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A B S T R A C T   

Brain infections cause significant morbidity and mortality worldwide, especially in resource-limited settings with 
high HIV co-infection rates. Raised intracranial pressure [ICP] may complicate brain infection and worsen 
neurological injury, yet invasive ICP monitoring is often unavailable. Optic nerve sheath diameter [ONSD] ul-
trasound may allow detection of raised ICP at the bedside; however, pathology in brain infection is different to 
traumatic brain injury, in which most studies have been performed. The use of ONSD ultrasound has been 
described in tuberculous meningitis, cryptococcal meningitis and cerebral malaria; however correlation with 
invasive ICP measurement has not been performed. Normal optic nerve sheath values are not yet established for 
most populations, and thresholds for clinical intervention cannot be assumed to match those used in non- 
infective brain pathology. ONSD ultrasound may be suitable for use in resource-limited settings by clinicians 
with limited ultrasound training. Standardisation of scanning technique, consensus on normal ONSD values, and 
action on abnormal results, are areas for future research. 

This scoping review examines the role of ONSD ultrasound in brain infection. We discuss pathophysiology, and 
describe the rationale, practicalities, and challenges of utilising ONSD ultrasound for brain infection monitoring 
and management. We discuss the existing evidence base for this technique, and identify knowledge gaps and 
future research priorities.   

1. Background 

Over 3 million cases of brain infection occur globally each year, 
resulting in substantial morbidity and mortality [1–4]. The term ‘brain 
infection’ encompasses a wide range of pathology. Well recognised 
pathological subgroups—meningitis, encephalitis and abscesses—may 
result from infection by bacteria, mycobacteria, viruses, fungi and par-
asites, and lead to a variety of clinical presentations. Geographical 
location, co-morbidities and specific exposures may increase risk of 
certain pathogens. Consideration of host immunity is important; 
immunocompromised individuals such as those living with human 

immunodeficiency virus [HIV] are particularly susceptible to brain 
infection [5,6]. Cryptococcal meningitis, tuberculous meningitis [TB 
meningitis] and bacterial meningitis all occur with higher frequency in 
HIV co-infection [6–8]. Despite roll-out of anti-retroviral therapy, 
cryptococcal meningitis and TB meningitis, both acquired immunode-
ficiency syndrome [AIDS]-defining illnesses, remain major causes of 
death and disability with an estimated 200,000 [2,3] and 100,000 [4] 
global cases each year, respectively. 

Severe brain infection may result in raised intracranial pressure 
[ICP], and this is highly detrimental to neurological function [9–13]. ICP 
is not routinely managed in most individuals with brain infection [14]. 

Abbreviations: AIDS, Acquired immunodeficiency syndrome; CSF, Cerebrospinal fluid; HIV, Human immunodeficiency virus; ICP, Intracranial pressure; IQR, 
Interquartile range; IRIS, Immune reconstitution inflammatory syndrome; LP, Lumbar puncture; MAP, Mean arterial pressure; ONSD, Optic nerve sheath diameter; 
ROC, Receiver-operator characteristic; TB meningitis, Tuberculous meningitis; TBI, Traumatic brain injury; SD, Standard deviation. 
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Whether specific treatment of established raised ICP improves outcomes 
in brain infections is uncertain; with exception of cryptococcal menin-
gitis where early ICP reduction is associated with improved clinical 
outcomes [15]. Gold standard measurement of ICP requires an invasive 
intracranial monitoring device, sited in a neurocritical care setting 
[16–18]; however, this standard is often out of reach in resource-limited 
settings where cryptococcal meningitis, TB meningitis and cerebral 
malaria have their greatest burden of disease. A low cost, safe, reliable 
and easy to learn technique for ICP monitoring has potential for patient 
benefit. Early recognition of raised ICP, prior to clinical deterioration, 
may allow targeted brain imaging and use of appropriate therapies to 
prevent neurological decline. Ultrasound measurement of the optic 
nerve sheath diameter (ONSD), as a surrogate measurement for ICP, has 
been the subject of much interest in recent years, with a growing evi-
dence base in non-infective brain pathology [19–21]. However, the 
value of ONSD ultrasound in brain infection cannot be assumed from 
non-infective data, given differences in pathology, clinical setting and 
operator experience. 

