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ABSTRACT 

Environmental fecal contamination is common in many low-income cities, contributing to a high 

burden of enteric infections and associated negative sequelae. To evaluate the impact of a shared 

onsite sanitation intervention in Maputo, Mozambique on enteric pathogens in the domestic 

environment, we collected 179 soil samples at shared latrine entrances from intervention (n= 49) 

and control (n= 51) compounds during baseline (pre-intervention) and after 24 months (post-

intervention) as part of the Maputo Sanitation Trial. We tested soils for the presence of nucleic 

acids associated with 20 enteric pathogens using a multiplex reverse transcription qPCR 

platform. We detected at least one pathogen-associated target in 91% (163/179) of soils and a 

median of 3 (IQR=1.5, 5) pathogens. Using a difference-in-difference analysis and adjusting for 

compound population, visibly wet soil, sun exposure, wealth, temperature, animal presence, and 

visible feces, we estimate the intervention reduced the probability of ≥1 pathogen detected by 

15% (adjusted prevalence ratio, aPR=0.85; 95% CI: 0.70, 1.0) and the total number of pathogens 

detected by 35% (aPR =0.65; 0.44, 0.95) in soil 24 months following the intervention. These 

results suggest that the intervention reduced the presence of some fecal contamination in the 

domestic environment, but pathogen detection remained prevalent 24-months following the 

introduction of new latrines. 
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INTRODUCTION 

Onsite sanitation systems are designed to sequester human feces away from human contact and 

prevent the transport of fecal-oral pathogens through well-understood transmission pathways.1 

Large-scale, rigorous randomized controlled trials (RCTs) of onsite sanitation systems – 

including sanitation alone and combinations of water, sanitation, and hygiene (WASH) 

interventions – have found mixed effects on health outcomes, such as diarrhea and child 

growth.2–7 Assessing the impact of WASH interventions on enteric pathogens in the environment 

can improve our understanding of pathogen transmission from an infected individual to a new 

host via the environment, a core intermediate outcome of these trials. Such data may help explain 

why some WASH interventions observed improved health outcomes and others did not.8  

There is a growing body of literature that soils contaminated by feces in public and domestic 

environments pose infection risks.9–13 In health impact trials that assess improved onsite 

sanitation systems, soils are assessed to measure how effectively the intervention sequestered 

human feces.14–18 Latrines and septic tanks are useful barriers against the transport of human 

feces into the environment. However, enteric pathogens may still move into soils through open 

defecation19, unhygienic pit emptying20,21, fecally contaminated greywater22,23, improper disposal 

of children’s feces or anal cleansing materials24,25, latrine flooding20,26,27, animal feces28–30, or 

subsurface transport from unlined pits31–33. Domestic soils contaminated by enteric pathogens 

can pose infection risks beyond incidental34 and direct35 soil ingestion: contaminated soil may be 

transported to hands, food, fomites, or household stored water.36 For these reasons, soils may be 

a useful matrix to assess the impact of onsite sanitation interventions.  
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Detecting enteric pathogens via molecular methods is increasingly used to assess the impact of 

WASH interventions on the transport of these pathogens through the environment.37–39 

Molecular detection of pathogens offers additional insights, as health impact studies have 

historically relied on fecal indicator bacteria (FIB), as a proxy for enteric pathogens for reasons 

of cost, capacity and feasibility.17,36,40–42 However, a 2016 meta-analysis43 found that improved 

sanitation had no effect on the presence of FIB in the environment, possibly because these 

indicators are often pervasive in low-income settings15,16,36,44–46 and common FIB, like E. coli, 

may be naturalized in the environment47–49.   

The Maputo Sanitation (MapSan) Trial was the first rigorous controlled before-and-after trial to 

evaluate the effect of an urban onsite sanitation intervention on child health.24,50,51 We conducted 

the trial in low-income, informal neighborhoods in Maputo, Mozambique, where WASH 

conditions are poor, and the burden of enteric disease is high.20,24,44,52 Water and Sanitation for 

the Urban Poor (WSUP, a non-governmental organization) delivered the intervention to 

compounds composed of household clusters that shared sanitation and courtyard space. The 

intervention was built inside the compound boundary and was part of the households’ living 

environment. WSUP replaced shared onsite sanitation systems in poor condition with pour-flush 

toilets that included septic tanks and soak-away pits (Text S1). Control compounds were 

concurrently enrolled from the same or adjacent neighborhoods as intervention compounds and 

continued using existing shared sanitation infrastructure. Detailed descriptions of the inclusion 

criteria for intervention and control compounds are described elsewhere.20,24  

A latrine entrance is an ideal soil sampling location to determine the effectiveness of onsite 

sanitation interventions because it is a standardized location near the fecal waste in the 

containment chamber.15,16,53 Soils in low-income Maputo are characterized as coarse to fine sand 
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or silty sand.54 While the fate and transport of pathogens through soils is dependent on the 

individual pathogen and environmental conditions55, the high porosity of Maputo’s sandy soils 

combined with a high water table in the study area44 offers potential for pathogen movement.56 

This high risk of fecal contamination suggests we could plausibly observe a reduction in enteric 

pathogens in soil at latrine entrances if the intervention infrastructure performed better than 

controls at safely containing fecal wastes.57  Our study aim was to assess if the intervention 

reduced the detection of ≥1 pathogen, the total number of pathogens, or any individual pathogen 

in latrine entrance soils from MapSan intervention compounds compared to controls. 

