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Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil, 3 Diamond Light Source Ltd., Didcot, United Kingdom,
4 Research Complex at Harwell, Didcot, United Kingdom, 5 The Rosalind Franklin Institute, Harwell, United Kingdom,
6 Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom,
7 Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical
Medicine, London, United Kingdom

Schistosomiasis is a parasitic disease caused by trematode worms of the genus
Schistosoma and affects over 200 million people worldwide. The control and treatment
of this neglected tropical disease is based on a single drug, praziquantel, which raises
concerns about the development of drug resistance. This, and the lack of efficacy of
praziquantel against juvenile worms, highlights the urgency for new antischistosomal
therapies. In this review we focus on innovative approaches to the identification of
antischistosomal drug candidates, including the use of automated assays, fragment-
based screening, computer-aided and artificial intelligence-based computational
methods. We highlight the current developments that may contribute to optimizing
research outputs and lead to more effective drugs for this highly prevalent disease, in a
more cost-effective drug discovery endeavor.

Keywords: schistosomiasis, drug discovery, artificial intelligence, fragment-based drug discovery,
phenotypic screening, target-based screening
INTRODUCTION

Schistosomiasis is a neglected tropical disease (NTD) caused by trematode parasites belonging to the
genus Schistosoma. The most clinically-relevant species are S. mansoni, S. japonicum and S.
haematobium while S. mekongi, S. guineensis and S. intercalatum have lower prevalence (1, 2).
According to the World Health Organization (WHO), approximately 229 million people are
infected worldwide, causing around 200,000 deaths annually (2). However, this is probably an
underestimation, due to the low sensitivity of the available diagnostic methods to detect low
intensity parasite infections (3, 4). It ranks second behind malaria in terms of prevalence and
socioeconomic impact, causing the loss of more than 2.6 million disability-adjusted life years
(DALYs) (5).

Humans become infected when the cercariae larvae, released by the snail intermediate hosts,
penetrate through the skin during contact with contaminated freshwater (1, 6). Then, cercariae
org May 2021 | Volume 12 | Article 6423831
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access the host circulation and develop into juvenile and adult
worms (7). Paired female and male adult schistosomes live in the
blood vessels where they produce eggs that are excreted in faeces
(S. mansoni, S. japonicum, S. intercalatum, S. guineenses and S.
mekongi) or urine (infections by S. haematobium) (6). Eggs
become trapped in human tissues causing inflammatory
immune reactions (including granulomata) that damage organs
resulting in intestinal, hepatosplenic, or urogenital disease (8).
The eggs that reach the environment, hatch in the water and
release the larval stage miracidia. The Miracidia infect the
intermediate hosts and continue the parasite’s life-cycle (9).

Because the development of a schistosomiasis vaccine has
proved challenging (10, 11), the treatment and control of
schistosomiasis continue to depend, on the almost 50-year-old
drug, praziquantel (PZQ) (12, 13). PZQ is generally effective
against adult and schistosomula stages of all schistosome species
and is well tolerated, causing only mild and transient side effects
(14, 15). However, PZQ is ineffective against juvenile
schistosomes, which contributes to the failure of the drug to
cure the disease and the need for new rounds of treatment (16,
17). Moreover, PZQ is administered as a racemic mixture,
wherefore only half of PZQ dose (i.e., R-PZQ stereoisomer) is
pharmacologically active. The S-PZQ, besides being
pharmacologically inactive, contributes to the bitter taste and
the large size of PQZ tablets, both of which decrease patient
compliance and are not suitable for children (18, 19). Moreover,
PZQ has been used in mass drug administration campaigns for
many decades and this may account for a selection pressure that
can promote the development of parasitic resistance (20). In fact,
reduced PZQ efficacy has been demonstrated both in laboratory
and field isolates (21–28). Consequently, there is an urgent need
for new antischistosomal drugs.

One of the foremost challenges to the discovery of new anti-
schistosomal drugs is the long and complex life cycle of the
parasite, which makes screening campaigns technically difficult
(29). The phenotypic screening of whole-organisms in vitro and/or
in animal models is the approach that is most used for finding hit
compounds (i.e., active compounds in vitro based on a defined
activity threshold) (30–32), though animal models tend to be costly
and time-consuming (33). These assays require the maintenance of
the parasites’ life cycle – including both the intermediate (snails)
and the definitive hosts (hamsters or mice) – in order to have
regular access to parasites. However, these laboratory-based life
cycles can only produce a restricted number of adult-stage
schistosomes (34). As a consequence, most early compound
screening efforts use newly transformed schistosomula (NTS),
which are obtained from the mechanically transformed cercariae
(35). This can limit the finding of new hits, as the sensitivity to
compounds can vary between life cycle stage and gender of the
parasite (36, 37).

Screening compounds for anti-schistosomal activity is
typically carried out manually where an analyst identifies
the 5presence of morphological or behavioral changes in the
parasites by microscopy (29). A numerical scale (“severity
score”), usually including four (38, 39) or five (29, 40) scores,
is used to describe the phenotypes. However, this analysis is
Frontiers in Immunology | www.frontiersin.org 2
subjective, semi-quantitative, time-consuming and the results
can vary largely from analyst to analyst (41–43). Nonetheless,
severity scoring systems have been successful in identifying hits,
defining SAR, and identifying compounds that translate with in
vivo efficacy in the mouse model of S. mansoni infection (44).

In this review we focus on innovative approaches to the
identification of antischistosomal drug candidates, including
the use of automated assays, fragment-based screening,
computer-aided and artificial intelligence-based computational
methods. We also highlight the current developments that may
contribute to optimizing research outputs and lead to more cost-
effective drugs for this highly prevalent disease.
PHENOTYPIC SCREENING

Phenotypic screening consists of testing substances that could
possibly cause phenotypic changes considered relevant to a
biological system. Phenotypic-based drug discovery (PDD),
compared to target-based drug discovery (TDD), has the
advantage of presenting a greater probability of identifying
compounds which will be translated to in vivo tests since they
better mimic the complex environment of living systems. For
example, in a cellular assay, a test compound may have to cross
cellular membranes and/or resist degradation by metabolic
enzymes before interacting with its target(s). These factors may
have a significant impact in a compound’s biological activity and
are not taken into account in a target-based assay. Hence, a hit
coming from a phenotypic screen has much more biological value
than one coming from a target-based screen (45, 46). Nonetheless,
an important consideration must be given to the higher cases of
false negatives in PDD campaigns when compared to TDD. As
discussed by Geary and colleagues (33), the false negatives result
from the inability of some compounds to reach a proper
concentration inside a whole organism, which may hinder the
detection of potential schistosomicidal molecules.

PDD approach tends to be more time-consuming and costly
to develop and run than TDD (47). This is mainly due to the
implementation of higher complexity screening assays, and to
other factors such as the parallel use of genetic and small
molecules screens, as well as more complicated hit validation
and target identification efforts (48). Furthermore, the
establishment of structure-activity relationship (SAR) is more
challenging due to other concurrent factors, such as membrane
permeability and off-target binding, though there are several
examples of successful SAR studies using schistosome
phenotypic assays in the literature (49–51). Hence, PDD
approach is limited in this sense due to unknown mechanism
of action, potentially targeting different types of proteins, such as
receptors, enzymes, transcription factors and even different
signaling pathways (45). Additional assays may be necessary to
support the SAR in PDD approaches. On the other hand, the
multiplicity of potential targets in PDD can be a source of
serendipity (33, 46). In contrast, the prior knowledge of the
target in TDD helps to accelerate the interpretation of SAR data.
In spite of their differences, it is increasingly known that PDD
May 2021 | Volume 12 | Article 642383
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and TDD must be seen as complementary in the R&D of new
drugs (48, 52, 53).

In the following topics we will address some of the main
phenotypic assays that have been used for schistosomiasis drug
discovery. They consist in labelled (employing fluorescent or
luminescent dyes) and label-free assays that are able to detect
drug-induced phenotypes in different stages of the parasite, such
as schistosomula (NTS), juvenile (1-5 weeks post infection) and
adult (6-7 weeks or over post infection) (38).

Luminescence- and Fluorescence-Based
Phenotypic Assays
Some methodologies used in schistosome phenotypic screening
are based on fluorescent or luminescent dyes commonly
employed in cellular viability/cytotoxicity assays (Table 1).
Propidium iodide (PI), a DNA intercalator, for instance, is a
fluorescent dye that is not able to cross membrane cells and can
only stain nucleic acids of cells that have lost their membrane
integrity. For this reason, such fluorophore is used to
differentiate living and dead cells. Unlike PI, fluorescein
diacetate (FDA) can cross biological membranes, and is
converted by healthy cells into fluorescein, another fluorescent
dye. Peak et al. (54) developed a microplate-based assay to
measure schistosomula viability using PI/FDA. In this method,
the fluorescence emitted by FDA and PI stained parasites is
quantified by a microplate reader and later converted into worm
viability using the fluorescence ratio FDA/(PI + FDA). This assay
was able to detect the effect of some known schistosomicidal
drugs, namely auranofin, gambogic acid and amphotericin b, but
failed in measuring the effect of praziquantel and other
compounds previously identified as actives by microscopy (55).
Braun et al. (56) also used PI and FDA probes in the
development of a quantitative HTS (qHTS) fluorescent-based
bioassay to identify schistosomula in water samples (56). The
results obtained with this method showed no statistically
significant differences when compared to visual inspections
carried out by manual microscopy.

Mansour et al. (42) used a commercial solution of resazurin
(Alamar Blue®), a redox-sensitive probe, to measure the viability
of schistosomula in microplates. This assay is based on the
principle that only metabolic active worms can reduce
resazurin to resorufin, a fluorescent molecule. During
validation, this assay proved to be useful in evaluating the
effect of compounds that kill or provoke severe damage to the
parasite (e.g., oltipraz), but showed less sensitivity towards those
that elicited more subtle effects (e.g., praziquantel) detectable by
conventional microscopy.
Frontiers in Immunology | www.frontiersin.org 3
Lalli et al. (38) developed and validated a luminescence-based
method for the evaluation of schistosomula viability by
quantifying ATP (38). This assay is carried out using a
commercial kit (CellTiter-Glo®) which contains luciferase and
its substrate luciferin as the main components. In principle,
metabolic active worms produce ATP which participates in the
reaction catalysed by luciferase. As a result, a luminescence signal
is produced and registered in a microplate reader. This medium-
throughput method is suitable for semi-automated screening of
chemical libraries and has several benefits such as speed in
screening, reproducibility and non-subjectivity. Guidi et al.
(57) used the same luminescence-based technique, combined
with HTS, to search for molecules with schistosomicidal activity.
As a result, a few compounds capable of impairing the viability of
the larval, juvenile, and adult phases were identified, with
potency against juveniles higher than PZQ. In addition,
changes in egg formation and production are among the
phenotypic modifications.

However, despite its success in generating dose-response
curves for some known schistomicidal drugs (e.g., gambogic
acid and oltipraz) this method was unable to detect the effect of
praziquantel and oxamniquine on schistosomula viability.
Maccesi et al. (44) also could not detect the biological effect of
some schistomicidal compounds using another phenotypic
assay. In their work, S. mansoni schistosomula were screened
with the 400 compounds of the MMV Pathogen Box in three
different institutions. Two of them employed visual scoring
(microscopy) to describe drug-induced phenotypes while the
other used a colorimetric assay based on the metabolic reduction
of XTT to measure parasites viability. In nearly 74% of the cases,
all three methods agreed on the classification of the compounds
(active/inactive) after 72h of incubation. Nonetheless, unlike the
visual methods, the XTT-based assay did not identify PZQ and
other compounds (e.g., auranofin, nitazoxanide) as actives
against schistosomula. This may be due to the fact that
metabolic-based assays were originally designed to be used in
cell and unicellular organisms. Its use in multicellular and more
complex models are prone to missing important phenotypes (44)
found in these organisms, like the dysregulation of the
neuromuscular system, a mechanism attributed to PZQ (58).

Panic et al. (39) performed a review of fluorescent and
luminescent markers used on S. mansoni drug assays
and confirmed Lalli et al. (38) studies of development and
validation of a luminescence-based assay (CellTiter-Glo®). In
contrast to resazurin assays, which are also used to determine the
viability of Schistosoma parasites, CellTiter-Glo® was able to
determine the IC50 of mefloquine and to detect the
TABLE 1 | Summary of some luminescence and fluorescence schistosomal drug assay methodologies.