In this review we examine the role of ONSD ultrasound in brain 
infection, specifically in cryptococcal meningitis, TB meningitis, cere-
bral malaria and bacterial meningitis; conditions associated with raised 
ICP in their severest forms. We discuss pathophysiology of these brain 
infections, and the rationale and evidence base for using ONSD ultra-
sound for their monitoring and management, especially in resource-poor 
settings. We discuss whether ONSD ultrasound can indeed identify 
raised ICP in brain infection and the potential impact of this bedside tool 
on patient outcomes. Finally, we describe research gaps relevant to the 
use of ONSD ultrasound in brain infection and suggest future studies to 
address these gaps. 

We elected to perform a scoping review to identify and map the 
evidence available for this topic. We searched PubMed and Google 
Scholar up to 01/06/20 using the search term ‘optic nerve’, and each of 
the following terms: ‘tuberculous meningitis’, ‘cryptococcal meningitis’, 
‘bacterial meningitis’, ‘malaria’, ‘viral encephalitis’, ‘brain infection’. 
Additionally, a search was performed using the terms ‘optic nerve sheath 
diameter’ and ‘intracranial pressure’. Using PubMed our search strategy 
returned 1310 manuscripts. Each was analysed for its relevance to our 
review. We included manuscripts describing ONSD ultrasound as a 
proxy for intracranial pressure monitoring, where at least one patient 
had brain infection. A total of 66 manuscripts, identified through 
PubMed or Google Scholar, were included in the final review, with the 

remaining search results rejected. 

2. Pathophysiology of raised intracranial pressure in brain 
infection 

The skull is a fixed compartment with a constant total volume; 
changes in one constituent [i.e. brain, cerebrospinal fluid (CSF), blood 
volume] result in compensatory changes in one or both of the other 
constituents [22,23]. Changes in brain compartment volume beyond the 
limits of physiological compensation elevate ICP and reduce cerebral 
perfusion; cerebral perfusion pressure = mean arterial pressure [MAP] - 
ICP. Impaired cerebral perfusion results in cerebral ischaemia and 
infarction. Autoregulation is the process by which cerebral blood flow is 
regulated and controlled [24]; ensuring cerebral blood flow cannot 
continue to rise in the face of rising MAP. A sustained rise in ICP impairs 
autoregulation in bacterial meningitis, with increased cerebral blood 
flow potentially contributing to raised ICP [25]. Intracranial masses 
compress the brain compartment, leading to compensatory movement of 
CSF extracranially to maintain cerebral perfusion. In hydrocephalus, 
there is impairment of the passage of CSF from its point of production 
[choroid plexus] to its point of absorption [arachnoid granulations] 
[26]. [Fig. 1] In non-communicating hydrocephalus, a neurosurgical 
emergency, CSF cannot exit the ventricular system of the brain, and 
pressure is exerted on brain tissue. 

dain infection is a heterogeneous group, and the mechanism through 
which ICP becomes elevated differs across pathologies. Raised ICP in 
cryptococcal meningitis is common; occurring in up to 50% of patients 
[27]. Raised ICP in cryptococcal meningitis is typically secondary to a 
communicating hydrocephalus; the most likely mechanism is of physical 
blockage of CSF reabsorption from accumulation of cryptococcal or-
ganisms and their free lying polysaccharide capsule within the arach-
noid granulations [28]. Lumbar CSF opening pressure correlates with 
higher cryptococcal polysaccharide titres and positive India ink smear 
microscopy [27], with persistence of CSF culture positivity at 2 weeks 
[29], and with arachnoid granulation cryptococcus concentrations on 
electron microscopy and histology [28]. In cryptococcal meningitis a 
significant proportion of mortality and morbidity, such as loss of vision, 
is directly related to raised ICP [30]. 