MATERIALS AND METHODS 

Sample Collection 

We prospectively collected latrine entrance soil samples – defined as a location one-meter away 

from the latrine entrance in the direction of entry or the nearest point not covered by cement – 

from 49 intervention and 51 control compounds at baseline (pre-intervention) and from the same 

compounds 24-months following the intervention, for a total of 200 samples (Text S2). We 

defined this sample location a priori as one that could be standardized across all compounds in 

the study. Using a spade and ruler, we scooped a 10 cm x 10 cm x 1 cm volume of soil into a 

Whirl-Pak® bag (Nasco, Fort Atkinson, WI). The spade and ruler were sterilized between uses 

with 10% bleach and 70% ethanol. At the time of sampling, enumerators recorded whether the 

soil was visibly wet and estimated the daily sun exposure (full sun, partially shaded, full 

shade).44 Samples were stored on ice for transport to the Ministry of Health in Maputo, 

Mozambique, frozen at -20oC for approximately six months, aliquoted into 2 ml cryovials while 

working on dry ice, and then stored at -80oC. During storage at -20oC, some samples (n = 21) 
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were unable to be evaluated because the permanent marker labeling on some Whirl-Pak® bags 

wore off and some bags burst open. All aliquoted samples (n = 179) were shipped from the 

Mozambican Ministry of Health in Maputo, Mozambique to Atlanta, GA, USA on dry ice (-80̊ 

C) with temperature monitoring for molecular analysis. We obtained compound observation data 

and socioeconomic characteristics from the MapSan baseline and 24-month survey datasets, 

which were collected concurrent to soil samples.24,58 

Sample Processing 

At Georgia Institute of Technology in Atlanta, GA, USA, we incubated 250 mg of each soil 

sample at 105oC for 1 hour to determine moisture content13,59, then discarded the dry soil. We 

then extracted total nucleic acids from a separate 1-gram (calculated for dry weight) portion of 

each sample, and spiked samples with MS2 (Luminex Corporation, Austin, TX) as an extraction 

control. Following the manufacturer’s protocol, we extracted RNA using the RNeasy PowerSoil 

Total RNA Kit and DNA using the RNeasy PowerSoil DNA Elution Kit (Qiagen, Hilden, 

Germany). On each day of extraction (approximately every 5-15 samples), we included one 

negative extraction control (sterile deionized water). We tested sample extracts for matrix 

inhibition using the Applied Biosystems Exogenous Internal Positive Control Assay60 (Applied 

Biosystems, Waltham, Massachusetts) before downstream molecular analysis (Text S3). 

We assayed extracted nucleic acids from all samples using a custom TaqMan Array Card (TAC) 

(ThermoFisher Scientific, Waltham, MA) that tested for 20 enteric pathogens in duplicate wells 

following Liu et al. 201361, including ten bacteria (Campylobacter jejuni/coli, Clostridium 

difficile [tcdA and tcdB gene], Enteroaggregative E. coli [EAEC, aaiC and aatA gene], 

Shigella/Enteroinvasive E. coli [EIEC, ipaH gene], Enteropathogenic E. coli [EPEC, bfpA and 
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eae gene], Enterotoxigenic E. coli [ETEC, heat-labile and heat-stabile enterotoxin gene], Shiga-

toxin producing E. coli [STEC, stx1 and stx2], Salmonella spp., Vibrio cholerae, and Yersinia 

spp.), five viruses (adenovirus 40/41, astrovirus, norovirus [GI and GII], rotavirus A, and 

sapovirus [I, II, IV, and V],), three protozoa (Cryptosporidium parvum, Entamoeba histolytica, 

and Giardia duodenalis) and two soil-transmitted helminths (Ascaris lumbricoides, Trichuris 

trichiura) (Text S4, Table S1, Table S2).62 We combined and then added 25 µL of RNA eluant, 

25 µL of DNA eluant, and 50 µL of mastermix into each TAC port. We included a positive and 

negative control on each TAC. The positive control was a plasmid that included all assay gene 

sequences and the negative control was either extract from a negative extraction control or sterile 

water.63  The thermocycling conditions were as follows: 45°C for 10 minutes and 94°C for 10 

minutes, followed by 45 cycles of 94°C for 30 seconds and 60°C for 1 minute, with a ramp rate 

of 1°C/second between each step. We visually compared exponential curves and multicomponent 

plots with the positive control plots to validate positive amplification12; positive amplification in 

one or both duplicate wells below a quantification cycle (Cq) of 40 was called as a positive for a 

target (Text S4).62,64  

Data analysis 

We analyzed data in R version 4.0.0 (R Foundation for Statistical Computing, Vienna, Austria). 