Assay type Marker type Principle of methods Method Suitable for screening Reference

PIa/FDAb Viability and
cytotoxicity

PI: stain nucleic acids in damaged worms
FDA: cleaved by esterases in healthy worms

Fluorescence-based Yes (54)

CellTiter-
Glo®

Viability Luciferin is oxidized by luciferase in the presence of worms’
ATP

Luminescence-
based

Yes (38)

Resazurin Viability Metabolic reduction of resazurin Fluorescence-based No (39, 42)
Ma
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schistomicidal activity of some FDA-approved compounds,
showing results that correlate with microscopic findings.

The assays described in this topic represent a major advance in
schistosomiasis drug discovery. Nonetheless, they show some
limitations that must be taken into consideration. Compared to
colorimetric methods, such as XTT-based assay, fluorescence/
luminescence-based assays require black/white microplates which
are more expensive (59). In some cases, a given method may not
detect the schistomicidal effect of a compound recognized as active
by other techniques, including conventional microscopy (39).
Moreover, some test compounds may interfere with the assay
(e.g., compounds auto-fluorescence), leading to a misinterpretation
of the results (38). Therefore, it is advisable to be cautious when
considering the results obtained from a single method, being
recommended to corroborate the results using at least one
orthogonal assay.

Label-Free Automated Phenotypic Assays
for Schistosomiasis Drug Discovery
Label-free automated assays detect phenotypic alterations in
schistosomes in the absence of any kind of label (e.g.,
fluorescent probe). In general, they can be divided into two
main groups: image-based (most common) (60–63) and non-
image-based methods (64, 65) (Figure 1A). The former use
visual information, such as morphology and/or motility of the
parasite, to describe a phenotype (Figures 1A, B). In contrast,
non-image-based methods, herein exemplified by electrical
impedance spectroscopy (65) and microcalorimetry (64), create
phenotypic profiles based on worm’s metabolic activity and/or its
motility (Figures 1A, C). Image-based and non-image-based
Frontiers in Immunology | www.frontiersin.org 4
assays have been largely employed in drug discovery campaigns
to identify new schistosomicidal compounds and calculate their
potencies. Some of these methods and their main characteristics
(e.g., type of readout, assay format and the number of parasites
required per assay) are shown in Table 2 and will be discussed in
more detail in the following section.

Image-Based Methods
The automatic quantification of phenotypic features from
schistosomes images has been addressed in several ways (60–
63, 66, 69, 70, 72). Most assays rely on home-made (60) or
commercial (63, 70) systems, equipped with digital cameras/
camcorders to acquire images of unstained parasites in
microplates. Image analysis is carried out, using either
commercial (62, 69, 70) or custom-built (60, 68) software and
generally consists of three main steps: image processing, parasite
(s) detection and features extraction (Figure 1B). By the end of
the analysis, a phenotypic profile, composed of a variable number
of features, is created for one (63, 69, 70) or more (60) worms.
These profiles can be used to identify schistosomicidal
compounds, measure their effect and potency, as well compare
their responses to those elicited by other compounds (60, 63,
69, 70).

One common strategy to acquire schistosome images is by
video microscopy. Ribeiro and colleagues implemented two
assays using this technique to measure the motility of NTS
(62) and adult (66) forms of S. mansoni. In these assays,
parasites are distributed in microplates and their videos
recorded over a few minutes. Image frames are analyzed in
ImageJ (73), an open-source software. For NTS analysis, worms
FIGURE 1 | Label-free image-based and non-image-based automated methods used in schistosomiasis drug discovery. (A) Overall description of label-free
methods, (B) image-based methods, (C) non-image-based methods.
May 2021 | Volume 12 | Article 642383
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are detected as ellipsoid objects and their body length are
estimated by the size of the major axis of the ellipses. NTS
movements (shortening and elongation of the body) are
calculated by the frequency of length changes over time (62).
For adult analysis, each image frame is submitted to a series of
pre-processing steps (e.g., illumination correction and
background removal) before representing the worms as binary
objects. Then, the difference in pixels between pairs of
consecutive images are measured throughout the entire video.
The subtracted pixels represent a change in parasite position over
time and are used as a metric to measure worm´ motility (66).
These methods were employed to evaluate the effect of different
compounds on schistosome NTS/adults worms, such as tyrosine-
derived signaling agonists/antagonists (74), natural alkaloids
(75–77) and analogs (77, 78), as well as others with biological
activity in humans (e.g., NPS-2143, a calcium-sensing receptor
antagonist) (77).

McCusker and colleagues (67, 72) also applied video
microscopy to record morphological and motility aspects of
adult schistosomes. In their assay, 1 min videos of adult
worms, distributed in 6-well dishes, are acquired, and saved as
images Z-stacks. During image analysis in ImageJ, maximum
intensity projections are generated to each Z-stack resulting in a
composite image for which pixel integrated pixel values are
measured. This metric represents the total movement of the
parasite over time and can be used to compare treated and non-
treated parasites. This method detected the schistosomicidal
effect of non-sedating benzodiazepines (72) and FPL-64176
(67), a human L-type Ca2+ channel agonist.

WormAssay is a home-made low-cost solution to screen
compounds against adult schistosomes (and other macroscopic
parasites) developed by Marcellino et al. (60). This system
Frontiers in Immunology | www.frontiersin.org 5
consists of two devices: an imaging apparatus and a Mac
computer (image acquisition control and analysis). The former
can be described as a light-tight box containing a high-definition
video (HDV) camcorder mounted at the bottom and a hinge lid
at the top harboring the microplate chamber. Inside the chamber
a white LED strip is used to laterally illuminate the microplate.
During acquisition, dark-field videos of 0.5 – 1 min length are
recorded from the entire microplate. Image analysis is performed
in real-time using a custom open-source free software (Mac
application) installed in the computer. The overall motility of
worms, measured for each well, is determined by two algorithms:
one that calculates the average velocity of moving contours inside
the well and another which detects changes in the occupation
and vacancy of pixels between a group of frames. WormAssay
quantified the effect of several compounds on worm motility,
including neuromodulatory drugs (79), phenylpyrimidines (80)
and inhibitors of S. mansoni cyclic nucleotide phosphodiesterase
4 (SmPDE4) (81) and proteasome (82). Recently, a modified
version of WormAssay software, named WormAssayGP2, was
released by Padalino and colleagues (83, 84) and contains minor
modifications related to the source code and user interface (85).
To date, WormAssayGP2 has been used to detect the
schistomicidal activity of putative inhibitors of S. mansoni
lysine specific demethylase 1 (SmLSD1) (86) and histone
methyltransferase mixed lineage leukemia-1 (SmMLL-1) (84),
as well as human ubiquitin-proteasome system (85) inhibitors.

One of the first attempts to describe complex phenotypes is
schistosomes was carried out by Singh et al. (87). They developed
an automated method to detect, track and classify individual
NTS in microscopy videos. Since then, several modifications
have been made regarding worms segmentation (88) and
phenotypic analysis (63, 68, 89, 90). The algorithms developed
May 2021 | Volume 12 | Article 64238
TABLE 2 | Label-free automated assays used in schistosomiasis drug discovery.

Assay Assay
measurements

Readout Development stage
of schistosome

Assay format Main hardware Number of
parasites per

assay

Image-based assays
Video microscopy (62, 66,
67)

Parasites motility (62) Light
microscopy
images

Schistosomula 24-well microplate Microscope equipped
with a digital camera

30-40
Parasites motility (66) Adult 12-well microplate 5 pairs
Parasites motility (67) 6-well microplate 4-5 pairs

QDREC (68) Parasite’s
morphology

Schistosomula 96-wells microplate 400

WormAssay (60) Parasite’s motility Light
macroscopy

images

Adult 6-96-wells microplate Custom-made
camcorder-based

system

1 or more

High Content Screening
(HCS) (61, 69, 70)

Parasites motility/
morphology (61, 70)

Light
microscopy
images

Schistosomula 384-wells microplate (70) HCS system 120
Schistosomula U-bottom 96-wells

microplate (61)
40

Parasites motility (69) Adult 96-wells microplate 1
Non-image-based assays
xWORM (71) Parasite’s motility Electrical

impedance
Adult E-plates Real time cell analysis

(RTCA) system
1

Cercariae 562
Egg hatching Eggs 5000

Electrical-impedance
microwell (EIM) platform (65)

Parasite’s motility Electrical
impedance

Schistosomula Custom-made plate
containing 32 analysis units

Custom-made EIM
parallelized platform

10-15

Isothermal microcalorimetry
(64)

Parasites metabolic
activity/motility

Heat-flow Schistosomula 1 mL glass ampoules Isothermal
microcalorimeter

400-1000
Adult 3-4
3

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Moreira-Filho et al. Schistosomiais Drug Discovery
in these studies have proved to be useful in quantifying the
schistosomicidal activity of PZQ (63), chlorpromazine (63),
statins (91) and inhibitors of human polo-like kinase 1 (PLK1)
(89, 92). They have also been implemented in the “quantal dose-
response calculator” (QDREC), a web server that automatically
extracts quantal time- and dose-response information from
bright-field images of schistosomes NTS (or other parasites)
(68). QDREC quantifies 71 image-based features related to the
appearance, shape and texture, of each segmented parasite.
These features serve as inputs for supervised machine learning
algorithms which classify parasites as “normal” or “degenerate”.
The proportion of “degenerate” worms in a well is employed as a
metric to estimate the schistosomicidal effect of a given
compound and can be used to create dose-response curves.
QDREC was validated with 12 schistosomicidal compounds
(e.g., statins, PZQ, closantel, niclosamide and sorafenib)
showing comparable results with visual annotation for both
parasite classification and dose-response curves.

Paveley et al. (70) was a pioneer in implementing automated
microscopy, also known as high content screening (HCS), to
extract multivariate data from schistosomes. They created an
HCS-based automated platform to identify active compounds on
NTS of S. mansoni. In this assay, a HCS system collects bright-
field images of each well of a 384-wells microplate through two
distinct modes: a time-lapse image acquisition (5x6 s interval)
using a 4x objective, for motility analysis, and one acquisition of
four adjacent images using a 10x objective, for morphology
measurements. Image analysis is performed in Pipeline Pilot
8.5 software (Accelrys Inc., San Diego, USA) and includes a series
of sequential image operations, such as thresholding, filtering,
detecting boundaries prior worm´s segmentation. Morphological
(e.g., area, texture, pixel intensity) and motility-related features
are quantified for each NTS and summarized into a phenotype
(processed through Bayesian models) and a motility score,
respectively. The final scores are obtained by averaging the
scores of all parasites inside each well. Test compounds are
declared “hits” (i.e., actives) if phenotype and motility scores
exceed a defined threshold for each metric. This assay was able to
detect the anti-worm effect of known schistosomicidal drugs
(oltipraz and dihydroartemisinin) (70), several drug candidates
from small (93, 94) and large (70, 95) chemical libraries, as well
FDA-approved drugs (e.g., kinase inhibitors) (96). This analysis
has also been employed by Hoffmann and colleagues (84, 86, 97–
100) who measured the schistosomicidal activity of plant-derived
compounds [e.g., diterpenoids (97, 99) and triterpenoids (100)]
and of potential inhibitors of S. mansoni histone-modifying
enzymes (40, 84, 86, 98).

Recently, Chen et al. (61) developed another HCS-based high-
throughput assay to extract phenotypic features from treated and
non-treated NTS. It consists of a fully integrated platform that
can perform multiple automated operations ranging from liquid
handling of NTS suspensions to image acquisition/analysis. The
latter tasks are carried out as follows: time-lapse bright-field
images (30 x 0.66 s interval) are acquired from each well of a U-
bottom 96-wells microplate using a 10x objective in a HCS
system. During image analysis, each NTS is segmented and
Frontiers in Immunology | www.frontiersin.org 6
classified as “clear” (normal) or “degenerate” (damaged/dying)
using 15 phenotypic features based on the appearance of worms
(e.g., pixel intensity, area, length). Motility measurements are
inferred from the magnitude of a change in a feature over time or
how often its sign or direction changes (e.g., when the worm
becomes longer than shorter). Two statistical methods are
employed to measure significant changes in phenotypes: glass
effect size (monoparametric) and Mahalanobis distance
(multiparametric). The results are analyzed in “SchistoView”, a
graphic interface supported by MySQL database, which allows
users to visualize, query and explore NTS data. This method
shows several improvements in comparison to the HCS-based
assay developed by Paveley et al. (70), including a higher NTS
segmentation accuracy, it requires less parasites per assay and
quantifies how parasites move instead of simply determine if the
movement has occurred or not. In part, these improvements
were achieved due to an innovative solution that allows the
segmentation of touching objects in bright-field images, a
challenging task for image analysis in general. In fact, many
techniques implemented in this platform, such as automated
liquid handling of 100 µm-sized organisms and statistical
analysis of multiparametric data, can be useful to other
screening projects. The HCS approach by Chen et al. (61) was
successfully used to create the phenotypic profile of known
schistosomicidal agents, as well of 1,323 human approved
compounds, identifying new potential drug candidates.