The pathophysiology of raised ICP in TB meningitis is complex. 
Hydrocephalus, inflammatory paradoxical reactions, neurological im-
mune reconstitution inflammatory syndrome [IRIS], and cerebral 

Fig. 1. Anatomy of CSF flow relating to optic nerve sheath (Based on an image from the Intracranial Hypertension Research Foundation, with permission). 
CSF: Cerebrospinal fluid. 
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oedema can all contribute to raised ICP, with the latter exacerbated by 
hyponatraemia [31,32]. Raised ICP is common in cerebral malaria 
especially among children. The mechanism remains uncertain, although 
sequestration of parasitized erythrocyte cells in the cerebral microvas-
culature has been suggested [33]. In malaria this sequestration may 
compromise the blood-brain barrier by causing cytotoxic injury to the 
vascular endothelium, leading to a combination of extracellular and 
intracellular oedema. In addition, vasodilation may increase intracere-
bral blood volume [34]. In bacterial meningitis, raised ICP occurs due to 
the direct toxic effect of the pathogen combined with host inflammatory 
response [14]. Vasoactive mediators, inflammatory cytokines, and 
reactive oxygen species lead to cytotoxic cerebral oedema, venous 
thrombosis, reduced CSF resorption and failure of autoregulation [14]. 

3. Use of ONSD as a surrogate measure of ICP 

Lumbar CSF opening pressure and fundoscopy are frequently used to 
identify raised estimate ICP, yet each have limitations [35,36]. CSF 
opening pressure is measured with a manometer during lumbar punc-
ture and may detect raised ICP in a fully communicating subarachnoid 
system; yet in non-communicating disease lumbar puncture can worsen 
a pressure gradient and risks fatal tentorial herniation [37]. Changes in 
ICP are transmitted to the optic nerve sheath, with its CSF-containing 
subarachnoid space continuous with the subarachnoid space of the 
brain and spinal cord [38]. When pressure in the CSF compartment is 
elevated, impaired venous drainage manifests as swelling at the optic 
disc [papilloedema]. This swelling can be visualised by performing 
fundoscopy, a technique available for over 100 years [39]. Unfortu-
nately, fundoscopy is challenging to perform without dilating eye drops, 
measurements are subjective and operator dependent, and papilloedema 
can take days to develop reducing its value in acute illness [40]. 

Changes in the optic nerve sheath itself are also measurable and 
occur acutely when ICP is elevated. Under ultrasound, the optic nerve 
appears hypoechogenic, closely surrounded by echogenic pia mater, 
hypoechogenic subarachnoid space, hyperechogenic dura mater, and 
periorbital fat. ONSD is measured as the space within dura mater on 
opposites sides of the sheath [41]. [Fig. 2]. 

4. ONSD ultrasound as a tool for ICP monitoring in brain 
infection 

Several studies provide an evidence base supporting ONSD ultra-
sound as a monitoring tool for ICP. Existing primary research is domi-
nated by traumatic brain injury [TBI] and intracerebral haemorrhage, 
yet these studies have relatively small samples sizes, and vary in their 
definitions of raised ICP, methods of ONSD scanning, and cut-offs to 
detect raised ICP [41–44]. Three meta-analyses support an association 
between increased ONSD and raised ICP, however none included in-
dividuals with brain infection [19–21]. 

4.1. Cryptococcal meningitis 

Only one study of ONSD ultrasound in cryptococcal meningitis has 
been published to date [45]. Nabeta et al. prospectively studied HIV- 
positive Ugandan adults with advanced HIV [median CD4 count 17 
cells/μl], comparing ultrasound-guided ONSD measurements before and 
after lumbar puncture, with lumbar CSF opening pressures [Table 1]. 
Mean ONSD significantly correlated with CSF opening pressure, and 
receiver-operator characteristic [ROC] curve analysis demonstrated 
ONSD ≥5 mm predicted CSF opening pressure > 200 mmHg with 85% 
sensitivity and 59% specificity. 

4.2. TB meningitis 

In a study of ONSD ultrasound in TBM, 25 Indian adults with sus-
pected TBM based on consistent brain magnetic resonance imaging 
[MRI] appearances [n = 25, mean ONSD 5.81 mm] were compared with 
a control group where individuals lacked MRI appearances of TBM or 
papilloedema on fundoscopy [n = 120, upper limit of normal for ONSD 
4.37 mm] [46]. Larger studies are required to further investigate the role 
of ONSD ultrasound in TBM. 