We used a difference-in-difference (DID)65 approach to assess the impact of the intervention – 

our exposure variable – on our outcomes compared to the control group. Our outcomes included 

the detection (i.e., binary presence/absence) of ≥1 of the enteric pathogens measured, the total 

number of pathogens detected out of 20, and a separate analysis for each pathogen individually. 

We used generalized estimating equations (GEE)66 to fit unadjusted and adjusted Poisson 

regression models with robust standard errors, with an exchangeable correlation structure.  We 
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accounted for clustering between compounds across the two study phases because the 

intervention was implemented at the compound level.67 

To generate adjusted estimates, we selected nine covariates from the MapSan baseline and 24-

month datasets based on their biological plausibility to impact the transport57 or persistence68 of 

pathogens in the domestic environment and previously reported associations in the literature36,44  

(Table S3). We used the same nine covariates to adjust all DID models: compound population (a 

10-person increase in compound population), wealth (one-quartile increase in wealth index69), 

soil moisture (assessed visually at the time of sampling), sun exposure status (estimated at the 

time of sampling; full  sun, partially shaded, shaded44), the mean-centered average air 

temperature in Fahrenheit for the day of and day preceding sample collection (i.e., two-day 

average), a binary variable for the presence of cats, a binary variable for the presence of dogs, a 

binary variable for the presence of chickens or ducks, and a binary variable for the presence of 

visible animal or human feces in the compound (Table S4). 

To estimate the intervention’s effect, we used the interaction of dummy variables representing 

treatment status (intervention vs. control) and trial phase (baseline or 24-month). Consequently, 

we present the effect estimates from our DID analysis as ratio measures (ratio of prevalence 

ratios, PR) instead of absolute differences. We fit separate GEE models to measure the 

association between intervention status and the detection of ≥1 pathogen and the total number of 

pathogens detected among the 20 targets we identified a priori. Likewise, we fit DID models to 

estimate the intervention’s impact for each individual pathogen assessed, but we excluded any 

pathogen not detected in at least 5% of control and intervention samples during both phases.  

Ethics 
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The study protocol was approved by the Comité Nacional de Bioética para a Saúde (CNBS), 

Ministério da Saúde (333/CNBS/14), the Research Ethics Committee of the London School of 

Hygiene and Tropical Medicine (reference # 8345), and the Institutional Review Board of the 

Georgia Institute of Technology (protocol # H15160). The overall trial was pre-registered at 

ClinicalTrials.gov (NCT02362932), but we did not pre-register this environmental analysis. 

RESULTS (723 words) 

Matched samples 

We analyzed latrine entrance soils collected at baseline from 48 control compounds and 43 

intervention compounds, and soils collected at the 24-month phase from 45 control and 43 

intervention compounds (Table S4). We did not analyze twelve intervention samples and nine 

control samples because they were either lost or damaged during storage. This resulted in some 

samples collected at either phase not having a matched sample from the same compound from 

the earlier or later phase. Among the 93 control samples analyzed, 42 compounds had samples 

from both phases (n=84), six baseline samples did not have a matched 24-month phase sample, 

and three 24-month samples did not have a matched baseline sample. Among the 86 intervention 

samples analyzed, 41 compounds had samples from both phases (n=82), two baseline samples 

did not have a matched 24-month phase sample, and two 24-month samples did not have a 

matched baseline sample. There was a mean of 788 days between the collection of matched 

control samples (sd = 36, min = 733, max = 860) and a mean of 789 days between matched 

intervention samples (sd = 56, min = 731, max = 953). Control and intervention samples were 

collected approximately during the same period of the year (Figure S1).  

Compound characteristics 
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Control and intervention compounds had similar wealth indices at baseline (mean= 0.47 

[sd=0.09] and mean=0.46 [sd=0.09], respectively, p=0.49) but control compounds had higher 

wealth indices at the 24-month phase (mean=0.46 [sd=0.12] and mean=0.40 [sd=0.09], 

respectively, p=0.05) (Table 1). The number of residents in the intervention compounds was 

greater than control compounds at baseline (mean=19 [sd=7.8] and mean=14 [sd=6.4], 

respectively, p=0.004) and at the 24-month phase (mean=16 [sd=7.9] and mean=13 [sd=7.0], 

respectively, p=0.02) (Table 1). 

Reported or observed animal ownership was high across trial arms during both phases (Table 1). 

Most compounds had at least one animal at baseline (62% [56/91]) including cats (50% [24/48] 

control, 53% [23/43] intervention), chickens or ducks (13% [6/48] control, 16% [7/43] 

intervention), and dogs (6.3% [3/48] control, 9.3% [4/43] intervention). Three-quarters of 

compounds had at least one animal 24-months post intervention (76% [67/88]): cats were most 

common (71% [32/45] control, 70% intervention [30/43]), followed by dogs (20% [9/45] 

control, 23% [10/43] intervention), and chickens or ducks (8.9% [4/45] control, 19% [8/43] 

intervention). 