HCS has also been applied to screen compounds against adult
forms (male and females) of schistosomes. Neves et al. (69)
described a HCS-based method to extract morphological and
motility measurements from time-lapse bright-field images of S.
mansoni. In this assay, schistosomes were distributed in 96-well
microplates (1 worm per well) and their images acquired over
time (100 x 0.3 s interval) using a 2x objective. Image analysis
was carried out in a customized pipeline of the open-source
software Cellprofiler (101) comprising a series of image
processing modules, including those responsible for detection
of wells, illumination correction, parasites segmentation and
features extraction. More than 90 features were quantified
during this analysis though only two, related to worm motility,
were used to describe drug-induced phenotypes. So far, this
method has been applied to detect the schistomicidal effect of
antidepressant paroxetine (69) as well as putative inhibitors of
S. mansoni thioredoxin glutathione reductase (SmTGR) (93, 94).

Non-Image-Based Methods
Electrical Impedance Spectroscopy
Electrical impedance spectroscopy (EIS) is noninvasive and
label-free method that has been explored in schistosomiasis
drug discovery (65, 71, 102, 103) (Figure 1C). In summary,
ESI systems quantify dielectrical properties of samples while
applying an alternative current (AC) electrical field using
electrodes. EIS measurements can be used to detect phenotypic
changes in cells/organisms induced by perturbagens, such as
small molecules (104). Smout et al. (102) employed
the xCELLigence real time cell analysis (RTCA) system to
measure the effect of chemical compounds on the motility of
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helminths, including adult schistosomes. The experiments are
carried out in E-plates, commercial microplates with gold
electrodes embedded in the base of the wells that allow
monitoring electrical resistance. Later, an improved version of
this assay (xCELLigence worm real-time motility assay -
xWORM) expanded its applications to detect alterations in the
motility of schistosomes cercariae and egg hatching (71).
xWORM is a sensitive method and was able to reveal the
schistosomicidal effect of natural-derived [phytochemicals (105,
106) and puromycin (107)] and synthetic [forchlorfenuron (108)
and polyridylruthenium(II) complexes (109)] compounds.
Nonetheless, it is not sensitive enough to detect NTS small
movements and requires a relativity larger number of samples
compared to conventional microscopy (103). These limitations
were addressed by Modena et al. (110) who developed a
microfluid impedance-based platform to measure changes in
NTS motility. Their system consisted of a microfluidic chip,
made of polydimethylsiloxane (PDMS), attached to a glass
substrate with patterned electrodes. This method showed high
sensitivity towards both viable and non-viable parasites and
required a lower number of worms per assay to operate in
comparison to microscopy. Later, this concept evolved into a
parallelized platform which was able to run four experiments
simultaneously (103). More recently (65), the system was
reformulated, becoming more automated, performing at a
higher throughput (32 experiments run in parallel) and
allowing long-term culturing of NTS. This assay was successful
in determining the EC50 of mefloquine and oxethazaine which
were of the same order of magnitude as those calculated by
microscopy (65).

Isothermal Microcalorimetry
Isothermal microcalorimetry (IMC) is a very sensitive technique
that measures the heat released or consumed by physical or
chemical events under essentially isothermal conditions (111,
112). IMC has been used in different areas of biomedicine, such
as in the detection of infection and tumors, antibiotic testing,
parasitology and screening for new drugs (111, 113). Manneck
et al. (64) developed an IMC-based assay to study the effect of
chemical compounds on NTS and adult worms of S. mansoni. In
this method, the overall heat production of a suspension of
parasites is continuously recorded by the microcalorimeter. After
the injection of a schistosomicidal compound it is expected that
the heat-flow curves change their behavior indicating
compounds effect on worm metabolism and/or motility
(Figure 1C). This assay proved to be highly sensitive,
capturing subtle effects that were not detected by conventional
microscopy and was used to measure the schistosomicidal
activity of known anti-schistosome agents (mefloquine,
praziquantel) (64, 114), their isomers/racemates (115, 116), as
well as mefloquine-related arylmethanols (117) and 3-alkoxy-
1,2-dioxolanes (118).

Label-Free Methods: Concluding Remarks
In the previous topics we described the main label-free methods
available today for schistosomiasis drug discovery. They
Frontiers in Immunology | www.frontiersin.org 7
represent more automated alternatives for conventional
microscopy, overcoming some of its major limitations (e.g.,
visual phenotypic scoring). These methods vary according to
several features, such as equipment/readout (e.g., microscope/
image), assay cost (equipment and supplies), automation and
screening throughput. They all have their pros and cons and the
choice of one over another depends, in many cases, on
equipment availability. In low-budget labs, video microscopy
and WormAssay represent more affordable solutions for
compound screening against schistosomula and/or adult
schistosomes, since they require low-cost equipment, and the
assays are carried out in regular microplates. On the other hand,
HCS-based assays demand a high initial investment but use
regular microplates as supplies, operate at a higher throughput
and can be readily incorporated into automated platforms.
Moreover, HCS systems can be easily coupled with a wide
range of objective lens, allowing them to capture images of
schistosomula, adults and potentially other parasites forms
(e.g., eggs and juveniles). In contrast to image-based, non-
image-based methods are less employed in screening
campaigns. Overall, they demand expensive (microcalorimeter
and RTCA systems) or customized (EIM platform) equipment,
more costly supplies (e.g., E-plates), operate at a lower-
throughput in comparison with automated microscopy and, in
the case of xWORM, it is not able to detect phenotypic changes
in schistosomula. Nonetheless, they are highly sensitive, may
reveal drug-induced phenotypes which cannot be captured by
image-based methods (e.g., metabolic activity), and xWORM
already offers protocols for measuring the effect of compounds
on schistosome eggs and cercariae. In conclusion, it is our
understanding that HCS-based assays represent today the most
advanced approaches to schistosomes phenotypic screening due
to their ability to describe complex phenotypes of different forms
of the parasite at a high throughput.
TARGET-BASED SCREENING

Target-based drug discovery (TDD) consists of finding ligands
for a known biological target, previously identified as having
potential relevance in a disease. One of its main advantages is the
possibility of knowing characteristics of the target binding site,
which allows the optimization of ligands and the development of
an efficient structure-activity relationship. Its emergence was
made possible by advances in molecular biology and genetics,
which allowed the identification of individual biological targets,
as well as the possibility of developing compounds that interact
with these targets. The genome project, the development of
techniques such as RNA interference and gene knockout,
advances in structural biology and the development of
computational tools were of great importance for the
emergence of this alternative to the phenotypic approach in
drug discovery (47, 119–121).

Ligand-binding assays are at the core of TDD strategies. In
the context of pharmacological screening, the classical assay
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provides, for example, affinity, potency, and maximum response
data of the analyzed molecules. It is also possible to determine
the intrinsic activity of ligands (122, 123), through functional
binding assays, in addition to assessing the residence time of the
ligand to its target molecule (124). In contrast to the classical
binding assays, HTS is a strategy that allows for the testing of tens
of thousands of compounds per day, for activity against
biological targets. Considered one of the most used strategies
in TDD, HTS can be performed using different approaches, that
can be mainly divided into biochemical assays and cell-based
assays (125–127).

Although in-solution assays are commonly used for in vitro
screenings, immobilized enzyme reactors (IMER) systems have
proved to be a valid alternative drug screening strategy. The
immobilization of a target protein to a solid support has the
advantage of longer maintenance of the stability of the molecule,
and the possibility of extracting the protein from the reaction
medium, allowing it to be reused. In addition, IMER can be
coupled to different separation systems, such as high performance
liquid chromatography (HPLC), which solve the possible problem
of product and assayed compounds fluorescing at the same
wavelength, since these analytes can be separated and analyzed
individually (128). Active anti-cancer compounds (129), enzyme
inhibitors (130–133) and G protein-coupled receptors (GPCR)
(134) binders have recently been identified using this approach.

After the sequencing and decoding of the S. mansoni genome,
several putative drug targets were identified (Table 3), and
studies using a the target-based approach emerged (157).
Frontiers in Immunology | www.frontiersin.org 8
S. mansoni encodes 252 kinases, which have already been
shown to have a relevant role in the biology of the parasite (158).
S. mansoni polo-like kinase (SmPLK1) is mainly expressed in
reproductive organs of the adult parasite, which suggests a
contribution of this enzyme to cell division. The screening of a
series of analogues compounds, derived from a human PLK1
inhibitor bioactive against S. mansoni parasites, yielded the
identification of potent compounds against schistosomula and
adults (92). Buskes et al. (49) reported the optimization of a
compound, analogous to the tyrosine kinase inhibitor lapatinib
which had initially been identified as a potent antitrypanosomal.
From this optimization, analogues were selected for a
repurposing approach, and screened against S. mansoni
parasites. As a result, several potent compounds against the
adult form of the parasite were identified and considered
promising leads for further assessment as antischistosomal
compounds. The main drawback to exploit kinases as drug
targets is the difficulty to achieve selectivity among the vastness
of homologues present both in schistosomes and humans. One
promising route to achieve this selectivity is exploring allosteric
binding sites as alternatives to the more conserved active sites.

Targeting histone-modifying enzymes (HMEs) has been a
widely explored strategy for the discovery of new drugs to treat
parasitic diseases. In S. mansoni, two classes of histone
deacetylases (HDAC and sirtuins) have been identified and are
considered potential drug targets for the treatment of
schistosomiasis (159). Kalinin et al. (135) designed and
synthesized a series of compounds, derived from weak human
TABLE 3 | Some classes of molecular targets in Schistosoma sp.

Target type Family Target protein Number of screened
compounds

Screening strategy Species Reference

Enzyme Kinases SmPLK1 49 Phenotypic assay S. mansoni (92)
Tyrosine kinase 37 Phenotypic assay S. mansoni (49)

Histone
deacetylases

SmHDAC8 18 Enzymatic and phenotypic assays S. mansoni (135)
SmSirt2 36 Enzymatic and phenotypic assays S. mansoni (136)

Redox metabolism SmTGR 59,360 Enzymatic and phenotypic assays S. mansoni (137)
SmTGR 119 Enzymatic and phenotypic assays S. mansoni (138)

Lipid biosynthesis SjOAR 14,400 Virtual screening, phenotypic and enzymatic
assays

S. japonicum (139)

Phosphodiesterases SmPDE 265 Phenotypic assay S. mansoni (140)
SmPDE4A-D 1,085 Enzymatic and phenotypic assays S. mansoni (81)
SmPDE4A 975 Virtual screening and enzymatic assay S. mansoni (141)

Proteases SjCL1 3 Enzymatic and phenotypic assays S. japonicum (142)
SjCL2 3 Enzymatic and phenotypic assays S. japonicum (142)
SjCL3 1 Phenotypic assay S. japonicum (143)
SjCD 7 Enzymatic assay S. japonicum (144)

Sm32 (Legumain,
SmAE)

23, 49, 31 Enzymatic assay S. mansoni (145–147)

SmCB1 (Sm31) 18, 68, 34, 39, 3 Enzymatic assay S. mansoni (148–152)
SmCD1 1 Enzymatic assay S. mansoni (153)

SmCL1 (SmCF) 5 Enzymatic assay S. mansoni (154)
SmCL3 2 Enzymatic assay S. mansoni (155)
Sm20S 3 Enzymatic and phenotypic assays S. mansoni (82)
SmPOP 19 Enzymatic assay S. mansoni (156)

Receptor GPCR Sm.5HTR 143 Enzymatic assay and phenotypic S. mansoni (78)
Sm.5HTR ~250 Enzymatic assay and phenotypic S. mansoni (140)

TRP Sm.TRPMPZQ N/A Phenotypic assays S. mansoni (58)
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HDAC8 (hsHDAC8) inhibitors, which varied in the size and
flexibility of their side chains. These molecules were screened on
S. mansoni HDAC8 (SmHDAC8) to assess their ability to inhibit
enzyme activity, and a potent and selective SmHDAC8 inhibitor
was identified. Crystallographic and docking studies with
SmHDAC8 and the compound revealed key interactions
between them, which are not observed with the human
orthologue hsHDAC8. Another study identified the first S.
mansoni sirtuin 2 (SmSirt2) inhibitors with activity in the low
micromolar range, potency against larval schistosome and adult
worms, and no toxicity to human cells. These inhibitors were
previously identified by an in vitro screening of a compound
library, comprising potent and specific growth inhibitors of other
parasites, such as Leishmania donovani and Trypanosoma
cruzi (136).