4.3. Cerebral malaria 

Beare et al. performed a prospective study of ONSD ultrasound in 
112 children [mean age 3 years] with cerebral malaria or severe malaria 
plus impaired consciousness in Malawi [47]. In this study 49% [55/112] 

Fig. 2. Enlarged optic nerve sheath imaged 
by ultrasound. 
This first panel shows an ultrasound image 
of the optic nerve sheath, and surrounding 
structures. D1 denotes distance from the 
retina to the point of optic nerve sheath 
diameter measurement (3 mm). D2 denotes 
the measured optic nerve sheath diameter at 
3 mm from the retina. In the second panel a 
corresponding image is shown labelling 
structures of the eye for direct comparison 
with the clinical image (first panel).   
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patients had ONSD ≥4.3 mm [‘raised ONSD’], with these two groups 
[raised ONSD vs. non-raised ONSD] also having significantly different 
CSF opening pressures [higher in raised ONSD group], however no 
difference was seen in mortality between raised ONSD and non-raised 
ONSD groups; 16%, [9/55] vs. 19% [11/57], respectively. An increase 
in neurological sequelae was found in children with increased ONSD 
[15%, 7/46] compared to those without [4%, 2/46], p < 0.05. 

A prospective cross-sectional study carried out by Kofi-Mensa et al. 
found a significant difference in ONSD between children with unar-
ousable coma due to malaria [n = 37, mean ONSD 5.09 mm] vs. children 
without unarousable coma [n = 50, mean ONSD 3.87 mm] [48]. In this 
study mean ONSD was higher in children who died [5.70 mm], and in 
children recovering with neurological sequelae [5.96 mm] vs. in chil-
dren who recovered without neurological sequelae [4.58 mm]. This 
suggests ONSD may be able to prognosticate children with cerebral 
malaria. 

4.4. Bacterial meningitis 

Studies in bacterial meningitis have shown reduction in ICP and 
mortality with ICP-guided therapy [49,50]. Whether ONSD can be used 
to guide ICP-reducing therapies in bacterial meningitis requires further 
study, especially in resource-limited settings. To date there are no 
published studies supporting a clinical role for ONSD ultrasound in 
bacterial meningitis. 

5. Practicalities and challenges 

The strengths and limitations of ONSD ultrasound as a point-of-care 
technique for ICP monitoring are shown in Table 2. Performing ONSD in 
brain infection presents challenges. ONSD ultrasound may increasingly 
be performed outside of intensive care or emergency unit settings, by 
individuals with less ultrasound experience. Basic training and 

educational material are important to standardise scanning technique, 
measurement, interpretation, and clinical response, and give a sound 
understanding of normal and abnormal ultrasound appearances. 

ONSD ultrasound requires periods of time spent close to the patient 
in range of infectious droplets that may be spread by aerosolisation. 
Individuals with TB meningitis and active pulmonary TB, or with un-
treated bacterial meningitis, may present an infection risk to the scan-
ning practitioner. Access to infection control guidelines and procedures, 
personal protective equipment, and suitable isolation for patients need 
consideration. Guidelines for reducing infection risk in individuals with 
TB may be difficult to implement in low resource settings [66]. 

Identification of suspected ICP by ONSD ultrasound requires 
knowledge of normal ONSD ranges, particularly considering the likeli-
hood that normal ONSD varies by ethnicity. Specific ONSD normal 
ranges are known for only a few ethnic groups, and expanding these 
datasets is an area for future study. ONSD variation within a specific 
country has not yet been described but would confound data comparison 
further. 

6. Research gaps and future work 

Evidence supporting ONSD ultrasound for the measurement and 
monitoring of ICP in brain infection is limited. At best, there is corre-
lation between ONSD and other surrogate measurements of raised ICP, 
such as lumbar CSF opening pressure and fundoscopy; yet studies to date 
have been small. Data comparing ONSD with invasive ICP measurement 
in brain infection would be valuable. 