At baseline seven compounds had no useable sanitation infrastructure (6.3% [3/48] control, 9.3% 

[4/43] intervention) and three compounds had pour-flush sanitation (4.2% [2/48] control, 2.3% 

[1/43] intervention) (Table 1). Control compounds more often had pit latrines with slabs (56%, 

[27/48]) than without slabs (33%, [16/48]), compared to intervention compounds, which more 

often had pit latrines without slabs (56%, [24/43]) than with slabs (33%, [14/43]) (p=0.09). At 

the 24-month phase, most control compounds had a pit latrine (with slab 40%, [18/45]; without 

slab 31%, [14/45]), but some (29%, [13/45]) had independently upgraded their pit latrines to 
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pour-flush toilets. All intervention compounds (100%, [43/43]) still had the intervention 

sanitation infrastructure at the 24-month phase. 
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Table 1. Characteristics of MapSan trial compounds and households selected for soil sampling 1 

 Baseline 24-Month Phase 

Control Intervention Control Intervention 

Characteristic Level Metric N Summary N Summary N Summary N Summary 

Wealth index (0-1) household mean (sd) 48 0.47 (0.09) 43 0.46 (0.09) 45 0.44 (0.12) 43 0.40 (0.09) 

Compound population compound mean (sd) 48 14 (6.4) 43 19 (7.8) 45 13 (7.0) 43 16 (7.9) 

Any animal(s) present compound n (%) 48 28 (58%) 43 28 (65%) 45 32 (71%) 43 35 (81%) 

Cat(s) present compound n (%) 48 24 (50%) 43 23 (53%) 45 32 (71%) 43 30 (70%) 

Chicken(s) or duck(s) present compound n (%) 48 6 (13%) 43 7 (16%) 45 4 (8.9%) 43 8 (19%) 

Dog(s) present compound n (%) 48 3 (6.3%) 43 4 (9.3%) 45 9 (20%) 43 10 (23%) 

Other animal(s) present compound n (%) 48 1 (2.1%) 43 2 (4.7%) 45 1 (2.2%) 43 0 (0%) 

Visible feces compound n (%) 48 22 (46%) 43 22 (51%) 45 4 (8.9%) 43 4 (9.3%) 

Visibly wet soil sample n (%) 48 37 (77%) 43 34 (79%) 45 37 (82%) 43 34 (79%) 

Partially shaded soil sample n (%) 48 24 (50%) 43 13 (30%) 45 30 (67%) 43 28 (65%) 

Fully shaded soil sample n (%) 48 14 (29%) 43 20 (47%) 45 10 (22%) 43 9 (21%) 

Temperature (̊F) date mean (sd) 48 72 (4.5) 43 70 (4.3) 45 72 (4.7) 43 73 (5.3) 

No useable sanitation 

infrastructure 

compound n (%) 48 3 (6.3%) 43 4 (9.3%) 45 0 (0%) 43 0 (0%) 

Pit latrine with slab compound n (%) 48 27 (56%) 43 14 (14%) 45 18 (40%) 43 0 (0%) 

Pit latrine without slab compound n (%) 48 16 (33%) 43 24 (56%) 45 14 (31%) 43 0 (0%) 

Pour-flush toilet (non-

intervention) 

compound n (%) 48 2 (4.2%) 43 1 (2.2%) 45 13 (29%) 43 0 (0%) 

Intervention infrastructure compound n (%) 48 0 (0%) 43 0 (0%) 45 0 (0%) 43 43 (100%) 

Note: Wealth index created using the 2013 Simple Poverty Scorecard© for Mozambique  2 
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Laboratory Controls  3 

We did not observe inhibition in any sample (Text S3). We observed positive amplification for 4 

all assays using our positive controls (n = 32). We did not observe positive amplification for any 5 

assay in our extraction controls (n=16), nor any template controls (n=16) below a Cq of 40. 6 

All Pathogens 7 

We detected at least one pathogen in 91% (163/179) of latrine entrance soils, two or more 8 

pathogens in 75% (134/179), and a mean of 3.4 out of 20 measured targets (IQR=3.5). The four 9 

most frequently detected pathogens were Ascaris lumbricoides (62%, [111/179]), EAEC (46%, 10 

[82/179]), Giardia duodenalis (36%, [64/179]), and astrovirus (26%, [47/179]). We found 11 

evidence that the intervention reduced the detection of ≥1 pathogen in latrine entrance soils by 12 

15% (aPR = 0.85, 95% CI [0.70, 1.0]) and the total number of pathogens by 35% (aPR = 0.65, 13 

95% CI [0.44, 0.95]) (Table 2). The mean Cq values of detected pathogens were similar across 14 

trial arms and phases (Table S5). 15 

There was a consistent trend among all individual pathogens except for astrovirus: the adjusted 16 

point estimates for nine of the ten most frequently detected had point estimates below 1.0 (Table 17 