Another drug target for schistosomiasis is thioredoxin
glutathione reductase (TGR), an enzyme responsible for
maintaining the redox homeostasis. A high-throughput
screening against a compound library comprising 59,360
synthetic compounds was carried out, of which 74 inhibited
SmTGR activity by more than 90% at 10 µM. Some of these had
potent schistosomicidal activity against the larvae and adult
worms (137). After the flood of date coming from the large q-
HTS campaign, there was a feeling of certain disappointment
since no major pre-clinical or clinical candidate arose from all
this effort. However, the work with SmTGR as a drug target is
slowly picking up pace again. A recent work selected the most
active chemotypes from HTS plus analogues and re-tested
against the enzyme. Ninety-seven had SmTGR inhibitory
activity confirmed, and five of them killed S. japonicum, S.
haematobium and S. mansoni (with LD50 ≤ 10 µM) adult
worms, and all other development stages of S. mansoni (138).
SmTGR has also been recently explored under the fragment-
based drug discovery paradigm, as it will be discussed further
ahead in this review.

3-oxoacyl-ACP reductase (OAR) is an enzyme involved in
lipid biosynthesis that is absent in mammals. The cloning,
expression, and purification of Schistosoma japonicum OAR
(SjOAR) was performed by Liu et al. (139), as well as the
elaboration of a homology model of the three-dimensional
structure of this protein. A library consisting of more than
14,000 small molecules was chosen for an in silico screening
against the model of SjOAR, and 30 initial hits were identified. Of
these hits, two were shown to have schistosomicidal activity on
both juvenile and adult forms, relatively low cytotoxicity, and
could significantly inhibit the activity of the purified
recombinant enzyme, confirming that SjOAR is the primary
target of these compounds.

From a library focused on exploring phosphodiesterases
(PDEs) as potential drug targets for several parasites, 265
compounds were obtained and had their antischistosomal
activity evaluated (160). In vivo screening revealed that 171 of
the compounds had activity against adult parasites. All these hits
showed some level of activity in a mouse model, and two of them,
when combined with PZQ, managed to a near complete
eradication of viable eggs. Despite being structurally related to
Frontiers in Immunology | www.frontiersin.org 9
PDE10 inhibitors, further studies are needed to validate SmPDEs
as the targets of these compounds (140). Another important
work was carried out by Long and colleagues (81), which
undertook considerable efforts to validate S. mansoni PDE4A
as a target for a series of benzoxaboroles. From a library of 1085
benzoxaboroles, the authors identified some compounds which
induced hypermotility and degeneration of S. mansoni worms.
Employing phenotypic assays with transgenic C. elegans,
chemical and functional characterization, it was possible to
observe a positive correlation between the hypermotile
phenotype of the parasite and the inhibition of SmPDE4A,
suggesting that this enzyme is a target for the tested
bezaxoboroles. In another recent study, inhibitors of
SmPDE4A were discovered, using a virtual screening approach.
Homology models of the enzyme structure were generated and
used to screen a chemical library. 25 hits were selected and tested
as inhibitors of the recombinant SmPDE4A, and five of them
were able to inhibit its activity (141).

Schistosome aspartic proteases, as well as cysteine proteases,
play a major role in life cycle of Schistosoma parasites by breaking
down host hemoglobin an essential source of amino acids from
the parasite. Studies have shown that reductions in transcript
levels of SmCD1, an enzyme of S. mansoni similar to cathepsin
D, lead to phenotypic changes in the parasite, such as growth
retardation (161). Thus, SmCD1, as well as the orthologue from
S. japonicumi (SjCD1), are considered validated targets in
antischistosomal drug discovery. A homology modelling study
and SAR analysis with peptidomimetic compounds designed
against SjCD1 revealed unique structural features for achieving
selectivity to this enzyme (144). Recombinant SmCD1 was
recently expressed in HEK293 cells, characterized biophysically
and biochemically (153). This is an important step towards
further exploring this enzyme in TDD, since they can be
considered promising druggable targets as demonstrated in the
past with the development of HIV-1 protease inhibitors.

With over 10 years of publications, cysteine proteases are
some of the oldest targets against schistosomiasis and S. mansoni
cysteine protease cathepsin B1 (SmCB1) is one example. The
SmCB1 has stood out as an important target for drug
development. Some studies have described structural and
functional characteristics (152, 162) of how SmCB1 is
inhibited. Some of these applied scoring methods based on
quantum mechanics (QM) to describe important interactions
between vinyl sulfone chemotype inhibitors and SmCB1 (163).
Furthermore, these inhibitors were important to map druggable
hot spots in SmCB1 (150). The vinyl sulfones inhibitors also
showed desirable properties such as activity in phenotypic assays,
selectivity for SmCB1 over human cathepsin B and metabolic
stability. Besides this new SmCB1 inhibitor class, in a recent
publication Jiková et al. (149) showed that azanitriles
chemotypes can act as potent covalent inhibitors of SmCB1.
Using recombinantly expressed SmCB1, crystal structure
determination, QM methods, phenotypic and target-based
assays, these authors were able to identify azanitriles with
nanomolar range potency. These studies trace an important
path to the identification of new molecules with therapeutic
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potential to treat schistosomiasis, whilst reinforcing the
importance of SmCB1 as a valuable S. mansoni drug target.

In addition to enzymes, receptors (164–166) and transporters
(62, 166) are also targeted in schistosomiasis drug discovery.
Serotonin (5-HT) GPCRs have already been identified in S.
mansoni and related to worm movement regulation (66).
Marchant et al. (78) characterized the pharmacological profile
of the schistosome receptor Sm.5HTR, a GPCR involved in
worm movement, and a screening of 143 previously studied
compounds was performed, leading to the identification of
scaffolds that regulate the activity of this receptor Similarly, a
commercial GPCR compound library has been screened against
Sm.5HTR, and 23 compounds identified as potential antagonists,
with the majority showing selective inhibition of the parasite
serotonin receptor (167).

In 2019, a paper published by Park et al. (58) presented
important insights regarding the role of praziquantel on
schistosome worms. This work showed that PZQ activates a S.
mansoni transient receptor potential channel (SmTRPM) showing
properties consistent with the observed responses on worms, like
nanomolar sensitivity to PZQ, stereoselectivity and sustained Ca2+

entry response. The authors were able to identify nanomolar
sensitive of SmTRPM to (R)-PZQ isomer (eutomer), which is
approximately 50 times more sensitive to (S)-PZQ. Further
screening campaigns will be necessary to assess the therapeutic
potential of this target. Nevertheless, these findings elevate the
SmTRPM as a promising clinical target to treat schistosomiasis.

Fragment-Based Drug Discovery (FBDD)
In the last decades, fragment-based drug discovery (FBDD) has
been established as an efficient approach for the identification of
new biologically active compounds (168–172). To date, four
marketed drugs have been discovered by FBDD (173),
including vemurafenib (174), venetoclax (175), erdafitinib
(160), and pexidartinib (176), while over 40 fragment-based
drug candidates are in different stages of clinical trials (177). In
FBDD campaigns, small and less complex compounds,
commonly with molecular weight (MW) <300 Da and <20
heavy atoms, are screened against therapeutic targets (178, 179).
The use of very small molecules offers advantages over screening
larger compounds, including a more efficient sampling of
chemical space with fewer compounds (180), higher hit rates
(181), and also better physicochemical properties (182, 183).
Besides, lower investments are needed, and FBDD projects
progress relatively faster between the research and development
(R&D) phases (184). As an example, vemurafenib took only six
years from hit identification to the approval by the US Food and
Drug Association (FDA) in 2011 (171, 174). Therefore,
incorporating FBBD into anti-schistosome drug discovery may
help to accelerate the identification and development of drug
candidates for schistosomiasis and other NTDs (185, 186). FBDD
involves steps of library design, screening, and optimization and
these steps are discussed in the subsequent sections.

Fragment Library Design
Most early fragment libraries were designed based on the Rule of
Three (RO3), i.e. MW ≤300 Da, the number of hydrogen bond
Frontiers in Immunology | www.frontiersin.org 10
donors ≤3, the number of hydrogen bond acceptors is ≤3 and
cLogP is ≤3 (178). However, this paradigm has been changing
based on incremental experience in FBDD acquired in the last
years and considering the facilitation of fragment screening and/
or subsequent fragment optimization chemistry (187, 188).
Nowadays, several strategies exist, which cover the use of
labeled fragments for nuclear magnetic resonance (NMR)
spectroscopy, covalent linkage for mass spectrometry, dynamic
combinatorial chemistry, X‐ray crystallographic screening of
specialized fragments and fragments optimized for easy
elaboration (189).

The last two strategies are blended and available to the
community through the XChem fragment screening facility at
Diamond Light Source in the UK (190). For this facility, a library
of chemical compounds poised for expansion called DSPL (191)
was designed to allow rapid and low cost follow-up synthesis and
to provide quick SAR data through X-ray crystallography. Poised
fragments contain at least one functional group which can be
synthesized using a robust, well-characterized reaction.
Reactions include amide couplings, Suzuki-type aryl-aryl
couplings and reductive aminations, amongst others. The
library was designed by analyzing all commercially available
fragment space (using the ZINC reference library), yielding
nearly 30,000 compounds of which a chemically diverse subset
of 800 compounds was selected for the poised library. In practice,
the available chemical material shows bias towards the most
commonly used chemical reactions (192), however, it still the
case that the XChem program delivers between 2% and 10%
fragment hit rates (soaks yielding bound fragments in the
structure) for projects amenable to multi-crystal soaking and
screening by crystallography. A remarkable result exemplified by
the more than 100 projects screened since 2016, including the
successful screening and follow-up of the SARS-CoV-2 Mpro

protein, also released as an open science public service (193, 194).

Fragment Screening Strategies
Screening strategies rely on identifying and ranking chemical
fragments that bind to the protein target. Methods need to be
sufficiently sensitive to measure low affinity interactions and
therefore do not typically rely on activity assays. The NMR,
surface plasmon resonance (SPR), thermal shift assays (TSA)
(also known as differential scanning fluorimetry (DSF) and X-ray
crystallography are the most widely used techniques for high
throughput fragment screening.

Nuclear Magnetic Resonance
The NMR spectroscopy is the most robust fragment screening
method for detecting very weak binding (KDs in the µM to mM
range). The NMR approach used to identify target-ligand
interactions can be based on observation of the target (target-
observed) or ligand (ligand-observed) (195). In the case of
ligand-observed NMR methods, only the resonance of the
nuclei present in the ligands is measured (196). This type of
approach includes methods such as saturation-transfer difference
(STD), water LOGSY, cross saturation (CS) and transferred-
cross saturation (TCS), transferred nuclear Overhauser effect
(trNOE), NOE editing/filtering diffusion editing, relaxation
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editing, use of paramagnetic tags and residual dipolar couplings
(197, 198). On the other hand, the target-observed methods
provide data on the target nuclei that are directly involved in the
interaction with the ligand (197). Among the target-observed
methods, there are chemical shift mapping using 15N-HSQC,
backbone amide hydrogen exchange and solvent paramagnetic
relaxation enhancement methods. In comparison with other
methods, NMR spectroscopy has the advantage of being
conducted in solution, which allows the protein to be as close
as possible to its native conformation. In addition, NMR enables
both the target and the ligand to be structurally characterized
serving as quality control assay to verify the structural integrity of
the ligand. However, compared to other methods, fragment
screening by NMR is relatively slow (199).