The ultimate purpose of detecting ICP changes using ONSD is to 
intervene and improve patient outcomes. Yet evidence is required to 
support ICP-guided therapies in brain infections of varying aetiology, 
and to demonstrate that ONSD can reliably identify that raised ICP. 
Currently no evidence supports ONSD ultrasound-guided investigations 
or management in brain infection. No randomised studies have 
compared ONSD-monitored individuals with those not undergoing 
ONSD ultrasound. In settings where 3D brain imaging, invasive moni-
toring, and neurosurgical interventions are unavailable, it is even more 
unclear how detecting an enlarged ONSD should alter management 
approach. Benefit of ONSD ultrasound may be limited to specific brain 
infections. In TB meningitis, where lumbar puncture is not repeated 
regularly (unlike in cryptococcal meningitis), ONSD ultrasound may 
have greater value in identifying patients who may benefit from a va-
riety of interventions. 

Additionally, ONSD ultrasound requires a standardised approach to 
both clinical practice and research. Optimal ultrasound probe and pa-
tient position are uncertain. A standard scanning technique, a method of 
repeating and averaging, and an alternate reference standard for raised 
ICP [when invasive monitoring is not available] would be valuable. A 
clinical practice guideline as well as an evidence-based approach to 
managing enlarged ONSD in specific brain infections would be useful. 

Table 1 
Summary of studies with ONSD cut-off for detecting raised ICP in brain infection.  

Study Patient group No. of 
patients 

Reference for raised 
ICP 

ONSD cut off 
[mm] 

Sensitivity 
[%] 

Specificity 
[%] 

Country 

Nabeta, 2014 
[45] 

Meningitis, 81% cryptococcal. 4% TB meningitis, 
15% other/ unknown. Adult population. 

98 CSF pressure by 
lumbar puncture 

5.0 85 59 Uganda 

Shirodkar, 2014 
[51] 

Mixed infective and non-infective pathology.  
Adult population. 

101 CT/MRI 4.6 [F]  
4.8 [M] 

84.6 [F] 97.4 
[M] 

100 [F] 100 
[M] 

India 

Rehman, 2018 
[52] 

Mixed infective and non-infective pathology.  
Paediatric population. 

48 CT/MRI 4–5.4  
[<1y / 
>10y] 

100 60–67 Pakistan 

Gupta, 2019 
[53] 

Mixed infective and non-infective pathology.  
Adult population. 

100 CSF pressure by 
lumbar puncture 

6.3 77 92 India 

du Toit, 2015 
[54] 

Mixed meningitis. Adult population. 73 CSF pressure by 
lumbar puncture 

4.8 50 90 South 
Africa 

CSF: Cerebrospinal fluid. CT: Computed tomography. F: Female gender. ICP: Intracranial pressure. M: Male gender. MRI: Magnetic resonance imaging. ONSD: Optic 
nerve sheath diameter ultrasound. TB: Tuberculosis. 

Table 2 
Strengths and limitations of ONSD ultrasound.  

Strengths Limitations  

• Safe and non-invasive [55,56]  
• Point of care bedside test [57]  
• Quick to perform [58]  
• Correlation with invasive ICP 

measurements [41]  
• Low inter operator variability [59]  
• Not affected by age in adults, body 

mass index, head circumference, or 
blood pressure [60]  

• Potentially false positives for raised 
ICP in Graves orbitopathy, ONS 
meningiomas, leukaemic infiltration, 
orbital congestion [59]  

• Artefact from surrounding collagen 
tissue can distort optic nerve [61]  

• Variation in normal range by 
ethnicity [57,62–64]  

• Variation in age with children [65]  
• Minimal guidance for acting on 

abnormal measurements  
• May be operator dependent 

ICP: Intracranial pressure. ONS: Optic nerve sheath. 
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7. Conclusion 

Raised ICP is a common complication of brain infection. ONSD ul-
trasound may represent a novel way to identify raised ICP at the bedside 
with minimal operator training and low risk to the patient, yet more 
supporting evidence is required, both of the ability of ONSD ultrasound 
to reliably identify raised ICP, and of its use in guiding management 
approaches that improve clinical outcomes. Currently there is no 
standardised cut-off for diagnosing clinically relevant ICP in brain 
infection and determining such a cut-off is complicated by differences in 
normal ONSD among healthy individuals. Studies have been small, and 
health outcomes are rarely measured. Future work should aim to address 
these points with a focus on guiding further investigations and man-
agement strategies. If a standardised, evidence-based approach can be 
developed, ONSD ultrasound may be a highly valuable tool in the 
management of brain infection, especially in low resource settings. 
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