3). The confidence intervals around the adjusted DID estimates of effect were also below 1.0 for 18 

three pathogen targets: Ascaris lumbricoides (aPR = 0.62, 95% CI [0.39, 0.98]), EAEC (aPR=0.51, 19 

95% CI [0.27, 0.94]), and EPEC (aPR = 0.20 95% CI [0.05, 0.82]). 20 
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Table 2. Detection of pathogens at baseline and 24-month 21 

Detection     
 

Baseline 

Detection 

24-month 

Detection 

Unadjusted BL-24M 

DID estimate 

Adjusted BL-24M 

DID estimate 

≥1 pathogen 
    

control 0.88 (42/48) 0.96 (43/45) 0.82 (0.68, 1.0) 

p = 0.05 

0.85 (0.70, 1.0) 

p = 0.11 intervention 0.95 (41/43) 0.86 (37/43) 

Total pathogen detects (out of 20) Mean (IQR) Mean (IQR)   

control 3.5 (4) 3.9 (3) 0.66 (0.44, 0.97) 

p = 0.03 

0.65 (0.44, 0.95) 

p = 0.03 intervention 3.6 (3) 2.6 (3) 

Note: DID: difference-in-difference. BL: baseline. 24M: 24-month. IQR: Inter-quartile range 22 

Table 3. Detection of individual pathogens at baseline and 24-month. Sorted by detection in control soils at the 24-month 23 

phase. 24 

Pathogen     
 

Baseline 

Detection 

24-month 

Detection 

Unadjusted BL-24M 

DID estimate╪ 

Adjusted BL-24M 

DID estimate╪ 

Ascaris lumbricoides 
    

control 0.65 (31/48) 0.76 (34/45) 0.64 (0.40, 1.0) 

p = 0.06 

0.62 (0.39, 0.98) 

p = 0.04 intervention 0.63 (27/43) 0.44 (19/43) 

Enteroaggregative E. coli 
 

   

control 0.42 (20/48) 0.53 (24/45) 0.57 (0.30, 1.1) 

p = 0.08 

0.51 (0.27, 0.94) 

p = 0.03 intervention 0.51 (22/43) 0.37 (16/43) 

Giardia duodenalis     

control 0.42 (20/48) 0.38 (17/45) 0.76 (0.34, 1.7) 

p = 0.50 

0.85 (0.37, 1.9) 

p = 0.69 intervention 0.37 (16/43) 0.26 (11/43) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.02.438233doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438233
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

 

Shigella/Enteroinvasive E. coli 
 

   

control 0.33 (16/48) 0.33 (15/45) 0.58 (0.17, 1.9) 

p = 0.37 

0.59 (0.18, 1.9) 

p= 0.38 intervention 0.16 (7/43) 0.09 (4/43) 

Enterotoxigenic E. coli      

control 0.25 (12/48) 0.33 (15/45) 0.45 (0.17, 1.2) 

p = 0.10 

0.44 (0.17, 1.1) 

p = 0.09 intervention 0.35 (15/43) 0.21 (9/43) 

adenovirus 40/41     

control 0.23 (11/48) 0.33 (15/45) 0.34 (0.08, 1.5) 

p = 0.19 

0.32 (0.07, 1.5) 

p = 0.14 intervention 0.14 (6/43) 0.07 (3/43) 

astrovirus     

control 0.23 (11/48) 0.27 (12/45) 1.3 (0.51, 3.1) 

p = 0.62 

1.6 (0.60, 4.0) 

p = 0.36 intervention 0.23 (10/43) 0.33 (14/43) 

Enteropathogenic E. coli     

control 0.15 (7/48) 0.24 (11/45) 0.20 (0.05, 0.88) 

p = 0.02 

0.20 (0.05, 0.82) 

p = 0.03 intervention 0.21 (9/43) 0.07 (3/43) 

Trichuris trichiura     

control 0.31 (15/48) 0.18 (8/45) 1.0 (0.33, 3.2) 

p = 0.96 

0.95 (0.32, 2.9) 

p = 0.93 intervention 0.28 (12/43) 0.16 (7/43) 

Clostridium difficile      

control 0.13 (6/48) 0.16 (7/45) 0.68 (0.17, 2.8) 

p = 0.59 

0.70 (0.16, 3.0) 

p = 0.62 intervention 0.16 (7/43) 0.14 (6/43) 

Cryptosporidium parvum     

control 0.02 (1/48) 0.09 (4/45) NA  

intervention 0.11 (5/43) 0.07 (3/43) 

Salmonella spp.     

control 0.02 (1/48) 0.09 (4/45) NA  

intervention 0.05 (2/43) 0.05 (2/43) 

Shiga-toxin producing E. coli     

control 0.02 (1/48) 0.07 (3/45) NA  

intervention 0 (0/43) 0.02 (1/43) 