Surface Plasmon Resonance
Screening by SPR involves immobilization of the target protein
on a gold or silver sensor surface and measurement in the change
in reflected light following ligand interaction (200, 201). The
method is high throughput and very sensitive (µM to nM range)
providing kinetic binding data (Kon and Koff rates), from which,
KDs are calculated. The main disadvantage of the technique is the
potential difficulty of immobilizing proteins in native
conformation and therefore it is important to test a reference
compound to assess correct binding behavior. The relatively high
concentration of immobilized target and fragment affinities can
lead to false positives through non-specific binding (202).

Thermal Shift Assays
In the thermal shift assay protein denaturation is monitored by
fluorescence either intrinsic tryptophan fluorescence or using dyes
that preferentially bind partially or completely denatured proteins
(203). Ligand binding is measured indirectly as the increase in
thermal stability resulting from interaction with the target protein
in the native state (204). This method is easy, fast and inexpensive
for fragment screening (185). However, could not be appropriate
for all target proteins, because indirect readout of the protein’s
denaturation, and chances to generate false positives. Thereby, it is
necessary to confirm the identified hits with other methods (205).

X-ray Crystallography
Crystallography is the current method for delivering atomic
resolution information and is arguably the method of choice for
primary screening if a project is amenable to this approach, i.e.,
access to high quality purified protein that can be reproducibly
crystallized (206). There are two strategies for obtaining protein-
fragment complexes, namely, co-crystallization or soaking (207).
Co-crystallization is the mixing of the free protein in solution with
a ligand prior to crystallization, which allows the small molecule
to bind to the protein prior to crystal lattice formation. This is the
preferred method if a protein complex with a specific ligand is
required. A potential downside is co-crystallization with different
small molecules can lower the success rate for crystallization, or
introduce changes in resolution and crystal form, burdening the
downstream analysis and limiting high throughput. In crystal
soaking, false negatives come from protein failing to crystallize, or
protein crystals growing without bound compounds. A simpler
approach is soaking, where the compound is added, (dissolved or
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pure), directly to the crystallization drop which already contains
crystals. In this method, compounds diffuse through solvent
channels in the crystal accessing binding pockets in the protein
(208). However, false negatives can still arise through a lack of
fragment binding. Compounds may also dissolve crystals by
disrupting the crystal lattice. Both co-crystallization and soaking
are sensitive to low compound solubility.

Fragment-to-Lead (F2L) Optimization
The fragment hits commonly have weak binding affinities (from
mM to high µM range) as a consequence of the reduced number
of heavy atoms to form attractive interactions with the target
(209). Despite the low MW, the fragment hits form high-quality
interactions, i.e., highly energetically favorable interactions that
surpass the entropic penalties for binding (210, 211). Thus,
fragments constitute starting points that can be optimized
iteratively into larger higher-affinity compounds – a process
known as fragment-to-lead (F2L) (205, 210). The F2L process
is guided by the information of binding mode, growth vectors
available, and ligand efficiency (LE) and its derivatives (212, 213).
LE is a metric used to describe the average free energy of binding
per heavy atom (Equation 1) (214), and LE ≥0.3 is frequently
used to select the most promising fragment hits to F2L (183).
Three main strategies are used to optimize fragments, including
fragment growing, merging, and linking (Figure 2).

LE = DG
HAC (1)

where, DG is the free energy of binding and HAC is the heavy
atoms count of a compound.

Fragment growing (Figure 2A) is the most commonly applied
strategy in F2L (218). The effectiveness of this strategy is shown
by its use in F2L process of three out of the four marketed drugs
derived from FBDD (173), namely vemurafenib (174), erdafitinib
(160), and pexidartinib (176). The fragment growing strategy
involves a several steps. Firstly, potential growth vectors are
identified in the chemical structure of the fragment hit (212,
219). Then, atoms or chemical groups are added to the fragment
hit to explore additional interactions with the binding site and
increase the potency (205). Structural information of the binding
mode is essential during fragment growing to identify potential
sub-pockets to explore and assess the maintenance of the
fragment’s original binding mode and additional molecular
interactions (198, 220). At each iteration of growing, synthesis
and testing, success can be evaluated by LE, monitoring if the
extra molecular mass added was beneficial (221).

Fragment merging (Figure 2B) can be applied when two
fragments bind in an overlapping position of the binding site and
can be merged into a unique and more potent hybrid compound
(222, 223). As in fragment linking, both fragments can work
additively when merged or even synergistically (224). Here,
structural information is also crucial to understand the binding
mode (198). Fragment merging is also difficult to achieve and less
frequently used because of the challenging task of maintaining
the original binding modes of the fragments after merge (225).

Fragment linking consists of the connection of fragments
binding to different but adjacent sub-pockets in the binding site
by a linker moiety (Figure 2C) (168, 177) and is the most
powerful strategy for converting fragments into potent
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ligands (198). This is due to the potential super additivity effect,
where the binding free energy of linked fragments is higher than
the sum of binding free energy of the individual fragments (226,
227). The main challenge is the design of a linker group that does
not affect the original binding mode of fragment hits (218). As a
successful case, the marketed drug venetoclax was optimized by
applying the fragment linking method (173, 177).

The SmTGR is a flavoenzyme expressed by schistosomes
involved in the detoxification pathways that are pivotal for their
survival in the host organism (228–230). Most SmTGR inhibitors
are reactive electrophilic compounds, such as metal derivatives or
Michael acceptors, presumably targeting the nucleophilic residues
(selenocysteine and low pKa redox active cysteines), which may
result in low selectivity and toxicity (231, 232). Attempts to obtain
crystal structures of SmTGR in complex with such inhibitors have
been unsuccessful, reflecting the problem of crystallizing non-
homogenous protein preparations resulting from the presence of
several redox and nucleophilic centers in the SmTGR, which are
the sites of action for electrophilic inhibitor (233).
Frontiers in Immunology | www.frontiersin.org 12
Given the challenges posed by the redox properties of the
enzyme, allosteric and secondary binding sites could be explored,
as they present less reactive amino acids which could lead to less
toxic and more selective inhibitors. For this reason, Silvestri and
coworkers (233) prioritized 1,000 fragment inhibitors of the
SmTGR from a quantitative HTS campaign. Then, by X-ray
crystallography identified two fragments (1,8-naphthyridine-2-
carboxylate and 1-(2-hydroxyethyl)piperazine) that bound in a
secondary pocket adjacent to the NADPH binding site (Figure 3),
named as “doorstop pocket”. The pockets are separated by the
Tyr296 residue, where the aromatic ring of Tyr296 could adopt the
closed (Figures 3A, D) and open (Figures 3B, C) conformations.
Small molecules bound at the doorstop pocket disturb the well-
known and conserved conformational adjustments associated with
NADPH binding and enzyme reduction (233). Subsequently,
chimeric compounds blending the structural features of the
initial fragments into single compounds were synthesized and
showed improved SmTGR inhibition activity, ex vivo activity
against larval and adult S. mansoni worms at low micromolar
A

B

C

FIGURE 2 | A schematic illustration of fragment optimization strategies. (A) Fragment growing: initial fragment with low affinity is optimized by stepwise addition of
functional groups to obtain a larger compound with high affinity. 3D and 2D schemes represents the growing evolution of navoximod, an indoleamine 2,3-
deoxygenase 1 (IDO1) inhibitor with antineoplastic properties (solid tumors) (215); (B) Fragment merging: two or more fragments sharing the same pocket are
covalently merged to obtain a larger compound with higher affinity. 3D and 2D schemes represent an example of fragment merging to the discovery of inhibitors of
the Mycobacterium tuberculosis cytochrome P450 CYP121 (216). (C) Fragment linking: two or more fragments bound independently in proximity are covalently
linked with suitable linkers to obtain a larger compound with higher affinity. 3D and 2D schemes represent an example of fragment linking to the discovery of
inhibitors of M. tuberculosis pantothenate synthetase (217).
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concentrations. In addition, the designed compounds tended to
have selectivity for SmTGR, as the amino acid residues of the
doorstop pocket are not conserved between members of the FAD/
NAD-linked reductase family (233). Although strictly this work
was not a FBDD campaign (at least not originally designed as one),
it was an interesting effort that showed the potential of the
fragment-based approach to disclose new binding sites that can
be explored to develop novel potent ligands.

Although FBDD has been established as an efficient approach
for the identification of new biologically active compounds for
several diseases, very few applications had been reported for
schistosomiasis. Thus, FBDD has a great potential for anti-
schistosomal drug discovery in the future.

In Silico Approaches for FBDD
In silico approaches have been used in several parts of FBDD
pipelines as an alternative or complementary approach, with the
benefits of speed and low cost (234, 235). Many fragment libraries
are available in the literature (188) and computational methods can
be used to design a fragment library with high chemical diversity,
synthetically accessible to be easily optimized during F2L, and also
select or exclude fragments based on physicochemical properties
(236, 237). The biophysical techniques applied for fragment
screening are low-to-medium throughput (188), limiting the
Frontiers in Immunology | www.frontiersin.org 13
number of fragments that can practically be screened, and
therefore the coverage of chemical space (180, 238). To
compensate for this, molecular docking and machine learning can
be used to virtually screen a large number of fragments and prioritize
the most promising for experimental testing (224, 239–242).

Several in silicomethods are also used during the F2L process
(243). When no structural information about the binding is
available, molecular docking and molecular dynamics are used to
predict the binding mode and inform the growing, linking, and
merging strategies (244, 245). The fragment hits can also be
optimized with the help of de novo, machine learning, and deep
learning methods (209, 243). These methods will be discussed in
more details in the next sections.
COMPUTER ASSISTED- AND ARTIFICIAL
INTELLIGENCE-BASED DRUG DESIGN

Schistosome Post-Genomic Era
Genes and Proteins Functional Annotation
The “-omics” era for schistosomiasis drug discovery started when
the first versions of the S. mansoni (157, 246), S. haematobium
(247), and S. japonicum (248) genomes were published. Recently,
A

B

D

C

FIGURE 3 | Doorstop pocket of SmTGR adjacent to the NADPH binding site. The Tyr296 of the doorstop pocket is represented in (A) closed and (B) open
conformation, as well as in the presence of (C) NADPH and (D) two fragments (1,8-naphthyridine-2-carboxylate and 1-(2-hydroxyethyl)piperazine).
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revised versions of the S. japonicum (249) and S. haematobium
(250) genomes were released, enhancing the quality of the available
genomics data for these three main trematode responsible for the
majority of schistosomiasis cases in the world. The latest genome
versions of these trematode species, together with other parasitic
worms species, are available online at (https://parasite.wormbase.
org/species.html#Platyhelminthes).

Most of the genome of schistosomes (like many other organisms)
has yet to be explored experimentally. Consequently, bioinformatic
tools and resources have become pivotal for the functional
annotation and analysis of genes and their products. There are a
wide range of general resources available that host biological
information (genomics sequences, transcription data, protein
structures, metabolomic data and more, see Table 4) as well as
bioinformatic tools to perform analysis to unveil useful information
within the data. Databases and webservers such as (but not limited
to) InterPro (251), CATH-Gene3D (252, 253), the Conserved
Domains Database (CDD) (254), HAMAP (196), PANTHER
(255), Pfam (256, 257), PROSITE Patterns and Profiles (258),
ProDom (196), PIRSF (196), PRINTS (259), SMART (260),
Structure-Function Linkage Database (SFLD) (261),
SUPERFAMILY (262, 263), TIGRFAMs (264) are integrated to
identify specific motifs and domains to classify the protein of
interest. Other resources such as the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (265) provide functional annotation
that encompasses molecular-level information about biological
systems, integrating molecular datasets resulting from genome
sequencing or other large-scale experimental technology. The
KEGG website (https://www.genome.jp/kegg/) offers several tools
to find data-oriented and organism-specific entry points, as well as
analytical tools for diverse ends, such as genome and metagenome
functional annotation (BlastKOALA and GhostKOALA
respectively), pathway mapping tools (KEGG Mapper), sequence
and chemical similarity search (BLAST/FASTA and
SIMCOMP respectively).

Gene Ontology (GO) model (266) (http://www.geneontology.
org) is commonly used for describing genes using a unified and
common vocabulary applicable to any organism. GO is a
Frontiers in Immunology | www.frontiersin.org 14
hierarchical way of describing information gathered on genes
and proteins at different levels of annotation and is used by many
of the databases mentioned above as it provides the top three
different categories of high-quality annotation: (i) biological
process, (ii) molecular function, and (iii) cellular component;
each one referring to the biological objective of the gene/gene
product, biochemical activity of the gene/gene product, and place
in the cell where the gene product is active respectively (267).
The unified annotation/vocabulary provided by GO is dynamic
and entirely based on the principle of shared orthology by all
eukaryotic organisms. It can be updated as the ontologies
become mature through the in tegra t ion of more
experimental results.

