypes
in our ground truth dataset. None of the three tools
studied predict resistance to recently introduced or
repurposed drugs, such as bedaquiline or linezolid, due
to limited phenotypic resistance data which is partially
driven by limited clinical experience with them thus far
[54]. Due to the scale and public nature of the dataset
used for benchmarking in this study, we were unable to
retest the laboratory-based drug susceptibility profiles of
isolates with discordant predictions, but hope that it
provides a test closer to a “real-world” scenario for these
tool’s application. We also note that the models’ per-
formance as benchmarked here is an average across the
currently publicly available datasets that represent
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isolates from different countries. In the future, large
country-specific datasets will further validate their diag-
nostic accuracy based on the local epidemiology.

Conclusions

The rapid emergence and affordability of sequencing of
M. tuberculosis along with the herein confirmed high ac-
curacy of several genotypic resistance prediction tools
supports the use of informatically assisted treatment de-
sign in the clinical setting. Independent benchmarking
efforts will facilitate regulatory reviews and assessments
and build confidence in the tools’ performances. As
genotypic resistance predictions will accompany and in-
creasingly replace laboratory-based resistance phenotyp-
ing performance criteria will need to be defined to guide
clinical and public health laboratories in their use. Lastly,
it will be important to communicate the confidence and
uncertainty that is inherent to all genotypic predictions
to clinicians and provide clear diagnostic algorithms in
case of genotype-phenotype discordances.
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