Campylobacter jejuni/coli     
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control 0.15 (7/48) 0.04 (2/45) NA  

intervention 0.09 (4/43) 0.09 (4/43) 

Yersinia spp.     

control 0.02 (1/48) 0.04 (2/45) NA   

 intervention 0.05 (2/43) 0.05 (2/43) 

norovirus GI/GII     

control 0.06 (3/48) 0.02 (1/45) NA  

intervention 0.07 (3/43) 0.02 (1/43) 

rotavirus A     

control 0.08 (4/48) 0 (0/45) NA  

intervention 0.14 (6/43) 0.09 (4/43) 

Entamoeba histolytica 
 

 
  

control 0.02 (1/48) 0 (0/45) NA 
 

intervention 0.02 (1/43) 0.02 (1/43) 

sapovirus I/II/IV/V     

control 0 (0/48) 0 (0/45) NA  

intervention 0 (0/43) 0 (0/43) 

Vibrio cholerae     

control 0 (0/48) 0 (0/45) NA  

intervention 0 (0/43) 0 (0/43) 

Note: DID: difference-in-difference. 25 
╪We did not calculate DID estimates for pathogens with <5% detection   26 
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27 

28 

DISCUSSION  29 

We found evidence that the onsite shared urban sanitation intervention evaluated in the MapSan 30 

trial was somewhat protective against the detection of ≥1 pathogen and against the total number 31 

of pathogens in latrine entrance soils. The adjusted estimates for nine of the ten most common 32 

pathogens were consistently protective (DID estimates = 0.20-0.95) and pathogen-specific effect 33 

estimates from adjusted models were protective for Ascaris lumbricoides, EAEC, and EPEC. 34 

This suggests that intervention septic tanks may have better sequestered or inactivated these 35 

pathogens, which are passed in stool, compared with controls.  36 

Most of the other pathogens we frequently detected in soils were measured in child stools via 37 

multiplex end-point PCR as part of the MapSan trial, with the exception of EAEC, EPEC, and 38 

astrovirus. At baseline, Shigella/EIEC (44%) and Trichuris trichiura (37%) – generally thought 39 

to be transmitted human-to-human – were the second and third most common pathogens detected 40 

in child stool24,50, following Giardia (51%) which can be zoonotic70. Given the high prevalence 41 

of anthroponotic enteric pathogens in stools and the lack of a zoonotic reservoir for 42 

Shigella/EIEC and Trichuris trichiura71,72, the trial may have had greater power to observe an 43 

effect on Shigella/EIEC and Trichuris trichiura compared with other pathogens. For children 44 

born into study compounds before the 24-month visit, the intervention reduced the detection of 45 

Shigella/EIEC in children’s stools by 51% and Trichuris trichiura by 76%.58 Results from soils 46 

in this study differ from trial findings in stools: while we observed a 41% reduction in 47 

Shigella/EIEC detection, we identified no difference with respect to detection of Trichuris 48 

trichiura. This absence of impact on Trichuris trichiura in soils may have been due to limited 49 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.02.438233doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438233
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 

power from infrequent detection; we did observe a reduction in the other STH assessed, Ascaris 50 

lumbricoides, which was the most frequently detected individual pathogen in soils. The MapSan 51 

trial found the sanitation intervention reduced the detection of Ascaris lumbricoides by 32% 52 

among children born into study compounds before the 24-month visit, but the confidence interval 53 

included the null.58 Overall, the protective trend we observed in soils, therefore, is consistent 54 

with the enteric infection data for children born into trial compounds. This may suggest that the 55 

intervention reduced the transport of pathogens to latrine entrance soils, and subsequently 56 

contributed to a reduction in children’s exposures, but our small sample size and the resulting 57 

uncertainty of point estimates suggest results should be interpreted with caution. 58 

Compared to other recent large-scale, rigorous trials of onsite sanitation improvements in rural 59 

Bangladesh (pour flush to double-pit latrine)2, rural Kenya (single unlined pit latrine with plastic 60 

slab and hole-lid)3, and rural Zimbabwe (ventilated improved pit latrine)4, we evaluated a more 61 

sophisticated intervention that included site-specific engineered septic tanks and subsurface 62 

discharge of aqueous effluent to a soakaway pit24,73, and it is the only recent controlled health 63 

impact trial of onsite sanitation to take place in an urban setting. In the early 2000s, Barreto et al. 64 

observed health benefits from household sewerage connections in urban Brazil in an 65 

uncontrolled trial74,75. However, the scope, complexity, and cost of that intervention make it an 66 

imperfect point of comparison.  67 

The WASH Benefits Trial (WASH-B) evaluated the impact of single and combined water, 68 

sanitation, and handwashing intervention arms in rural Bangladesh and Kenya. In Bangladesh, a 69 

molecular analysis of household entrance soils, hand rinses, and stored water from the sanitation 70 

arm found no significant reductions in enteric pathogens (EAEC, EPEC, STEC, Shigella/EIEC, 71 