As an exemplar of how these tools and resources can be used
in the context of Schistosoma is by Padalino and colleagues (40)
who identified S. mansoni Lysine Specific Demethylase-1
(SmLSD1) as a druggable epigenetic target, as well as
daunorubicin and pirarubicin as potential inhibitors. This was
possible using bioinformatics tools, such as Uniprot, PROSITE,
InterPro, and Pfam, BLAST in combination with homology
modeling, molecular docking, and a whole-organism screening.

Likewise, the latest revised versions of S. haematobium and S.
japonicum published by Stroehlein et al. (250) and Luo et al.
(249) demonstrate the use of several tools in an extensive way.
Luo and colleagues (249) combine tools whose functions range
from genome evaluation to RNA, protein prediction and
phylogenetic analysis and all of them converge to the
evaluation and comparison of the revised genome and the
previously published versions. Stroehlein and colleagues (250)
used a lesser extent of tools, however a deep comparison between
previously published versions of Schistosoma genomes was
conducted and a careful data curation was carried out to
ensure the quality of the assembled genome.

Since 2017, many efforts in terms of RNA-seq data have been
reported in the context of Schistosoma (85, 269–272). A
thorough protocol of how to gather, process, reconstruct the
transcripts, and identify novel long non-coding RNA (lncRNAs),
as well as their expression levels (273). In this protocol,
TABLE 4 | Databases and webservers for gene and protein functional annotation.

Resource Link Reference

CATH-Gene3D http://www.cathdb.info/browse/sunburst?from_cath_id=1.10 (252, 253)
CDD https://www.ncbi.nlm.nih.gov/cdd/ (254)
GO http://www.geneontology.org (266)

HAMAP https://hamap.expasy.org/ (196)
InterPro https://www.ebi.ac.uk/interpro/ (251)

KEGG database https://www.genome.jp/kegg/ (265)
PANTHER http://pantherdb.org/ (255)

Pfam http://pfam.xfam.org/ (256, 257)
PIRSF https://proteininformationresource.org/pirwww/dbinfo/pirsf.shtml (196)

PRINTS http://130.88.97.239/PRINTS/index.php (259)
ProDom http://prodom.prabi.fr/prodom/current/html/home.php (196)
PROSITE https://prosite.expasy.org/ (258)

SFLD database http://sfld.rbvi.ucsf.edu/archive/django/index.html (261)
SMART http://smart.embl-heidelberg.de/ (260)

SUPERFAMILY https://supfam.org/ (262, 263)
TIGRFAM http://tigrfams.jcvi.org/cgi-bin/index.cgi (264)
WormBase https://parasite.wormbase.org (268)
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Maciel and Verjovski-Almeida use a set of open-source Unix-
based tools combined with several R (274) packages to support
the analysis of differential expression of some lncRNAs. Wang
and colleagues (85) reported a large RNAi screening against S.
mansoni to uncover new therapeutic targets. The authors
conducted a GO enrichment to better understand the roles of
the essential genes to the parasite development and attachment
to substrate. Furthermore, this study demonstrated the
essentiality of SmTK25 kinase to maintain the muscular
function of the parasite, thus representing a promising
therapeutic target.

Phylogenetic Analysis – Computational
Phylogenomic Inference Methods
One of the principal methods for integrating and inferring
functional annotation is phylogenetics - the study of the
evolutionary story of organisms and their relationships with
other organisms or group of organisms. The relationships
among the organisms are described in a detailed and
hierarchical manner through phylogenomic inference methods,
which will result in a phylogeny, represented by a phylogenetic
tree (275). It is the best way for identifying and confirming
whether two or more sequences are orthologs (276).

Phylogenomic inference methods are applied to assign a
biological function to an unannotated gene or protein (277).
Their overall accuracy is high and theoretically the topology of a
generated phylogenetic tree is correct unless highly dissimilar
sequences (identity <25%) are present among the aligned
sequences (278). The methods are directly dependent on a
multiple sequence alignment (MSA), whereby main objective is
to align more than two sequences, allowing the identification of
conserved motifs, domains and regions in the compared
sequences (nucleic or amino acids) (277). Therefore, the
quality of a final phylogenetic tree will strongly depend on the
MSA quality and accuracy. The most popular tools for
phylogenetic analysis are PhyML (279), RAxML/ExaML (280),
FastTree (281), and IQ-TREE (281, 282).

There are many methods that can be used to build
phylogenetic trees from an MSA. Distance-based methods such
as neighbor-joining and Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) are the simplest examples which
provide a genetic distance calculation between the multiple
sequences aligned, but do not give evolutionary information
(275, 282, 283). More complex methods, such as maximum
parsimony, minimum evolution, and maximum likelihood can
be employed considering the Bayes’ theorem for the estimation
of an evolutionary model (284, 285).

Maximum parsimony’s principle relies on the sum of the
number of minimum possible sites substitutions in each
sequence. The sum will constitute the tree length for the
investigated topology and the topology with the minimum length
is called maximum parsimony tree (279). Minimum evolution is a
distance-based method which generates a tree topology based on
the lowest value among the values obtained from the sum of all
branches (286). This method has a high time-cost mainly when
dealing with too many sequences, e.g. protein superfamilies. The
Maximum likelihood statistical method is known as the method
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which produces the most reliable phylogenetic trees in comparison
with distance-based methods and the parsimony method (283). A
phylogenetic tree is constructed through the maximum likelihood
method accordingly to the following steps: (i) generate a starting
tree; (ii) rearrange the starting tree through topological
substitutions and evaluate the new tree; (iii) replace the starting
tree and repeat the step ii if no better tree is identified; on the
contrary, terminate the search (283).

For the cited methods, even for those based on distance, the
robustness of the tree is assured by a bootstrap resampling
technique (275, 282, 287) which is based on the replacement of
nucleotides, codons or amino acids and the construction of a new
tree with the new sequences. Next, each interior branch of the
original tree is compared to the newly branches and, if the
branches are different, a bootstrap score 0 is given while a score 1
is assigned to the other branches. The process is repeated a few
hundred times, the percentage of times which the bootstrap score
1 was given is calculated, and the topology can be considered
correct if the percentage is equal or greater than 95%. In the
context of Schistosoma species and other helminths, these types
of phylogenetic analysis have been boosted by the availability of a
wide range of high quality genomes captured and analyzed
within the 50 Helminth Genome Project (https://www.sanger.
ac.uk/collaboration/50hgp/) and well as the other genomes and
resources found in WormBase (268).

Cheminformatics
Despite all advances achieved in the field of automation of
screens, FBDD, and also in the understanding of disease
biology in the post-genomic era, delivering new drugs to the
market remains a highly complex, expensive and time-consuming
process (288, 289). Therefore, there is a need for innovative
approaches that could bring new drugs for patients at a lower
cost-to-market. In this context, computer-assisted drug design
approaches (CADD) has been considered as a potential
opportunity (290, 291). Cheminformatics is a field of CADD
and has the objective of utilizing computer and information
sciences to solve problems in the area of chemistry (292, 293).
This involves the design, creation, retrieval, storage, management,
organization, analysis, visualization, dissemination, and use of
chemical information (294). Over the last few years, the advances
in data processing power and the development of new artificial
intelligence (AI) tools, has fueled the field of CADD and
cheminformatics (295, 296). Moreover, AI tools abilities have
increasingly been applied to a wide variety of chemical challenges,
from improving computational chemistry to end-to-end drug
discovery as well as to synthesis planning/prediction (297, 298).

The developments in phenotypic and target-based screening
provide data essential for applying computational tools to
accelerate the discovery of new drugs to treat schistosomiasis
(299, 300). These advances coupled with data storage in public
databases such as PubChem (301–303) and ChEMBL (304) have
enabled the compilation, curation, analysis, and application of
chemical and biological information to support antischistosomal
lead generation and optimization (305–307). Thus,
cheminformatics has an important role in schistosomiasis drug
discovery through the conversion of data to information and
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information into knowledge (308, 309), supporting data-driven
decisions in lead identification and optimization (310, 311).

In the last years, pivotal advances in cheminformatics-driven
drug discovery have been achieved in three main sub-fields:
molecular de novo design, virtual screening, and synthesis
prediction. Machine learning approaches have also progressively
been applied in these areas. Therefore, in the next sections,
machine learning approaches will be described and important
aspects to schistosomiasis drug discovery will be highlighted.

Machine Learning
Machine learning (ML), mainly supervised methods, is a growing
field of AI that uses different algorithms to enable computers to
learn from sample data, known as “training data”, without being
explicitly programmed for this task (312). ML algorithms are
capable of recognizing complex patterns in chemical structures
that evade human rationales because of the enormous number of
parallel variables that should be addressed in drug design (313).
On the other hand, molecular modeling techniques (e.g., docking,
molecular dynamics) are based on explicit physical equations
derived from molecular mechanics and quantum mechanics
theory (314). Consequently, ML techniques are considered to
have higher predictive value than classic molecular modeling
methods. Combining human and ML -derived models should
enable medicinal chemists to make better decisions and move
projects forward more quickly (315, 316).

ML has applications in several stages of drug discovery and
development, accelerating the overall process (317), including
automation of whole-organism assays (70, 94), lead identification
and optimization (318), and clinical development, for example in
patient recruitment, prediction of diagnosis, prognosis, treatment
planning, and clinical trial outcomes (317, 319). ML provides
robust methods such as random forest (RF) (320, 321) for learning
from large and multi-dimensional chemical data to make
predictions and select new chemical entities for experimental
testing (322). The generation of ML models for drug design and
discovery consists of a multi-step protocol (323). The first step is
the data collection of chemical and biological information from the
literature and/or databases, followed by preparation and curation
of data employing standardized protocols (324–326). Then,
descriptors are calculated from molecular representations
varying from one-dimension to n-dimensions (327). These
molecular descriptors are derived from a logical and
mathematical method that converts the chemical information
into a useful number (328). The third step is the model training
(learning), where a ML technique is applied to establish
Quantitative Structure-Activity Relationships (QSAR) between
the molecular descriptors and continuous (e.g., pIC50, Ki, etc.) or
categorical/binary (e.g., active, inactive, toxic, nontoxic, etc.)
experimental bioactivities or properties (329, 330). The models
that are developed need to be validated using appropriate metrics
to assess their predictive value (331, 332), and then used to predict
the biological activity of new compounds (318).

It is worth pointing out that the initial training data underpins
ML models generation. The data should be high-quality and in
sufficient quantity to lead in models with high performance (295).
However, in the current scenario, the data of pharmaceutical
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industry is scarce, costly, and need substantial resources, which
could limit the use of ML for drug discovery (329).

Some guidelines for model generation and validation should
be followed to ensure the reliability of the model. In this context,
some principles for assessing the validity of ML-based QSARs
have been proposed by the Organization for Economic
Cooperation and Development (OECD) (333) stating that they
should have:

i. A defined endpoint: Ensure clarity in the endpoint being
predicted by a given model, since biological property could
be determined by different protocols and under different
experimental conditions;

ii. An unambiguous algorithm: ensure reproducibility in the
ML algorithm that generates predictions of an endpoint
from chemical structure.

iii. A defined applicability domain (AD): the AD is defined as
the chemical space containing the features of the
compounds used to train the ML-based QSAR models
(334). The AD offers means to assess the confidence of
prediction to unseen compounds (335). The most common
methods to define AD use distance-based metrics to
calculate the distance of the features between the training
set and a new compound being predicted (335–337).

iv. Appropriate measures of goodness-of-fit, robustness, and
predictivity: ensure the distinction between the internal
performance of a model (as represented by goodness-of-fit
and robustness) and the predictivity of a model (as
determined by external validation);

v. Mechanistic interpretation, if possible: ensure that some
consideration is given to the possibility of a mechanistic
association between the descriptors used in a model and the
endpoint being predicted (333).