ETEC, norovirus, Cryptosporidium spp., Giardia duodenalis) or microbial source tracking 72 
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markers (HumM2, BacCow).38 The combined WASH arm and individual water treatment arm 73 

observed a reduction in E. coli prevalence and concentration in stored drinking water; the 74 

individual water treatment and handwashing arms reduced E. coli prevalence and concentration 75 

in food. WASH-B trial arms in Bangladesh did not observe reductions in E. coli in courtyard 76 

soil, ambient waters, child hands, or sentinel objects.76,77 Likewise, WASH-B Kenya found the 77 

individual water treatment arm and combined WASH arm reduced culturable E. coli in stored 78 

drinking water, but not along other transmission pathways.18 The Sanitation, Hygiene, Infant 79 

Nutrition Efficacy Project (SHINE) trial in rural Zimbabwe has not yet published the results 80 

from a sub-study on environmental fecal contamination. In separate analyses of environmental 81 

samples collected during MapSan baseline15 and the 24-month phase13,21,44 we found widespread 82 

fecal contamination in soils and other environmental compartments. At the 12-month MapSan 83 

trial phase Holcomb et al. 2021 found the intervention reduced E. coli gene densities by more 84 

than 1-log10 in latrine entrance soils, but observed no reduction in culturable E. coli or human 85 

microbial source tracking markers.78 Our study is the first controlled evaluation of an urban 86 

onsite sanitation intervention to show a decrease in the detection of enteric pathogens, via 87 

molecular methods, in soils from the domestic living environment. 88 

The intervention may have reduced the presence of enteric pathogens in soils compared with 89 

controls because the intervention may have better sequestered or treated fecal material than 90 

control latrines. In high-income countries, properly designed, constructed, and maintained septic 91 

tank systems have been demonstrated to be efficient and economic alternatives to public sewage 92 

disposal systems.79 Although some pathogen die-off will occur in pit latrines, the primary 93 

purpose of pit latrines is to sequester human feces and reduce exposures, and they are not 94 

designed to achieve a specific level of pathogen reduction.80 Design features of the intervention 95 
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septic tanks may have resulted in better treatment of fecal wastes than control systems. 96 

Intervention septic tanks contained inlet and outlet pipes configured to maximize detention time, 97 

baffles to direct incoming waste downward, t-pipes to ensure sequestration of solids and 98 

floatable materials, and a sealed containment chamber to promote anaerobic treatment of stored 99 

solids and non-settleable materials. In addition, the intervention septic tank systems represented 100 

an upgrade to a more permanent sanitation infrastructure. The construction included masonry 101 

block walls, a concrete floor, masonry block lined septic tank, masonry block lined soakaway pit, 102 

tin roof, and a water seal squat pan.20,24,53,73 These features may have acted as a physical barrier 103 

that prevented the contamination of soils by enteric pathogens. At the 24-month phase, most 104 

control compounds used a pit latrine with or without a slab, and therefore lacked similar physical 105 

barriers such as a water seal. In addition, the control compounds that did upgrade to pour flush 106 

sanitation may not have used the same rigorous design criteria as intervention septic tanks.50   107 

The extent to which bacterial and viral pathogens may be transported from fecal sludges through 108 

the surrounding soil depends on pit characteristics including presence of lining32 and the 109 

hydrological and soil conditions.31 Protozoan cysts and helminth ova are unlikely to be 110 

transported out of the pit and into surrounding soil because of their relatively large size.80–82 111 

Lateral movement of viral pathogens from unlined or partially lined pit latrines to groundwater 112 

has been demonstrated at distances up to 50 meters.31,83 This movement is often exacerbated by a 113 

high water table31, which is present in the study neighborhoods.53 While we were unable to 114 

assess the lining of control latrines, it is unlikely control linings – if present – matched the 115 

construction quality of intervention linings. 116 

Pit latrines in low-income Maputo are often covered when full and rebuilt, or the fecal sludge is 117 

emptied and buried or dumped nearby.20 The intervention included programming to encourage 118 
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hygienic pit emptying and provided equipment and training to local organizations to offer 119 

hygienic emptying services.73 During the 24-month phase, intervention compounds emptied their 120 

sanitation systems less frequently and were more likely to have their onsite systems emptied 121 

hygienically than control compounds.20 Less frequent emptying would have beneficial for two 122 

reasons. First, longer residence times would likely have resulted in greater pathogen die-off.80 123 

Second, less frequent emptying would have created fewer opportunities for environmental fecal 124 

contamination to occur and hygienic emptying may have reduced the quantity of fecal sludge 125 

that contaminated soils during emptying. In addition, intervention systems contained a drain for 126 

bathing, which may have prevented fecally contaminated graywater from flowing into nearby 127 

soils, and the concrete floors were likely easier to clean than control systems with dirt floors.56 128 

Although our findings suggest that some pathogens appeared to be reduced by the latrine 129 

improvements, it is likely that the potential for exposure remains high in this setting.13 While we 130 

detected some individual pathogens, such as Ascaris lumbricoides, EAEC, Shigella/EIEC and 131 

EPEC, in intervention soils less frequently compared to controls during the 24-month phase, we 132 

also detected one or more enteric pathogens in 86% of intervention latrine entrance soils two 133 

years post-intervention. Fecal waste from children unable to use the latrines was not addressed 134 

by the intervention.28,84 At the 24-month follow-up, 29% (289/980) of children reported 135 

defecating into a latrine, 29% (281/980) defecated into a child potty which was emptied into a 136 

latrine, 20% (192/980) used disposable diapers that were disposed with solid waste, 7.3% 137 

defecated on the ground (72/980), and 2.7% (26/980) defecated into diapers that were washed 138 

and reused (Table S6). In addition, the intervention did not address animal feces. While we 139 

adjusted for animals in our DID estimates, many animals are not penned in this setting and may 140 

defecate outside of their respective compounds, which was not accounted for in our analysis.30 141 
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Live chickens are also commonly purchased and stored in the compound for consumption.85 We 142 

may not have adequately captured this intermittent chicken ownership in our cross-sectional 143 

surveys.  144 

The similar reduction in pathogen detection in soils and child stools may be informative about 145 

exposures. At two years post-intervention in the MapSan cohort, children born into study 146 

compounds were 1-24 months old, while children born previously and enrolled at baseline were 147 

25-73 months old.58 Considering the consistent reduction in the detection of pathogens observed 148 

in soils and stools from children 1-24 months old, the dominant exposure pathways for these 149 

younger children may be inside the compound or soil ingestion may have represented a more 150 

important transmission pathway for these children.86 Older children are more mobile than 151 

younger children, and their potential exposures outside of study compounds may explain why the 152 

intervention did not reduce the prevalence of pathogen carriage among them.  153 

Our study had several limitations, including a relatively small sample size that was not intended 154 

to observe small reductions in pathogen detection. Nevertheless, in high burden settings, 155 

sanitation interventions may need to achieve a large reduction in environmental fecal 156 

contamination both within households and in the larger community to reduce exposure risks and 157 

yield improved health outcomes.87 Further, intervention compounds had lower wealth indices 158 

and higher compound populations 24-months post intervention compared to control. This may 159 

suggest we underestimated changes due to sanitation improvements, but we adjusted for these in 160 

our regression analyses and did not observe substantial differences between unadjusted and 161 

adjusted point estimates that would indicate confounding. In addition, we assessed gene targets 162 

via molecular assays – which may not be 100% sensitive or specific61,88,89 – and not pathogen 163 

viability or infectivity.  164 
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There is substantial evidence that city-wide upgrades to sewerage infrastructure improve health 165 

outcomes.74,75,90 However, the high capital and maintenance costs91, and water usage 166 

requirements92 of such improvements suggest they are currently impractical for many LMICs. 167 

Until sewerage becomes widely feasible in high-burden settings, onsite sanitation systems 168 

remain necessary to achieve safely managed sanitation in many urban areas. The results of this 169 

study – and other rigorous environmental impact evaluations of onsite sanitation 170 

interventions18,38,77 – suggest that fecal contamination is transported into the environment 171 

through multiple complex pathways that may vary among settings.93 In urban Maputo – and 172 

similar settings with poor sanitation infrastructure, widespread environmental fecal 173 

contamination, and a high burden of enteric infection – other, more transformative interventions 174 

interrupting multiple transmission pathways may need to accompany improvements to onsite 175 

sanitation infrastructure. These improvements likely require an integrated and incremental 176 

approach that might include legal protections (e.g. land tenure)94, contact control interventions 177 

(e.g. hardscape cleanable flooring)13,95,96, public infrastructure (e.g. drainage, and improvements 178 

in quality, quantity, and access to water)97, and public services (e.g. education, hygienic fecal 179 

sludge and solid waste management)20,98,99. Such improvements may reduce the transport of 180 

enteric pathogens into the environment through site-specific pathways and subsequently reduce 181 

children’s infection risks. 182 

Supplemental Information 183 

1. Text S1. Detailed description of the sanitation intervention 184 

2. Text S2. Compound enrollment at baseline 185 

3. Text S3. Test for Matrix Inhibition 186 

4. Text S4. Custom TaqMan Array Card (TAC) 187 
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5. Table S1. Assays used on the custom TAC 188 

6. Table S2. Interpretation of gene targets on the TAC 189 

7. Table S3. Description of variables and their respective sources 190 

8. Table S4. Soils samples matched at baseline and 24-month trial periods 191 

9. Figure S1. Histogram of dates that latrine entrance soils were collected 192 

10. Table S5. Mean Cq Values 193 

11. Table S6. Child feces disposal at 24-month phase 194 

Notes 195 

The findings and conclusions in this report are those of the authors and do not necessarily represent 196 

the official position of the Centers for Disease Control and Prevention. 197 

 198 

  199 
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