As an example of application of ML to schistosomiasis drug
discovery, Zorn and coworkers (338) used data from phenotypic
screens against the schistosomula and adult stages of S. mansoni
to develop ML models. Firstly, the authors elaborated two rule
books and associated scoring systems used to normalize 3,898
phenotypic data points and transform to categorical data. Then,
using the Assay Central software, they generated eight Bayesian
machine learning models based on each developmental stage of
the parasite and four experimental time points (≤24, 48, 72, and
>72 h). Subsequently, the generated models were used to predict
the activity of compounds from several libraries of commercial
vendors. Finally, 40 compounds predicted as active and 16
compounds predicted as inactive were selected and purchased
for in vitro phenotypic assays against schistosomula and adult
stages of S. mansoni. In this manner, the authors achieved a
prediction accuracy for active and inactives of 61% and 56% for
schistosomula and adults, respectively. Additionally, the hit rates
achieved were 48% and 34% for schistosomula and adults,
respectively (338).

Deep Learning
DL is a type of ML that uses a hierarchical recombination of
features to extract pertinent information and then learn the
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patterns represented in the data. In other words, DL uses
artificial neural networks (ANNs) with many layers of
nonlinear processing units for learning data representations.
DL has emerged to deal with the high volume and
exponentially growth of sparse data, coming from different
sources around the globe (339). Conceptually, DL was
conceived in the 1980s, with the development of ANNs, which,
at the time, could not out-perform ML algorithms due to the
small amounts of data available. As soon as advances in hardware
were achieved, in 2010s, with graphic processing units and cloud
computing technologies, deep neural networks (DNNs) became
more popular and able to be trained and accomplish complex
tasks (340).

The basic structure of a classical ANN and DL representations
are represented in Figure 4 and are inspired by the structure of
the human brain. There are three basic layers in a neural
network: the input layer, hidden layer and output layer.
Depending on the type of ANN, the nodes, also called
neurons, in neighboring layers are either fully connected or
partially connected. The major difference between DL and
traditional ANN is the complexity of the NNs. Traditional
ANNs (Figure 4A) normally only have one hidden layer
whereas DL architectures such as Deep Feed Forward Network
(Figure 4B) uses larger numbers of hidden layers.

Since the advent of QSAR in the 1960s for drug discovery
projects, and the use of so called “shallow methods” for the
identification of new chemical entities with drug like properties
(341), the application of DL methods has been increasing (276,
315, 317–323). The applications of DL can be as diverse as the
creativity of those who applies and develops the methods. The
possibilities are unlimited in terms of algorithms [see (342)] but
are restricted in terms of data quality and chemical space
coverage (325). However, DL has broadened even the ability of
generating new chemical data, allowing the usage of
autoencoders to interpret SMILES data and, within that
chemical space, generate new scaffolds sharing a few
Frontiers in Immunology | www.frontiersin.org 17
physicochemical properties with their parental molecules (343).
From virtual screening processes to synthesis prediction, DL has
been largely used in the field of CADD, and its applications are
exemplified in the next sections.

Artificial Intelligence-Assisted Virtual Screening (VS)
As a fundamental part of CADD strategies, virtual screening
(VS) is an in silico screening alternative to the experimental HTS
approach to search libraries of small molecules and identify those
structures which are most likely to have biological activity (344,
345). VS represents a rapid and low-cost and method for screen
promising compounds against pathogens, cells and/or specific
biological targets (344, 346). A VS campaign is basically a funnel-
like process (347) composed of different filters. A large chemical
database can be submitted to those different filters and,
throughout the process, the compounds presenting undesired
properties will be filtered out. In the end of the process, virtual
hits with drug-, lead- or even fragment-like properties are
presented in a ranked list.

In the last few years, the success of machine and deep learning
has enabled the development of VS methods that can extract
task-specific features directly from chemical data (295, 296).
Convolutional Neural Networks (CNN, Figure 4C) are a
subclass of DL that search for recurring spatial patterns in data
and compose them into complex features in a hierarchical
manner (348, 349). Chemical descriptors have very high
dimensionality, and hence training a standard Feedforward
network to recognize chemical patterns would require
hundreds of thousands of input cells. This can cause many
problems associated with the “curse of dimensionality” in
neural networks. The CNNs provide a solution to this (350) by
utilizing convolutional and pooling layers to help reduce the
dimensionality from compound graphs (351). As convolutional
layers are trainable but have significantly fewer parameters than
a standard hidden layer, they can highlight important parts of the
chemical structure and pass each of them forward.
A B

D E F

C

FIGURE 4 | Architecture of several popular neural networks. (A) classical Feed Forward Network; (B) Deep Feed Forward Network; (C) Convolutional Neural
Network; (D) Recurrent Neural Network; (E) Variational Autoencoder Network; and (F) Generative Adversarial Network.
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Although DL have important advantages, the most
prominent demonstration of DL’s capability are in areas where
large amount of data are available, which is not the reality of all
drug discovery campaigns (297, 352). In addition, studies
demonstrated that simpler ML methods can outperform DL
for activity prediction (353).

Deep Generative Models
Regardless of the advances in cheminformatics, the conception of
the large majority of new molecules in drug discovery campaigns
comes from the inventiveness of medicinal chemists (354). Since
the 1990s, de novo methods have been used to design new
molecules from scratch, commonly using structure-based
approaches and resulting in compounds that are sterically and
electrostatically complementary to the binding site of a protein
target (355). However, the molecules generated by early de novo
design methods were usually synthetically challenging, with poor
pharmacokinetic properties, and the generation process required
long runtimes (356, 357).

With the progress in deep learning, a variation of the de novo
design method called generative modeling has appeared as a
promising approach (358). These methods model the underlying
probability distribution of chemical features from a training
dataset and, thus, learn the essential aspects that characterize
molecules (296, 359). Then, new molecules are generated
combining these features by sampling the learned distribution
of chemical features (360). The most common deep learning
architectures for generative models are Recurrent neural
networks (RNNs) (361), generative adversary network (GAN)
(362), and variational autoencoder (VAE) (Figure 4) (363).

The RNNs (Figure 4D) are commonly trained with a large
number of Simplified Molecular Input Line-Entry System
(SMILES) strings, which encode chemical structures (364).
Then, the RNN predict the probability of the next SMILES
character considering a sequence of preceding characters (365).
Thereby, the new molecules are generated by RNN character by
character until the required number of characters have been
produced (360).

The VAEs (Figure 4E) are composed by an autoencoder
model that contains an encoder and a decoder network. The
encoder translate a higher-dimensional molecular representation
(e.g., SMILES) into a lower-dimensional representation, called
latent space (366). The decoder translate the latent-space
representation back to the higher-dimensional representation
to generate new molecules (295, 366, 367). In addition, this
network uses probabilistic hidden cells, which applies a radial
basis function to the difference between the test sample and the
cells’ mean. In this sense, VAE learns the parameters of a
probability distribution representing the chemical structure
data. Instead of just learning a function representing the
chemical space, it gains a more detailed and nuanced view of
the chemical structures, sampling from the distribution and
generating new chemical structures (359).

GANs (Figure 4F) consist of two specialized networks that
“contest” with each other: a generative network and a
discriminative network (367). With careful regulation, these
two adversaries compete with each other, each’s drive to
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succeed improving the other. The end result is a well-trained
generator that can spit out a new chemical structure with desired
biological property. The generative network (usually a CNN)
tries to generates new molecules, while discriminative network
tries to discern generated molecules as artificial or real (296).
Mechanistically, discriminating network receives either training
data or generated content from the generative network. How well
the discriminating network was able to correctly predict the
biological property is then used as part of the error for the
generating network. Both networks are trained alternatively
aiming the generation of molecules that are indiscernible from
the real data (319).

In addition to the deep learning architectures for generative
modeling, it is possible to use techniques such as transfer
learning and reinforcement learning to fine-tune the models to
generate molecules with the desired properties (e.g., activity
against a target and physicochemical properties) and also
optimize compounds such as fragments (368, 369). The power
of these methodologies is the design of new molecules with ideal
properties in shorter periods and lower costs (370, 371).

Despite the innovation of generative models, the novelty and
accessibility of generated molecules must be evaluated (372–
374). Gao and Coley (375) observed that generative models can
produce infeasible molecules even with good performance in
benchmarks. On the other hand, in a work for the discovery of
discoidin domain receptor family member 1 (DDR1) kinase
inhibitors (370), Walters and Murcko (366) pointed out that
the top inhibitor is very similar to a known DDR1 inhibitor
(366, 371).

Synthesis Prediction
The synthetic feasibility of virtual compounds identified in VS
campaigns is a key point when considering synthesizing and
further optimizing their properties (376, 377). Efforts from
several research groups to improve the evaluation of synthetic
routes and their inherent accessibility have been published and
well-known software has been produced, e.g. SYNCHEM (378),
RASA (379), LHASA (376), CAMEO (380), SOPHIA (381),
EROS (382), and Reaxys (295, 383). Their main goal is to
assess synthetically accessible routes, reaction predictions, and
start material selection. To achieve this goal, approaches based
on basic rules for organic synthesis, data-driven intelligent
systems, sequence-to-sequence, template-based models,
knowledge-graph based, and retrosynthetic prediction models
have been proposed and published (384–386). To list the main
obstacles for reaching a good accuracy in predicting both
accessible synthetic routes and retrosynthetic disconnections,
we can point out (i) the low number of unsuccessful reactions
reported, (ii) the extensive data curation process, which impacts
on the data quality and, consequently the predicted outcomes
(384, 385). The current state-of-the art relies on treating the task
as a text processing problem. Natural Language Processing
(NLP) algorithms have been tested, implemented, and shown
to provide of promising outcomes. The IBM RXN platform (387)
represents a successful application and example of how to deal
with chemical reactions as text. The platform uses the simplified
molecular-input line-entry system (SMILES) as the source of
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local and global features potentially involved in a chemical
reaction (388).

As well as in FBDD, very few applications of cheminformatics
have been reported for schistosomiasis. Thus, cheminformatics
also has a great potential for anti-schistosomal drug discovery in
the future.
CONCLUDING REMARKS AND
FUTURE DIRECTIONS

In conclusion, we would like to emphasize that the recent
advances in automation of whole organism screening and
target-based assays, as well as FBDD, CADD and AI tools
integrated in drug design projects, represent a new era in anti-
schistosomiasis drug discovery. The phenotypic assay methods
described here are more sensitive and faster than traditional
microscopy an have enabled the identification of several new
antischistosomal candidates. In parallel, significant contributions
are coming from the genomics to target-based screening
approaches, especially with prospecting and prioritizing
biological targets with key/essential roles in parasite survival
and/or host-parasite interactions. The automated collection and
processing of X-ray crystallography data at synchrotons has
transformed fragment-based screening enabling the acquisition
of structural data at atomic resolution. The generation of large
datasets from advances in the automation of phenotypic
screening and target-based approaches has created a fertile
ground for drug discovery. These data have enabled the use of
artificial intelligence tools, such as machine learning and deep
learning, to generate predictive QSAR models for prioritization of
VS hits or structural design of novel compounds. These tools can
be also used for in silico multi-parameter optimization, for
achieving a favorable balance between target potency,
selectivity, physicochemical, pharmacokinetic and toxicological
Frontiers in Immunology | www.frontiersin.org 19
properties. Therefore, we see the use of AI tools and QSAR
models as a time-, labor-, and cost-effective way to discover hit
compounds and to optimize lead candidates in the early stages of
drug discovery process. We hope that these new technologies
collectively will empower schistosomiasis drug discovery and
increase the efficiency of the various processes involved to
deliver new drugs to the market.
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Posto E O Doutor Me Mandou Foi Pra Cá” : Processo De
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Libraries in Drug Discovery. Drug Discov Today (2020) 25:983–96.
doi: 10.1016/j.drudis.2020.03.016

188. Keseru GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett
SD. Design Principles for Fragment Libraries: Maximizing the Value of
Learnings From Pharma Fragment-Based Drug Discovery (FBDD) Programs
for Use in Academia. J Med Chem (2016) 59:8189–206. doi: 10.1021/
acs.jmedchem.6b00197

189. Troelsen NS, Clausen MH. Library Design Strategies To Accelerate
Fragment-Based Drug Discovery. Chem - A Eur J (2020) 26:11391–403.
doi: 10.1002/chem.202000584

190. Fragment Screening - Xchem. Available at: https://www.diamond.ac.uk/
Instruments/Mx/Fragment-Screening.html (Accessed December 11, 2020).

191. Cox OB, Krojer T, Collins P, Monteiro O, Talon R, Bradley A, et al. A Poised
Fragment Library Enables Rapid Synthetic Expansion Yielding the First
Reported Inhibitors of PHIP(2), an Atypical Bromodomain. Chem Sci (2016)
7:2322–30. doi: 10.1039/c5sc03115j

192. Roughley SD, Jordan AM. The Medicinal Chemist ‘ s Toolbox : An Analysis
of Reactions Used in the Pursuit of Novel Drug Candidates. J Med Chem
(2011) 54:3451–79. doi: 10.1021/jm200187y

193. Douangamath A, Fearon D, Gehrtz P, Krojer T, Lukacik P, Owen CD, et al.
Crystallographic and Electrophilic Fragment Screening of the SARS-CoV-2
Main Protease. Nat Commun (2020) 11:1–11. doi: 10.1038/s41467-020-
18709-w

194. Erlanson DA. Many Small Steps Towards a COVID-19 Drug. Nat Commun
(2020) 11:1–4. doi: 10.1038/s41467-020-18710-3

195. Coyle J, Walser R. Applied Biophysical Methods in Fragment-Based Drug
Discovery. SLAS Discov (2020) 25:471–90. doi: 10.1177/2472555220916168

196. Begley DW, Moen SO, Pierce PG, Zartler ER. Saturation Transfer Difference
NMR for Fragment Screening. In: . Current Protocols in Chemical Biology.
Hoboken, NJ, USA: John Wiley & Sons, Inc (2013). p. 251–68. doi: 10.1002/
9780470559277.ch130118

197. Becker W, Bhattiprolu KC, Gubensäk N, Zangger K. Investigating Protein-
Ligand Interactions by Solution Nuclear Magnetic Resonance
Spectroscopy. ChemPhysChem (2018) 19:895–906. doi: 10.1002/cphc.
201701253

198. Li Q. Application of Fragment-Based Drug Discovery to Versatile Targets.
Front Mol Biosci (2020) 7:180. doi: 10.3389/fmolb.2020.00180

199. Arroyo X, GoldflamM, Feliz M, Belda I, Giralt E. Computer-Aided Design of
Fragment Mixtures for NMR-Based Screening. PloS One (2013) 8:e58571.
doi: 10.1371/journal.pone.0058571

200. Navratilova I, Hopkins AL. Fragment Screening by Surface Plasmon
Resonance. ACS Med Chem Lett (2010) 1:44–8. doi: 10.1021/ml900002k

201. Giannetti AM. From Experimental Design to Validated Hits a
Comprehensive Walk-Through of Fragment Lead Identification Using
Surface Plasmon Resonance. In: 1st ed. Methods in Enzymology.
Cambridge, MA, USA: Elsevier Inc (2011). doi: 10.1016/B978-0-12-
381274-2.00008-X

202. Giannetti AM, Koch BD, Browner MF. Surface Plasmon Resonance Based
Assay for the Detection and Characterization of Promiscuous Inhibitors.
J Med Chem (2008) 51:574–80. doi: 10.1021/jm700952v

203. Niesen FH, Berglund H, Vedadi M. The Use of Differential Scanning
Fluorimetry to Detect Ligand Interactions That Promote Protein Stability.
Nat Protoc (2007) 2:2212–21. doi: 10.1038/nprot.2007.321
May 2021 | Volume 12 | Article 642383

https://doi.org/10.1007/978-1-0716-0635-3_12
https://doi.org/10.1021/jp409604n
https://doi.org/10.1021/jp409604n
https://doi.org/10.1371/journal.ppat.1003448
https://doi.org/10.3389/fgene.2014.00170
https://doi.org/10.3389/fgene.2014.00176
https://doi.org/10.1371/journal.ppat.1005651
https://doi.org/10.1126/science.274.5292.1531
https://doi.org/10.1126/science.274.5292.1531
https://doi.org/10.1038/nrd1467
https://doi.org/10.1016/j.coph.2009.04.009
https://doi.org/10.1016/j.coph.2009.04.009
https://doi.org/10.1038/nrd.2016.109
https://doi.org/10.1021/acs.jmedchem.9b01581
https://doi.org/10.1042/BST20190694
https://doi.org/10.1038/nrd3847
https://doi.org/10.1038/nm.3048
https://doi.org/10.1038/nm.3048
https://doi.org/10.1056/nejmoa1411366
https://doi.org/10.1056/nejmoa1411366
https://doi.org/10.1021/acs.jmedchem.0c00242
https://doi.org/10.1016/S1359-6446(03)02831-9
https://doi.org/10.1016/S1359-6446(03)02831-9
https://doi.org/10.1021/acs.jmedchem.8b01855
https://doi.org/10.1016/j.pbiomolbio.2014.09.007
https://doi.org/10.1021/ci000403i
https://doi.org/10.1039/C5MD00542F
https://doi.org/10.1038/nrd4163
https://doi.org/10.1016/bs.armc.2017.07.002
https://doi.org/10.1002/9783527683604.ch10
https://doi.org/10.1111/cbdd.13030
https://doi.org/10.1016/j.drudis.2020.03.016
https://doi.org/10.1021/acs.jmedchem.6b00197
https://doi.org/10.1021/acs.jmedchem.6b00197
https://doi.org/10.1002/chem.202000584
https://www.diamond.ac.uk/Instruments/Mx/Fragment-Screening.html
https://www.diamond.ac.uk/Instruments/Mx/Fragment-Screening.html
https://doi.org/10.1039/c5sc03115j
https://doi.org/10.1021/jm200187y
https://doi.org/10.1038/s41467-020-18709-w
https://doi.org/10.1038/s41467-020-18709-w
https://doi.org/10.1038/s41467-020-18710-3
https://doi.org/10.1177/2472555220916168
https://doi.org/10.1002/9780470559277.ch130118
https://doi.org/10.1002/9780470559277.ch130118
https://doi.org/10.1002/cphc.201701253
https://doi.org/10.1002/cphc.201701253
https://doi.org/10.3389/fmolb.2020.00180
https://doi.org/10.1371/journal.pone.0058571
https://doi.org/10.1021/ml900002k
https://doi.org/10.1016/B978-0-12-381274-2.00008-X
https://doi.org/10.1016/B978-0-12-381274-2.00008-X
https://doi.org/10.1021/jm700952v
https://doi.org/10.1038/nprot.2007.321
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Moreira-Filho et al. Schistosomiais Drug Discovery
204. Kranz JK, Schalk-Hihi C. Protein Thermal Shifts to Identify Low Molecular
Weight Fragments. In: 1st ed. Methods in Enzymology. Cambridge, MA,
USA: Elsevier Inc (2011). doi: 10.1016/B978-0-12-381274-2.00011-X

205. Kirsch P, Hartman AM, Hirsch AKH, Empting M. Concepts and Core
Principles of Fragment-Based Drug Design. Molecules (2019) 24:4309.
doi: 10.3390/molecules24234309

206. Collins PM, Douangamath A, Talon R, Dias A, Brandao-Neto J, Krojer T,
et al. Achieving a Good Crystal System for Crystallographic X-Ray Fragment
Screening. In: 1st ed.Methods in Enzymology. Cambridge, MA, USA: Elsevier
Inc (2018). doi: 10.1016/bs.mie.2018.09.027

207. Hassell AM, An G, Bledsoe RK, Bynum JM, Carter HL, Deng SJJ, et al.
Crystallization of Protein-Ligand Complexes. Acta Crystallogr Sect D Biol
Crystallogr (2006) 63:72–9. doi: 10.1107/S0907444906047020

208. Danley DE. Crystallization to Obtain Protein-Ligand Complexes for
Structure-Aided Drug Design. Acta Crystallogr Sect D Biol Crystallogr
(2006) 62:569–75. doi: 10.1107/S0907444906012601

209. Hoffer L, Muller C, Roche P, Morelli X. Chemistry-Driven Hit-to-lead
Optimization Guided by Structure-based Approaches. Mol Inform (2018)
37:1800059. doi: 10.1002/minf.201800059

210. Murray CW, Rees DC. The Rise of Fragment-Based Drug Discovery. Nat
Chem (2009) 1:187–92. doi: 10.1038/nchem.217

211. Chilingaryan Z, Yin Z, Oakley AJ. Fragment-Based Screening by Protein
Crystallography: Successes and Pitfalls. Int J Mol Sci (2012) 13:12857–79.
doi: 10.3390/ijms131012857

212. Murray CW, Rees DC. Opportunity Knocks: Organic Chemistry for
Fragment-Based Drug Discovery (FBDD). Angew Chem Int Ed (2016)
55:488–92. doi: 10.1002/anie.201506783

213. Valenti D, Hristeva S, Tzalis D, Ottmann C. Clinical Candidates Modulating
Protein-Protein Interactions: The Fragment-Based Experience. Eur J Med
Chem (2019) 167:76–95. doi: 10.1016/j.ejmech.2019.01.084

214. Hopkins AL, Groom CR, Alex A. Ligand Efficiency: A Useful Metric for Lead
Selection. Drug Discov Today (2004) 9:430–1. doi: 10.1016/S1359-6446(04)
03069-7

215. Kumar S, Waldo JP, Jaipuri FA, Marcinowicz A, Van Allen C, Adams J, et al.
Discovery of Clinical Candidate (1 R,4 R)-4-((R)-2-((S)-6-Fluoro-5 H-
imidazo[5,1-A[isoindol-5-y l)-1-hydroxyethyl)cyclohexan-1-ol
(Navoximod), a Potent and Selective Inhibitor of Indoleamine 2,3-
Dioxygenase 1. J Med Chem (2019) 62:6705–33. doi: 10.1021/
acs.jmedchem.9b00662

216. Hudson SA, McLean KJ, Surade S, Yang YQ, Leys D, Ciulli A, et al.
Application of Fragment Screening and Merging to the Discovery of
Inhibitors of the Mycobacterium Tuberculosis Cytochrome P450 CYP121.
Angew Chem Int Ed (2012) 51:9311–6. doi: 10.1002/anie.201202544

217. Hung AW, Silvestre HL, Wen S, Ciulli A, Blundell TL, Abell C. Application
of Fragment Growing and Fragment Linking to the Discovery of Inhibitors
of Mycobacterium Tuberculosis Pantothenate Synthetase. Angew Chem Int
Ed (2009) 48:8452–6. doi: 10.1002/anie.200903821

218. Lamoree B, Hubbard RE. Current Perspectives in Fragment-Based Lead
Discovery (FBLD). Essays Biochem (2017) 61:453–64. doi: 10.1042/
EBC20170028

219. Kidd SL, Osberger TJ, Mateu N, Sore HF, Spring DR. Recent Applications of
Diversity-Oriented Synthesis Toward Novel, 3-Dimensional Fragment
Collections. Front Chem (2018) 6:460. doi: 10.3389/fchem.2018.00460

220. Drwal MN, Bret G, Perez C, Jacquemard C, Desaphy J, Kellenberger E.
Structural Insights on Fragment Binding Mode Conservation. J Med Chem
(2018) 61:5963–73. doi: 10.1021/acs.jmedchem.8b00256

221. Scott DE, Coyne AG, Hudson SA, Abell C. Fragment-Based Approaches in
Drug Discovery and Chemical Biology. Biochemistry (2012) 51:4990–5003.
doi: 10.1021/bi3005126

222. Singh M, Tam B, Akabayov B. NMR-Fragment Based Virtual Screening: A
Brief Overview. Molecules (2018) 23:233. doi: 10.3390/molecules23020233

223. Miyake Y, Itoh Y, Hatanaka A, Suzuma Y, Suzuki M, Kodama H, et al.
Identification of Novel Lysine Demethylase 5-Selective Inhibitors by
Inhibitor-Based Fragment Merging Strategy. Bioorg Med Chem (2019)
27:1119–29. doi: 10.1016/j.bmc.2019.02.006

224. Bian Y, Xie X-Q. Computational Fragment-Based Drug Design: Current
Trends, Strategies, and Applications. AAPS J (2018) 20:59. doi: 10.1208/
s12248-018-0216-7
Frontiers in Immunology | www.frontiersin.org 25
225. Moreira-Filho JT, Dantas RF, Senger MR, Silva AC, Campos DMB, Muratov
E, et al. Shortcuts to Schistosomiasis Drug Discovery: The State-of-the-Art.
In: 1 ed. Annual Reports in Medicinal Chemistry. Cambridge, MA, USA:
Elsevier (2019). p. 139–80. doi: 10.1016/bs.armc.2019.06.004
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